xref: /openbmc/linux/kernel/dma/direct.c (revision f0931824)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24 
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 		phys_addr_t phys)
27 {
28 	if (force_dma_unencrypted(dev))
29 		return phys_to_dma_unencrypted(dev, phys);
30 	return phys_to_dma(dev, phys);
31 }
32 
33 static inline struct page *dma_direct_to_page(struct device *dev,
34 		dma_addr_t dma_addr)
35 {
36 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38 
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 	u64 max_dma = phys_to_dma_direct(dev, phys);
43 
44 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
48 {
49 	u64 dma_limit = min_not_zero(
50 		dev->coherent_dma_mask,
51 		dev->bus_dma_limit);
52 
53 	/*
54 	 * Optimistically try the zone that the physical address mask falls
55 	 * into first.  If that returns memory that isn't actually addressable
56 	 * we will fallback to the next lower zone and try again.
57 	 *
58 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
59 	 * zones.
60 	 */
61 	*phys_limit = dma_to_phys(dev, dma_limit);
62 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
63 		return GFP_DMA;
64 	if (*phys_limit <= DMA_BIT_MASK(32))
65 		return GFP_DMA32;
66 	return 0;
67 }
68 
69 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
70 {
71 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
72 
73 	if (dma_addr == DMA_MAPPING_ERROR)
74 		return false;
75 	return dma_addr + size - 1 <=
76 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
77 }
78 
79 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
80 {
81 	if (!force_dma_unencrypted(dev))
82 		return 0;
83 	return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
84 }
85 
86 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
87 {
88 	int ret;
89 
90 	if (!force_dma_unencrypted(dev))
91 		return 0;
92 	ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
93 	if (ret)
94 		pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
95 	return ret;
96 }
97 
98 static void __dma_direct_free_pages(struct device *dev, struct page *page,
99 				    size_t size)
100 {
101 	if (swiotlb_free(dev, page, size))
102 		return;
103 	dma_free_contiguous(dev, page, size);
104 }
105 
106 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
107 {
108 	struct page *page = swiotlb_alloc(dev, size);
109 
110 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
111 		swiotlb_free(dev, page, size);
112 		return NULL;
113 	}
114 
115 	return page;
116 }
117 
118 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
119 		gfp_t gfp, bool allow_highmem)
120 {
121 	int node = dev_to_node(dev);
122 	struct page *page = NULL;
123 	u64 phys_limit;
124 
125 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
126 
127 	if (is_swiotlb_for_alloc(dev))
128 		return dma_direct_alloc_swiotlb(dev, size);
129 
130 	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
131 	page = dma_alloc_contiguous(dev, size, gfp);
132 	if (page) {
133 		if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134 		    (!allow_highmem && PageHighMem(page))) {
135 			dma_free_contiguous(dev, page, size);
136 			page = NULL;
137 		}
138 	}
139 again:
140 	if (!page)
141 		page = alloc_pages_node(node, gfp, get_order(size));
142 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143 		dma_free_contiguous(dev, page, size);
144 		page = NULL;
145 
146 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147 		    phys_limit < DMA_BIT_MASK(64) &&
148 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
149 			gfp |= GFP_DMA32;
150 			goto again;
151 		}
152 
153 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155 			goto again;
156 		}
157 	}
158 
159 	return page;
160 }
161 
162 /*
163  * Check if a potentially blocking operations needs to dip into the atomic
164  * pools for the given device/gfp.
165  */
166 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167 {
168 	return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169 }
170 
171 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172 		dma_addr_t *dma_handle, gfp_t gfp)
173 {
174 	struct page *page;
175 	u64 phys_limit;
176 	void *ret;
177 
178 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179 		return NULL;
180 
181 	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
182 	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
183 	if (!page)
184 		return NULL;
185 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
186 	return ret;
187 }
188 
189 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
190 		dma_addr_t *dma_handle, gfp_t gfp)
191 {
192 	struct page *page;
193 
194 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
195 	if (!page)
196 		return NULL;
197 
198 	/* remove any dirty cache lines on the kernel alias */
199 	if (!PageHighMem(page))
200 		arch_dma_prep_coherent(page, size);
201 
202 	/* return the page pointer as the opaque cookie */
203 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
204 	return page;
205 }
206 
207 void *dma_direct_alloc(struct device *dev, size_t size,
208 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209 {
210 	bool remap = false, set_uncached = false;
211 	struct page *page;
212 	void *ret;
213 
214 	size = PAGE_ALIGN(size);
215 	if (attrs & DMA_ATTR_NO_WARN)
216 		gfp |= __GFP_NOWARN;
217 
218 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
219 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
220 		return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
221 
222 	if (!dev_is_dma_coherent(dev)) {
223 		/*
224 		 * Fallback to the arch handler if it exists.  This should
225 		 * eventually go away.
226 		 */
227 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
228 		    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
229 		    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
230 		    !is_swiotlb_for_alloc(dev))
231 			return arch_dma_alloc(dev, size, dma_handle, gfp,
232 					      attrs);
233 
234 		/*
235 		 * If there is a global pool, always allocate from it for
236 		 * non-coherent devices.
237 		 */
238 		if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
239 			return dma_alloc_from_global_coherent(dev, size,
240 					dma_handle);
241 
242 		/*
243 		 * Otherwise remap if the architecture is asking for it.  But
244 		 * given that remapping memory is a blocking operation we'll
245 		 * instead have to dip into the atomic pools.
246 		 */
247 		remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
248 		if (remap) {
249 			if (dma_direct_use_pool(dev, gfp))
250 				return dma_direct_alloc_from_pool(dev, size,
251 						dma_handle, gfp);
252 		} else {
253 			if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
254 				return NULL;
255 			set_uncached = true;
256 		}
257 	}
258 
259 	/*
260 	 * Decrypting memory may block, so allocate the memory from the atomic
261 	 * pools if we can't block.
262 	 */
263 	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
264 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
265 
266 	/* we always manually zero the memory once we are done */
267 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
268 	if (!page)
269 		return NULL;
270 
271 	/*
272 	 * dma_alloc_contiguous can return highmem pages depending on a
273 	 * combination the cma= arguments and per-arch setup.  These need to be
274 	 * remapped to return a kernel virtual address.
275 	 */
276 	if (PageHighMem(page)) {
277 		remap = true;
278 		set_uncached = false;
279 	}
280 
281 	if (remap) {
282 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
283 
284 		if (force_dma_unencrypted(dev))
285 			prot = pgprot_decrypted(prot);
286 
287 		/* remove any dirty cache lines on the kernel alias */
288 		arch_dma_prep_coherent(page, size);
289 
290 		/* create a coherent mapping */
291 		ret = dma_common_contiguous_remap(page, size, prot,
292 				__builtin_return_address(0));
293 		if (!ret)
294 			goto out_free_pages;
295 	} else {
296 		ret = page_address(page);
297 		if (dma_set_decrypted(dev, ret, size))
298 			goto out_leak_pages;
299 	}
300 
301 	memset(ret, 0, size);
302 
303 	if (set_uncached) {
304 		arch_dma_prep_coherent(page, size);
305 		ret = arch_dma_set_uncached(ret, size);
306 		if (IS_ERR(ret))
307 			goto out_encrypt_pages;
308 	}
309 
310 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
311 	return ret;
312 
313 out_encrypt_pages:
314 	if (dma_set_encrypted(dev, page_address(page), size))
315 		return NULL;
316 out_free_pages:
317 	__dma_direct_free_pages(dev, page, size);
318 	return NULL;
319 out_leak_pages:
320 	return NULL;
321 }
322 
323 void dma_direct_free(struct device *dev, size_t size,
324 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
325 {
326 	unsigned int page_order = get_order(size);
327 
328 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
329 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
330 		/* cpu_addr is a struct page cookie, not a kernel address */
331 		dma_free_contiguous(dev, cpu_addr, size);
332 		return;
333 	}
334 
335 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
336 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
337 	    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
338 	    !dev_is_dma_coherent(dev) &&
339 	    !is_swiotlb_for_alloc(dev)) {
340 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
341 		return;
342 	}
343 
344 	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
345 	    !dev_is_dma_coherent(dev)) {
346 		if (!dma_release_from_global_coherent(page_order, cpu_addr))
347 			WARN_ON_ONCE(1);
348 		return;
349 	}
350 
351 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
352 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
353 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
354 		return;
355 
356 	if (is_vmalloc_addr(cpu_addr)) {
357 		vunmap(cpu_addr);
358 	} else {
359 		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
360 			arch_dma_clear_uncached(cpu_addr, size);
361 		if (dma_set_encrypted(dev, cpu_addr, size))
362 			return;
363 	}
364 
365 	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
366 }
367 
368 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
369 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
370 {
371 	struct page *page;
372 	void *ret;
373 
374 	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
375 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
376 
377 	page = __dma_direct_alloc_pages(dev, size, gfp, false);
378 	if (!page)
379 		return NULL;
380 
381 	ret = page_address(page);
382 	if (dma_set_decrypted(dev, ret, size))
383 		goto out_leak_pages;
384 	memset(ret, 0, size);
385 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
386 	return page;
387 out_leak_pages:
388 	return NULL;
389 }
390 
391 void dma_direct_free_pages(struct device *dev, size_t size,
392 		struct page *page, dma_addr_t dma_addr,
393 		enum dma_data_direction dir)
394 {
395 	void *vaddr = page_address(page);
396 
397 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
398 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
399 	    dma_free_from_pool(dev, vaddr, size))
400 		return;
401 
402 	if (dma_set_encrypted(dev, vaddr, size))
403 		return;
404 	__dma_direct_free_pages(dev, page, size);
405 }
406 
407 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
408     defined(CONFIG_SWIOTLB)
409 void dma_direct_sync_sg_for_device(struct device *dev,
410 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
411 {
412 	struct scatterlist *sg;
413 	int i;
414 
415 	for_each_sg(sgl, sg, nents, i) {
416 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
417 
418 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
419 			swiotlb_sync_single_for_device(dev, paddr, sg->length,
420 						       dir);
421 
422 		if (!dev_is_dma_coherent(dev))
423 			arch_sync_dma_for_device(paddr, sg->length,
424 					dir);
425 	}
426 }
427 #endif
428 
429 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
430     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
431     defined(CONFIG_SWIOTLB)
432 void dma_direct_sync_sg_for_cpu(struct device *dev,
433 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
434 {
435 	struct scatterlist *sg;
436 	int i;
437 
438 	for_each_sg(sgl, sg, nents, i) {
439 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
440 
441 		if (!dev_is_dma_coherent(dev))
442 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
443 
444 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
445 			swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
446 						    dir);
447 
448 		if (dir == DMA_FROM_DEVICE)
449 			arch_dma_mark_clean(paddr, sg->length);
450 	}
451 
452 	if (!dev_is_dma_coherent(dev))
453 		arch_sync_dma_for_cpu_all();
454 }
455 
456 /*
457  * Unmaps segments, except for ones marked as pci_p2pdma which do not
458  * require any further action as they contain a bus address.
459  */
460 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
461 		int nents, enum dma_data_direction dir, unsigned long attrs)
462 {
463 	struct scatterlist *sg;
464 	int i;
465 
466 	for_each_sg(sgl,  sg, nents, i) {
467 		if (sg_dma_is_bus_address(sg))
468 			sg_dma_unmark_bus_address(sg);
469 		else
470 			dma_direct_unmap_page(dev, sg->dma_address,
471 					      sg_dma_len(sg), dir, attrs);
472 	}
473 }
474 #endif
475 
476 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
477 		enum dma_data_direction dir, unsigned long attrs)
478 {
479 	struct pci_p2pdma_map_state p2pdma_state = {};
480 	enum pci_p2pdma_map_type map;
481 	struct scatterlist *sg;
482 	int i, ret;
483 
484 	for_each_sg(sgl, sg, nents, i) {
485 		if (is_pci_p2pdma_page(sg_page(sg))) {
486 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
487 			switch (map) {
488 			case PCI_P2PDMA_MAP_BUS_ADDR:
489 				continue;
490 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
491 				/*
492 				 * Any P2P mapping that traverses the PCI
493 				 * host bridge must be mapped with CPU physical
494 				 * address and not PCI bus addresses. This is
495 				 * done with dma_direct_map_page() below.
496 				 */
497 				break;
498 			default:
499 				ret = -EREMOTEIO;
500 				goto out_unmap;
501 			}
502 		}
503 
504 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
505 				sg->offset, sg->length, dir, attrs);
506 		if (sg->dma_address == DMA_MAPPING_ERROR) {
507 			ret = -EIO;
508 			goto out_unmap;
509 		}
510 		sg_dma_len(sg) = sg->length;
511 	}
512 
513 	return nents;
514 
515 out_unmap:
516 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
517 	return ret;
518 }
519 
520 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
521 		size_t size, enum dma_data_direction dir, unsigned long attrs)
522 {
523 	dma_addr_t dma_addr = paddr;
524 
525 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
526 		dev_err_once(dev,
527 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
528 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
529 		WARN_ON_ONCE(1);
530 		return DMA_MAPPING_ERROR;
531 	}
532 
533 	return dma_addr;
534 }
535 
536 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
537 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
538 		unsigned long attrs)
539 {
540 	struct page *page = dma_direct_to_page(dev, dma_addr);
541 	int ret;
542 
543 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
544 	if (!ret)
545 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
546 	return ret;
547 }
548 
549 bool dma_direct_can_mmap(struct device *dev)
550 {
551 	return dev_is_dma_coherent(dev) ||
552 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
553 }
554 
555 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
556 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
557 		unsigned long attrs)
558 {
559 	unsigned long user_count = vma_pages(vma);
560 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
561 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
562 	int ret = -ENXIO;
563 
564 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
565 	if (force_dma_unencrypted(dev))
566 		vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
567 
568 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
569 		return ret;
570 	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
571 		return ret;
572 
573 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
574 		return -ENXIO;
575 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
576 			user_count << PAGE_SHIFT, vma->vm_page_prot);
577 }
578 
579 int dma_direct_supported(struct device *dev, u64 mask)
580 {
581 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
582 
583 	/*
584 	 * Because 32-bit DMA masks are so common we expect every architecture
585 	 * to be able to satisfy them - either by not supporting more physical
586 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
587 	 * architecture needs to use an IOMMU instead of the direct mapping.
588 	 */
589 	if (mask >= DMA_BIT_MASK(32))
590 		return 1;
591 
592 	/*
593 	 * This check needs to be against the actual bit mask value, so use
594 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
595 	 * part of the check.
596 	 */
597 	if (IS_ENABLED(CONFIG_ZONE_DMA))
598 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
599 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
600 }
601 
602 size_t dma_direct_max_mapping_size(struct device *dev)
603 {
604 	/* If SWIOTLB is active, use its maximum mapping size */
605 	if (is_swiotlb_active(dev) &&
606 	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
607 		return swiotlb_max_mapping_size(dev);
608 	return SIZE_MAX;
609 }
610 
611 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
612 {
613 	return !dev_is_dma_coherent(dev) ||
614 	       is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
615 }
616 
617 /**
618  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
619  * @dev:	device pointer; needed to "own" the alloced memory.
620  * @cpu_start:  beginning of memory region covered by this offset.
621  * @dma_start:  beginning of DMA/PCI region covered by this offset.
622  * @size:	size of the region.
623  *
624  * This is for the simple case of a uniform offset which cannot
625  * be discovered by "dma-ranges".
626  *
627  * It returns -ENOMEM if out of memory, -EINVAL if a map
628  * already exists, 0 otherwise.
629  *
630  * Note: any call to this from a driver is a bug.  The mapping needs
631  * to be described by the device tree or other firmware interfaces.
632  */
633 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
634 			 dma_addr_t dma_start, u64 size)
635 {
636 	struct bus_dma_region *map;
637 	u64 offset = (u64)cpu_start - (u64)dma_start;
638 
639 	if (dev->dma_range_map) {
640 		dev_err(dev, "attempt to add DMA range to existing map\n");
641 		return -EINVAL;
642 	}
643 
644 	if (!offset)
645 		return 0;
646 
647 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
648 	if (!map)
649 		return -ENOMEM;
650 	map[0].cpu_start = cpu_start;
651 	map[0].dma_start = dma_start;
652 	map[0].offset = offset;
653 	map[0].size = size;
654 	dev->dma_range_map = map;
655 	return 0;
656 }
657