xref: /openbmc/linux/kernel/dma/direct.c (revision ccb01374)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16 #include <linux/swiotlb.h>
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20  * some use it for entirely different regions:
21  */
22 #ifndef ARCH_ZONE_DMA_BITS
23 #define ARCH_ZONE_DMA_BITS 24
24 #endif
25 
26 /*
27  * For AMD SEV all DMA must be to unencrypted addresses.
28  */
29 static inline bool force_dma_unencrypted(void)
30 {
31 	return sev_active();
32 }
33 
34 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
35 {
36 	if (!dev->dma_mask) {
37 		dev_err_once(dev, "DMA map on device without dma_mask\n");
38 	} else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
39 		dev_err_once(dev,
40 			"overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
41 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
42 	}
43 	WARN_ON_ONCE(1);
44 }
45 
46 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
47 		phys_addr_t phys)
48 {
49 	if (force_dma_unencrypted())
50 		return __phys_to_dma(dev, phys);
51 	return phys_to_dma(dev, phys);
52 }
53 
54 u64 dma_direct_get_required_mask(struct device *dev)
55 {
56 	u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
57 
58 	if (dev->bus_dma_mask && dev->bus_dma_mask < max_dma)
59 		max_dma = dev->bus_dma_mask;
60 
61 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
62 }
63 
64 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
65 		u64 *phys_mask)
66 {
67 	if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
68 		dma_mask = dev->bus_dma_mask;
69 
70 	if (force_dma_unencrypted())
71 		*phys_mask = __dma_to_phys(dev, dma_mask);
72 	else
73 		*phys_mask = dma_to_phys(dev, dma_mask);
74 
75 	/*
76 	 * Optimistically try the zone that the physical address mask falls
77 	 * into first.  If that returns memory that isn't actually addressable
78 	 * we will fallback to the next lower zone and try again.
79 	 *
80 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
81 	 * zones.
82 	 */
83 	if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
84 		return GFP_DMA;
85 	if (*phys_mask <= DMA_BIT_MASK(32))
86 		return GFP_DMA32;
87 	return 0;
88 }
89 
90 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
91 {
92 	return phys_to_dma_direct(dev, phys) + size - 1 <=
93 			min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
94 }
95 
96 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
97 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
98 {
99 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
100 	int page_order = get_order(size);
101 	struct page *page = NULL;
102 	u64 phys_mask;
103 
104 	if (attrs & DMA_ATTR_NO_WARN)
105 		gfp |= __GFP_NOWARN;
106 
107 	/* we always manually zero the memory once we are done: */
108 	gfp &= ~__GFP_ZERO;
109 	gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
110 			&phys_mask);
111 again:
112 	/* CMA can be used only in the context which permits sleeping */
113 	if (gfpflags_allow_blocking(gfp)) {
114 		page = dma_alloc_from_contiguous(dev, count, page_order,
115 						 gfp & __GFP_NOWARN);
116 		if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
117 			dma_release_from_contiguous(dev, page, count);
118 			page = NULL;
119 		}
120 	}
121 	if (!page)
122 		page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
123 
124 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
125 		__free_pages(page, page_order);
126 		page = NULL;
127 
128 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
129 		    phys_mask < DMA_BIT_MASK(64) &&
130 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
131 			gfp |= GFP_DMA32;
132 			goto again;
133 		}
134 
135 		if (IS_ENABLED(CONFIG_ZONE_DMA) &&
136 		    phys_mask < DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) {
137 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
138 			goto again;
139 		}
140 	}
141 
142 	return page;
143 }
144 
145 void *dma_direct_alloc_pages(struct device *dev, size_t size,
146 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
147 {
148 	struct page *page;
149 	void *ret;
150 
151 	page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
152 	if (!page)
153 		return NULL;
154 
155 	if (PageHighMem(page)) {
156 		/*
157 		 * Depending on the cma= arguments and per-arch setup
158 		 * dma_alloc_from_contiguous could return highmem pages.
159 		 * Without remapping there is no way to return them here,
160 		 * so log an error and fail.
161 		 */
162 		dev_info(dev, "Rejecting highmem page from CMA.\n");
163 		__dma_direct_free_pages(dev, size, page);
164 		return NULL;
165 	}
166 
167 	ret = page_address(page);
168 	if (force_dma_unencrypted()) {
169 		set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
170 		*dma_handle = __phys_to_dma(dev, page_to_phys(page));
171 	} else {
172 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
173 	}
174 	memset(ret, 0, size);
175 	return ret;
176 }
177 
178 void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
179 {
180 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
181 
182 	if (!dma_release_from_contiguous(dev, page, count))
183 		__free_pages(page, get_order(size));
184 }
185 
186 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
187 		dma_addr_t dma_addr, unsigned long attrs)
188 {
189 	unsigned int page_order = get_order(size);
190 
191 	if (force_dma_unencrypted())
192 		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
193 	__dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
194 }
195 
196 void *dma_direct_alloc(struct device *dev, size_t size,
197 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
198 {
199 	if (!dev_is_dma_coherent(dev))
200 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
201 	return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
202 }
203 
204 void dma_direct_free(struct device *dev, size_t size,
205 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
206 {
207 	if (!dev_is_dma_coherent(dev))
208 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
209 	else
210 		dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
211 }
212 
213 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
214     defined(CONFIG_SWIOTLB)
215 void dma_direct_sync_single_for_device(struct device *dev,
216 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
217 {
218 	phys_addr_t paddr = dma_to_phys(dev, addr);
219 
220 	if (unlikely(is_swiotlb_buffer(paddr)))
221 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
222 
223 	if (!dev_is_dma_coherent(dev))
224 		arch_sync_dma_for_device(dev, paddr, size, dir);
225 }
226 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
227 
228 void dma_direct_sync_sg_for_device(struct device *dev,
229 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
230 {
231 	struct scatterlist *sg;
232 	int i;
233 
234 	for_each_sg(sgl, sg, nents, i) {
235 		if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
236 			swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length,
237 					dir, SYNC_FOR_DEVICE);
238 
239 		if (!dev_is_dma_coherent(dev))
240 			arch_sync_dma_for_device(dev, sg_phys(sg), sg->length,
241 					dir);
242 	}
243 }
244 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
245 #endif
246 
247 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
248     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
249     defined(CONFIG_SWIOTLB)
250 void dma_direct_sync_single_for_cpu(struct device *dev,
251 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
252 {
253 	phys_addr_t paddr = dma_to_phys(dev, addr);
254 
255 	if (!dev_is_dma_coherent(dev)) {
256 		arch_sync_dma_for_cpu(dev, paddr, size, dir);
257 		arch_sync_dma_for_cpu_all(dev);
258 	}
259 
260 	if (unlikely(is_swiotlb_buffer(paddr)))
261 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
262 }
263 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
264 
265 void dma_direct_sync_sg_for_cpu(struct device *dev,
266 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
267 {
268 	struct scatterlist *sg;
269 	int i;
270 
271 	for_each_sg(sgl, sg, nents, i) {
272 		if (!dev_is_dma_coherent(dev))
273 			arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
274 
275 		if (unlikely(is_swiotlb_buffer(sg_phys(sg))))
276 			swiotlb_tbl_sync_single(dev, sg_phys(sg), sg->length, dir,
277 					SYNC_FOR_CPU);
278 	}
279 
280 	if (!dev_is_dma_coherent(dev))
281 		arch_sync_dma_for_cpu_all(dev);
282 }
283 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
284 
285 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
286 		size_t size, enum dma_data_direction dir, unsigned long attrs)
287 {
288 	phys_addr_t phys = dma_to_phys(dev, addr);
289 
290 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
291 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
292 
293 	if (unlikely(is_swiotlb_buffer(phys)))
294 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
295 }
296 EXPORT_SYMBOL(dma_direct_unmap_page);
297 
298 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
299 		int nents, enum dma_data_direction dir, unsigned long attrs)
300 {
301 	struct scatterlist *sg;
302 	int i;
303 
304 	for_each_sg(sgl, sg, nents, i)
305 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
306 			     attrs);
307 }
308 EXPORT_SYMBOL(dma_direct_unmap_sg);
309 #endif
310 
311 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
312 		size_t size)
313 {
314 	return swiotlb_force != SWIOTLB_FORCE &&
315 		(!dev || dma_capable(dev, dma_addr, size));
316 }
317 
318 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
319 		unsigned long offset, size_t size, enum dma_data_direction dir,
320 		unsigned long attrs)
321 {
322 	phys_addr_t phys = page_to_phys(page) + offset;
323 	dma_addr_t dma_addr = phys_to_dma(dev, phys);
324 
325 	if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
326 	    !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
327 		report_addr(dev, dma_addr, size);
328 		return DMA_MAPPING_ERROR;
329 	}
330 
331 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
332 		arch_sync_dma_for_device(dev, phys, size, dir);
333 	return dma_addr;
334 }
335 EXPORT_SYMBOL(dma_direct_map_page);
336 
337 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
338 		enum dma_data_direction dir, unsigned long attrs)
339 {
340 	int i;
341 	struct scatterlist *sg;
342 
343 	for_each_sg(sgl, sg, nents, i) {
344 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
345 				sg->offset, sg->length, dir, attrs);
346 		if (sg->dma_address == DMA_MAPPING_ERROR)
347 			goto out_unmap;
348 		sg_dma_len(sg) = sg->length;
349 	}
350 
351 	return nents;
352 
353 out_unmap:
354 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
355 	return 0;
356 }
357 EXPORT_SYMBOL(dma_direct_map_sg);
358 
359 /*
360  * Because 32-bit DMA masks are so common we expect every architecture to be
361  * able to satisfy them - either by not supporting more physical memory, or by
362  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
363  * use an IOMMU instead of the direct mapping.
364  */
365 int dma_direct_supported(struct device *dev, u64 mask)
366 {
367 	u64 min_mask;
368 
369 	if (IS_ENABLED(CONFIG_ZONE_DMA))
370 		min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
371 	else
372 		min_mask = DMA_BIT_MASK(32);
373 
374 	min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
375 
376 	/*
377 	 * This check needs to be against the actual bit mask value, so
378 	 * use __phys_to_dma() here so that the SME encryption mask isn't
379 	 * part of the check.
380 	 */
381 	return mask >= __phys_to_dma(dev, min_mask);
382 }
383