xref: /openbmc/linux/kernel/dma/direct.c (revision c24c57a4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16 #include <linux/swiotlb.h>
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24 
25 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
26 {
27 	if (!dev->dma_mask) {
28 		dev_err_once(dev, "DMA map on device without dma_mask\n");
29 	} else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
30 		dev_err_once(dev,
31 			"overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
32 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
33 	}
34 	WARN_ON_ONCE(1);
35 }
36 
37 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
38 		phys_addr_t phys)
39 {
40 	if (force_dma_unencrypted(dev))
41 		return __phys_to_dma(dev, phys);
42 	return phys_to_dma(dev, phys);
43 }
44 
45 u64 dma_direct_get_required_mask(struct device *dev)
46 {
47 	u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
48 
49 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
50 }
51 
52 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
53 		u64 *phys_mask)
54 {
55 	if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
56 		dma_mask = dev->bus_dma_mask;
57 
58 	if (force_dma_unencrypted(dev))
59 		*phys_mask = __dma_to_phys(dev, dma_mask);
60 	else
61 		*phys_mask = dma_to_phys(dev, dma_mask);
62 
63 	/*
64 	 * Optimistically try the zone that the physical address mask falls
65 	 * into first.  If that returns memory that isn't actually addressable
66 	 * we will fallback to the next lower zone and try again.
67 	 *
68 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
69 	 * zones.
70 	 */
71 	if (*phys_mask <= DMA_BIT_MASK(zone_dma_bits))
72 		return GFP_DMA;
73 	if (*phys_mask <= DMA_BIT_MASK(32))
74 		return GFP_DMA32;
75 	return 0;
76 }
77 
78 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
79 {
80 	return phys_to_dma_direct(dev, phys) + size - 1 <=
81 			min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
82 }
83 
84 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
85 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
86 {
87 	size_t alloc_size = PAGE_ALIGN(size);
88 	int node = dev_to_node(dev);
89 	struct page *page = NULL;
90 	u64 phys_mask;
91 
92 	if (attrs & DMA_ATTR_NO_WARN)
93 		gfp |= __GFP_NOWARN;
94 
95 	/* we always manually zero the memory once we are done: */
96 	gfp &= ~__GFP_ZERO;
97 	gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
98 			&phys_mask);
99 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
100 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
101 		dma_free_contiguous(dev, page, alloc_size);
102 		page = NULL;
103 	}
104 again:
105 	if (!page)
106 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
107 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
108 		dma_free_contiguous(dev, page, size);
109 		page = NULL;
110 
111 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
112 		    phys_mask < DMA_BIT_MASK(64) &&
113 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
114 			gfp |= GFP_DMA32;
115 			goto again;
116 		}
117 
118 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
119 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
120 			goto again;
121 		}
122 	}
123 
124 	return page;
125 }
126 
127 void *dma_direct_alloc_pages(struct device *dev, size_t size,
128 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
129 {
130 	struct page *page;
131 	void *ret;
132 
133 	page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
134 	if (!page)
135 		return NULL;
136 
137 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
138 	    !force_dma_unencrypted(dev)) {
139 		/* remove any dirty cache lines on the kernel alias */
140 		if (!PageHighMem(page))
141 			arch_dma_prep_coherent(page, size);
142 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
143 		/* return the page pointer as the opaque cookie */
144 		return page;
145 	}
146 
147 	if (PageHighMem(page)) {
148 		/*
149 		 * Depending on the cma= arguments and per-arch setup
150 		 * dma_alloc_contiguous could return highmem pages.
151 		 * Without remapping there is no way to return them here,
152 		 * so log an error and fail.
153 		 */
154 		dev_info(dev, "Rejecting highmem page from CMA.\n");
155 		__dma_direct_free_pages(dev, size, page);
156 		return NULL;
157 	}
158 
159 	ret = page_address(page);
160 	if (force_dma_unencrypted(dev)) {
161 		set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
162 		*dma_handle = __phys_to_dma(dev, page_to_phys(page));
163 	} else {
164 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
165 	}
166 	memset(ret, 0, size);
167 
168 	if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
169 	    dma_alloc_need_uncached(dev, attrs)) {
170 		arch_dma_prep_coherent(page, size);
171 		ret = uncached_kernel_address(ret);
172 	}
173 
174 	return ret;
175 }
176 
177 void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
178 {
179 	dma_free_contiguous(dev, page, size);
180 }
181 
182 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
183 		dma_addr_t dma_addr, unsigned long attrs)
184 {
185 	unsigned int page_order = get_order(size);
186 
187 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
188 	    !force_dma_unencrypted(dev)) {
189 		/* cpu_addr is a struct page cookie, not a kernel address */
190 		__dma_direct_free_pages(dev, size, cpu_addr);
191 		return;
192 	}
193 
194 	if (force_dma_unencrypted(dev))
195 		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
196 
197 	if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
198 	    dma_alloc_need_uncached(dev, attrs))
199 		cpu_addr = cached_kernel_address(cpu_addr);
200 	__dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
201 }
202 
203 void *dma_direct_alloc(struct device *dev, size_t size,
204 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
205 {
206 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
207 	    dma_alloc_need_uncached(dev, attrs))
208 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
209 	return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
210 }
211 
212 void dma_direct_free(struct device *dev, size_t size,
213 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
214 {
215 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
216 	    dma_alloc_need_uncached(dev, attrs))
217 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
218 	else
219 		dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
220 }
221 
222 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
223     defined(CONFIG_SWIOTLB)
224 void dma_direct_sync_single_for_device(struct device *dev,
225 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
226 {
227 	phys_addr_t paddr = dma_to_phys(dev, addr);
228 
229 	if (unlikely(is_swiotlb_buffer(paddr)))
230 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
231 
232 	if (!dev_is_dma_coherent(dev))
233 		arch_sync_dma_for_device(dev, paddr, size, dir);
234 }
235 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
236 
237 void dma_direct_sync_sg_for_device(struct device *dev,
238 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
239 {
240 	struct scatterlist *sg;
241 	int i;
242 
243 	for_each_sg(sgl, sg, nents, i) {
244 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
245 
246 		if (unlikely(is_swiotlb_buffer(paddr)))
247 			swiotlb_tbl_sync_single(dev, paddr, sg->length,
248 					dir, SYNC_FOR_DEVICE);
249 
250 		if (!dev_is_dma_coherent(dev))
251 			arch_sync_dma_for_device(dev, paddr, sg->length,
252 					dir);
253 	}
254 }
255 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
256 #endif
257 
258 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
259     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
260     defined(CONFIG_SWIOTLB)
261 void dma_direct_sync_single_for_cpu(struct device *dev,
262 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
263 {
264 	phys_addr_t paddr = dma_to_phys(dev, addr);
265 
266 	if (!dev_is_dma_coherent(dev)) {
267 		arch_sync_dma_for_cpu(dev, paddr, size, dir);
268 		arch_sync_dma_for_cpu_all(dev);
269 	}
270 
271 	if (unlikely(is_swiotlb_buffer(paddr)))
272 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
273 }
274 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
275 
276 void dma_direct_sync_sg_for_cpu(struct device *dev,
277 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
278 {
279 	struct scatterlist *sg;
280 	int i;
281 
282 	for_each_sg(sgl, sg, nents, i) {
283 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
284 
285 		if (!dev_is_dma_coherent(dev))
286 			arch_sync_dma_for_cpu(dev, paddr, sg->length, dir);
287 
288 		if (unlikely(is_swiotlb_buffer(paddr)))
289 			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
290 					SYNC_FOR_CPU);
291 	}
292 
293 	if (!dev_is_dma_coherent(dev))
294 		arch_sync_dma_for_cpu_all(dev);
295 }
296 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
297 
298 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
299 		size_t size, enum dma_data_direction dir, unsigned long attrs)
300 {
301 	phys_addr_t phys = dma_to_phys(dev, addr);
302 
303 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
304 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
305 
306 	if (unlikely(is_swiotlb_buffer(phys)))
307 		swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
308 }
309 EXPORT_SYMBOL(dma_direct_unmap_page);
310 
311 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
312 		int nents, enum dma_data_direction dir, unsigned long attrs)
313 {
314 	struct scatterlist *sg;
315 	int i;
316 
317 	for_each_sg(sgl, sg, nents, i)
318 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
319 			     attrs);
320 }
321 EXPORT_SYMBOL(dma_direct_unmap_sg);
322 #endif
323 
324 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
325 		size_t size)
326 {
327 	return swiotlb_force != SWIOTLB_FORCE &&
328 		dma_capable(dev, dma_addr, size);
329 }
330 
331 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
332 		unsigned long offset, size_t size, enum dma_data_direction dir,
333 		unsigned long attrs)
334 {
335 	phys_addr_t phys = page_to_phys(page) + offset;
336 	dma_addr_t dma_addr = phys_to_dma(dev, phys);
337 
338 	if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
339 	    !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
340 		report_addr(dev, dma_addr, size);
341 		return DMA_MAPPING_ERROR;
342 	}
343 
344 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
345 		arch_sync_dma_for_device(dev, phys, size, dir);
346 	return dma_addr;
347 }
348 EXPORT_SYMBOL(dma_direct_map_page);
349 
350 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
351 		enum dma_data_direction dir, unsigned long attrs)
352 {
353 	int i;
354 	struct scatterlist *sg;
355 
356 	for_each_sg(sgl, sg, nents, i) {
357 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
358 				sg->offset, sg->length, dir, attrs);
359 		if (sg->dma_address == DMA_MAPPING_ERROR)
360 			goto out_unmap;
361 		sg_dma_len(sg) = sg->length;
362 	}
363 
364 	return nents;
365 
366 out_unmap:
367 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
368 	return 0;
369 }
370 EXPORT_SYMBOL(dma_direct_map_sg);
371 
372 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
373 		size_t size, enum dma_data_direction dir, unsigned long attrs)
374 {
375 	dma_addr_t dma_addr = paddr;
376 
377 	if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
378 		report_addr(dev, dma_addr, size);
379 		return DMA_MAPPING_ERROR;
380 	}
381 
382 	return dma_addr;
383 }
384 EXPORT_SYMBOL(dma_direct_map_resource);
385 
386 /*
387  * Because 32-bit DMA masks are so common we expect every architecture to be
388  * able to satisfy them - either by not supporting more physical memory, or by
389  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
390  * use an IOMMU instead of the direct mapping.
391  */
392 int dma_direct_supported(struct device *dev, u64 mask)
393 {
394 	u64 min_mask;
395 
396 	if (IS_ENABLED(CONFIG_ZONE_DMA))
397 		min_mask = DMA_BIT_MASK(zone_dma_bits);
398 	else
399 		min_mask = DMA_BIT_MASK(32);
400 
401 	min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
402 
403 	/*
404 	 * This check needs to be against the actual bit mask value, so
405 	 * use __phys_to_dma() here so that the SME encryption mask isn't
406 	 * part of the check.
407 	 */
408 	return mask >= __phys_to_dma(dev, min_mask);
409 }
410 
411 size_t dma_direct_max_mapping_size(struct device *dev)
412 {
413 	/* If SWIOTLB is active, use its maximum mapping size */
414 	if (is_swiotlb_active() &&
415 	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
416 		return swiotlb_max_mapping_size(dev);
417 	return SIZE_MAX;
418 }
419