1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018 Christoph Hellwig. 4 * 5 * DMA operations that map physical memory directly without using an IOMMU. 6 */ 7 #include <linux/memblock.h> /* for max_pfn */ 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/dma-direct.h> 11 #include <linux/scatterlist.h> 12 #include <linux/dma-contiguous.h> 13 #include <linux/dma-noncoherent.h> 14 #include <linux/pfn.h> 15 #include <linux/set_memory.h> 16 #include <linux/swiotlb.h> 17 18 /* 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it 20 * it for entirely different regions. In that case the arch code needs to 21 * override the variable below for dma-direct to work properly. 22 */ 23 unsigned int zone_dma_bits __ro_after_init = 24; 24 25 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size) 26 { 27 if (!dev->dma_mask) { 28 dev_err_once(dev, "DMA map on device without dma_mask\n"); 29 } else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) { 30 dev_err_once(dev, 31 "overflow %pad+%zu of DMA mask %llx bus mask %llx\n", 32 &dma_addr, size, *dev->dma_mask, dev->bus_dma_mask); 33 } 34 WARN_ON_ONCE(1); 35 } 36 37 static inline dma_addr_t phys_to_dma_direct(struct device *dev, 38 phys_addr_t phys) 39 { 40 if (force_dma_unencrypted(dev)) 41 return __phys_to_dma(dev, phys); 42 return phys_to_dma(dev, phys); 43 } 44 45 u64 dma_direct_get_required_mask(struct device *dev) 46 { 47 u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT); 48 49 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; 50 } 51 52 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, 53 u64 *phys_mask) 54 { 55 if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask) 56 dma_mask = dev->bus_dma_mask; 57 58 if (force_dma_unencrypted(dev)) 59 *phys_mask = __dma_to_phys(dev, dma_mask); 60 else 61 *phys_mask = dma_to_phys(dev, dma_mask); 62 63 /* 64 * Optimistically try the zone that the physical address mask falls 65 * into first. If that returns memory that isn't actually addressable 66 * we will fallback to the next lower zone and try again. 67 * 68 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding 69 * zones. 70 */ 71 if (*phys_mask <= DMA_BIT_MASK(zone_dma_bits)) 72 return GFP_DMA; 73 if (*phys_mask <= DMA_BIT_MASK(32)) 74 return GFP_DMA32; 75 return 0; 76 } 77 78 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) 79 { 80 return phys_to_dma_direct(dev, phys) + size - 1 <= 81 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask); 82 } 83 84 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, 85 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 86 { 87 size_t alloc_size = PAGE_ALIGN(size); 88 int node = dev_to_node(dev); 89 struct page *page = NULL; 90 u64 phys_mask; 91 92 if (attrs & DMA_ATTR_NO_WARN) 93 gfp |= __GFP_NOWARN; 94 95 /* we always manually zero the memory once we are done: */ 96 gfp &= ~__GFP_ZERO; 97 gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, 98 &phys_mask); 99 page = dma_alloc_contiguous(dev, alloc_size, gfp); 100 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 101 dma_free_contiguous(dev, page, alloc_size); 102 page = NULL; 103 } 104 again: 105 if (!page) 106 page = alloc_pages_node(node, gfp, get_order(alloc_size)); 107 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 108 dma_free_contiguous(dev, page, size); 109 page = NULL; 110 111 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 112 phys_mask < DMA_BIT_MASK(64) && 113 !(gfp & (GFP_DMA32 | GFP_DMA))) { 114 gfp |= GFP_DMA32; 115 goto again; 116 } 117 118 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { 119 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 120 goto again; 121 } 122 } 123 124 return page; 125 } 126 127 void *dma_direct_alloc_pages(struct device *dev, size_t size, 128 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 129 { 130 struct page *page; 131 void *ret; 132 133 page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); 134 if (!page) 135 return NULL; 136 137 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 138 !force_dma_unencrypted(dev)) { 139 /* remove any dirty cache lines on the kernel alias */ 140 if (!PageHighMem(page)) 141 arch_dma_prep_coherent(page, size); 142 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 143 /* return the page pointer as the opaque cookie */ 144 return page; 145 } 146 147 if (PageHighMem(page)) { 148 /* 149 * Depending on the cma= arguments and per-arch setup 150 * dma_alloc_contiguous could return highmem pages. 151 * Without remapping there is no way to return them here, 152 * so log an error and fail. 153 */ 154 dev_info(dev, "Rejecting highmem page from CMA.\n"); 155 __dma_direct_free_pages(dev, size, page); 156 return NULL; 157 } 158 159 ret = page_address(page); 160 if (force_dma_unencrypted(dev)) { 161 set_memory_decrypted((unsigned long)ret, 1 << get_order(size)); 162 *dma_handle = __phys_to_dma(dev, page_to_phys(page)); 163 } else { 164 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 165 } 166 memset(ret, 0, size); 167 168 if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && 169 dma_alloc_need_uncached(dev, attrs)) { 170 arch_dma_prep_coherent(page, size); 171 ret = uncached_kernel_address(ret); 172 } 173 174 return ret; 175 } 176 177 void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page) 178 { 179 dma_free_contiguous(dev, page, size); 180 } 181 182 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, 183 dma_addr_t dma_addr, unsigned long attrs) 184 { 185 unsigned int page_order = get_order(size); 186 187 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 188 !force_dma_unencrypted(dev)) { 189 /* cpu_addr is a struct page cookie, not a kernel address */ 190 __dma_direct_free_pages(dev, size, cpu_addr); 191 return; 192 } 193 194 if (force_dma_unencrypted(dev)) 195 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); 196 197 if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && 198 dma_alloc_need_uncached(dev, attrs)) 199 cpu_addr = cached_kernel_address(cpu_addr); 200 __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr)); 201 } 202 203 void *dma_direct_alloc(struct device *dev, size_t size, 204 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 205 { 206 if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && 207 dma_alloc_need_uncached(dev, attrs)) 208 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); 209 return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); 210 } 211 212 void dma_direct_free(struct device *dev, size_t size, 213 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) 214 { 215 if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) && 216 dma_alloc_need_uncached(dev, attrs)) 217 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); 218 else 219 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs); 220 } 221 222 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 223 defined(CONFIG_SWIOTLB) 224 void dma_direct_sync_single_for_device(struct device *dev, 225 dma_addr_t addr, size_t size, enum dma_data_direction dir) 226 { 227 phys_addr_t paddr = dma_to_phys(dev, addr); 228 229 if (unlikely(is_swiotlb_buffer(paddr))) 230 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE); 231 232 if (!dev_is_dma_coherent(dev)) 233 arch_sync_dma_for_device(dev, paddr, size, dir); 234 } 235 EXPORT_SYMBOL(dma_direct_sync_single_for_device); 236 237 void dma_direct_sync_sg_for_device(struct device *dev, 238 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 239 { 240 struct scatterlist *sg; 241 int i; 242 243 for_each_sg(sgl, sg, nents, i) { 244 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 245 246 if (unlikely(is_swiotlb_buffer(paddr))) 247 swiotlb_tbl_sync_single(dev, paddr, sg->length, 248 dir, SYNC_FOR_DEVICE); 249 250 if (!dev_is_dma_coherent(dev)) 251 arch_sync_dma_for_device(dev, paddr, sg->length, 252 dir); 253 } 254 } 255 EXPORT_SYMBOL(dma_direct_sync_sg_for_device); 256 #endif 257 258 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 259 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ 260 defined(CONFIG_SWIOTLB) 261 void dma_direct_sync_single_for_cpu(struct device *dev, 262 dma_addr_t addr, size_t size, enum dma_data_direction dir) 263 { 264 phys_addr_t paddr = dma_to_phys(dev, addr); 265 266 if (!dev_is_dma_coherent(dev)) { 267 arch_sync_dma_for_cpu(dev, paddr, size, dir); 268 arch_sync_dma_for_cpu_all(dev); 269 } 270 271 if (unlikely(is_swiotlb_buffer(paddr))) 272 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU); 273 } 274 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu); 275 276 void dma_direct_sync_sg_for_cpu(struct device *dev, 277 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 278 { 279 struct scatterlist *sg; 280 int i; 281 282 for_each_sg(sgl, sg, nents, i) { 283 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 284 285 if (!dev_is_dma_coherent(dev)) 286 arch_sync_dma_for_cpu(dev, paddr, sg->length, dir); 287 288 if (unlikely(is_swiotlb_buffer(paddr))) 289 swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, 290 SYNC_FOR_CPU); 291 } 292 293 if (!dev_is_dma_coherent(dev)) 294 arch_sync_dma_for_cpu_all(dev); 295 } 296 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu); 297 298 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr, 299 size_t size, enum dma_data_direction dir, unsigned long attrs) 300 { 301 phys_addr_t phys = dma_to_phys(dev, addr); 302 303 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 304 dma_direct_sync_single_for_cpu(dev, addr, size, dir); 305 306 if (unlikely(is_swiotlb_buffer(phys))) 307 swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs); 308 } 309 EXPORT_SYMBOL(dma_direct_unmap_page); 310 311 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, 312 int nents, enum dma_data_direction dir, unsigned long attrs) 313 { 314 struct scatterlist *sg; 315 int i; 316 317 for_each_sg(sgl, sg, nents, i) 318 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, 319 attrs); 320 } 321 EXPORT_SYMBOL(dma_direct_unmap_sg); 322 #endif 323 324 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr, 325 size_t size) 326 { 327 return swiotlb_force != SWIOTLB_FORCE && 328 dma_capable(dev, dma_addr, size); 329 } 330 331 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, 332 unsigned long offset, size_t size, enum dma_data_direction dir, 333 unsigned long attrs) 334 { 335 phys_addr_t phys = page_to_phys(page) + offset; 336 dma_addr_t dma_addr = phys_to_dma(dev, phys); 337 338 if (unlikely(!dma_direct_possible(dev, dma_addr, size)) && 339 !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) { 340 report_addr(dev, dma_addr, size); 341 return DMA_MAPPING_ERROR; 342 } 343 344 if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) 345 arch_sync_dma_for_device(dev, phys, size, dir); 346 return dma_addr; 347 } 348 EXPORT_SYMBOL(dma_direct_map_page); 349 350 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, 351 enum dma_data_direction dir, unsigned long attrs) 352 { 353 int i; 354 struct scatterlist *sg; 355 356 for_each_sg(sgl, sg, nents, i) { 357 sg->dma_address = dma_direct_map_page(dev, sg_page(sg), 358 sg->offset, sg->length, dir, attrs); 359 if (sg->dma_address == DMA_MAPPING_ERROR) 360 goto out_unmap; 361 sg_dma_len(sg) = sg->length; 362 } 363 364 return nents; 365 366 out_unmap: 367 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 368 return 0; 369 } 370 EXPORT_SYMBOL(dma_direct_map_sg); 371 372 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, 373 size_t size, enum dma_data_direction dir, unsigned long attrs) 374 { 375 dma_addr_t dma_addr = paddr; 376 377 if (unlikely(!dma_direct_possible(dev, dma_addr, size))) { 378 report_addr(dev, dma_addr, size); 379 return DMA_MAPPING_ERROR; 380 } 381 382 return dma_addr; 383 } 384 EXPORT_SYMBOL(dma_direct_map_resource); 385 386 /* 387 * Because 32-bit DMA masks are so common we expect every architecture to be 388 * able to satisfy them - either by not supporting more physical memory, or by 389 * providing a ZONE_DMA32. If neither is the case, the architecture needs to 390 * use an IOMMU instead of the direct mapping. 391 */ 392 int dma_direct_supported(struct device *dev, u64 mask) 393 { 394 u64 min_mask; 395 396 if (IS_ENABLED(CONFIG_ZONE_DMA)) 397 min_mask = DMA_BIT_MASK(zone_dma_bits); 398 else 399 min_mask = DMA_BIT_MASK(32); 400 401 min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT); 402 403 /* 404 * This check needs to be against the actual bit mask value, so 405 * use __phys_to_dma() here so that the SME encryption mask isn't 406 * part of the check. 407 */ 408 return mask >= __phys_to_dma(dev, min_mask); 409 } 410 411 size_t dma_direct_max_mapping_size(struct device *dev) 412 { 413 /* If SWIOTLB is active, use its maximum mapping size */ 414 if (is_swiotlb_active() && 415 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE)) 416 return swiotlb_max_mapping_size(dev); 417 return SIZE_MAX; 418 } 419