xref: /openbmc/linux/kernel/dma/direct.c (revision c16c6655)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/set_memory.h>
16 #include <linux/swiotlb.h>
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
20  * some use it for entirely different regions:
21  */
22 #ifndef ARCH_ZONE_DMA_BITS
23 #define ARCH_ZONE_DMA_BITS 24
24 #endif
25 
26 static void report_addr(struct device *dev, dma_addr_t dma_addr, size_t size)
27 {
28 	if (!dev->dma_mask) {
29 		dev_err_once(dev, "DMA map on device without dma_mask\n");
30 	} else if (*dev->dma_mask >= DMA_BIT_MASK(32) || dev->bus_dma_mask) {
31 		dev_err_once(dev,
32 			"overflow %pad+%zu of DMA mask %llx bus mask %llx\n",
33 			&dma_addr, size, *dev->dma_mask, dev->bus_dma_mask);
34 	}
35 	WARN_ON_ONCE(1);
36 }
37 
38 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
39 		phys_addr_t phys)
40 {
41 	if (force_dma_unencrypted(dev))
42 		return __phys_to_dma(dev, phys);
43 	return phys_to_dma(dev, phys);
44 }
45 
46 u64 dma_direct_get_required_mask(struct device *dev)
47 {
48 	u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
49 
50 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
51 }
52 
53 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
54 		u64 *phys_mask)
55 {
56 	if (dev->bus_dma_mask && dev->bus_dma_mask < dma_mask)
57 		dma_mask = dev->bus_dma_mask;
58 
59 	if (force_dma_unencrypted(dev))
60 		*phys_mask = __dma_to_phys(dev, dma_mask);
61 	else
62 		*phys_mask = dma_to_phys(dev, dma_mask);
63 
64 	/*
65 	 * Optimistically try the zone that the physical address mask falls
66 	 * into first.  If that returns memory that isn't actually addressable
67 	 * we will fallback to the next lower zone and try again.
68 	 *
69 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
70 	 * zones.
71 	 */
72 	if (*phys_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
73 		return GFP_DMA;
74 	if (*phys_mask <= DMA_BIT_MASK(32))
75 		return GFP_DMA32;
76 	return 0;
77 }
78 
79 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
80 {
81 	return phys_to_dma_direct(dev, phys) + size - 1 <=
82 			min_not_zero(dev->coherent_dma_mask, dev->bus_dma_mask);
83 }
84 
85 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
86 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
87 {
88 	size_t alloc_size = PAGE_ALIGN(size);
89 	int node = dev_to_node(dev);
90 	struct page *page = NULL;
91 	u64 phys_mask;
92 
93 	if (attrs & DMA_ATTR_NO_WARN)
94 		gfp |= __GFP_NOWARN;
95 
96 	/* we always manually zero the memory once we are done: */
97 	gfp &= ~__GFP_ZERO;
98 	gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
99 			&phys_mask);
100 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
101 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102 		dma_free_contiguous(dev, page, alloc_size);
103 		page = NULL;
104 	}
105 again:
106 	if (!page)
107 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
108 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
109 		dma_free_contiguous(dev, page, size);
110 		page = NULL;
111 
112 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
113 		    phys_mask < DMA_BIT_MASK(64) &&
114 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
115 			gfp |= GFP_DMA32;
116 			goto again;
117 		}
118 
119 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
120 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
121 			goto again;
122 		}
123 	}
124 
125 	return page;
126 }
127 
128 void *dma_direct_alloc_pages(struct device *dev, size_t size,
129 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
130 {
131 	struct page *page;
132 	void *ret;
133 
134 	page = __dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
135 	if (!page)
136 		return NULL;
137 
138 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
139 	    !force_dma_unencrypted(dev)) {
140 		/* remove any dirty cache lines on the kernel alias */
141 		if (!PageHighMem(page))
142 			arch_dma_prep_coherent(page, size);
143 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
144 		/* return the page pointer as the opaque cookie */
145 		return page;
146 	}
147 
148 	if (PageHighMem(page)) {
149 		/*
150 		 * Depending on the cma= arguments and per-arch setup
151 		 * dma_alloc_contiguous could return highmem pages.
152 		 * Without remapping there is no way to return them here,
153 		 * so log an error and fail.
154 		 */
155 		dev_info(dev, "Rejecting highmem page from CMA.\n");
156 		__dma_direct_free_pages(dev, size, page);
157 		return NULL;
158 	}
159 
160 	ret = page_address(page);
161 	if (force_dma_unencrypted(dev)) {
162 		set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
163 		*dma_handle = __phys_to_dma(dev, page_to_phys(page));
164 	} else {
165 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
166 	}
167 	memset(ret, 0, size);
168 
169 	if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
170 	    dma_alloc_need_uncached(dev, attrs)) {
171 		arch_dma_prep_coherent(page, size);
172 		ret = uncached_kernel_address(ret);
173 	}
174 
175 	return ret;
176 }
177 
178 void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
179 {
180 	dma_free_contiguous(dev, page, size);
181 }
182 
183 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
184 		dma_addr_t dma_addr, unsigned long attrs)
185 {
186 	unsigned int page_order = get_order(size);
187 
188 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
189 	    !force_dma_unencrypted(dev)) {
190 		/* cpu_addr is a struct page cookie, not a kernel address */
191 		__dma_direct_free_pages(dev, size, cpu_addr);
192 		return;
193 	}
194 
195 	if (force_dma_unencrypted(dev))
196 		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
197 
198 	if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
199 	    dma_alloc_need_uncached(dev, attrs))
200 		cpu_addr = cached_kernel_address(cpu_addr);
201 	__dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
202 }
203 
204 void *dma_direct_alloc(struct device *dev, size_t size,
205 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
206 {
207 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
208 	    dma_alloc_need_uncached(dev, attrs))
209 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
210 	return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
211 }
212 
213 void dma_direct_free(struct device *dev, size_t size,
214 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
215 {
216 	if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
217 	    dma_alloc_need_uncached(dev, attrs))
218 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
219 	else
220 		dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
221 }
222 
223 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
224     defined(CONFIG_SWIOTLB)
225 void dma_direct_sync_single_for_device(struct device *dev,
226 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
227 {
228 	phys_addr_t paddr = dma_to_phys(dev, addr);
229 
230 	if (unlikely(is_swiotlb_buffer(paddr)))
231 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
232 
233 	if (!dev_is_dma_coherent(dev))
234 		arch_sync_dma_for_device(dev, paddr, size, dir);
235 }
236 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
237 
238 void dma_direct_sync_sg_for_device(struct device *dev,
239 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
240 {
241 	struct scatterlist *sg;
242 	int i;
243 
244 	for_each_sg(sgl, sg, nents, i) {
245 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
246 
247 		if (unlikely(is_swiotlb_buffer(paddr)))
248 			swiotlb_tbl_sync_single(dev, paddr, sg->length,
249 					dir, SYNC_FOR_DEVICE);
250 
251 		if (!dev_is_dma_coherent(dev))
252 			arch_sync_dma_for_device(dev, paddr, sg->length,
253 					dir);
254 	}
255 }
256 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
257 #endif
258 
259 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
260     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
261     defined(CONFIG_SWIOTLB)
262 void dma_direct_sync_single_for_cpu(struct device *dev,
263 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
264 {
265 	phys_addr_t paddr = dma_to_phys(dev, addr);
266 
267 	if (!dev_is_dma_coherent(dev)) {
268 		arch_sync_dma_for_cpu(dev, paddr, size, dir);
269 		arch_sync_dma_for_cpu_all(dev);
270 	}
271 
272 	if (unlikely(is_swiotlb_buffer(paddr)))
273 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
274 }
275 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
276 
277 void dma_direct_sync_sg_for_cpu(struct device *dev,
278 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
279 {
280 	struct scatterlist *sg;
281 	int i;
282 
283 	for_each_sg(sgl, sg, nents, i) {
284 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
285 
286 		if (!dev_is_dma_coherent(dev))
287 			arch_sync_dma_for_cpu(dev, paddr, sg->length, dir);
288 
289 		if (unlikely(is_swiotlb_buffer(paddr)))
290 			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
291 					SYNC_FOR_CPU);
292 	}
293 
294 	if (!dev_is_dma_coherent(dev))
295 		arch_sync_dma_for_cpu_all(dev);
296 }
297 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
298 
299 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
300 		size_t size, enum dma_data_direction dir, unsigned long attrs)
301 {
302 	phys_addr_t phys = dma_to_phys(dev, addr);
303 
304 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
305 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
306 
307 	if (unlikely(is_swiotlb_buffer(phys)))
308 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
309 }
310 EXPORT_SYMBOL(dma_direct_unmap_page);
311 
312 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
313 		int nents, enum dma_data_direction dir, unsigned long attrs)
314 {
315 	struct scatterlist *sg;
316 	int i;
317 
318 	for_each_sg(sgl, sg, nents, i)
319 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
320 			     attrs);
321 }
322 EXPORT_SYMBOL(dma_direct_unmap_sg);
323 #endif
324 
325 static inline bool dma_direct_possible(struct device *dev, dma_addr_t dma_addr,
326 		size_t size)
327 {
328 	return swiotlb_force != SWIOTLB_FORCE &&
329 		dma_capable(dev, dma_addr, size);
330 }
331 
332 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
333 		unsigned long offset, size_t size, enum dma_data_direction dir,
334 		unsigned long attrs)
335 {
336 	phys_addr_t phys = page_to_phys(page) + offset;
337 	dma_addr_t dma_addr = phys_to_dma(dev, phys);
338 
339 	if (unlikely(!dma_direct_possible(dev, dma_addr, size)) &&
340 	    !swiotlb_map(dev, &phys, &dma_addr, size, dir, attrs)) {
341 		report_addr(dev, dma_addr, size);
342 		return DMA_MAPPING_ERROR;
343 	}
344 
345 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
346 		arch_sync_dma_for_device(dev, phys, size, dir);
347 	return dma_addr;
348 }
349 EXPORT_SYMBOL(dma_direct_map_page);
350 
351 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
352 		enum dma_data_direction dir, unsigned long attrs)
353 {
354 	int i;
355 	struct scatterlist *sg;
356 
357 	for_each_sg(sgl, sg, nents, i) {
358 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
359 				sg->offset, sg->length, dir, attrs);
360 		if (sg->dma_address == DMA_MAPPING_ERROR)
361 			goto out_unmap;
362 		sg_dma_len(sg) = sg->length;
363 	}
364 
365 	return nents;
366 
367 out_unmap:
368 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
369 	return 0;
370 }
371 EXPORT_SYMBOL(dma_direct_map_sg);
372 
373 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
374 		size_t size, enum dma_data_direction dir, unsigned long attrs)
375 {
376 	dma_addr_t dma_addr = paddr;
377 
378 	if (unlikely(!dma_direct_possible(dev, dma_addr, size))) {
379 		report_addr(dev, dma_addr, size);
380 		return DMA_MAPPING_ERROR;
381 	}
382 
383 	return dma_addr;
384 }
385 EXPORT_SYMBOL(dma_direct_map_resource);
386 
387 /*
388  * Because 32-bit DMA masks are so common we expect every architecture to be
389  * able to satisfy them - either by not supporting more physical memory, or by
390  * providing a ZONE_DMA32.  If neither is the case, the architecture needs to
391  * use an IOMMU instead of the direct mapping.
392  */
393 int dma_direct_supported(struct device *dev, u64 mask)
394 {
395 	u64 min_mask;
396 
397 	if (IS_ENABLED(CONFIG_ZONE_DMA))
398 		min_mask = DMA_BIT_MASK(ARCH_ZONE_DMA_BITS);
399 	else
400 		min_mask = DMA_BIT_MASK(32);
401 
402 	min_mask = min_t(u64, min_mask, (max_pfn - 1) << PAGE_SHIFT);
403 
404 	/*
405 	 * This check needs to be against the actual bit mask value, so
406 	 * use __phys_to_dma() here so that the SME encryption mask isn't
407 	 * part of the check.
408 	 */
409 	return mask >= __phys_to_dma(dev, min_mask);
410 }
411 
412 size_t dma_direct_max_mapping_size(struct device *dev)
413 {
414 	/* If SWIOTLB is active, use its maximum mapping size */
415 	if (is_swiotlb_active() &&
416 	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
417 		return swiotlb_max_mapping_size(dev);
418 	return SIZE_MAX;
419 }
420