xref: /openbmc/linux/kernel/dma/direct.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24 
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 		phys_addr_t phys)
27 {
28 	if (force_dma_unencrypted(dev))
29 		return phys_to_dma_unencrypted(dev, phys);
30 	return phys_to_dma(dev, phys);
31 }
32 
33 static inline struct page *dma_direct_to_page(struct device *dev,
34 		dma_addr_t dma_addr)
35 {
36 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38 
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 	u64 max_dma = phys_to_dma_direct(dev, phys);
43 
44 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 				  u64 *phys_limit)
49 {
50 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51 
52 	/*
53 	 * Optimistically try the zone that the physical address mask falls
54 	 * into first.  If that returns memory that isn't actually addressable
55 	 * we will fallback to the next lower zone and try again.
56 	 *
57 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58 	 * zones.
59 	 */
60 	*phys_limit = dma_to_phys(dev, dma_limit);
61 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 		return GFP_DMA;
63 	if (*phys_limit <= DMA_BIT_MASK(32))
64 		return GFP_DMA32;
65 	return 0;
66 }
67 
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71 
72 	if (dma_addr == DMA_MAPPING_ERROR)
73 		return false;
74 	return dma_addr + size - 1 <=
75 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77 
78 static void __dma_direct_free_pages(struct device *dev, struct page *page,
79 				    size_t size)
80 {
81 	if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
82 	    swiotlb_free(dev, page, size))
83 		return;
84 	dma_free_contiguous(dev, page, size);
85 }
86 
87 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
88 		gfp_t gfp)
89 {
90 	int node = dev_to_node(dev);
91 	struct page *page = NULL;
92 	u64 phys_limit;
93 
94 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
95 
96 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
97 					   &phys_limit);
98 	if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
99 	    is_swiotlb_for_alloc(dev)) {
100 		page = swiotlb_alloc(dev, size);
101 		if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102 			__dma_direct_free_pages(dev, page, size);
103 			return NULL;
104 		}
105 		return page;
106 	}
107 
108 	page = dma_alloc_contiguous(dev, size, gfp);
109 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110 		dma_free_contiguous(dev, page, size);
111 		page = NULL;
112 	}
113 again:
114 	if (!page)
115 		page = alloc_pages_node(node, gfp, get_order(size));
116 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
117 		dma_free_contiguous(dev, page, size);
118 		page = NULL;
119 
120 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
121 		    phys_limit < DMA_BIT_MASK(64) &&
122 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
123 			gfp |= GFP_DMA32;
124 			goto again;
125 		}
126 
127 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
128 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
129 			goto again;
130 		}
131 	}
132 
133 	return page;
134 }
135 
136 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
137 		dma_addr_t *dma_handle, gfp_t gfp)
138 {
139 	struct page *page;
140 	u64 phys_mask;
141 	void *ret;
142 
143 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
144 					   &phys_mask);
145 	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
146 	if (!page)
147 		return NULL;
148 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
149 	return ret;
150 }
151 
152 void *dma_direct_alloc(struct device *dev, size_t size,
153 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
154 {
155 	struct page *page;
156 	void *ret;
157 	int err;
158 
159 	size = PAGE_ALIGN(size);
160 	if (attrs & DMA_ATTR_NO_WARN)
161 		gfp |= __GFP_NOWARN;
162 
163 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
164 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
165 		page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
166 		if (!page)
167 			return NULL;
168 		/* remove any dirty cache lines on the kernel alias */
169 		if (!PageHighMem(page))
170 			arch_dma_prep_coherent(page, size);
171 		*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
172 		/* return the page pointer as the opaque cookie */
173 		return page;
174 	}
175 
176 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
177 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
178 	    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
179 	    !dev_is_dma_coherent(dev) &&
180 	    !is_swiotlb_for_alloc(dev))
181 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
182 
183 	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
184 	    !dev_is_dma_coherent(dev))
185 		return dma_alloc_from_global_coherent(dev, size, dma_handle);
186 
187 	/*
188 	 * Remapping or decrypting memory may block. If either is required and
189 	 * we can't block, allocate the memory from the atomic pools.
190 	 * If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
191 	 * set up another device coherent pool by shared-dma-pool and use
192 	 * dma_alloc_from_dev_coherent instead.
193 	 */
194 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
195 	    !gfpflags_allow_blocking(gfp) &&
196 	    (force_dma_unencrypted(dev) ||
197 	     (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
198 	      !dev_is_dma_coherent(dev))) &&
199 	    !is_swiotlb_for_alloc(dev))
200 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
201 
202 	/* we always manually zero the memory once we are done */
203 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
204 	if (!page)
205 		return NULL;
206 
207 	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
208 	     !dev_is_dma_coherent(dev)) ||
209 	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
210 		/* remove any dirty cache lines on the kernel alias */
211 		arch_dma_prep_coherent(page, size);
212 
213 		/* create a coherent mapping */
214 		ret = dma_common_contiguous_remap(page, size,
215 				dma_pgprot(dev, PAGE_KERNEL, attrs),
216 				__builtin_return_address(0));
217 		if (!ret)
218 			goto out_free_pages;
219 		if (force_dma_unencrypted(dev)) {
220 			err = set_memory_decrypted((unsigned long)ret,
221 						   1 << get_order(size));
222 			if (err)
223 				goto out_free_pages;
224 		}
225 		memset(ret, 0, size);
226 		goto done;
227 	}
228 
229 	if (PageHighMem(page)) {
230 		/*
231 		 * Depending on the cma= arguments and per-arch setup
232 		 * dma_alloc_contiguous could return highmem pages.
233 		 * Without remapping there is no way to return them here,
234 		 * so log an error and fail.
235 		 */
236 		dev_info(dev, "Rejecting highmem page from CMA.\n");
237 		goto out_free_pages;
238 	}
239 
240 	ret = page_address(page);
241 	if (force_dma_unencrypted(dev)) {
242 		err = set_memory_decrypted((unsigned long)ret,
243 					   1 << get_order(size));
244 		if (err)
245 			goto out_free_pages;
246 	}
247 
248 	memset(ret, 0, size);
249 
250 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
251 	    !dev_is_dma_coherent(dev)) {
252 		arch_dma_prep_coherent(page, size);
253 		ret = arch_dma_set_uncached(ret, size);
254 		if (IS_ERR(ret))
255 			goto out_encrypt_pages;
256 	}
257 done:
258 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
259 	return ret;
260 
261 out_encrypt_pages:
262 	if (force_dma_unencrypted(dev)) {
263 		err = set_memory_encrypted((unsigned long)page_address(page),
264 					   1 << get_order(size));
265 		/* If memory cannot be re-encrypted, it must be leaked */
266 		if (err)
267 			return NULL;
268 	}
269 out_free_pages:
270 	__dma_direct_free_pages(dev, page, size);
271 	return NULL;
272 }
273 
274 void dma_direct_free(struct device *dev, size_t size,
275 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
276 {
277 	unsigned int page_order = get_order(size);
278 
279 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
280 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
281 		/* cpu_addr is a struct page cookie, not a kernel address */
282 		dma_free_contiguous(dev, cpu_addr, size);
283 		return;
284 	}
285 
286 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
287 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
288 	    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
289 	    !dev_is_dma_coherent(dev) &&
290 	    !is_swiotlb_for_alloc(dev)) {
291 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
292 		return;
293 	}
294 
295 	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
296 	    !dev_is_dma_coherent(dev)) {
297 		if (!dma_release_from_global_coherent(page_order, cpu_addr))
298 			WARN_ON_ONCE(1);
299 		return;
300 	}
301 
302 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
303 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
304 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
305 		return;
306 
307 	if (force_dma_unencrypted(dev))
308 		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
309 
310 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
311 		vunmap(cpu_addr);
312 	else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
313 		arch_dma_clear_uncached(cpu_addr, size);
314 
315 	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
316 }
317 
318 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
319 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
320 {
321 	struct page *page;
322 	void *ret;
323 
324 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
325 	    force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
326 	    !is_swiotlb_for_alloc(dev))
327 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
328 
329 	page = __dma_direct_alloc_pages(dev, size, gfp);
330 	if (!page)
331 		return NULL;
332 	if (PageHighMem(page)) {
333 		/*
334 		 * Depending on the cma= arguments and per-arch setup
335 		 * dma_alloc_contiguous could return highmem pages.
336 		 * Without remapping there is no way to return them here,
337 		 * so log an error and fail.
338 		 */
339 		dev_info(dev, "Rejecting highmem page from CMA.\n");
340 		goto out_free_pages;
341 	}
342 
343 	ret = page_address(page);
344 	if (force_dma_unencrypted(dev)) {
345 		if (set_memory_decrypted((unsigned long)ret,
346 				1 << get_order(size)))
347 			goto out_free_pages;
348 	}
349 	memset(ret, 0, size);
350 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
351 	return page;
352 out_free_pages:
353 	__dma_direct_free_pages(dev, page, size);
354 	return NULL;
355 }
356 
357 void dma_direct_free_pages(struct device *dev, size_t size,
358 		struct page *page, dma_addr_t dma_addr,
359 		enum dma_data_direction dir)
360 {
361 	unsigned int page_order = get_order(size);
362 	void *vaddr = page_address(page);
363 
364 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
365 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
366 	    dma_free_from_pool(dev, vaddr, size))
367 		return;
368 
369 	if (force_dma_unencrypted(dev))
370 		set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
371 
372 	__dma_direct_free_pages(dev, page, size);
373 }
374 
375 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
376     defined(CONFIG_SWIOTLB)
377 void dma_direct_sync_sg_for_device(struct device *dev,
378 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
379 {
380 	struct scatterlist *sg;
381 	int i;
382 
383 	for_each_sg(sgl, sg, nents, i) {
384 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
385 
386 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
387 			swiotlb_sync_single_for_device(dev, paddr, sg->length,
388 						       dir);
389 
390 		if (!dev_is_dma_coherent(dev))
391 			arch_sync_dma_for_device(paddr, sg->length,
392 					dir);
393 	}
394 }
395 #endif
396 
397 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
398     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
399     defined(CONFIG_SWIOTLB)
400 void dma_direct_sync_sg_for_cpu(struct device *dev,
401 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
402 {
403 	struct scatterlist *sg;
404 	int i;
405 
406 	for_each_sg(sgl, sg, nents, i) {
407 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
408 
409 		if (!dev_is_dma_coherent(dev))
410 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
411 
412 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
413 			swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
414 						    dir);
415 
416 		if (dir == DMA_FROM_DEVICE)
417 			arch_dma_mark_clean(paddr, sg->length);
418 	}
419 
420 	if (!dev_is_dma_coherent(dev))
421 		arch_sync_dma_for_cpu_all();
422 }
423 
424 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
425 		int nents, enum dma_data_direction dir, unsigned long attrs)
426 {
427 	struct scatterlist *sg;
428 	int i;
429 
430 	for_each_sg(sgl, sg, nents, i)
431 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
432 			     attrs);
433 }
434 #endif
435 
436 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
437 		enum dma_data_direction dir, unsigned long attrs)
438 {
439 	int i;
440 	struct scatterlist *sg;
441 
442 	for_each_sg(sgl, sg, nents, i) {
443 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
444 				sg->offset, sg->length, dir, attrs);
445 		if (sg->dma_address == DMA_MAPPING_ERROR)
446 			goto out_unmap;
447 		sg_dma_len(sg) = sg->length;
448 	}
449 
450 	return nents;
451 
452 out_unmap:
453 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
454 	return -EIO;
455 }
456 
457 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
458 		size_t size, enum dma_data_direction dir, unsigned long attrs)
459 {
460 	dma_addr_t dma_addr = paddr;
461 
462 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
463 		dev_err_once(dev,
464 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
465 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
466 		WARN_ON_ONCE(1);
467 		return DMA_MAPPING_ERROR;
468 	}
469 
470 	return dma_addr;
471 }
472 
473 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
474 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
475 		unsigned long attrs)
476 {
477 	struct page *page = dma_direct_to_page(dev, dma_addr);
478 	int ret;
479 
480 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
481 	if (!ret)
482 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
483 	return ret;
484 }
485 
486 bool dma_direct_can_mmap(struct device *dev)
487 {
488 	return dev_is_dma_coherent(dev) ||
489 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
490 }
491 
492 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
493 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
494 		unsigned long attrs)
495 {
496 	unsigned long user_count = vma_pages(vma);
497 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
498 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
499 	int ret = -ENXIO;
500 
501 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
502 
503 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
504 		return ret;
505 	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
506 		return ret;
507 
508 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
509 		return -ENXIO;
510 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
511 			user_count << PAGE_SHIFT, vma->vm_page_prot);
512 }
513 
514 int dma_direct_supported(struct device *dev, u64 mask)
515 {
516 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
517 
518 	/*
519 	 * Because 32-bit DMA masks are so common we expect every architecture
520 	 * to be able to satisfy them - either by not supporting more physical
521 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
522 	 * architecture needs to use an IOMMU instead of the direct mapping.
523 	 */
524 	if (mask >= DMA_BIT_MASK(32))
525 		return 1;
526 
527 	/*
528 	 * This check needs to be against the actual bit mask value, so use
529 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
530 	 * part of the check.
531 	 */
532 	if (IS_ENABLED(CONFIG_ZONE_DMA))
533 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
534 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
535 }
536 
537 size_t dma_direct_max_mapping_size(struct device *dev)
538 {
539 	/* If SWIOTLB is active, use its maximum mapping size */
540 	if (is_swiotlb_active(dev) &&
541 	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
542 		return swiotlb_max_mapping_size(dev);
543 	return SIZE_MAX;
544 }
545 
546 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
547 {
548 	return !dev_is_dma_coherent(dev) ||
549 	       is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
550 }
551 
552 /**
553  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
554  * @dev:	device pointer; needed to "own" the alloced memory.
555  * @cpu_start:  beginning of memory region covered by this offset.
556  * @dma_start:  beginning of DMA/PCI region covered by this offset.
557  * @size:	size of the region.
558  *
559  * This is for the simple case of a uniform offset which cannot
560  * be discovered by "dma-ranges".
561  *
562  * It returns -ENOMEM if out of memory, -EINVAL if a map
563  * already exists, 0 otherwise.
564  *
565  * Note: any call to this from a driver is a bug.  The mapping needs
566  * to be described by the device tree or other firmware interfaces.
567  */
568 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
569 			 dma_addr_t dma_start, u64 size)
570 {
571 	struct bus_dma_region *map;
572 	u64 offset = (u64)cpu_start - (u64)dma_start;
573 
574 	if (dev->dma_range_map) {
575 		dev_err(dev, "attempt to add DMA range to existing map\n");
576 		return -EINVAL;
577 	}
578 
579 	if (!offset)
580 		return 0;
581 
582 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
583 	if (!map)
584 		return -ENOMEM;
585 	map[0].cpu_start = cpu_start;
586 	map[0].dma_start = dma_start;
587 	map[0].offset = offset;
588 	map[0].size = size;
589 	dev->dma_range_map = map;
590 	return 0;
591 }
592