xref: /openbmc/linux/kernel/dma/direct.c (revision 9ba801c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24 
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 		phys_addr_t phys)
27 {
28 	if (force_dma_unencrypted(dev))
29 		return phys_to_dma_unencrypted(dev, phys);
30 	return phys_to_dma(dev, phys);
31 }
32 
33 static inline struct page *dma_direct_to_page(struct device *dev,
34 		dma_addr_t dma_addr)
35 {
36 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38 
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 	u64 max_dma = phys_to_dma_direct(dev, phys);
43 
44 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 				  u64 *phys_limit)
49 {
50 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51 
52 	/*
53 	 * Optimistically try the zone that the physical address mask falls
54 	 * into first.  If that returns memory that isn't actually addressable
55 	 * we will fallback to the next lower zone and try again.
56 	 *
57 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58 	 * zones.
59 	 */
60 	*phys_limit = dma_to_phys(dev, dma_limit);
61 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 		return GFP_DMA;
63 	if (*phys_limit <= DMA_BIT_MASK(32))
64 		return GFP_DMA32;
65 	return 0;
66 }
67 
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71 
72 	if (dma_addr == DMA_MAPPING_ERROR)
73 		return false;
74 	return dma_addr + size - 1 <=
75 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77 
78 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
79 {
80 	if (!force_dma_unencrypted(dev))
81 		return 0;
82 	return set_memory_decrypted((unsigned long)vaddr, 1 << get_order(size));
83 }
84 
85 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
86 {
87 	if (!force_dma_unencrypted(dev))
88 		return 0;
89 	return set_memory_encrypted((unsigned long)vaddr, 1 << get_order(size));
90 }
91 
92 static void __dma_direct_free_pages(struct device *dev, struct page *page,
93 				    size_t size)
94 {
95 	if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
96 	    swiotlb_free(dev, page, size))
97 		return;
98 	dma_free_contiguous(dev, page, size);
99 }
100 
101 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
102 		gfp_t gfp, bool allow_highmem)
103 {
104 	int node = dev_to_node(dev);
105 	struct page *page = NULL;
106 	u64 phys_limit;
107 
108 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
109 
110 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
111 					   &phys_limit);
112 	if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
113 	    is_swiotlb_for_alloc(dev)) {
114 		page = swiotlb_alloc(dev, size);
115 		if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
116 			__dma_direct_free_pages(dev, page, size);
117 			return NULL;
118 		}
119 		return page;
120 	}
121 
122 	page = dma_alloc_contiguous(dev, size, gfp);
123 	if (page) {
124 		if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
125 		    (!allow_highmem && PageHighMem(page))) {
126 			dma_free_contiguous(dev, page, size);
127 			page = NULL;
128 		}
129 	}
130 again:
131 	if (!page)
132 		page = alloc_pages_node(node, gfp, get_order(size));
133 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
134 		dma_free_contiguous(dev, page, size);
135 		page = NULL;
136 
137 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
138 		    phys_limit < DMA_BIT_MASK(64) &&
139 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
140 			gfp |= GFP_DMA32;
141 			goto again;
142 		}
143 
144 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
145 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
146 			goto again;
147 		}
148 	}
149 
150 	return page;
151 }
152 
153 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
154 		dma_addr_t *dma_handle, gfp_t gfp)
155 {
156 	struct page *page;
157 	u64 phys_mask;
158 	void *ret;
159 
160 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
161 					   &phys_mask);
162 	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
163 	if (!page)
164 		return NULL;
165 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
166 	return ret;
167 }
168 
169 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
170 		dma_addr_t *dma_handle, gfp_t gfp)
171 {
172 	struct page *page;
173 
174 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
175 	if (!page)
176 		return NULL;
177 
178 	/* remove any dirty cache lines on the kernel alias */
179 	if (!PageHighMem(page))
180 		arch_dma_prep_coherent(page, size);
181 
182 	/* return the page pointer as the opaque cookie */
183 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
184 	return page;
185 }
186 
187 void *dma_direct_alloc(struct device *dev, size_t size,
188 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
189 {
190 	struct page *page;
191 	void *ret;
192 
193 	size = PAGE_ALIGN(size);
194 	if (attrs & DMA_ATTR_NO_WARN)
195 		gfp |= __GFP_NOWARN;
196 
197 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
198 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
199 		return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
200 
201 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
202 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
203 	    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
204 	    !dev_is_dma_coherent(dev) &&
205 	    !is_swiotlb_for_alloc(dev))
206 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
207 
208 	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
209 	    !dev_is_dma_coherent(dev))
210 		return dma_alloc_from_global_coherent(dev, size, dma_handle);
211 
212 	/*
213 	 * Remapping or decrypting memory may block. If either is required and
214 	 * we can't block, allocate the memory from the atomic pools.
215 	 * If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
216 	 * set up another device coherent pool by shared-dma-pool and use
217 	 * dma_alloc_from_dev_coherent instead.
218 	 */
219 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
220 	    !gfpflags_allow_blocking(gfp) &&
221 	    (force_dma_unencrypted(dev) ||
222 	     (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
223 	      !dev_is_dma_coherent(dev))) &&
224 	    !is_swiotlb_for_alloc(dev))
225 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
226 
227 	/* we always manually zero the memory once we are done */
228 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
229 	if (!page)
230 		return NULL;
231 
232 	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
233 	     !dev_is_dma_coherent(dev)) ||
234 	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
235 		/* remove any dirty cache lines on the kernel alias */
236 		arch_dma_prep_coherent(page, size);
237 
238 		/* create a coherent mapping */
239 		ret = dma_common_contiguous_remap(page, size,
240 				dma_pgprot(dev, PAGE_KERNEL, attrs),
241 				__builtin_return_address(0));
242 		if (!ret)
243 			goto out_free_pages;
244 		memset(ret, 0, size);
245 		goto done;
246 	}
247 
248 	if (PageHighMem(page)) {
249 		/*
250 		 * Depending on the cma= arguments and per-arch setup
251 		 * dma_alloc_contiguous could return highmem pages.
252 		 * Without remapping there is no way to return them here,
253 		 * so log an error and fail.
254 		 */
255 		dev_info(dev, "Rejecting highmem page from CMA.\n");
256 		goto out_free_pages;
257 	}
258 
259 	ret = page_address(page);
260 	if (dma_set_decrypted(dev, ret, size))
261 		goto out_free_pages;
262 	memset(ret, 0, size);
263 
264 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
265 	    !dev_is_dma_coherent(dev)) {
266 		arch_dma_prep_coherent(page, size);
267 		ret = arch_dma_set_uncached(ret, size);
268 		if (IS_ERR(ret))
269 			goto out_encrypt_pages;
270 	}
271 done:
272 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
273 	return ret;
274 
275 out_encrypt_pages:
276 	/* If memory cannot be re-encrypted, it must be leaked */
277 	if (dma_set_encrypted(dev, page_address(page), size))
278 		return NULL;
279 out_free_pages:
280 	__dma_direct_free_pages(dev, page, size);
281 	return NULL;
282 }
283 
284 void dma_direct_free(struct device *dev, size_t size,
285 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
286 {
287 	unsigned int page_order = get_order(size);
288 
289 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
290 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
291 		/* cpu_addr is a struct page cookie, not a kernel address */
292 		dma_free_contiguous(dev, cpu_addr, size);
293 		return;
294 	}
295 
296 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
297 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
298 	    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
299 	    !dev_is_dma_coherent(dev) &&
300 	    !is_swiotlb_for_alloc(dev)) {
301 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
302 		return;
303 	}
304 
305 	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
306 	    !dev_is_dma_coherent(dev)) {
307 		if (!dma_release_from_global_coherent(page_order, cpu_addr))
308 			WARN_ON_ONCE(1);
309 		return;
310 	}
311 
312 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
313 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
314 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
315 		return;
316 
317 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
318 		vunmap(cpu_addr);
319 	} else {
320 		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
321 			arch_dma_clear_uncached(cpu_addr, size);
322 		dma_set_encrypted(dev, cpu_addr, 1 << page_order);
323 	}
324 
325 	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
326 }
327 
328 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
329 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
330 {
331 	struct page *page;
332 	void *ret;
333 
334 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
335 	    force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
336 	    !is_swiotlb_for_alloc(dev))
337 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
338 
339 	page = __dma_direct_alloc_pages(dev, size, gfp, false);
340 	if (!page)
341 		return NULL;
342 
343 	ret = page_address(page);
344 	if (dma_set_decrypted(dev, ret, size))
345 		goto out_free_pages;
346 	memset(ret, 0, size);
347 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
348 	return page;
349 out_free_pages:
350 	__dma_direct_free_pages(dev, page, size);
351 	return NULL;
352 }
353 
354 void dma_direct_free_pages(struct device *dev, size_t size,
355 		struct page *page, dma_addr_t dma_addr,
356 		enum dma_data_direction dir)
357 {
358 	unsigned int page_order = get_order(size);
359 	void *vaddr = page_address(page);
360 
361 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
362 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
363 	    dma_free_from_pool(dev, vaddr, size))
364 		return;
365 
366 	dma_set_encrypted(dev, vaddr, 1 << page_order);
367 	__dma_direct_free_pages(dev, page, size);
368 }
369 
370 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
371     defined(CONFIG_SWIOTLB)
372 void dma_direct_sync_sg_for_device(struct device *dev,
373 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
374 {
375 	struct scatterlist *sg;
376 	int i;
377 
378 	for_each_sg(sgl, sg, nents, i) {
379 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
380 
381 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
382 			swiotlb_sync_single_for_device(dev, paddr, sg->length,
383 						       dir);
384 
385 		if (!dev_is_dma_coherent(dev))
386 			arch_sync_dma_for_device(paddr, sg->length,
387 					dir);
388 	}
389 }
390 #endif
391 
392 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
393     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
394     defined(CONFIG_SWIOTLB)
395 void dma_direct_sync_sg_for_cpu(struct device *dev,
396 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
397 {
398 	struct scatterlist *sg;
399 	int i;
400 
401 	for_each_sg(sgl, sg, nents, i) {
402 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
403 
404 		if (!dev_is_dma_coherent(dev))
405 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
406 
407 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
408 			swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
409 						    dir);
410 
411 		if (dir == DMA_FROM_DEVICE)
412 			arch_dma_mark_clean(paddr, sg->length);
413 	}
414 
415 	if (!dev_is_dma_coherent(dev))
416 		arch_sync_dma_for_cpu_all();
417 }
418 
419 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
420 		int nents, enum dma_data_direction dir, unsigned long attrs)
421 {
422 	struct scatterlist *sg;
423 	int i;
424 
425 	for_each_sg(sgl, sg, nents, i)
426 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
427 			     attrs);
428 }
429 #endif
430 
431 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
432 		enum dma_data_direction dir, unsigned long attrs)
433 {
434 	int i;
435 	struct scatterlist *sg;
436 
437 	for_each_sg(sgl, sg, nents, i) {
438 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
439 				sg->offset, sg->length, dir, attrs);
440 		if (sg->dma_address == DMA_MAPPING_ERROR)
441 			goto out_unmap;
442 		sg_dma_len(sg) = sg->length;
443 	}
444 
445 	return nents;
446 
447 out_unmap:
448 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
449 	return -EIO;
450 }
451 
452 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
453 		size_t size, enum dma_data_direction dir, unsigned long attrs)
454 {
455 	dma_addr_t dma_addr = paddr;
456 
457 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
458 		dev_err_once(dev,
459 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
460 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
461 		WARN_ON_ONCE(1);
462 		return DMA_MAPPING_ERROR;
463 	}
464 
465 	return dma_addr;
466 }
467 
468 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
469 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
470 		unsigned long attrs)
471 {
472 	struct page *page = dma_direct_to_page(dev, dma_addr);
473 	int ret;
474 
475 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
476 	if (!ret)
477 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
478 	return ret;
479 }
480 
481 bool dma_direct_can_mmap(struct device *dev)
482 {
483 	return dev_is_dma_coherent(dev) ||
484 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
485 }
486 
487 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
488 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
489 		unsigned long attrs)
490 {
491 	unsigned long user_count = vma_pages(vma);
492 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
493 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
494 	int ret = -ENXIO;
495 
496 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
497 
498 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
499 		return ret;
500 	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
501 		return ret;
502 
503 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
504 		return -ENXIO;
505 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
506 			user_count << PAGE_SHIFT, vma->vm_page_prot);
507 }
508 
509 int dma_direct_supported(struct device *dev, u64 mask)
510 {
511 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
512 
513 	/*
514 	 * Because 32-bit DMA masks are so common we expect every architecture
515 	 * to be able to satisfy them - either by not supporting more physical
516 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
517 	 * architecture needs to use an IOMMU instead of the direct mapping.
518 	 */
519 	if (mask >= DMA_BIT_MASK(32))
520 		return 1;
521 
522 	/*
523 	 * This check needs to be against the actual bit mask value, so use
524 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
525 	 * part of the check.
526 	 */
527 	if (IS_ENABLED(CONFIG_ZONE_DMA))
528 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
529 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
530 }
531 
532 size_t dma_direct_max_mapping_size(struct device *dev)
533 {
534 	/* If SWIOTLB is active, use its maximum mapping size */
535 	if (is_swiotlb_active(dev) &&
536 	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
537 		return swiotlb_max_mapping_size(dev);
538 	return SIZE_MAX;
539 }
540 
541 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
542 {
543 	return !dev_is_dma_coherent(dev) ||
544 	       is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
545 }
546 
547 /**
548  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
549  * @dev:	device pointer; needed to "own" the alloced memory.
550  * @cpu_start:  beginning of memory region covered by this offset.
551  * @dma_start:  beginning of DMA/PCI region covered by this offset.
552  * @size:	size of the region.
553  *
554  * This is for the simple case of a uniform offset which cannot
555  * be discovered by "dma-ranges".
556  *
557  * It returns -ENOMEM if out of memory, -EINVAL if a map
558  * already exists, 0 otherwise.
559  *
560  * Note: any call to this from a driver is a bug.  The mapping needs
561  * to be described by the device tree or other firmware interfaces.
562  */
563 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
564 			 dma_addr_t dma_start, u64 size)
565 {
566 	struct bus_dma_region *map;
567 	u64 offset = (u64)cpu_start - (u64)dma_start;
568 
569 	if (dev->dma_range_map) {
570 		dev_err(dev, "attempt to add DMA range to existing map\n");
571 		return -EINVAL;
572 	}
573 
574 	if (!offset)
575 		return 0;
576 
577 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
578 	if (!map)
579 		return -ENOMEM;
580 	map[0].cpu_start = cpu_start;
581 	map[0].dma_start = dma_start;
582 	map[0].offset = offset;
583 	map[0].size = size;
584 	dev->dma_range_map = map;
585 	return 0;
586 }
587