1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018-2020 Christoph Hellwig. 4 * 5 * DMA operations that map physical memory directly without using an IOMMU. 6 */ 7 #include <linux/memblock.h> /* for max_pfn */ 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/scatterlist.h> 12 #include <linux/pfn.h> 13 #include <linux/vmalloc.h> 14 #include <linux/set_memory.h> 15 #include <linux/slab.h> 16 #include "direct.h" 17 18 /* 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use 20 * it for entirely different regions. In that case the arch code needs to 21 * override the variable below for dma-direct to work properly. 22 */ 23 unsigned int zone_dma_bits __ro_after_init = 24; 24 25 static inline dma_addr_t phys_to_dma_direct(struct device *dev, 26 phys_addr_t phys) 27 { 28 if (force_dma_unencrypted(dev)) 29 return phys_to_dma_unencrypted(dev, phys); 30 return phys_to_dma(dev, phys); 31 } 32 33 static inline struct page *dma_direct_to_page(struct device *dev, 34 dma_addr_t dma_addr) 35 { 36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); 37 } 38 39 u64 dma_direct_get_required_mask(struct device *dev) 40 { 41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; 42 u64 max_dma = phys_to_dma_direct(dev, phys); 43 44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; 45 } 46 47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit) 48 { 49 u64 dma_limit = min_not_zero( 50 dev->coherent_dma_mask, 51 dev->bus_dma_limit); 52 53 /* 54 * Optimistically try the zone that the physical address mask falls 55 * into first. If that returns memory that isn't actually addressable 56 * we will fallback to the next lower zone and try again. 57 * 58 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding 59 * zones. 60 */ 61 *phys_limit = dma_to_phys(dev, dma_limit); 62 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) 63 return GFP_DMA; 64 if (*phys_limit <= DMA_BIT_MASK(32)) 65 return GFP_DMA32; 66 return 0; 67 } 68 69 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) 70 { 71 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); 72 73 if (dma_addr == DMA_MAPPING_ERROR) 74 return false; 75 return dma_addr + size - 1 <= 76 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); 77 } 78 79 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size) 80 { 81 if (!force_dma_unencrypted(dev)) 82 return 0; 83 return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size)); 84 } 85 86 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size) 87 { 88 int ret; 89 90 if (!force_dma_unencrypted(dev)) 91 return 0; 92 ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size)); 93 if (ret) 94 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n"); 95 return ret; 96 } 97 98 static void __dma_direct_free_pages(struct device *dev, struct page *page, 99 size_t size) 100 { 101 if (swiotlb_free(dev, page, size)) 102 return; 103 dma_free_contiguous(dev, page, size); 104 } 105 106 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size) 107 { 108 struct page *page = swiotlb_alloc(dev, size); 109 110 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 111 swiotlb_free(dev, page, size); 112 return NULL; 113 } 114 115 return page; 116 } 117 118 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, 119 gfp_t gfp, bool allow_highmem) 120 { 121 int node = dev_to_node(dev); 122 struct page *page = NULL; 123 u64 phys_limit; 124 125 WARN_ON_ONCE(!PAGE_ALIGNED(size)); 126 127 if (is_swiotlb_for_alloc(dev)) 128 return dma_direct_alloc_swiotlb(dev, size); 129 130 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit); 131 page = dma_alloc_contiguous(dev, size, gfp); 132 if (page) { 133 if (!dma_coherent_ok(dev, page_to_phys(page), size) || 134 (!allow_highmem && PageHighMem(page))) { 135 dma_free_contiguous(dev, page, size); 136 page = NULL; 137 } 138 } 139 again: 140 if (!page) 141 page = alloc_pages_node(node, gfp, get_order(size)); 142 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 143 dma_free_contiguous(dev, page, size); 144 page = NULL; 145 146 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 147 phys_limit < DMA_BIT_MASK(64) && 148 !(gfp & (GFP_DMA32 | GFP_DMA))) { 149 gfp |= GFP_DMA32; 150 goto again; 151 } 152 153 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { 154 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 155 goto again; 156 } 157 } 158 159 return page; 160 } 161 162 /* 163 * Check if a potentially blocking operations needs to dip into the atomic 164 * pools for the given device/gfp. 165 */ 166 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp) 167 { 168 return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev); 169 } 170 171 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, 172 dma_addr_t *dma_handle, gfp_t gfp) 173 { 174 struct page *page; 175 u64 phys_limit; 176 void *ret; 177 178 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))) 179 return NULL; 180 181 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit); 182 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); 183 if (!page) 184 return NULL; 185 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 186 return ret; 187 } 188 189 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size, 190 dma_addr_t *dma_handle, gfp_t gfp) 191 { 192 struct page *page; 193 194 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); 195 if (!page) 196 return NULL; 197 198 /* remove any dirty cache lines on the kernel alias */ 199 if (!PageHighMem(page)) 200 arch_dma_prep_coherent(page, size); 201 202 /* return the page pointer as the opaque cookie */ 203 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 204 return page; 205 } 206 207 void *dma_direct_alloc(struct device *dev, size_t size, 208 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 209 { 210 bool remap = false, set_uncached = false; 211 struct page *page; 212 void *ret; 213 214 size = PAGE_ALIGN(size); 215 if (attrs & DMA_ATTR_NO_WARN) 216 gfp |= __GFP_NOWARN; 217 218 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 219 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) 220 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp); 221 222 if (!dev_is_dma_coherent(dev)) { 223 /* 224 * Fallback to the arch handler if it exists. This should 225 * eventually go away. 226 */ 227 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 228 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 229 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 230 !is_swiotlb_for_alloc(dev)) 231 return arch_dma_alloc(dev, size, dma_handle, gfp, 232 attrs); 233 234 /* 235 * If there is a global pool, always allocate from it for 236 * non-coherent devices. 237 */ 238 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)) 239 return dma_alloc_from_global_coherent(dev, size, 240 dma_handle); 241 242 /* 243 * Otherwise remap if the architecture is asking for it. But 244 * given that remapping memory is a blocking operation we'll 245 * instead have to dip into the atomic pools. 246 */ 247 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP); 248 if (remap) { 249 if (dma_direct_use_pool(dev, gfp)) 250 return dma_direct_alloc_from_pool(dev, size, 251 dma_handle, gfp); 252 } else { 253 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED)) 254 return NULL; 255 set_uncached = true; 256 } 257 } 258 259 /* 260 * Decrypting memory may block, so allocate the memory from the atomic 261 * pools if we can't block. 262 */ 263 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) 264 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 265 266 /* we always manually zero the memory once we are done */ 267 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); 268 if (!page) 269 return NULL; 270 271 /* 272 * dma_alloc_contiguous can return highmem pages depending on a 273 * combination the cma= arguments and per-arch setup. These need to be 274 * remapped to return a kernel virtual address. 275 */ 276 if (PageHighMem(page)) { 277 remap = true; 278 set_uncached = false; 279 } 280 281 if (remap) { 282 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 283 284 if (force_dma_unencrypted(dev)) 285 prot = pgprot_decrypted(prot); 286 287 /* remove any dirty cache lines on the kernel alias */ 288 arch_dma_prep_coherent(page, size); 289 290 /* create a coherent mapping */ 291 ret = dma_common_contiguous_remap(page, size, prot, 292 __builtin_return_address(0)); 293 if (!ret) 294 goto out_free_pages; 295 } else { 296 ret = page_address(page); 297 if (dma_set_decrypted(dev, ret, size)) 298 goto out_free_pages; 299 } 300 301 memset(ret, 0, size); 302 303 if (set_uncached) { 304 arch_dma_prep_coherent(page, size); 305 ret = arch_dma_set_uncached(ret, size); 306 if (IS_ERR(ret)) 307 goto out_encrypt_pages; 308 } 309 310 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 311 return ret; 312 313 out_encrypt_pages: 314 if (dma_set_encrypted(dev, page_address(page), size)) 315 return NULL; 316 out_free_pages: 317 __dma_direct_free_pages(dev, page, size); 318 return NULL; 319 } 320 321 void dma_direct_free(struct device *dev, size_t size, 322 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) 323 { 324 unsigned int page_order = get_order(size); 325 326 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 327 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) { 328 /* cpu_addr is a struct page cookie, not a kernel address */ 329 dma_free_contiguous(dev, cpu_addr, size); 330 return; 331 } 332 333 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 334 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 335 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 336 !dev_is_dma_coherent(dev) && 337 !is_swiotlb_for_alloc(dev)) { 338 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); 339 return; 340 } 341 342 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 343 !dev_is_dma_coherent(dev)) { 344 if (!dma_release_from_global_coherent(page_order, cpu_addr)) 345 WARN_ON_ONCE(1); 346 return; 347 } 348 349 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 350 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 351 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) 352 return; 353 354 if (is_vmalloc_addr(cpu_addr)) { 355 vunmap(cpu_addr); 356 } else { 357 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) 358 arch_dma_clear_uncached(cpu_addr, size); 359 if (dma_set_encrypted(dev, cpu_addr, size)) 360 return; 361 } 362 363 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size); 364 } 365 366 struct page *dma_direct_alloc_pages(struct device *dev, size_t size, 367 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 368 { 369 struct page *page; 370 void *ret; 371 372 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) 373 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 374 375 page = __dma_direct_alloc_pages(dev, size, gfp, false); 376 if (!page) 377 return NULL; 378 379 ret = page_address(page); 380 if (dma_set_decrypted(dev, ret, size)) 381 goto out_free_pages; 382 memset(ret, 0, size); 383 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 384 return page; 385 out_free_pages: 386 __dma_direct_free_pages(dev, page, size); 387 return NULL; 388 } 389 390 void dma_direct_free_pages(struct device *dev, size_t size, 391 struct page *page, dma_addr_t dma_addr, 392 enum dma_data_direction dir) 393 { 394 void *vaddr = page_address(page); 395 396 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 397 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 398 dma_free_from_pool(dev, vaddr, size)) 399 return; 400 401 if (dma_set_encrypted(dev, vaddr, size)) 402 return; 403 __dma_direct_free_pages(dev, page, size); 404 } 405 406 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 407 defined(CONFIG_SWIOTLB) 408 void dma_direct_sync_sg_for_device(struct device *dev, 409 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 410 { 411 struct scatterlist *sg; 412 int i; 413 414 for_each_sg(sgl, sg, nents, i) { 415 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 416 417 if (unlikely(is_swiotlb_buffer(dev, paddr))) 418 swiotlb_sync_single_for_device(dev, paddr, sg->length, 419 dir); 420 421 if (!dev_is_dma_coherent(dev)) 422 arch_sync_dma_for_device(paddr, sg->length, 423 dir); 424 } 425 } 426 #endif 427 428 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 429 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ 430 defined(CONFIG_SWIOTLB) 431 void dma_direct_sync_sg_for_cpu(struct device *dev, 432 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 433 { 434 struct scatterlist *sg; 435 int i; 436 437 for_each_sg(sgl, sg, nents, i) { 438 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 439 440 if (!dev_is_dma_coherent(dev)) 441 arch_sync_dma_for_cpu(paddr, sg->length, dir); 442 443 if (unlikely(is_swiotlb_buffer(dev, paddr))) 444 swiotlb_sync_single_for_cpu(dev, paddr, sg->length, 445 dir); 446 447 if (dir == DMA_FROM_DEVICE) 448 arch_dma_mark_clean(paddr, sg->length); 449 } 450 451 if (!dev_is_dma_coherent(dev)) 452 arch_sync_dma_for_cpu_all(); 453 } 454 455 /* 456 * Unmaps segments, except for ones marked as pci_p2pdma which do not 457 * require any further action as they contain a bus address. 458 */ 459 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, 460 int nents, enum dma_data_direction dir, unsigned long attrs) 461 { 462 struct scatterlist *sg; 463 int i; 464 465 for_each_sg(sgl, sg, nents, i) { 466 if (sg_dma_is_bus_address(sg)) 467 sg_dma_unmark_bus_address(sg); 468 else 469 dma_direct_unmap_page(dev, sg->dma_address, 470 sg_dma_len(sg), dir, attrs); 471 } 472 } 473 #endif 474 475 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, 476 enum dma_data_direction dir, unsigned long attrs) 477 { 478 struct pci_p2pdma_map_state p2pdma_state = {}; 479 enum pci_p2pdma_map_type map; 480 struct scatterlist *sg; 481 int i, ret; 482 483 for_each_sg(sgl, sg, nents, i) { 484 if (is_pci_p2pdma_page(sg_page(sg))) { 485 map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg); 486 switch (map) { 487 case PCI_P2PDMA_MAP_BUS_ADDR: 488 continue; 489 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 490 /* 491 * Any P2P mapping that traverses the PCI 492 * host bridge must be mapped with CPU physical 493 * address and not PCI bus addresses. This is 494 * done with dma_direct_map_page() below. 495 */ 496 break; 497 default: 498 ret = -EREMOTEIO; 499 goto out_unmap; 500 } 501 } 502 503 sg->dma_address = dma_direct_map_page(dev, sg_page(sg), 504 sg->offset, sg->length, dir, attrs); 505 if (sg->dma_address == DMA_MAPPING_ERROR) { 506 ret = -EIO; 507 goto out_unmap; 508 } 509 sg_dma_len(sg) = sg->length; 510 } 511 512 return nents; 513 514 out_unmap: 515 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 516 return ret; 517 } 518 519 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, 520 size_t size, enum dma_data_direction dir, unsigned long attrs) 521 { 522 dma_addr_t dma_addr = paddr; 523 524 if (unlikely(!dma_capable(dev, dma_addr, size, false))) { 525 dev_err_once(dev, 526 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 527 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 528 WARN_ON_ONCE(1); 529 return DMA_MAPPING_ERROR; 530 } 531 532 return dma_addr; 533 } 534 535 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, 536 void *cpu_addr, dma_addr_t dma_addr, size_t size, 537 unsigned long attrs) 538 { 539 struct page *page = dma_direct_to_page(dev, dma_addr); 540 int ret; 541 542 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 543 if (!ret) 544 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 545 return ret; 546 } 547 548 bool dma_direct_can_mmap(struct device *dev) 549 { 550 return dev_is_dma_coherent(dev) || 551 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); 552 } 553 554 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, 555 void *cpu_addr, dma_addr_t dma_addr, size_t size, 556 unsigned long attrs) 557 { 558 unsigned long user_count = vma_pages(vma); 559 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 560 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); 561 int ret = -ENXIO; 562 563 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 564 if (force_dma_unencrypted(dev)) 565 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); 566 567 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 568 return ret; 569 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret)) 570 return ret; 571 572 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) 573 return -ENXIO; 574 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, 575 user_count << PAGE_SHIFT, vma->vm_page_prot); 576 } 577 578 int dma_direct_supported(struct device *dev, u64 mask) 579 { 580 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; 581 582 /* 583 * Because 32-bit DMA masks are so common we expect every architecture 584 * to be able to satisfy them - either by not supporting more physical 585 * memory, or by providing a ZONE_DMA32. If neither is the case, the 586 * architecture needs to use an IOMMU instead of the direct mapping. 587 */ 588 if (mask >= DMA_BIT_MASK(32)) 589 return 1; 590 591 /* 592 * This check needs to be against the actual bit mask value, so use 593 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't 594 * part of the check. 595 */ 596 if (IS_ENABLED(CONFIG_ZONE_DMA)) 597 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); 598 return mask >= phys_to_dma_unencrypted(dev, min_mask); 599 } 600 601 size_t dma_direct_max_mapping_size(struct device *dev) 602 { 603 /* If SWIOTLB is active, use its maximum mapping size */ 604 if (is_swiotlb_active(dev) && 605 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev))) 606 return swiotlb_max_mapping_size(dev); 607 return SIZE_MAX; 608 } 609 610 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) 611 { 612 return !dev_is_dma_coherent(dev) || 613 is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr)); 614 } 615 616 /** 617 * dma_direct_set_offset - Assign scalar offset for a single DMA range. 618 * @dev: device pointer; needed to "own" the alloced memory. 619 * @cpu_start: beginning of memory region covered by this offset. 620 * @dma_start: beginning of DMA/PCI region covered by this offset. 621 * @size: size of the region. 622 * 623 * This is for the simple case of a uniform offset which cannot 624 * be discovered by "dma-ranges". 625 * 626 * It returns -ENOMEM if out of memory, -EINVAL if a map 627 * already exists, 0 otherwise. 628 * 629 * Note: any call to this from a driver is a bug. The mapping needs 630 * to be described by the device tree or other firmware interfaces. 631 */ 632 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, 633 dma_addr_t dma_start, u64 size) 634 { 635 struct bus_dma_region *map; 636 u64 offset = (u64)cpu_start - (u64)dma_start; 637 638 if (dev->dma_range_map) { 639 dev_err(dev, "attempt to add DMA range to existing map\n"); 640 return -EINVAL; 641 } 642 643 if (!offset) 644 return 0; 645 646 map = kcalloc(2, sizeof(*map), GFP_KERNEL); 647 if (!map) 648 return -ENOMEM; 649 map[0].cpu_start = cpu_start; 650 map[0].dma_start = dma_start; 651 map[0].offset = offset; 652 map[0].size = size; 653 dev->dma_range_map = map; 654 return 0; 655 } 656