xref: /openbmc/linux/kernel/dma/direct.c (revision 58919326e72f63c380dc3271dd1cc8bdf1bbe3e4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24 
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 		phys_addr_t phys)
27 {
28 	if (force_dma_unencrypted(dev))
29 		return phys_to_dma_unencrypted(dev, phys);
30 	return phys_to_dma(dev, phys);
31 }
32 
33 static inline struct page *dma_direct_to_page(struct device *dev,
34 		dma_addr_t dma_addr)
35 {
36 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38 
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 	u64 max_dma = phys_to_dma_direct(dev, phys);
43 
44 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 				  u64 *phys_limit)
49 {
50 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51 
52 	/*
53 	 * Optimistically try the zone that the physical address mask falls
54 	 * into first.  If that returns memory that isn't actually addressable
55 	 * we will fallback to the next lower zone and try again.
56 	 *
57 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58 	 * zones.
59 	 */
60 	*phys_limit = dma_to_phys(dev, dma_limit);
61 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 		return GFP_DMA;
63 	if (*phys_limit <= DMA_BIT_MASK(32))
64 		return GFP_DMA32;
65 	return 0;
66 }
67 
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71 
72 	if (dma_addr == DMA_MAPPING_ERROR)
73 		return false;
74 	return dma_addr + size - 1 <=
75 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77 
78 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
79 {
80 	if (!force_dma_unencrypted(dev))
81 		return 0;
82 	return set_memory_decrypted((unsigned long)vaddr, 1 << get_order(size));
83 }
84 
85 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
86 {
87 	int ret;
88 
89 	if (!force_dma_unencrypted(dev))
90 		return 0;
91 	ret = set_memory_encrypted((unsigned long)vaddr, 1 << get_order(size));
92 	if (ret)
93 		pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
94 	return ret;
95 }
96 
97 static void __dma_direct_free_pages(struct device *dev, struct page *page,
98 				    size_t size)
99 {
100 	if (swiotlb_free(dev, page, size))
101 		return;
102 	dma_free_contiguous(dev, page, size);
103 }
104 
105 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
106 {
107 	struct page *page = swiotlb_alloc(dev, size);
108 
109 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110 		swiotlb_free(dev, page, size);
111 		return NULL;
112 	}
113 
114 	return page;
115 }
116 
117 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
118 		gfp_t gfp)
119 {
120 	int node = dev_to_node(dev);
121 	struct page *page = NULL;
122 	u64 phys_limit;
123 
124 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
125 
126 	if (is_swiotlb_for_alloc(dev))
127 		return dma_direct_alloc_swiotlb(dev, size);
128 
129 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
130 					   &phys_limit);
131 	page = dma_alloc_contiguous(dev, size, gfp);
132 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
133 		dma_free_contiguous(dev, page, size);
134 		page = NULL;
135 	}
136 again:
137 	if (!page)
138 		page = alloc_pages_node(node, gfp, get_order(size));
139 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
140 		dma_free_contiguous(dev, page, size);
141 		page = NULL;
142 
143 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
144 		    phys_limit < DMA_BIT_MASK(64) &&
145 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
146 			gfp |= GFP_DMA32;
147 			goto again;
148 		}
149 
150 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
151 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
152 			goto again;
153 		}
154 	}
155 
156 	return page;
157 }
158 
159 /*
160  * Check if a potentially blocking operations needs to dip into the atomic
161  * pools for the given device/gfp.
162  */
163 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
164 {
165 	return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
166 }
167 
168 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
169 		dma_addr_t *dma_handle, gfp_t gfp)
170 {
171 	struct page *page;
172 	u64 phys_mask;
173 	void *ret;
174 
175 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
176 		return NULL;
177 
178 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
179 					   &phys_mask);
180 	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
181 	if (!page)
182 		return NULL;
183 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
184 	return ret;
185 }
186 
187 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
188 		dma_addr_t *dma_handle, gfp_t gfp)
189 {
190 	struct page *page;
191 
192 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
193 	if (!page)
194 		return NULL;
195 
196 	/* remove any dirty cache lines on the kernel alias */
197 	if (!PageHighMem(page))
198 		arch_dma_prep_coherent(page, size);
199 
200 	/* return the page pointer as the opaque cookie */
201 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
202 	return page;
203 }
204 
205 void *dma_direct_alloc(struct device *dev, size_t size,
206 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
207 {
208 	bool remap = false, set_uncached = false;
209 	struct page *page;
210 	void *ret;
211 
212 	size = PAGE_ALIGN(size);
213 	if (attrs & DMA_ATTR_NO_WARN)
214 		gfp |= __GFP_NOWARN;
215 
216 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
217 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
218 		return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
219 
220 	if (!dev_is_dma_coherent(dev)) {
221 		/*
222 		 * Fallback to the arch handler if it exists.  This should
223 		 * eventually go away.
224 		 */
225 		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
226 		    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
227 		    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
228 		    !is_swiotlb_for_alloc(dev))
229 			return arch_dma_alloc(dev, size, dma_handle, gfp,
230 					      attrs);
231 
232 		/*
233 		 * If there is a global pool, always allocate from it for
234 		 * non-coherent devices.
235 		 */
236 		if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
237 			return dma_alloc_from_global_coherent(dev, size,
238 					dma_handle);
239 
240 		/*
241 		 * Otherwise remap if the architecture is asking for it.  But
242 		 * given that remapping memory is a blocking operation we'll
243 		 * instead have to dip into the atomic pools.
244 		 */
245 		remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
246 		if (remap) {
247 			if (dma_direct_use_pool(dev, gfp))
248 				return dma_direct_alloc_from_pool(dev, size,
249 						dma_handle, gfp);
250 		} else {
251 			if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
252 				return NULL;
253 			set_uncached = true;
254 		}
255 	}
256 
257 	/*
258 	 * Decrypting memory may block, so allocate the memory from the atomic
259 	 * pools if we can't block.
260 	 */
261 	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
262 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
263 
264 	/* we always manually zero the memory once we are done */
265 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
266 	if (!page)
267 		return NULL;
268 
269 	/*
270 	 * dma_alloc_contiguous can return highmem pages depending on a
271 	 * combination the cma= arguments and per-arch setup.  These need to be
272 	 * remapped to return a kernel virtual address.
273 	 */
274 	if (PageHighMem(page)) {
275 		remap = true;
276 		set_uncached = false;
277 	}
278 
279 	if (remap) {
280 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
281 
282 		if (force_dma_unencrypted(dev))
283 			prot = pgprot_decrypted(prot);
284 
285 		/* remove any dirty cache lines on the kernel alias */
286 		arch_dma_prep_coherent(page, size);
287 
288 		/* create a coherent mapping */
289 		ret = dma_common_contiguous_remap(page, size, prot,
290 				__builtin_return_address(0));
291 		if (!ret)
292 			goto out_free_pages;
293 	} else {
294 		ret = page_address(page);
295 		if (dma_set_decrypted(dev, ret, size))
296 			goto out_free_pages;
297 	}
298 
299 	memset(ret, 0, size);
300 
301 	if (set_uncached) {
302 		arch_dma_prep_coherent(page, size);
303 		ret = arch_dma_set_uncached(ret, size);
304 		if (IS_ERR(ret))
305 			goto out_encrypt_pages;
306 	}
307 
308 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
309 	return ret;
310 
311 out_encrypt_pages:
312 	if (dma_set_encrypted(dev, page_address(page), size))
313 		return NULL;
314 out_free_pages:
315 	__dma_direct_free_pages(dev, page, size);
316 	return NULL;
317 }
318 
319 void dma_direct_free(struct device *dev, size_t size,
320 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
321 {
322 	unsigned int page_order = get_order(size);
323 
324 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
325 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
326 		/* cpu_addr is a struct page cookie, not a kernel address */
327 		dma_free_contiguous(dev, cpu_addr, size);
328 		return;
329 	}
330 
331 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
332 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
333 	    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
334 	    !dev_is_dma_coherent(dev) &&
335 	    !is_swiotlb_for_alloc(dev)) {
336 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
337 		return;
338 	}
339 
340 	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
341 	    !dev_is_dma_coherent(dev)) {
342 		if (!dma_release_from_global_coherent(page_order, cpu_addr))
343 			WARN_ON_ONCE(1);
344 		return;
345 	}
346 
347 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
348 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
349 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
350 		return;
351 
352 	if (is_vmalloc_addr(cpu_addr)) {
353 		vunmap(cpu_addr);
354 	} else {
355 		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
356 			arch_dma_clear_uncached(cpu_addr, size);
357 		if (dma_set_encrypted(dev, cpu_addr, 1 << page_order))
358 			return;
359 	}
360 
361 	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
362 }
363 
364 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
365 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
366 {
367 	struct page *page;
368 	void *ret;
369 
370 	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
371 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
372 
373 	page = __dma_direct_alloc_pages(dev, size, gfp);
374 	if (!page)
375 		return NULL;
376 	if (PageHighMem(page)) {
377 		/*
378 		 * Depending on the cma= arguments and per-arch setup
379 		 * dma_alloc_contiguous could return highmem pages.
380 		 * Without remapping there is no way to return them here,
381 		 * so log an error and fail.
382 		 */
383 		dev_info(dev, "Rejecting highmem page from CMA.\n");
384 		goto out_free_pages;
385 	}
386 
387 	ret = page_address(page);
388 	if (dma_set_decrypted(dev, ret, size))
389 		goto out_free_pages;
390 	memset(ret, 0, size);
391 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
392 	return page;
393 out_free_pages:
394 	__dma_direct_free_pages(dev, page, size);
395 	return NULL;
396 }
397 
398 void dma_direct_free_pages(struct device *dev, size_t size,
399 		struct page *page, dma_addr_t dma_addr,
400 		enum dma_data_direction dir)
401 {
402 	unsigned int page_order = get_order(size);
403 	void *vaddr = page_address(page);
404 
405 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
406 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
407 	    dma_free_from_pool(dev, vaddr, size))
408 		return;
409 
410 	if (dma_set_encrypted(dev, vaddr, 1 << page_order))
411 		return;
412 	__dma_direct_free_pages(dev, page, size);
413 }
414 
415 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
416     defined(CONFIG_SWIOTLB)
417 void dma_direct_sync_sg_for_device(struct device *dev,
418 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
419 {
420 	struct scatterlist *sg;
421 	int i;
422 
423 	for_each_sg(sgl, sg, nents, i) {
424 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
425 
426 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
427 			swiotlb_sync_single_for_device(dev, paddr, sg->length,
428 						       dir);
429 
430 		if (!dev_is_dma_coherent(dev))
431 			arch_sync_dma_for_device(paddr, sg->length,
432 					dir);
433 	}
434 }
435 #endif
436 
437 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
438     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
439     defined(CONFIG_SWIOTLB)
440 void dma_direct_sync_sg_for_cpu(struct device *dev,
441 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
442 {
443 	struct scatterlist *sg;
444 	int i;
445 
446 	for_each_sg(sgl, sg, nents, i) {
447 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
448 
449 		if (!dev_is_dma_coherent(dev))
450 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
451 
452 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
453 			swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
454 						    dir);
455 
456 		if (dir == DMA_FROM_DEVICE)
457 			arch_dma_mark_clean(paddr, sg->length);
458 	}
459 
460 	if (!dev_is_dma_coherent(dev))
461 		arch_sync_dma_for_cpu_all();
462 }
463 
464 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
465 		int nents, enum dma_data_direction dir, unsigned long attrs)
466 {
467 	struct scatterlist *sg;
468 	int i;
469 
470 	for_each_sg(sgl, sg, nents, i)
471 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
472 			     attrs);
473 }
474 #endif
475 
476 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
477 		enum dma_data_direction dir, unsigned long attrs)
478 {
479 	int i;
480 	struct scatterlist *sg;
481 
482 	for_each_sg(sgl, sg, nents, i) {
483 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
484 				sg->offset, sg->length, dir, attrs);
485 		if (sg->dma_address == DMA_MAPPING_ERROR)
486 			goto out_unmap;
487 		sg_dma_len(sg) = sg->length;
488 	}
489 
490 	return nents;
491 
492 out_unmap:
493 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
494 	return -EIO;
495 }
496 
497 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
498 		size_t size, enum dma_data_direction dir, unsigned long attrs)
499 {
500 	dma_addr_t dma_addr = paddr;
501 
502 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
503 		dev_err_once(dev,
504 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
505 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
506 		WARN_ON_ONCE(1);
507 		return DMA_MAPPING_ERROR;
508 	}
509 
510 	return dma_addr;
511 }
512 
513 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
514 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
515 		unsigned long attrs)
516 {
517 	struct page *page = dma_direct_to_page(dev, dma_addr);
518 	int ret;
519 
520 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
521 	if (!ret)
522 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
523 	return ret;
524 }
525 
526 bool dma_direct_can_mmap(struct device *dev)
527 {
528 	return dev_is_dma_coherent(dev) ||
529 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
530 }
531 
532 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
533 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
534 		unsigned long attrs)
535 {
536 	unsigned long user_count = vma_pages(vma);
537 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
538 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
539 	int ret = -ENXIO;
540 
541 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
542 	if (force_dma_unencrypted(dev))
543 		vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
544 
545 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
546 		return ret;
547 	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
548 		return ret;
549 
550 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
551 		return -ENXIO;
552 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
553 			user_count << PAGE_SHIFT, vma->vm_page_prot);
554 }
555 
556 int dma_direct_supported(struct device *dev, u64 mask)
557 {
558 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
559 
560 	/*
561 	 * Because 32-bit DMA masks are so common we expect every architecture
562 	 * to be able to satisfy them - either by not supporting more physical
563 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
564 	 * architecture needs to use an IOMMU instead of the direct mapping.
565 	 */
566 	if (mask >= DMA_BIT_MASK(32))
567 		return 1;
568 
569 	/*
570 	 * This check needs to be against the actual bit mask value, so use
571 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
572 	 * part of the check.
573 	 */
574 	if (IS_ENABLED(CONFIG_ZONE_DMA))
575 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
576 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
577 }
578 
579 size_t dma_direct_max_mapping_size(struct device *dev)
580 {
581 	/* If SWIOTLB is active, use its maximum mapping size */
582 	if (is_swiotlb_active(dev) &&
583 	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
584 		return swiotlb_max_mapping_size(dev);
585 	return SIZE_MAX;
586 }
587 
588 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
589 {
590 	return !dev_is_dma_coherent(dev) ||
591 	       is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
592 }
593 
594 /**
595  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
596  * @dev:	device pointer; needed to "own" the alloced memory.
597  * @cpu_start:  beginning of memory region covered by this offset.
598  * @dma_start:  beginning of DMA/PCI region covered by this offset.
599  * @size:	size of the region.
600  *
601  * This is for the simple case of a uniform offset which cannot
602  * be discovered by "dma-ranges".
603  *
604  * It returns -ENOMEM if out of memory, -EINVAL if a map
605  * already exists, 0 otherwise.
606  *
607  * Note: any call to this from a driver is a bug.  The mapping needs
608  * to be described by the device tree or other firmware interfaces.
609  */
610 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
611 			 dma_addr_t dma_start, u64 size)
612 {
613 	struct bus_dma_region *map;
614 	u64 offset = (u64)cpu_start - (u64)dma_start;
615 
616 	if (dev->dma_range_map) {
617 		dev_err(dev, "attempt to add DMA range to existing map\n");
618 		return -EINVAL;
619 	}
620 
621 	if (!offset)
622 		return 0;
623 
624 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
625 	if (!map)
626 		return -ENOMEM;
627 	map[0].cpu_start = cpu_start;
628 	map[0].dma_start = dma_start;
629 	map[0].offset = offset;
630 	map[0].size = size;
631 	dev->dma_range_map = map;
632 	return 0;
633 }
634