1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2018-2020 Christoph Hellwig. 4 * 5 * DMA operations that map physical memory directly without using an IOMMU. 6 */ 7 #include <linux/memblock.h> /* for max_pfn */ 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/scatterlist.h> 12 #include <linux/pfn.h> 13 #include <linux/vmalloc.h> 14 #include <linux/set_memory.h> 15 #include <linux/slab.h> 16 #include "direct.h" 17 18 /* 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use 20 * it for entirely different regions. In that case the arch code needs to 21 * override the variable below for dma-direct to work properly. 22 */ 23 unsigned int zone_dma_bits __ro_after_init = 24; 24 25 static inline dma_addr_t phys_to_dma_direct(struct device *dev, 26 phys_addr_t phys) 27 { 28 if (force_dma_unencrypted(dev)) 29 return phys_to_dma_unencrypted(dev, phys); 30 return phys_to_dma(dev, phys); 31 } 32 33 static inline struct page *dma_direct_to_page(struct device *dev, 34 dma_addr_t dma_addr) 35 { 36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); 37 } 38 39 u64 dma_direct_get_required_mask(struct device *dev) 40 { 41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; 42 u64 max_dma = phys_to_dma_direct(dev, phys); 43 44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; 45 } 46 47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit) 48 { 49 u64 dma_limit = min_not_zero( 50 dev->coherent_dma_mask, 51 dev->bus_dma_limit); 52 53 /* 54 * Optimistically try the zone that the physical address mask falls 55 * into first. If that returns memory that isn't actually addressable 56 * we will fallback to the next lower zone and try again. 57 * 58 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding 59 * zones. 60 */ 61 *phys_limit = dma_to_phys(dev, dma_limit); 62 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) 63 return GFP_DMA; 64 if (*phys_limit <= DMA_BIT_MASK(32)) 65 return GFP_DMA32; 66 return 0; 67 } 68 69 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) 70 { 71 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); 72 73 if (dma_addr == DMA_MAPPING_ERROR) 74 return false; 75 return dma_addr + size - 1 <= 76 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); 77 } 78 79 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size) 80 { 81 if (!force_dma_unencrypted(dev)) 82 return 0; 83 return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size)); 84 } 85 86 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size) 87 { 88 int ret; 89 90 if (!force_dma_unencrypted(dev)) 91 return 0; 92 ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size)); 93 if (ret) 94 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n"); 95 return ret; 96 } 97 98 static void __dma_direct_free_pages(struct device *dev, struct page *page, 99 size_t size) 100 { 101 if (swiotlb_free(dev, page, size)) 102 return; 103 dma_free_contiguous(dev, page, size); 104 } 105 106 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size) 107 { 108 struct page *page = swiotlb_alloc(dev, size); 109 110 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 111 swiotlb_free(dev, page, size); 112 return NULL; 113 } 114 115 return page; 116 } 117 118 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, 119 gfp_t gfp, bool allow_highmem) 120 { 121 int node = dev_to_node(dev); 122 struct page *page = NULL; 123 u64 phys_limit; 124 125 WARN_ON_ONCE(!PAGE_ALIGNED(size)); 126 127 if (is_swiotlb_for_alloc(dev)) 128 return dma_direct_alloc_swiotlb(dev, size); 129 130 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit); 131 page = dma_alloc_contiguous(dev, size, gfp); 132 if (page) { 133 if (!dma_coherent_ok(dev, page_to_phys(page), size) || 134 (!allow_highmem && PageHighMem(page))) { 135 dma_free_contiguous(dev, page, size); 136 page = NULL; 137 } 138 } 139 again: 140 if (!page) 141 page = alloc_pages_node(node, gfp, get_order(size)); 142 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 143 dma_free_contiguous(dev, page, size); 144 page = NULL; 145 146 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 147 phys_limit < DMA_BIT_MASK(64) && 148 !(gfp & (GFP_DMA32 | GFP_DMA))) { 149 gfp |= GFP_DMA32; 150 goto again; 151 } 152 153 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { 154 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 155 goto again; 156 } 157 } 158 159 return page; 160 } 161 162 /* 163 * Check if a potentially blocking operations needs to dip into the atomic 164 * pools for the given device/gfp. 165 */ 166 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp) 167 { 168 return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev); 169 } 170 171 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, 172 dma_addr_t *dma_handle, gfp_t gfp) 173 { 174 struct page *page; 175 u64 phys_limit; 176 void *ret; 177 178 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))) 179 return NULL; 180 181 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit); 182 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); 183 if (!page) 184 return NULL; 185 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 186 return ret; 187 } 188 189 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size, 190 dma_addr_t *dma_handle, gfp_t gfp) 191 { 192 struct page *page; 193 194 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); 195 if (!page) 196 return NULL; 197 198 /* remove any dirty cache lines on the kernel alias */ 199 if (!PageHighMem(page)) 200 arch_dma_prep_coherent(page, size); 201 202 /* return the page pointer as the opaque cookie */ 203 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 204 return page; 205 } 206 207 void *dma_direct_alloc(struct device *dev, size_t size, 208 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 209 { 210 bool remap = false, set_uncached = false; 211 struct page *page; 212 void *ret; 213 214 size = PAGE_ALIGN(size); 215 if (attrs & DMA_ATTR_NO_WARN) 216 gfp |= __GFP_NOWARN; 217 218 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 219 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) 220 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp); 221 222 if (!dev_is_dma_coherent(dev)) { 223 /* 224 * Fallback to the arch handler if it exists. This should 225 * eventually go away. 226 */ 227 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 228 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 229 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 230 !is_swiotlb_for_alloc(dev)) 231 return arch_dma_alloc(dev, size, dma_handle, gfp, 232 attrs); 233 234 /* 235 * If there is a global pool, always allocate from it for 236 * non-coherent devices. 237 */ 238 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)) 239 return dma_alloc_from_global_coherent(dev, size, 240 dma_handle); 241 242 /* 243 * Otherwise remap if the architecture is asking for it. But 244 * given that remapping memory is a blocking operation we'll 245 * instead have to dip into the atomic pools. 246 */ 247 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP); 248 if (remap) { 249 if (dma_direct_use_pool(dev, gfp)) 250 return dma_direct_alloc_from_pool(dev, size, 251 dma_handle, gfp); 252 } else { 253 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED)) 254 return NULL; 255 set_uncached = true; 256 } 257 } 258 259 /* 260 * Decrypting memory may block, so allocate the memory from the atomic 261 * pools if we can't block. 262 */ 263 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) 264 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 265 266 /* we always manually zero the memory once we are done */ 267 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true); 268 if (!page) 269 return NULL; 270 271 /* 272 * dma_alloc_contiguous can return highmem pages depending on a 273 * combination the cma= arguments and per-arch setup. These need to be 274 * remapped to return a kernel virtual address. 275 */ 276 if (PageHighMem(page)) { 277 remap = true; 278 set_uncached = false; 279 } 280 281 if (remap) { 282 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs); 283 284 if (force_dma_unencrypted(dev)) 285 prot = pgprot_decrypted(prot); 286 287 /* remove any dirty cache lines on the kernel alias */ 288 arch_dma_prep_coherent(page, size); 289 290 /* create a coherent mapping */ 291 ret = dma_common_contiguous_remap(page, size, prot, 292 __builtin_return_address(0)); 293 if (!ret) 294 goto out_free_pages; 295 } else { 296 ret = page_address(page); 297 if (dma_set_decrypted(dev, ret, size)) 298 goto out_leak_pages; 299 } 300 301 memset(ret, 0, size); 302 303 if (set_uncached) { 304 arch_dma_prep_coherent(page, size); 305 ret = arch_dma_set_uncached(ret, size); 306 if (IS_ERR(ret)) 307 goto out_encrypt_pages; 308 } 309 310 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 311 return ret; 312 313 out_encrypt_pages: 314 if (dma_set_encrypted(dev, page_address(page), size)) 315 return NULL; 316 out_free_pages: 317 __dma_direct_free_pages(dev, page, size); 318 return NULL; 319 out_leak_pages: 320 return NULL; 321 } 322 323 void dma_direct_free(struct device *dev, size_t size, 324 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) 325 { 326 unsigned int page_order = get_order(size); 327 328 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 329 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) { 330 /* cpu_addr is a struct page cookie, not a kernel address */ 331 dma_free_contiguous(dev, cpu_addr, size); 332 return; 333 } 334 335 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 336 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 337 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 338 !dev_is_dma_coherent(dev) && 339 !is_swiotlb_for_alloc(dev)) { 340 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); 341 return; 342 } 343 344 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) && 345 !dev_is_dma_coherent(dev)) { 346 if (!dma_release_from_global_coherent(page_order, cpu_addr)) 347 WARN_ON_ONCE(1); 348 return; 349 } 350 351 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 352 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 353 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) 354 return; 355 356 if (is_vmalloc_addr(cpu_addr)) { 357 vunmap(cpu_addr); 358 } else { 359 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) 360 arch_dma_clear_uncached(cpu_addr, size); 361 if (dma_set_encrypted(dev, cpu_addr, size)) 362 return; 363 } 364 365 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size); 366 } 367 368 struct page *dma_direct_alloc_pages(struct device *dev, size_t size, 369 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 370 { 371 struct page *page; 372 void *ret; 373 374 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp)) 375 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 376 377 page = __dma_direct_alloc_pages(dev, size, gfp, false); 378 if (!page) 379 return NULL; 380 381 ret = page_address(page); 382 if (dma_set_decrypted(dev, ret, size)) 383 goto out_leak_pages; 384 memset(ret, 0, size); 385 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 386 return page; 387 out_leak_pages: 388 return NULL; 389 } 390 391 void dma_direct_free_pages(struct device *dev, size_t size, 392 struct page *page, dma_addr_t dma_addr, 393 enum dma_data_direction dir) 394 { 395 void *vaddr = page_address(page); 396 397 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 398 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 399 dma_free_from_pool(dev, vaddr, size)) 400 return; 401 402 if (dma_set_encrypted(dev, vaddr, size)) 403 return; 404 __dma_direct_free_pages(dev, page, size); 405 } 406 407 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 408 defined(CONFIG_SWIOTLB) 409 void dma_direct_sync_sg_for_device(struct device *dev, 410 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 411 { 412 struct scatterlist *sg; 413 int i; 414 415 for_each_sg(sgl, sg, nents, i) { 416 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 417 418 if (unlikely(is_swiotlb_buffer(dev, paddr))) 419 swiotlb_sync_single_for_device(dev, paddr, sg->length, 420 dir); 421 422 if (!dev_is_dma_coherent(dev)) 423 arch_sync_dma_for_device(paddr, sg->length, 424 dir); 425 } 426 } 427 #endif 428 429 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 430 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ 431 defined(CONFIG_SWIOTLB) 432 void dma_direct_sync_sg_for_cpu(struct device *dev, 433 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 434 { 435 struct scatterlist *sg; 436 int i; 437 438 for_each_sg(sgl, sg, nents, i) { 439 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 440 441 if (!dev_is_dma_coherent(dev)) 442 arch_sync_dma_for_cpu(paddr, sg->length, dir); 443 444 if (unlikely(is_swiotlb_buffer(dev, paddr))) 445 swiotlb_sync_single_for_cpu(dev, paddr, sg->length, 446 dir); 447 448 if (dir == DMA_FROM_DEVICE) 449 arch_dma_mark_clean(paddr, sg->length); 450 } 451 452 if (!dev_is_dma_coherent(dev)) 453 arch_sync_dma_for_cpu_all(); 454 } 455 456 /* 457 * Unmaps segments, except for ones marked as pci_p2pdma which do not 458 * require any further action as they contain a bus address. 459 */ 460 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, 461 int nents, enum dma_data_direction dir, unsigned long attrs) 462 { 463 struct scatterlist *sg; 464 int i; 465 466 for_each_sg(sgl, sg, nents, i) { 467 if (sg_dma_is_bus_address(sg)) 468 sg_dma_unmark_bus_address(sg); 469 else 470 dma_direct_unmap_page(dev, sg->dma_address, 471 sg_dma_len(sg), dir, attrs); 472 } 473 } 474 #endif 475 476 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, 477 enum dma_data_direction dir, unsigned long attrs) 478 { 479 struct pci_p2pdma_map_state p2pdma_state = {}; 480 enum pci_p2pdma_map_type map; 481 struct scatterlist *sg; 482 int i, ret; 483 484 for_each_sg(sgl, sg, nents, i) { 485 if (is_pci_p2pdma_page(sg_page(sg))) { 486 map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg); 487 switch (map) { 488 case PCI_P2PDMA_MAP_BUS_ADDR: 489 continue; 490 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 491 /* 492 * Any P2P mapping that traverses the PCI 493 * host bridge must be mapped with CPU physical 494 * address and not PCI bus addresses. This is 495 * done with dma_direct_map_page() below. 496 */ 497 break; 498 default: 499 ret = -EREMOTEIO; 500 goto out_unmap; 501 } 502 } 503 504 sg->dma_address = dma_direct_map_page(dev, sg_page(sg), 505 sg->offset, sg->length, dir, attrs); 506 if (sg->dma_address == DMA_MAPPING_ERROR) { 507 ret = -EIO; 508 goto out_unmap; 509 } 510 sg_dma_len(sg) = sg->length; 511 } 512 513 return nents; 514 515 out_unmap: 516 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 517 return ret; 518 } 519 520 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, 521 size_t size, enum dma_data_direction dir, unsigned long attrs) 522 { 523 dma_addr_t dma_addr = paddr; 524 525 if (unlikely(!dma_capable(dev, dma_addr, size, false))) { 526 dev_err_once(dev, 527 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 528 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 529 WARN_ON_ONCE(1); 530 return DMA_MAPPING_ERROR; 531 } 532 533 return dma_addr; 534 } 535 536 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, 537 void *cpu_addr, dma_addr_t dma_addr, size_t size, 538 unsigned long attrs) 539 { 540 struct page *page = dma_direct_to_page(dev, dma_addr); 541 int ret; 542 543 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 544 if (!ret) 545 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 546 return ret; 547 } 548 549 bool dma_direct_can_mmap(struct device *dev) 550 { 551 return dev_is_dma_coherent(dev) || 552 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); 553 } 554 555 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, 556 void *cpu_addr, dma_addr_t dma_addr, size_t size, 557 unsigned long attrs) 558 { 559 unsigned long user_count = vma_pages(vma); 560 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 561 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); 562 int ret = -ENXIO; 563 564 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 565 if (force_dma_unencrypted(dev)) 566 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot); 567 568 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 569 return ret; 570 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret)) 571 return ret; 572 573 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) 574 return -ENXIO; 575 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, 576 user_count << PAGE_SHIFT, vma->vm_page_prot); 577 } 578 579 int dma_direct_supported(struct device *dev, u64 mask) 580 { 581 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; 582 583 /* 584 * Because 32-bit DMA masks are so common we expect every architecture 585 * to be able to satisfy them - either by not supporting more physical 586 * memory, or by providing a ZONE_DMA32. If neither is the case, the 587 * architecture needs to use an IOMMU instead of the direct mapping. 588 */ 589 if (mask >= DMA_BIT_MASK(32)) 590 return 1; 591 592 /* 593 * This check needs to be against the actual bit mask value, so use 594 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't 595 * part of the check. 596 */ 597 if (IS_ENABLED(CONFIG_ZONE_DMA)) 598 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); 599 return mask >= phys_to_dma_unencrypted(dev, min_mask); 600 } 601 602 size_t dma_direct_max_mapping_size(struct device *dev) 603 { 604 /* If SWIOTLB is active, use its maximum mapping size */ 605 if (is_swiotlb_active(dev) && 606 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev))) 607 return swiotlb_max_mapping_size(dev); 608 return SIZE_MAX; 609 } 610 611 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) 612 { 613 return !dev_is_dma_coherent(dev) || 614 is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr)); 615 } 616 617 /** 618 * dma_direct_set_offset - Assign scalar offset for a single DMA range. 619 * @dev: device pointer; needed to "own" the alloced memory. 620 * @cpu_start: beginning of memory region covered by this offset. 621 * @dma_start: beginning of DMA/PCI region covered by this offset. 622 * @size: size of the region. 623 * 624 * This is for the simple case of a uniform offset which cannot 625 * be discovered by "dma-ranges". 626 * 627 * It returns -ENOMEM if out of memory, -EINVAL if a map 628 * already exists, 0 otherwise. 629 * 630 * Note: any call to this from a driver is a bug. The mapping needs 631 * to be described by the device tree or other firmware interfaces. 632 */ 633 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, 634 dma_addr_t dma_start, u64 size) 635 { 636 struct bus_dma_region *map; 637 u64 offset = (u64)cpu_start - (u64)dma_start; 638 639 if (dev->dma_range_map) { 640 dev_err(dev, "attempt to add DMA range to existing map\n"); 641 return -EINVAL; 642 } 643 644 if (!offset) 645 return 0; 646 647 map = kcalloc(2, sizeof(*map), GFP_KERNEL); 648 if (!map) 649 return -ENOMEM; 650 map[0].cpu_start = cpu_start; 651 map[0].dma_start = dma_start; 652 map[0].offset = offset; 653 map[0].size = size; 654 dev->dma_range_map = map; 655 return 0; 656 } 657