xref: /openbmc/linux/kernel/dma/direct.c (revision 165f2d28)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/vmalloc.h>
16 #include <linux/set_memory.h>
17 #include <linux/swiotlb.h>
18 
19 /*
20  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
21  * it for entirely different regions. In that case the arch code needs to
22  * override the variable below for dma-direct to work properly.
23  */
24 unsigned int zone_dma_bits __ro_after_init = 24;
25 
26 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27 		phys_addr_t phys)
28 {
29 	if (force_dma_unencrypted(dev))
30 		return __phys_to_dma(dev, phys);
31 	return phys_to_dma(dev, phys);
32 }
33 
34 static inline struct page *dma_direct_to_page(struct device *dev,
35 		dma_addr_t dma_addr)
36 {
37 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38 }
39 
40 u64 dma_direct_get_required_mask(struct device *dev)
41 {
42 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
43 	u64 max_dma = phys_to_dma_direct(dev, phys);
44 
45 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
46 }
47 
48 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
49 		u64 *phys_limit)
50 {
51 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
52 
53 	if (force_dma_unencrypted(dev))
54 		*phys_limit = __dma_to_phys(dev, dma_limit);
55 	else
56 		*phys_limit = dma_to_phys(dev, dma_limit);
57 
58 	/*
59 	 * Optimistically try the zone that the physical address mask falls
60 	 * into first.  If that returns memory that isn't actually addressable
61 	 * we will fallback to the next lower zone and try again.
62 	 *
63 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
64 	 * zones.
65 	 */
66 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
67 		return GFP_DMA;
68 	if (*phys_limit <= DMA_BIT_MASK(32))
69 		return GFP_DMA32;
70 	return 0;
71 }
72 
73 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
74 {
75 	return phys_to_dma_direct(dev, phys) + size - 1 <=
76 			min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
77 }
78 
79 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
80 		gfp_t gfp, unsigned long attrs)
81 {
82 	size_t alloc_size = PAGE_ALIGN(size);
83 	int node = dev_to_node(dev);
84 	struct page *page = NULL;
85 	u64 phys_limit;
86 
87 	if (attrs & DMA_ATTR_NO_WARN)
88 		gfp |= __GFP_NOWARN;
89 
90 	/* we always manually zero the memory once we are done: */
91 	gfp &= ~__GFP_ZERO;
92 	gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
93 			&phys_limit);
94 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
95 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
96 		dma_free_contiguous(dev, page, alloc_size);
97 		page = NULL;
98 	}
99 again:
100 	if (!page)
101 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
102 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
103 		dma_free_contiguous(dev, page, size);
104 		page = NULL;
105 
106 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
107 		    phys_limit < DMA_BIT_MASK(64) &&
108 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
109 			gfp |= GFP_DMA32;
110 			goto again;
111 		}
112 
113 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
114 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
115 			goto again;
116 		}
117 	}
118 
119 	return page;
120 }
121 
122 void *dma_direct_alloc_pages(struct device *dev, size_t size,
123 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
124 {
125 	struct page *page;
126 	void *ret;
127 
128 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
129 	    dma_alloc_need_uncached(dev, attrs) &&
130 	    !gfpflags_allow_blocking(gfp)) {
131 		ret = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
132 		if (!ret)
133 			return NULL;
134 		goto done;
135 	}
136 
137 	page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
138 	if (!page)
139 		return NULL;
140 
141 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
142 	    !force_dma_unencrypted(dev)) {
143 		/* remove any dirty cache lines on the kernel alias */
144 		if (!PageHighMem(page))
145 			arch_dma_prep_coherent(page, size);
146 		/* return the page pointer as the opaque cookie */
147 		ret = page;
148 		goto done;
149 	}
150 
151 	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
152 	     dma_alloc_need_uncached(dev, attrs)) ||
153 	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
154 		/* remove any dirty cache lines on the kernel alias */
155 		arch_dma_prep_coherent(page, PAGE_ALIGN(size));
156 
157 		/* create a coherent mapping */
158 		ret = dma_common_contiguous_remap(page, PAGE_ALIGN(size),
159 				dma_pgprot(dev, PAGE_KERNEL, attrs),
160 				__builtin_return_address(0));
161 		if (!ret)
162 			goto out_free_pages;
163 		memset(ret, 0, size);
164 		goto done;
165 	}
166 
167 	if (PageHighMem(page)) {
168 		/*
169 		 * Depending on the cma= arguments and per-arch setup
170 		 * dma_alloc_contiguous could return highmem pages.
171 		 * Without remapping there is no way to return them here,
172 		 * so log an error and fail.
173 		 */
174 		dev_info(dev, "Rejecting highmem page from CMA.\n");
175 		goto out_free_pages;
176 	}
177 
178 	ret = page_address(page);
179 	if (force_dma_unencrypted(dev))
180 		set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
181 
182 	memset(ret, 0, size);
183 
184 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
185 	    dma_alloc_need_uncached(dev, attrs)) {
186 		arch_dma_prep_coherent(page, size);
187 		ret = arch_dma_set_uncached(ret, size);
188 		if (IS_ERR(ret))
189 			goto out_free_pages;
190 	}
191 done:
192 	if (force_dma_unencrypted(dev))
193 		*dma_handle = __phys_to_dma(dev, page_to_phys(page));
194 	else
195 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
196 	return ret;
197 out_free_pages:
198 	dma_free_contiguous(dev, page, size);
199 	return NULL;
200 }
201 
202 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
203 		dma_addr_t dma_addr, unsigned long attrs)
204 {
205 	unsigned int page_order = get_order(size);
206 
207 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
208 	    !force_dma_unencrypted(dev)) {
209 		/* cpu_addr is a struct page cookie, not a kernel address */
210 		dma_free_contiguous(dev, cpu_addr, size);
211 		return;
212 	}
213 
214 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
215 	    dma_free_from_pool(cpu_addr, PAGE_ALIGN(size)))
216 		return;
217 
218 	if (force_dma_unencrypted(dev))
219 		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
220 
221 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
222 		vunmap(cpu_addr);
223 	else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
224 		arch_dma_clear_uncached(cpu_addr, size);
225 
226 	dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
227 }
228 
229 void *dma_direct_alloc(struct device *dev, size_t size,
230 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
231 {
232 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
233 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
234 	    dma_alloc_need_uncached(dev, attrs))
235 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
236 	return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
237 }
238 
239 void dma_direct_free(struct device *dev, size_t size,
240 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
241 {
242 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
243 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
244 	    dma_alloc_need_uncached(dev, attrs))
245 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
246 	else
247 		dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
248 }
249 
250 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
251     defined(CONFIG_SWIOTLB)
252 void dma_direct_sync_single_for_device(struct device *dev,
253 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
254 {
255 	phys_addr_t paddr = dma_to_phys(dev, addr);
256 
257 	if (unlikely(is_swiotlb_buffer(paddr)))
258 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
259 
260 	if (!dev_is_dma_coherent(dev))
261 		arch_sync_dma_for_device(paddr, size, dir);
262 }
263 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
264 
265 void dma_direct_sync_sg_for_device(struct device *dev,
266 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
267 {
268 	struct scatterlist *sg;
269 	int i;
270 
271 	for_each_sg(sgl, sg, nents, i) {
272 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
273 
274 		if (unlikely(is_swiotlb_buffer(paddr)))
275 			swiotlb_tbl_sync_single(dev, paddr, sg->length,
276 					dir, SYNC_FOR_DEVICE);
277 
278 		if (!dev_is_dma_coherent(dev))
279 			arch_sync_dma_for_device(paddr, sg->length,
280 					dir);
281 	}
282 }
283 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
284 #endif
285 
286 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
287     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
288     defined(CONFIG_SWIOTLB)
289 void dma_direct_sync_single_for_cpu(struct device *dev,
290 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
291 {
292 	phys_addr_t paddr = dma_to_phys(dev, addr);
293 
294 	if (!dev_is_dma_coherent(dev)) {
295 		arch_sync_dma_for_cpu(paddr, size, dir);
296 		arch_sync_dma_for_cpu_all();
297 	}
298 
299 	if (unlikely(is_swiotlb_buffer(paddr)))
300 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
301 }
302 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
303 
304 void dma_direct_sync_sg_for_cpu(struct device *dev,
305 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
306 {
307 	struct scatterlist *sg;
308 	int i;
309 
310 	for_each_sg(sgl, sg, nents, i) {
311 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
312 
313 		if (!dev_is_dma_coherent(dev))
314 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
315 
316 		if (unlikely(is_swiotlb_buffer(paddr)))
317 			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
318 					SYNC_FOR_CPU);
319 	}
320 
321 	if (!dev_is_dma_coherent(dev))
322 		arch_sync_dma_for_cpu_all();
323 }
324 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
325 
326 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
327 		size_t size, enum dma_data_direction dir, unsigned long attrs)
328 {
329 	phys_addr_t phys = dma_to_phys(dev, addr);
330 
331 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
332 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
333 
334 	if (unlikely(is_swiotlb_buffer(phys)))
335 		swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
336 }
337 EXPORT_SYMBOL(dma_direct_unmap_page);
338 
339 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
340 		int nents, enum dma_data_direction dir, unsigned long attrs)
341 {
342 	struct scatterlist *sg;
343 	int i;
344 
345 	for_each_sg(sgl, sg, nents, i)
346 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
347 			     attrs);
348 }
349 EXPORT_SYMBOL(dma_direct_unmap_sg);
350 #endif
351 
352 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
353 		unsigned long offset, size_t size, enum dma_data_direction dir,
354 		unsigned long attrs)
355 {
356 	phys_addr_t phys = page_to_phys(page) + offset;
357 	dma_addr_t dma_addr = phys_to_dma(dev, phys);
358 
359 	if (unlikely(swiotlb_force == SWIOTLB_FORCE))
360 		return swiotlb_map(dev, phys, size, dir, attrs);
361 
362 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
363 		if (swiotlb_force != SWIOTLB_NO_FORCE)
364 			return swiotlb_map(dev, phys, size, dir, attrs);
365 
366 		dev_WARN_ONCE(dev, 1,
367 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
368 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
369 		return DMA_MAPPING_ERROR;
370 	}
371 
372 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
373 		arch_sync_dma_for_device(phys, size, dir);
374 	return dma_addr;
375 }
376 EXPORT_SYMBOL(dma_direct_map_page);
377 
378 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
379 		enum dma_data_direction dir, unsigned long attrs)
380 {
381 	int i;
382 	struct scatterlist *sg;
383 
384 	for_each_sg(sgl, sg, nents, i) {
385 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
386 				sg->offset, sg->length, dir, attrs);
387 		if (sg->dma_address == DMA_MAPPING_ERROR)
388 			goto out_unmap;
389 		sg_dma_len(sg) = sg->length;
390 	}
391 
392 	return nents;
393 
394 out_unmap:
395 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
396 	return 0;
397 }
398 EXPORT_SYMBOL(dma_direct_map_sg);
399 
400 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
401 		size_t size, enum dma_data_direction dir, unsigned long attrs)
402 {
403 	dma_addr_t dma_addr = paddr;
404 
405 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
406 		dev_err_once(dev,
407 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
408 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
409 		WARN_ON_ONCE(1);
410 		return DMA_MAPPING_ERROR;
411 	}
412 
413 	return dma_addr;
414 }
415 EXPORT_SYMBOL(dma_direct_map_resource);
416 
417 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
418 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
419 		unsigned long attrs)
420 {
421 	struct page *page = dma_direct_to_page(dev, dma_addr);
422 	int ret;
423 
424 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
425 	if (!ret)
426 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
427 	return ret;
428 }
429 
430 #ifdef CONFIG_MMU
431 bool dma_direct_can_mmap(struct device *dev)
432 {
433 	return dev_is_dma_coherent(dev) ||
434 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
435 }
436 
437 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
438 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
439 		unsigned long attrs)
440 {
441 	unsigned long user_count = vma_pages(vma);
442 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
443 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
444 	int ret = -ENXIO;
445 
446 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
447 
448 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
449 		return ret;
450 
451 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
452 		return -ENXIO;
453 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
454 			user_count << PAGE_SHIFT, vma->vm_page_prot);
455 }
456 #else /* CONFIG_MMU */
457 bool dma_direct_can_mmap(struct device *dev)
458 {
459 	return false;
460 }
461 
462 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
463 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
464 		unsigned long attrs)
465 {
466 	return -ENXIO;
467 }
468 #endif /* CONFIG_MMU */
469 
470 int dma_direct_supported(struct device *dev, u64 mask)
471 {
472 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
473 
474 	/*
475 	 * Because 32-bit DMA masks are so common we expect every architecture
476 	 * to be able to satisfy them - either by not supporting more physical
477 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
478 	 * architecture needs to use an IOMMU instead of the direct mapping.
479 	 */
480 	if (mask >= DMA_BIT_MASK(32))
481 		return 1;
482 
483 	/*
484 	 * This check needs to be against the actual bit mask value, so
485 	 * use __phys_to_dma() here so that the SME encryption mask isn't
486 	 * part of the check.
487 	 */
488 	if (IS_ENABLED(CONFIG_ZONE_DMA))
489 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
490 	return mask >= __phys_to_dma(dev, min_mask);
491 }
492 
493 size_t dma_direct_max_mapping_size(struct device *dev)
494 {
495 	/* If SWIOTLB is active, use its maximum mapping size */
496 	if (is_swiotlb_active() &&
497 	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
498 		return swiotlb_max_mapping_size(dev);
499 	return SIZE_MAX;
500 }
501