xref: /openbmc/linux/kernel/dma/direct.c (revision 149ed3d404c9bd00f0fadc35215a9e7a54c5cfd0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/dma-noncoherent.h>
14 #include <linux/pfn.h>
15 #include <linux/vmalloc.h>
16 #include <linux/set_memory.h>
17 #include <linux/swiotlb.h>
18 
19 /*
20  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
21  * it for entirely different regions. In that case the arch code needs to
22  * override the variable below for dma-direct to work properly.
23  */
24 unsigned int zone_dma_bits __ro_after_init = 24;
25 
26 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27 		phys_addr_t phys)
28 {
29 	if (force_dma_unencrypted(dev))
30 		return __phys_to_dma(dev, phys);
31 	return phys_to_dma(dev, phys);
32 }
33 
34 static inline struct page *dma_direct_to_page(struct device *dev,
35 		dma_addr_t dma_addr)
36 {
37 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38 }
39 
40 u64 dma_direct_get_required_mask(struct device *dev)
41 {
42 	u64 max_dma = phys_to_dma_direct(dev, (max_pfn - 1) << PAGE_SHIFT);
43 
44 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 
47 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 		u64 *phys_limit)
49 {
50 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51 
52 	if (force_dma_unencrypted(dev))
53 		*phys_limit = __dma_to_phys(dev, dma_limit);
54 	else
55 		*phys_limit = dma_to_phys(dev, dma_limit);
56 
57 	/*
58 	 * Optimistically try the zone that the physical address mask falls
59 	 * into first.  If that returns memory that isn't actually addressable
60 	 * we will fallback to the next lower zone and try again.
61 	 *
62 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
63 	 * zones.
64 	 */
65 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
66 		return GFP_DMA;
67 	if (*phys_limit <= DMA_BIT_MASK(32))
68 		return GFP_DMA32;
69 	return 0;
70 }
71 
72 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
73 {
74 	return phys_to_dma_direct(dev, phys) + size - 1 <=
75 			min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77 
78 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
79 		gfp_t gfp, unsigned long attrs)
80 {
81 	size_t alloc_size = PAGE_ALIGN(size);
82 	int node = dev_to_node(dev);
83 	struct page *page = NULL;
84 	u64 phys_limit;
85 
86 	if (attrs & DMA_ATTR_NO_WARN)
87 		gfp |= __GFP_NOWARN;
88 
89 	/* we always manually zero the memory once we are done: */
90 	gfp &= ~__GFP_ZERO;
91 	gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
92 			&phys_limit);
93 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
94 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
95 		dma_free_contiguous(dev, page, alloc_size);
96 		page = NULL;
97 	}
98 again:
99 	if (!page)
100 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
101 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102 		dma_free_contiguous(dev, page, size);
103 		page = NULL;
104 
105 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
106 		    phys_limit < DMA_BIT_MASK(64) &&
107 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
108 			gfp |= GFP_DMA32;
109 			goto again;
110 		}
111 
112 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
113 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
114 			goto again;
115 		}
116 	}
117 
118 	return page;
119 }
120 
121 void *dma_direct_alloc_pages(struct device *dev, size_t size,
122 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
123 {
124 	struct page *page;
125 	void *ret;
126 
127 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
128 	    dma_alloc_need_uncached(dev, attrs) &&
129 	    !gfpflags_allow_blocking(gfp)) {
130 		ret = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
131 		if (!ret)
132 			return NULL;
133 		goto done;
134 	}
135 
136 	page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
137 	if (!page)
138 		return NULL;
139 
140 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
141 	    !force_dma_unencrypted(dev)) {
142 		/* remove any dirty cache lines on the kernel alias */
143 		if (!PageHighMem(page))
144 			arch_dma_prep_coherent(page, size);
145 		/* return the page pointer as the opaque cookie */
146 		ret = page;
147 		goto done;
148 	}
149 
150 	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
151 	     dma_alloc_need_uncached(dev, attrs)) ||
152 	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
153 		/* remove any dirty cache lines on the kernel alias */
154 		arch_dma_prep_coherent(page, PAGE_ALIGN(size));
155 
156 		/* create a coherent mapping */
157 		ret = dma_common_contiguous_remap(page, PAGE_ALIGN(size),
158 				dma_pgprot(dev, PAGE_KERNEL, attrs),
159 				__builtin_return_address(0));
160 		if (!ret)
161 			goto out_free_pages;
162 		memset(ret, 0, size);
163 		goto done;
164 	}
165 
166 	if (PageHighMem(page)) {
167 		/*
168 		 * Depending on the cma= arguments and per-arch setup
169 		 * dma_alloc_contiguous could return highmem pages.
170 		 * Without remapping there is no way to return them here,
171 		 * so log an error and fail.
172 		 */
173 		dev_info(dev, "Rejecting highmem page from CMA.\n");
174 		goto out_free_pages;
175 	}
176 
177 	ret = page_address(page);
178 	if (force_dma_unencrypted(dev))
179 		set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
180 
181 	memset(ret, 0, size);
182 
183 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
184 	    dma_alloc_need_uncached(dev, attrs)) {
185 		arch_dma_prep_coherent(page, size);
186 		ret = arch_dma_set_uncached(ret, size);
187 		if (IS_ERR(ret))
188 			goto out_free_pages;
189 	}
190 done:
191 	if (force_dma_unencrypted(dev))
192 		*dma_handle = __phys_to_dma(dev, page_to_phys(page));
193 	else
194 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
195 	return ret;
196 out_free_pages:
197 	dma_free_contiguous(dev, page, size);
198 	return NULL;
199 }
200 
201 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
202 		dma_addr_t dma_addr, unsigned long attrs)
203 {
204 	unsigned int page_order = get_order(size);
205 
206 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
207 	    !force_dma_unencrypted(dev)) {
208 		/* cpu_addr is a struct page cookie, not a kernel address */
209 		dma_free_contiguous(dev, cpu_addr, size);
210 		return;
211 	}
212 
213 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
214 	    dma_free_from_pool(cpu_addr, PAGE_ALIGN(size)))
215 		return;
216 
217 	if (force_dma_unencrypted(dev))
218 		set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
219 
220 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
221 		vunmap(cpu_addr);
222 	else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
223 		arch_dma_clear_uncached(cpu_addr, size);
224 
225 	dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
226 }
227 
228 void *dma_direct_alloc(struct device *dev, size_t size,
229 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
230 {
231 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
232 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
233 	    dma_alloc_need_uncached(dev, attrs))
234 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
235 	return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
236 }
237 
238 void dma_direct_free(struct device *dev, size_t size,
239 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
240 {
241 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
242 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
243 	    dma_alloc_need_uncached(dev, attrs))
244 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
245 	else
246 		dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
247 }
248 
249 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
250     defined(CONFIG_SWIOTLB)
251 void dma_direct_sync_single_for_device(struct device *dev,
252 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
253 {
254 	phys_addr_t paddr = dma_to_phys(dev, addr);
255 
256 	if (unlikely(is_swiotlb_buffer(paddr)))
257 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
258 
259 	if (!dev_is_dma_coherent(dev))
260 		arch_sync_dma_for_device(paddr, size, dir);
261 }
262 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
263 
264 void dma_direct_sync_sg_for_device(struct device *dev,
265 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
266 {
267 	struct scatterlist *sg;
268 	int i;
269 
270 	for_each_sg(sgl, sg, nents, i) {
271 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
272 
273 		if (unlikely(is_swiotlb_buffer(paddr)))
274 			swiotlb_tbl_sync_single(dev, paddr, sg->length,
275 					dir, SYNC_FOR_DEVICE);
276 
277 		if (!dev_is_dma_coherent(dev))
278 			arch_sync_dma_for_device(paddr, sg->length,
279 					dir);
280 	}
281 }
282 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
283 #endif
284 
285 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
286     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
287     defined(CONFIG_SWIOTLB)
288 void dma_direct_sync_single_for_cpu(struct device *dev,
289 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
290 {
291 	phys_addr_t paddr = dma_to_phys(dev, addr);
292 
293 	if (!dev_is_dma_coherent(dev)) {
294 		arch_sync_dma_for_cpu(paddr, size, dir);
295 		arch_sync_dma_for_cpu_all();
296 	}
297 
298 	if (unlikely(is_swiotlb_buffer(paddr)))
299 		swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
300 }
301 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
302 
303 void dma_direct_sync_sg_for_cpu(struct device *dev,
304 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
305 {
306 	struct scatterlist *sg;
307 	int i;
308 
309 	for_each_sg(sgl, sg, nents, i) {
310 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
311 
312 		if (!dev_is_dma_coherent(dev))
313 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
314 
315 		if (unlikely(is_swiotlb_buffer(paddr)))
316 			swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
317 					SYNC_FOR_CPU);
318 	}
319 
320 	if (!dev_is_dma_coherent(dev))
321 		arch_sync_dma_for_cpu_all();
322 }
323 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
324 
325 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
326 		size_t size, enum dma_data_direction dir, unsigned long attrs)
327 {
328 	phys_addr_t phys = dma_to_phys(dev, addr);
329 
330 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
331 		dma_direct_sync_single_for_cpu(dev, addr, size, dir);
332 
333 	if (unlikely(is_swiotlb_buffer(phys)))
334 		swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
335 }
336 EXPORT_SYMBOL(dma_direct_unmap_page);
337 
338 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
339 		int nents, enum dma_data_direction dir, unsigned long attrs)
340 {
341 	struct scatterlist *sg;
342 	int i;
343 
344 	for_each_sg(sgl, sg, nents, i)
345 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
346 			     attrs);
347 }
348 EXPORT_SYMBOL(dma_direct_unmap_sg);
349 #endif
350 
351 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
352 		unsigned long offset, size_t size, enum dma_data_direction dir,
353 		unsigned long attrs)
354 {
355 	phys_addr_t phys = page_to_phys(page) + offset;
356 	dma_addr_t dma_addr = phys_to_dma(dev, phys);
357 
358 	if (unlikely(swiotlb_force == SWIOTLB_FORCE))
359 		return swiotlb_map(dev, phys, size, dir, attrs);
360 
361 	if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
362 		if (swiotlb_force != SWIOTLB_NO_FORCE)
363 			return swiotlb_map(dev, phys, size, dir, attrs);
364 
365 		dev_WARN_ONCE(dev, 1,
366 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
367 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
368 		return DMA_MAPPING_ERROR;
369 	}
370 
371 	if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
372 		arch_sync_dma_for_device(phys, size, dir);
373 	return dma_addr;
374 }
375 EXPORT_SYMBOL(dma_direct_map_page);
376 
377 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
378 		enum dma_data_direction dir, unsigned long attrs)
379 {
380 	int i;
381 	struct scatterlist *sg;
382 
383 	for_each_sg(sgl, sg, nents, i) {
384 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
385 				sg->offset, sg->length, dir, attrs);
386 		if (sg->dma_address == DMA_MAPPING_ERROR)
387 			goto out_unmap;
388 		sg_dma_len(sg) = sg->length;
389 	}
390 
391 	return nents;
392 
393 out_unmap:
394 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
395 	return 0;
396 }
397 EXPORT_SYMBOL(dma_direct_map_sg);
398 
399 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
400 		size_t size, enum dma_data_direction dir, unsigned long attrs)
401 {
402 	dma_addr_t dma_addr = paddr;
403 
404 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
405 		dev_err_once(dev,
406 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
407 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
408 		WARN_ON_ONCE(1);
409 		return DMA_MAPPING_ERROR;
410 	}
411 
412 	return dma_addr;
413 }
414 EXPORT_SYMBOL(dma_direct_map_resource);
415 
416 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
417 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
418 		unsigned long attrs)
419 {
420 	struct page *page = dma_direct_to_page(dev, dma_addr);
421 	int ret;
422 
423 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
424 	if (!ret)
425 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
426 	return ret;
427 }
428 
429 #ifdef CONFIG_MMU
430 bool dma_direct_can_mmap(struct device *dev)
431 {
432 	return dev_is_dma_coherent(dev) ||
433 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
434 }
435 
436 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
437 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
438 		unsigned long attrs)
439 {
440 	unsigned long user_count = vma_pages(vma);
441 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
442 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
443 	int ret = -ENXIO;
444 
445 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
446 
447 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
448 		return ret;
449 
450 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
451 		return -ENXIO;
452 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
453 			user_count << PAGE_SHIFT, vma->vm_page_prot);
454 }
455 #else /* CONFIG_MMU */
456 bool dma_direct_can_mmap(struct device *dev)
457 {
458 	return false;
459 }
460 
461 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
462 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
463 		unsigned long attrs)
464 {
465 	return -ENXIO;
466 }
467 #endif /* CONFIG_MMU */
468 
469 int dma_direct_supported(struct device *dev, u64 mask)
470 {
471 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
472 
473 	/*
474 	 * Because 32-bit DMA masks are so common we expect every architecture
475 	 * to be able to satisfy them - either by not supporting more physical
476 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
477 	 * architecture needs to use an IOMMU instead of the direct mapping.
478 	 */
479 	if (mask >= DMA_BIT_MASK(32))
480 		return 1;
481 
482 	/*
483 	 * This check needs to be against the actual bit mask value, so
484 	 * use __phys_to_dma() here so that the SME encryption mask isn't
485 	 * part of the check.
486 	 */
487 	if (IS_ENABLED(CONFIG_ZONE_DMA))
488 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
489 	return mask >= __phys_to_dma(dev, min_mask);
490 }
491 
492 size_t dma_direct_max_mapping_size(struct device *dev)
493 {
494 	/* If SWIOTLB is active, use its maximum mapping size */
495 	if (is_swiotlb_active() &&
496 	    (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
497 		return swiotlb_max_mapping_size(dev);
498 	return SIZE_MAX;
499 }
500