1 /* 2 * Copyright (C) 2008 Advanced Micro Devices, Inc. 3 * 4 * Author: Joerg Roedel <joerg.roedel@amd.com> 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published 8 * by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 #define pr_fmt(fmt) "DMA-API: " fmt 21 22 #include <linux/sched/task_stack.h> 23 #include <linux/scatterlist.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/sched/task.h> 26 #include <linux/stacktrace.h> 27 #include <linux/dma-debug.h> 28 #include <linux/spinlock.h> 29 #include <linux/vmalloc.h> 30 #include <linux/debugfs.h> 31 #include <linux/uaccess.h> 32 #include <linux/export.h> 33 #include <linux/device.h> 34 #include <linux/types.h> 35 #include <linux/sched.h> 36 #include <linux/ctype.h> 37 #include <linux/list.h> 38 #include <linux/slab.h> 39 40 #include <asm/sections.h> 41 42 #define HASH_SIZE 1024ULL 43 #define HASH_FN_SHIFT 13 44 #define HASH_FN_MASK (HASH_SIZE - 1) 45 46 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16) 47 /* If the pool runs out, add this many new entries at once */ 48 #define DMA_DEBUG_DYNAMIC_ENTRIES (PAGE_SIZE / sizeof(struct dma_debug_entry)) 49 50 enum { 51 dma_debug_single, 52 dma_debug_sg, 53 dma_debug_coherent, 54 dma_debug_resource, 55 }; 56 57 enum map_err_types { 58 MAP_ERR_CHECK_NOT_APPLICABLE, 59 MAP_ERR_NOT_CHECKED, 60 MAP_ERR_CHECKED, 61 }; 62 63 #define DMA_DEBUG_STACKTRACE_ENTRIES 5 64 65 /** 66 * struct dma_debug_entry - track a dma_map* or dma_alloc_coherent mapping 67 * @list: node on pre-allocated free_entries list 68 * @dev: 'dev' argument to dma_map_{page|single|sg} or dma_alloc_coherent 69 * @type: single, page, sg, coherent 70 * @pfn: page frame of the start address 71 * @offset: offset of mapping relative to pfn 72 * @size: length of the mapping 73 * @direction: enum dma_data_direction 74 * @sg_call_ents: 'nents' from dma_map_sg 75 * @sg_mapped_ents: 'mapped_ents' from dma_map_sg 76 * @map_err_type: track whether dma_mapping_error() was checked 77 * @stacktrace: support backtraces when a violation is detected 78 */ 79 struct dma_debug_entry { 80 struct list_head list; 81 struct device *dev; 82 int type; 83 unsigned long pfn; 84 size_t offset; 85 u64 dev_addr; 86 u64 size; 87 int direction; 88 int sg_call_ents; 89 int sg_mapped_ents; 90 enum map_err_types map_err_type; 91 #ifdef CONFIG_STACKTRACE 92 unsigned int stack_len; 93 unsigned long stack_entries[DMA_DEBUG_STACKTRACE_ENTRIES]; 94 #endif 95 }; 96 97 typedef bool (*match_fn)(struct dma_debug_entry *, struct dma_debug_entry *); 98 99 struct hash_bucket { 100 struct list_head list; 101 spinlock_t lock; 102 } ____cacheline_aligned_in_smp; 103 104 /* Hash list to save the allocated dma addresses */ 105 static struct hash_bucket dma_entry_hash[HASH_SIZE]; 106 /* List of pre-allocated dma_debug_entry's */ 107 static LIST_HEAD(free_entries); 108 /* Lock for the list above */ 109 static DEFINE_SPINLOCK(free_entries_lock); 110 111 /* Global disable flag - will be set in case of an error */ 112 static bool global_disable __read_mostly; 113 114 /* Early initialization disable flag, set at the end of dma_debug_init */ 115 static bool dma_debug_initialized __read_mostly; 116 117 static inline bool dma_debug_disabled(void) 118 { 119 return global_disable || !dma_debug_initialized; 120 } 121 122 /* Global error count */ 123 static u32 error_count; 124 125 /* Global error show enable*/ 126 static u32 show_all_errors __read_mostly; 127 /* Number of errors to show */ 128 static u32 show_num_errors = 1; 129 130 static u32 num_free_entries; 131 static u32 min_free_entries; 132 static u32 nr_total_entries; 133 134 /* number of preallocated entries requested by kernel cmdline */ 135 static u32 nr_prealloc_entries = PREALLOC_DMA_DEBUG_ENTRIES; 136 137 /* per-driver filter related state */ 138 139 #define NAME_MAX_LEN 64 140 141 static char current_driver_name[NAME_MAX_LEN] __read_mostly; 142 static struct device_driver *current_driver __read_mostly; 143 144 static DEFINE_RWLOCK(driver_name_lock); 145 146 static const char *const maperr2str[] = { 147 [MAP_ERR_CHECK_NOT_APPLICABLE] = "dma map error check not applicable", 148 [MAP_ERR_NOT_CHECKED] = "dma map error not checked", 149 [MAP_ERR_CHECKED] = "dma map error checked", 150 }; 151 152 static const char *type2name[5] = { "single", "page", 153 "scather-gather", "coherent", 154 "resource" }; 155 156 static const char *dir2name[4] = { "DMA_BIDIRECTIONAL", "DMA_TO_DEVICE", 157 "DMA_FROM_DEVICE", "DMA_NONE" }; 158 159 /* 160 * The access to some variables in this macro is racy. We can't use atomic_t 161 * here because all these variables are exported to debugfs. Some of them even 162 * writeable. This is also the reason why a lock won't help much. But anyway, 163 * the races are no big deal. Here is why: 164 * 165 * error_count: the addition is racy, but the worst thing that can happen is 166 * that we don't count some errors 167 * show_num_errors: the subtraction is racy. Also no big deal because in 168 * worst case this will result in one warning more in the 169 * system log than the user configured. This variable is 170 * writeable via debugfs. 171 */ 172 static inline void dump_entry_trace(struct dma_debug_entry *entry) 173 { 174 #ifdef CONFIG_STACKTRACE 175 if (entry) { 176 pr_warning("Mapped at:\n"); 177 stack_trace_print(entry->stack_entries, entry->stack_len, 0); 178 } 179 #endif 180 } 181 182 static bool driver_filter(struct device *dev) 183 { 184 struct device_driver *drv; 185 unsigned long flags; 186 bool ret; 187 188 /* driver filter off */ 189 if (likely(!current_driver_name[0])) 190 return true; 191 192 /* driver filter on and initialized */ 193 if (current_driver && dev && dev->driver == current_driver) 194 return true; 195 196 /* driver filter on, but we can't filter on a NULL device... */ 197 if (!dev) 198 return false; 199 200 if (current_driver || !current_driver_name[0]) 201 return false; 202 203 /* driver filter on but not yet initialized */ 204 drv = dev->driver; 205 if (!drv) 206 return false; 207 208 /* lock to protect against change of current_driver_name */ 209 read_lock_irqsave(&driver_name_lock, flags); 210 211 ret = false; 212 if (drv->name && 213 strncmp(current_driver_name, drv->name, NAME_MAX_LEN - 1) == 0) { 214 current_driver = drv; 215 ret = true; 216 } 217 218 read_unlock_irqrestore(&driver_name_lock, flags); 219 220 return ret; 221 } 222 223 #define err_printk(dev, entry, format, arg...) do { \ 224 error_count += 1; \ 225 if (driver_filter(dev) && \ 226 (show_all_errors || show_num_errors > 0)) { \ 227 WARN(1, pr_fmt("%s %s: ") format, \ 228 dev ? dev_driver_string(dev) : "NULL", \ 229 dev ? dev_name(dev) : "NULL", ## arg); \ 230 dump_entry_trace(entry); \ 231 } \ 232 if (!show_all_errors && show_num_errors > 0) \ 233 show_num_errors -= 1; \ 234 } while (0); 235 236 /* 237 * Hash related functions 238 * 239 * Every DMA-API request is saved into a struct dma_debug_entry. To 240 * have quick access to these structs they are stored into a hash. 241 */ 242 static int hash_fn(struct dma_debug_entry *entry) 243 { 244 /* 245 * Hash function is based on the dma address. 246 * We use bits 20-27 here as the index into the hash 247 */ 248 return (entry->dev_addr >> HASH_FN_SHIFT) & HASH_FN_MASK; 249 } 250 251 /* 252 * Request exclusive access to a hash bucket for a given dma_debug_entry. 253 */ 254 static struct hash_bucket *get_hash_bucket(struct dma_debug_entry *entry, 255 unsigned long *flags) 256 __acquires(&dma_entry_hash[idx].lock) 257 { 258 int idx = hash_fn(entry); 259 unsigned long __flags; 260 261 spin_lock_irqsave(&dma_entry_hash[idx].lock, __flags); 262 *flags = __flags; 263 return &dma_entry_hash[idx]; 264 } 265 266 /* 267 * Give up exclusive access to the hash bucket 268 */ 269 static void put_hash_bucket(struct hash_bucket *bucket, 270 unsigned long *flags) 271 __releases(&bucket->lock) 272 { 273 unsigned long __flags = *flags; 274 275 spin_unlock_irqrestore(&bucket->lock, __flags); 276 } 277 278 static bool exact_match(struct dma_debug_entry *a, struct dma_debug_entry *b) 279 { 280 return ((a->dev_addr == b->dev_addr) && 281 (a->dev == b->dev)) ? true : false; 282 } 283 284 static bool containing_match(struct dma_debug_entry *a, 285 struct dma_debug_entry *b) 286 { 287 if (a->dev != b->dev) 288 return false; 289 290 if ((b->dev_addr <= a->dev_addr) && 291 ((b->dev_addr + b->size) >= (a->dev_addr + a->size))) 292 return true; 293 294 return false; 295 } 296 297 /* 298 * Search a given entry in the hash bucket list 299 */ 300 static struct dma_debug_entry *__hash_bucket_find(struct hash_bucket *bucket, 301 struct dma_debug_entry *ref, 302 match_fn match) 303 { 304 struct dma_debug_entry *entry, *ret = NULL; 305 int matches = 0, match_lvl, last_lvl = -1; 306 307 list_for_each_entry(entry, &bucket->list, list) { 308 if (!match(ref, entry)) 309 continue; 310 311 /* 312 * Some drivers map the same physical address multiple 313 * times. Without a hardware IOMMU this results in the 314 * same device addresses being put into the dma-debug 315 * hash multiple times too. This can result in false 316 * positives being reported. Therefore we implement a 317 * best-fit algorithm here which returns the entry from 318 * the hash which fits best to the reference value 319 * instead of the first-fit. 320 */ 321 matches += 1; 322 match_lvl = 0; 323 entry->size == ref->size ? ++match_lvl : 0; 324 entry->type == ref->type ? ++match_lvl : 0; 325 entry->direction == ref->direction ? ++match_lvl : 0; 326 entry->sg_call_ents == ref->sg_call_ents ? ++match_lvl : 0; 327 328 if (match_lvl == 4) { 329 /* perfect-fit - return the result */ 330 return entry; 331 } else if (match_lvl > last_lvl) { 332 /* 333 * We found an entry that fits better then the 334 * previous one or it is the 1st match. 335 */ 336 last_lvl = match_lvl; 337 ret = entry; 338 } 339 } 340 341 /* 342 * If we have multiple matches but no perfect-fit, just return 343 * NULL. 344 */ 345 ret = (matches == 1) ? ret : NULL; 346 347 return ret; 348 } 349 350 static struct dma_debug_entry *bucket_find_exact(struct hash_bucket *bucket, 351 struct dma_debug_entry *ref) 352 { 353 return __hash_bucket_find(bucket, ref, exact_match); 354 } 355 356 static struct dma_debug_entry *bucket_find_contain(struct hash_bucket **bucket, 357 struct dma_debug_entry *ref, 358 unsigned long *flags) 359 { 360 361 unsigned int max_range = dma_get_max_seg_size(ref->dev); 362 struct dma_debug_entry *entry, index = *ref; 363 unsigned int range = 0; 364 365 while (range <= max_range) { 366 entry = __hash_bucket_find(*bucket, ref, containing_match); 367 368 if (entry) 369 return entry; 370 371 /* 372 * Nothing found, go back a hash bucket 373 */ 374 put_hash_bucket(*bucket, flags); 375 range += (1 << HASH_FN_SHIFT); 376 index.dev_addr -= (1 << HASH_FN_SHIFT); 377 *bucket = get_hash_bucket(&index, flags); 378 } 379 380 return NULL; 381 } 382 383 /* 384 * Add an entry to a hash bucket 385 */ 386 static void hash_bucket_add(struct hash_bucket *bucket, 387 struct dma_debug_entry *entry) 388 { 389 list_add_tail(&entry->list, &bucket->list); 390 } 391 392 /* 393 * Remove entry from a hash bucket list 394 */ 395 static void hash_bucket_del(struct dma_debug_entry *entry) 396 { 397 list_del(&entry->list); 398 } 399 400 static unsigned long long phys_addr(struct dma_debug_entry *entry) 401 { 402 if (entry->type == dma_debug_resource) 403 return __pfn_to_phys(entry->pfn) + entry->offset; 404 405 return page_to_phys(pfn_to_page(entry->pfn)) + entry->offset; 406 } 407 408 /* 409 * Dump mapping entries for debugging purposes 410 */ 411 void debug_dma_dump_mappings(struct device *dev) 412 { 413 int idx; 414 415 for (idx = 0; idx < HASH_SIZE; idx++) { 416 struct hash_bucket *bucket = &dma_entry_hash[idx]; 417 struct dma_debug_entry *entry; 418 unsigned long flags; 419 420 spin_lock_irqsave(&bucket->lock, flags); 421 422 list_for_each_entry(entry, &bucket->list, list) { 423 if (!dev || dev == entry->dev) { 424 dev_info(entry->dev, 425 "%s idx %d P=%Lx N=%lx D=%Lx L=%Lx %s %s\n", 426 type2name[entry->type], idx, 427 phys_addr(entry), entry->pfn, 428 entry->dev_addr, entry->size, 429 dir2name[entry->direction], 430 maperr2str[entry->map_err_type]); 431 } 432 } 433 434 spin_unlock_irqrestore(&bucket->lock, flags); 435 } 436 } 437 438 /* 439 * For each mapping (initial cacheline in the case of 440 * dma_alloc_coherent/dma_map_page, initial cacheline in each page of a 441 * scatterlist, or the cacheline specified in dma_map_single) insert 442 * into this tree using the cacheline as the key. At 443 * dma_unmap_{single|sg|page} or dma_free_coherent delete the entry. If 444 * the entry already exists at insertion time add a tag as a reference 445 * count for the overlapping mappings. For now, the overlap tracking 446 * just ensures that 'unmaps' balance 'maps' before marking the 447 * cacheline idle, but we should also be flagging overlaps as an API 448 * violation. 449 * 450 * Memory usage is mostly constrained by the maximum number of available 451 * dma-debug entries in that we need a free dma_debug_entry before 452 * inserting into the tree. In the case of dma_map_page and 453 * dma_alloc_coherent there is only one dma_debug_entry and one 454 * dma_active_cacheline entry to track per event. dma_map_sg(), on the 455 * other hand, consumes a single dma_debug_entry, but inserts 'nents' 456 * entries into the tree. 457 * 458 * At any time debug_dma_assert_idle() can be called to trigger a 459 * warning if any cachelines in the given page are in the active set. 460 */ 461 static RADIX_TREE(dma_active_cacheline, GFP_NOWAIT); 462 static DEFINE_SPINLOCK(radix_lock); 463 #define ACTIVE_CACHELINE_MAX_OVERLAP ((1 << RADIX_TREE_MAX_TAGS) - 1) 464 #define CACHELINE_PER_PAGE_SHIFT (PAGE_SHIFT - L1_CACHE_SHIFT) 465 #define CACHELINES_PER_PAGE (1 << CACHELINE_PER_PAGE_SHIFT) 466 467 static phys_addr_t to_cacheline_number(struct dma_debug_entry *entry) 468 { 469 return (entry->pfn << CACHELINE_PER_PAGE_SHIFT) + 470 (entry->offset >> L1_CACHE_SHIFT); 471 } 472 473 static int active_cacheline_read_overlap(phys_addr_t cln) 474 { 475 int overlap = 0, i; 476 477 for (i = RADIX_TREE_MAX_TAGS - 1; i >= 0; i--) 478 if (radix_tree_tag_get(&dma_active_cacheline, cln, i)) 479 overlap |= 1 << i; 480 return overlap; 481 } 482 483 static int active_cacheline_set_overlap(phys_addr_t cln, int overlap) 484 { 485 int i; 486 487 if (overlap > ACTIVE_CACHELINE_MAX_OVERLAP || overlap < 0) 488 return overlap; 489 490 for (i = RADIX_TREE_MAX_TAGS - 1; i >= 0; i--) 491 if (overlap & 1 << i) 492 radix_tree_tag_set(&dma_active_cacheline, cln, i); 493 else 494 radix_tree_tag_clear(&dma_active_cacheline, cln, i); 495 496 return overlap; 497 } 498 499 static void active_cacheline_inc_overlap(phys_addr_t cln) 500 { 501 int overlap = active_cacheline_read_overlap(cln); 502 503 overlap = active_cacheline_set_overlap(cln, ++overlap); 504 505 /* If we overflowed the overlap counter then we're potentially 506 * leaking dma-mappings. Otherwise, if maps and unmaps are 507 * balanced then this overflow may cause false negatives in 508 * debug_dma_assert_idle() as the cacheline may be marked idle 509 * prematurely. 510 */ 511 WARN_ONCE(overlap > ACTIVE_CACHELINE_MAX_OVERLAP, 512 pr_fmt("exceeded %d overlapping mappings of cacheline %pa\n"), 513 ACTIVE_CACHELINE_MAX_OVERLAP, &cln); 514 } 515 516 static int active_cacheline_dec_overlap(phys_addr_t cln) 517 { 518 int overlap = active_cacheline_read_overlap(cln); 519 520 return active_cacheline_set_overlap(cln, --overlap); 521 } 522 523 static int active_cacheline_insert(struct dma_debug_entry *entry) 524 { 525 phys_addr_t cln = to_cacheline_number(entry); 526 unsigned long flags; 527 int rc; 528 529 /* If the device is not writing memory then we don't have any 530 * concerns about the cpu consuming stale data. This mitigates 531 * legitimate usages of overlapping mappings. 532 */ 533 if (entry->direction == DMA_TO_DEVICE) 534 return 0; 535 536 spin_lock_irqsave(&radix_lock, flags); 537 rc = radix_tree_insert(&dma_active_cacheline, cln, entry); 538 if (rc == -EEXIST) 539 active_cacheline_inc_overlap(cln); 540 spin_unlock_irqrestore(&radix_lock, flags); 541 542 return rc; 543 } 544 545 static void active_cacheline_remove(struct dma_debug_entry *entry) 546 { 547 phys_addr_t cln = to_cacheline_number(entry); 548 unsigned long flags; 549 550 /* ...mirror the insert case */ 551 if (entry->direction == DMA_TO_DEVICE) 552 return; 553 554 spin_lock_irqsave(&radix_lock, flags); 555 /* since we are counting overlaps the final put of the 556 * cacheline will occur when the overlap count is 0. 557 * active_cacheline_dec_overlap() returns -1 in that case 558 */ 559 if (active_cacheline_dec_overlap(cln) < 0) 560 radix_tree_delete(&dma_active_cacheline, cln); 561 spin_unlock_irqrestore(&radix_lock, flags); 562 } 563 564 /** 565 * debug_dma_assert_idle() - assert that a page is not undergoing dma 566 * @page: page to lookup in the dma_active_cacheline tree 567 * 568 * Place a call to this routine in cases where the cpu touching the page 569 * before the dma completes (page is dma_unmapped) will lead to data 570 * corruption. 571 */ 572 void debug_dma_assert_idle(struct page *page) 573 { 574 static struct dma_debug_entry *ents[CACHELINES_PER_PAGE]; 575 struct dma_debug_entry *entry = NULL; 576 void **results = (void **) &ents; 577 unsigned int nents, i; 578 unsigned long flags; 579 phys_addr_t cln; 580 581 if (dma_debug_disabled()) 582 return; 583 584 if (!page) 585 return; 586 587 cln = (phys_addr_t) page_to_pfn(page) << CACHELINE_PER_PAGE_SHIFT; 588 spin_lock_irqsave(&radix_lock, flags); 589 nents = radix_tree_gang_lookup(&dma_active_cacheline, results, cln, 590 CACHELINES_PER_PAGE); 591 for (i = 0; i < nents; i++) { 592 phys_addr_t ent_cln = to_cacheline_number(ents[i]); 593 594 if (ent_cln == cln) { 595 entry = ents[i]; 596 break; 597 } else if (ent_cln >= cln + CACHELINES_PER_PAGE) 598 break; 599 } 600 spin_unlock_irqrestore(&radix_lock, flags); 601 602 if (!entry) 603 return; 604 605 cln = to_cacheline_number(entry); 606 err_printk(entry->dev, entry, 607 "cpu touching an active dma mapped cacheline [cln=%pa]\n", 608 &cln); 609 } 610 611 /* 612 * Wrapper function for adding an entry to the hash. 613 * This function takes care of locking itself. 614 */ 615 static void add_dma_entry(struct dma_debug_entry *entry) 616 { 617 struct hash_bucket *bucket; 618 unsigned long flags; 619 int rc; 620 621 bucket = get_hash_bucket(entry, &flags); 622 hash_bucket_add(bucket, entry); 623 put_hash_bucket(bucket, &flags); 624 625 rc = active_cacheline_insert(entry); 626 if (rc == -ENOMEM) { 627 pr_err("cacheline tracking ENOMEM, dma-debug disabled\n"); 628 global_disable = true; 629 } 630 631 /* TODO: report -EEXIST errors here as overlapping mappings are 632 * not supported by the DMA API 633 */ 634 } 635 636 static int dma_debug_create_entries(gfp_t gfp) 637 { 638 struct dma_debug_entry *entry; 639 int i; 640 641 entry = (void *)get_zeroed_page(gfp); 642 if (!entry) 643 return -ENOMEM; 644 645 for (i = 0; i < DMA_DEBUG_DYNAMIC_ENTRIES; i++) 646 list_add_tail(&entry[i].list, &free_entries); 647 648 num_free_entries += DMA_DEBUG_DYNAMIC_ENTRIES; 649 nr_total_entries += DMA_DEBUG_DYNAMIC_ENTRIES; 650 651 return 0; 652 } 653 654 static struct dma_debug_entry *__dma_entry_alloc(void) 655 { 656 struct dma_debug_entry *entry; 657 658 entry = list_entry(free_entries.next, struct dma_debug_entry, list); 659 list_del(&entry->list); 660 memset(entry, 0, sizeof(*entry)); 661 662 num_free_entries -= 1; 663 if (num_free_entries < min_free_entries) 664 min_free_entries = num_free_entries; 665 666 return entry; 667 } 668 669 void __dma_entry_alloc_check_leak(void) 670 { 671 u32 tmp = nr_total_entries % nr_prealloc_entries; 672 673 /* Shout each time we tick over some multiple of the initial pool */ 674 if (tmp < DMA_DEBUG_DYNAMIC_ENTRIES) { 675 pr_info("dma_debug_entry pool grown to %u (%u00%%)\n", 676 nr_total_entries, 677 (nr_total_entries / nr_prealloc_entries)); 678 } 679 } 680 681 /* struct dma_entry allocator 682 * 683 * The next two functions implement the allocator for 684 * struct dma_debug_entries. 685 */ 686 static struct dma_debug_entry *dma_entry_alloc(void) 687 { 688 struct dma_debug_entry *entry; 689 unsigned long flags; 690 691 spin_lock_irqsave(&free_entries_lock, flags); 692 if (num_free_entries == 0) { 693 if (dma_debug_create_entries(GFP_ATOMIC)) { 694 global_disable = true; 695 spin_unlock_irqrestore(&free_entries_lock, flags); 696 pr_err("debugging out of memory - disabling\n"); 697 return NULL; 698 } 699 __dma_entry_alloc_check_leak(); 700 } 701 702 entry = __dma_entry_alloc(); 703 704 spin_unlock_irqrestore(&free_entries_lock, flags); 705 706 #ifdef CONFIG_STACKTRACE 707 entry->stack_len = stack_trace_save(entry->stack_entries, 708 ARRAY_SIZE(entry->stack_entries), 709 1); 710 #endif 711 return entry; 712 } 713 714 static void dma_entry_free(struct dma_debug_entry *entry) 715 { 716 unsigned long flags; 717 718 active_cacheline_remove(entry); 719 720 /* 721 * add to beginning of the list - this way the entries are 722 * more likely cache hot when they are reallocated. 723 */ 724 spin_lock_irqsave(&free_entries_lock, flags); 725 list_add(&entry->list, &free_entries); 726 num_free_entries += 1; 727 spin_unlock_irqrestore(&free_entries_lock, flags); 728 } 729 730 /* 731 * DMA-API debugging init code 732 * 733 * The init code does two things: 734 * 1. Initialize core data structures 735 * 2. Preallocate a given number of dma_debug_entry structs 736 */ 737 738 static ssize_t filter_read(struct file *file, char __user *user_buf, 739 size_t count, loff_t *ppos) 740 { 741 char buf[NAME_MAX_LEN + 1]; 742 unsigned long flags; 743 int len; 744 745 if (!current_driver_name[0]) 746 return 0; 747 748 /* 749 * We can't copy to userspace directly because current_driver_name can 750 * only be read under the driver_name_lock with irqs disabled. So 751 * create a temporary copy first. 752 */ 753 read_lock_irqsave(&driver_name_lock, flags); 754 len = scnprintf(buf, NAME_MAX_LEN + 1, "%s\n", current_driver_name); 755 read_unlock_irqrestore(&driver_name_lock, flags); 756 757 return simple_read_from_buffer(user_buf, count, ppos, buf, len); 758 } 759 760 static ssize_t filter_write(struct file *file, const char __user *userbuf, 761 size_t count, loff_t *ppos) 762 { 763 char buf[NAME_MAX_LEN]; 764 unsigned long flags; 765 size_t len; 766 int i; 767 768 /* 769 * We can't copy from userspace directly. Access to 770 * current_driver_name is protected with a write_lock with irqs 771 * disabled. Since copy_from_user can fault and may sleep we 772 * need to copy to temporary buffer first 773 */ 774 len = min(count, (size_t)(NAME_MAX_LEN - 1)); 775 if (copy_from_user(buf, userbuf, len)) 776 return -EFAULT; 777 778 buf[len] = 0; 779 780 write_lock_irqsave(&driver_name_lock, flags); 781 782 /* 783 * Now handle the string we got from userspace very carefully. 784 * The rules are: 785 * - only use the first token we got 786 * - token delimiter is everything looking like a space 787 * character (' ', '\n', '\t' ...) 788 * 789 */ 790 if (!isalnum(buf[0])) { 791 /* 792 * If the first character userspace gave us is not 793 * alphanumerical then assume the filter should be 794 * switched off. 795 */ 796 if (current_driver_name[0]) 797 pr_info("switching off dma-debug driver filter\n"); 798 current_driver_name[0] = 0; 799 current_driver = NULL; 800 goto out_unlock; 801 } 802 803 /* 804 * Now parse out the first token and use it as the name for the 805 * driver to filter for. 806 */ 807 for (i = 0; i < NAME_MAX_LEN - 1; ++i) { 808 current_driver_name[i] = buf[i]; 809 if (isspace(buf[i]) || buf[i] == ' ' || buf[i] == 0) 810 break; 811 } 812 current_driver_name[i] = 0; 813 current_driver = NULL; 814 815 pr_info("enable driver filter for driver [%s]\n", 816 current_driver_name); 817 818 out_unlock: 819 write_unlock_irqrestore(&driver_name_lock, flags); 820 821 return count; 822 } 823 824 static const struct file_operations filter_fops = { 825 .read = filter_read, 826 .write = filter_write, 827 .llseek = default_llseek, 828 }; 829 830 static int dump_show(struct seq_file *seq, void *v) 831 { 832 int idx; 833 834 for (idx = 0; idx < HASH_SIZE; idx++) { 835 struct hash_bucket *bucket = &dma_entry_hash[idx]; 836 struct dma_debug_entry *entry; 837 unsigned long flags; 838 839 spin_lock_irqsave(&bucket->lock, flags); 840 list_for_each_entry(entry, &bucket->list, list) { 841 seq_printf(seq, 842 "%s %s %s idx %d P=%llx N=%lx D=%llx L=%llx %s %s\n", 843 dev_name(entry->dev), 844 dev_driver_string(entry->dev), 845 type2name[entry->type], idx, 846 phys_addr(entry), entry->pfn, 847 entry->dev_addr, entry->size, 848 dir2name[entry->direction], 849 maperr2str[entry->map_err_type]); 850 } 851 spin_unlock_irqrestore(&bucket->lock, flags); 852 } 853 return 0; 854 } 855 DEFINE_SHOW_ATTRIBUTE(dump); 856 857 static void dma_debug_fs_init(void) 858 { 859 struct dentry *dentry = debugfs_create_dir("dma-api", NULL); 860 861 debugfs_create_bool("disabled", 0444, dentry, &global_disable); 862 debugfs_create_u32("error_count", 0444, dentry, &error_count); 863 debugfs_create_u32("all_errors", 0644, dentry, &show_all_errors); 864 debugfs_create_u32("num_errors", 0644, dentry, &show_num_errors); 865 debugfs_create_u32("num_free_entries", 0444, dentry, &num_free_entries); 866 debugfs_create_u32("min_free_entries", 0444, dentry, &min_free_entries); 867 debugfs_create_u32("nr_total_entries", 0444, dentry, &nr_total_entries); 868 debugfs_create_file("driver_filter", 0644, dentry, NULL, &filter_fops); 869 debugfs_create_file("dump", 0444, dentry, NULL, &dump_fops); 870 } 871 872 static int device_dma_allocations(struct device *dev, struct dma_debug_entry **out_entry) 873 { 874 struct dma_debug_entry *entry; 875 unsigned long flags; 876 int count = 0, i; 877 878 for (i = 0; i < HASH_SIZE; ++i) { 879 spin_lock_irqsave(&dma_entry_hash[i].lock, flags); 880 list_for_each_entry(entry, &dma_entry_hash[i].list, list) { 881 if (entry->dev == dev) { 882 count += 1; 883 *out_entry = entry; 884 } 885 } 886 spin_unlock_irqrestore(&dma_entry_hash[i].lock, flags); 887 } 888 889 return count; 890 } 891 892 static int dma_debug_device_change(struct notifier_block *nb, unsigned long action, void *data) 893 { 894 struct device *dev = data; 895 struct dma_debug_entry *uninitialized_var(entry); 896 int count; 897 898 if (dma_debug_disabled()) 899 return 0; 900 901 switch (action) { 902 case BUS_NOTIFY_UNBOUND_DRIVER: 903 count = device_dma_allocations(dev, &entry); 904 if (count == 0) 905 break; 906 err_printk(dev, entry, "device driver has pending " 907 "DMA allocations while released from device " 908 "[count=%d]\n" 909 "One of leaked entries details: " 910 "[device address=0x%016llx] [size=%llu bytes] " 911 "[mapped with %s] [mapped as %s]\n", 912 count, entry->dev_addr, entry->size, 913 dir2name[entry->direction], type2name[entry->type]); 914 break; 915 default: 916 break; 917 } 918 919 return 0; 920 } 921 922 void dma_debug_add_bus(struct bus_type *bus) 923 { 924 struct notifier_block *nb; 925 926 if (dma_debug_disabled()) 927 return; 928 929 nb = kzalloc(sizeof(struct notifier_block), GFP_KERNEL); 930 if (nb == NULL) { 931 pr_err("dma_debug_add_bus: out of memory\n"); 932 return; 933 } 934 935 nb->notifier_call = dma_debug_device_change; 936 937 bus_register_notifier(bus, nb); 938 } 939 940 static int dma_debug_init(void) 941 { 942 int i, nr_pages; 943 944 /* Do not use dma_debug_initialized here, since we really want to be 945 * called to set dma_debug_initialized 946 */ 947 if (global_disable) 948 return 0; 949 950 for (i = 0; i < HASH_SIZE; ++i) { 951 INIT_LIST_HEAD(&dma_entry_hash[i].list); 952 spin_lock_init(&dma_entry_hash[i].lock); 953 } 954 955 dma_debug_fs_init(); 956 957 nr_pages = DIV_ROUND_UP(nr_prealloc_entries, DMA_DEBUG_DYNAMIC_ENTRIES); 958 for (i = 0; i < nr_pages; ++i) 959 dma_debug_create_entries(GFP_KERNEL); 960 if (num_free_entries >= nr_prealloc_entries) { 961 pr_info("preallocated %d debug entries\n", nr_total_entries); 962 } else if (num_free_entries > 0) { 963 pr_warn("%d debug entries requested but only %d allocated\n", 964 nr_prealloc_entries, nr_total_entries); 965 } else { 966 pr_err("debugging out of memory error - disabled\n"); 967 global_disable = true; 968 969 return 0; 970 } 971 min_free_entries = num_free_entries; 972 973 dma_debug_initialized = true; 974 975 pr_info("debugging enabled by kernel config\n"); 976 return 0; 977 } 978 core_initcall(dma_debug_init); 979 980 static __init int dma_debug_cmdline(char *str) 981 { 982 if (!str) 983 return -EINVAL; 984 985 if (strncmp(str, "off", 3) == 0) { 986 pr_info("debugging disabled on kernel command line\n"); 987 global_disable = true; 988 } 989 990 return 0; 991 } 992 993 static __init int dma_debug_entries_cmdline(char *str) 994 { 995 if (!str) 996 return -EINVAL; 997 if (!get_option(&str, &nr_prealloc_entries)) 998 nr_prealloc_entries = PREALLOC_DMA_DEBUG_ENTRIES; 999 return 0; 1000 } 1001 1002 __setup("dma_debug=", dma_debug_cmdline); 1003 __setup("dma_debug_entries=", dma_debug_entries_cmdline); 1004 1005 static void check_unmap(struct dma_debug_entry *ref) 1006 { 1007 struct dma_debug_entry *entry; 1008 struct hash_bucket *bucket; 1009 unsigned long flags; 1010 1011 bucket = get_hash_bucket(ref, &flags); 1012 entry = bucket_find_exact(bucket, ref); 1013 1014 if (!entry) { 1015 /* must drop lock before calling dma_mapping_error */ 1016 put_hash_bucket(bucket, &flags); 1017 1018 if (dma_mapping_error(ref->dev, ref->dev_addr)) { 1019 err_printk(ref->dev, NULL, 1020 "device driver tries to free an " 1021 "invalid DMA memory address\n"); 1022 } else { 1023 err_printk(ref->dev, NULL, 1024 "device driver tries to free DMA " 1025 "memory it has not allocated [device " 1026 "address=0x%016llx] [size=%llu bytes]\n", 1027 ref->dev_addr, ref->size); 1028 } 1029 return; 1030 } 1031 1032 if (ref->size != entry->size) { 1033 err_printk(ref->dev, entry, "device driver frees " 1034 "DMA memory with different size " 1035 "[device address=0x%016llx] [map size=%llu bytes] " 1036 "[unmap size=%llu bytes]\n", 1037 ref->dev_addr, entry->size, ref->size); 1038 } 1039 1040 if (ref->type != entry->type) { 1041 err_printk(ref->dev, entry, "device driver frees " 1042 "DMA memory with wrong function " 1043 "[device address=0x%016llx] [size=%llu bytes] " 1044 "[mapped as %s] [unmapped as %s]\n", 1045 ref->dev_addr, ref->size, 1046 type2name[entry->type], type2name[ref->type]); 1047 } else if ((entry->type == dma_debug_coherent) && 1048 (phys_addr(ref) != phys_addr(entry))) { 1049 err_printk(ref->dev, entry, "device driver frees " 1050 "DMA memory with different CPU address " 1051 "[device address=0x%016llx] [size=%llu bytes] " 1052 "[cpu alloc address=0x%016llx] " 1053 "[cpu free address=0x%016llx]", 1054 ref->dev_addr, ref->size, 1055 phys_addr(entry), 1056 phys_addr(ref)); 1057 } 1058 1059 if (ref->sg_call_ents && ref->type == dma_debug_sg && 1060 ref->sg_call_ents != entry->sg_call_ents) { 1061 err_printk(ref->dev, entry, "device driver frees " 1062 "DMA sg list with different entry count " 1063 "[map count=%d] [unmap count=%d]\n", 1064 entry->sg_call_ents, ref->sg_call_ents); 1065 } 1066 1067 /* 1068 * This may be no bug in reality - but most implementations of the 1069 * DMA API don't handle this properly, so check for it here 1070 */ 1071 if (ref->direction != entry->direction) { 1072 err_printk(ref->dev, entry, "device driver frees " 1073 "DMA memory with different direction " 1074 "[device address=0x%016llx] [size=%llu bytes] " 1075 "[mapped with %s] [unmapped with %s]\n", 1076 ref->dev_addr, ref->size, 1077 dir2name[entry->direction], 1078 dir2name[ref->direction]); 1079 } 1080 1081 /* 1082 * Drivers should use dma_mapping_error() to check the returned 1083 * addresses of dma_map_single() and dma_map_page(). 1084 * If not, print this warning message. See Documentation/DMA-API.txt. 1085 */ 1086 if (entry->map_err_type == MAP_ERR_NOT_CHECKED) { 1087 err_printk(ref->dev, entry, 1088 "device driver failed to check map error" 1089 "[device address=0x%016llx] [size=%llu bytes] " 1090 "[mapped as %s]", 1091 ref->dev_addr, ref->size, 1092 type2name[entry->type]); 1093 } 1094 1095 hash_bucket_del(entry); 1096 dma_entry_free(entry); 1097 1098 put_hash_bucket(bucket, &flags); 1099 } 1100 1101 static void check_for_stack(struct device *dev, 1102 struct page *page, size_t offset) 1103 { 1104 void *addr; 1105 struct vm_struct *stack_vm_area = task_stack_vm_area(current); 1106 1107 if (!stack_vm_area) { 1108 /* Stack is direct-mapped. */ 1109 if (PageHighMem(page)) 1110 return; 1111 addr = page_address(page) + offset; 1112 if (object_is_on_stack(addr)) 1113 err_printk(dev, NULL, "device driver maps memory from stack [addr=%p]\n", addr); 1114 } else { 1115 /* Stack is vmalloced. */ 1116 int i; 1117 1118 for (i = 0; i < stack_vm_area->nr_pages; i++) { 1119 if (page != stack_vm_area->pages[i]) 1120 continue; 1121 1122 addr = (u8 *)current->stack + i * PAGE_SIZE + offset; 1123 err_printk(dev, NULL, "device driver maps memory from stack [probable addr=%p]\n", addr); 1124 break; 1125 } 1126 } 1127 } 1128 1129 static inline bool overlap(void *addr, unsigned long len, void *start, void *end) 1130 { 1131 unsigned long a1 = (unsigned long)addr; 1132 unsigned long b1 = a1 + len; 1133 unsigned long a2 = (unsigned long)start; 1134 unsigned long b2 = (unsigned long)end; 1135 1136 return !(b1 <= a2 || a1 >= b2); 1137 } 1138 1139 static void check_for_illegal_area(struct device *dev, void *addr, unsigned long len) 1140 { 1141 if (overlap(addr, len, _stext, _etext) || 1142 overlap(addr, len, __start_rodata, __end_rodata)) 1143 err_printk(dev, NULL, "device driver maps memory from kernel text or rodata [addr=%p] [len=%lu]\n", addr, len); 1144 } 1145 1146 static void check_sync(struct device *dev, 1147 struct dma_debug_entry *ref, 1148 bool to_cpu) 1149 { 1150 struct dma_debug_entry *entry; 1151 struct hash_bucket *bucket; 1152 unsigned long flags; 1153 1154 bucket = get_hash_bucket(ref, &flags); 1155 1156 entry = bucket_find_contain(&bucket, ref, &flags); 1157 1158 if (!entry) { 1159 err_printk(dev, NULL, "device driver tries " 1160 "to sync DMA memory it has not allocated " 1161 "[device address=0x%016llx] [size=%llu bytes]\n", 1162 (unsigned long long)ref->dev_addr, ref->size); 1163 goto out; 1164 } 1165 1166 if (ref->size > entry->size) { 1167 err_printk(dev, entry, "device driver syncs" 1168 " DMA memory outside allocated range " 1169 "[device address=0x%016llx] " 1170 "[allocation size=%llu bytes] " 1171 "[sync offset+size=%llu]\n", 1172 entry->dev_addr, entry->size, 1173 ref->size); 1174 } 1175 1176 if (entry->direction == DMA_BIDIRECTIONAL) 1177 goto out; 1178 1179 if (ref->direction != entry->direction) { 1180 err_printk(dev, entry, "device driver syncs " 1181 "DMA memory with different direction " 1182 "[device address=0x%016llx] [size=%llu bytes] " 1183 "[mapped with %s] [synced with %s]\n", 1184 (unsigned long long)ref->dev_addr, entry->size, 1185 dir2name[entry->direction], 1186 dir2name[ref->direction]); 1187 } 1188 1189 if (to_cpu && !(entry->direction == DMA_FROM_DEVICE) && 1190 !(ref->direction == DMA_TO_DEVICE)) 1191 err_printk(dev, entry, "device driver syncs " 1192 "device read-only DMA memory for cpu " 1193 "[device address=0x%016llx] [size=%llu bytes] " 1194 "[mapped with %s] [synced with %s]\n", 1195 (unsigned long long)ref->dev_addr, entry->size, 1196 dir2name[entry->direction], 1197 dir2name[ref->direction]); 1198 1199 if (!to_cpu && !(entry->direction == DMA_TO_DEVICE) && 1200 !(ref->direction == DMA_FROM_DEVICE)) 1201 err_printk(dev, entry, "device driver syncs " 1202 "device write-only DMA memory to device " 1203 "[device address=0x%016llx] [size=%llu bytes] " 1204 "[mapped with %s] [synced with %s]\n", 1205 (unsigned long long)ref->dev_addr, entry->size, 1206 dir2name[entry->direction], 1207 dir2name[ref->direction]); 1208 1209 if (ref->sg_call_ents && ref->type == dma_debug_sg && 1210 ref->sg_call_ents != entry->sg_call_ents) { 1211 err_printk(ref->dev, entry, "device driver syncs " 1212 "DMA sg list with different entry count " 1213 "[map count=%d] [sync count=%d]\n", 1214 entry->sg_call_ents, ref->sg_call_ents); 1215 } 1216 1217 out: 1218 put_hash_bucket(bucket, &flags); 1219 } 1220 1221 static void check_sg_segment(struct device *dev, struct scatterlist *sg) 1222 { 1223 #ifdef CONFIG_DMA_API_DEBUG_SG 1224 unsigned int max_seg = dma_get_max_seg_size(dev); 1225 u64 start, end, boundary = dma_get_seg_boundary(dev); 1226 1227 /* 1228 * Either the driver forgot to set dma_parms appropriately, or 1229 * whoever generated the list forgot to check them. 1230 */ 1231 if (sg->length > max_seg) 1232 err_printk(dev, NULL, "mapping sg segment longer than device claims to support [len=%u] [max=%u]\n", 1233 sg->length, max_seg); 1234 /* 1235 * In some cases this could potentially be the DMA API 1236 * implementation's fault, but it would usually imply that 1237 * the scatterlist was built inappropriately to begin with. 1238 */ 1239 start = sg_dma_address(sg); 1240 end = start + sg_dma_len(sg) - 1; 1241 if ((start ^ end) & ~boundary) 1242 err_printk(dev, NULL, "mapping sg segment across boundary [start=0x%016llx] [end=0x%016llx] [boundary=0x%016llx]\n", 1243 start, end, boundary); 1244 #endif 1245 } 1246 1247 void debug_dma_map_single(struct device *dev, const void *addr, 1248 unsigned long len) 1249 { 1250 if (unlikely(dma_debug_disabled())) 1251 return; 1252 1253 if (!virt_addr_valid(addr)) 1254 err_printk(dev, NULL, "device driver maps memory from invalid area [addr=%p] [len=%lu]\n", 1255 addr, len); 1256 1257 if (is_vmalloc_addr(addr)) 1258 err_printk(dev, NULL, "device driver maps memory from vmalloc area [addr=%p] [len=%lu]\n", 1259 addr, len); 1260 } 1261 EXPORT_SYMBOL(debug_dma_map_single); 1262 1263 void debug_dma_map_page(struct device *dev, struct page *page, size_t offset, 1264 size_t size, int direction, dma_addr_t dma_addr) 1265 { 1266 struct dma_debug_entry *entry; 1267 1268 if (unlikely(dma_debug_disabled())) 1269 return; 1270 1271 if (dma_mapping_error(dev, dma_addr)) 1272 return; 1273 1274 entry = dma_entry_alloc(); 1275 if (!entry) 1276 return; 1277 1278 entry->dev = dev; 1279 entry->type = dma_debug_single; 1280 entry->pfn = page_to_pfn(page); 1281 entry->offset = offset, 1282 entry->dev_addr = dma_addr; 1283 entry->size = size; 1284 entry->direction = direction; 1285 entry->map_err_type = MAP_ERR_NOT_CHECKED; 1286 1287 check_for_stack(dev, page, offset); 1288 1289 if (!PageHighMem(page)) { 1290 void *addr = page_address(page) + offset; 1291 1292 check_for_illegal_area(dev, addr, size); 1293 } 1294 1295 add_dma_entry(entry); 1296 } 1297 EXPORT_SYMBOL(debug_dma_map_page); 1298 1299 void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 1300 { 1301 struct dma_debug_entry ref; 1302 struct dma_debug_entry *entry; 1303 struct hash_bucket *bucket; 1304 unsigned long flags; 1305 1306 if (unlikely(dma_debug_disabled())) 1307 return; 1308 1309 ref.dev = dev; 1310 ref.dev_addr = dma_addr; 1311 bucket = get_hash_bucket(&ref, &flags); 1312 1313 list_for_each_entry(entry, &bucket->list, list) { 1314 if (!exact_match(&ref, entry)) 1315 continue; 1316 1317 /* 1318 * The same physical address can be mapped multiple 1319 * times. Without a hardware IOMMU this results in the 1320 * same device addresses being put into the dma-debug 1321 * hash multiple times too. This can result in false 1322 * positives being reported. Therefore we implement a 1323 * best-fit algorithm here which updates the first entry 1324 * from the hash which fits the reference value and is 1325 * not currently listed as being checked. 1326 */ 1327 if (entry->map_err_type == MAP_ERR_NOT_CHECKED) { 1328 entry->map_err_type = MAP_ERR_CHECKED; 1329 break; 1330 } 1331 } 1332 1333 put_hash_bucket(bucket, &flags); 1334 } 1335 EXPORT_SYMBOL(debug_dma_mapping_error); 1336 1337 void debug_dma_unmap_page(struct device *dev, dma_addr_t addr, 1338 size_t size, int direction) 1339 { 1340 struct dma_debug_entry ref = { 1341 .type = dma_debug_single, 1342 .dev = dev, 1343 .dev_addr = addr, 1344 .size = size, 1345 .direction = direction, 1346 }; 1347 1348 if (unlikely(dma_debug_disabled())) 1349 return; 1350 check_unmap(&ref); 1351 } 1352 EXPORT_SYMBOL(debug_dma_unmap_page); 1353 1354 void debug_dma_map_sg(struct device *dev, struct scatterlist *sg, 1355 int nents, int mapped_ents, int direction) 1356 { 1357 struct dma_debug_entry *entry; 1358 struct scatterlist *s; 1359 int i; 1360 1361 if (unlikely(dma_debug_disabled())) 1362 return; 1363 1364 for_each_sg(sg, s, mapped_ents, i) { 1365 entry = dma_entry_alloc(); 1366 if (!entry) 1367 return; 1368 1369 entry->type = dma_debug_sg; 1370 entry->dev = dev; 1371 entry->pfn = page_to_pfn(sg_page(s)); 1372 entry->offset = s->offset, 1373 entry->size = sg_dma_len(s); 1374 entry->dev_addr = sg_dma_address(s); 1375 entry->direction = direction; 1376 entry->sg_call_ents = nents; 1377 entry->sg_mapped_ents = mapped_ents; 1378 1379 check_for_stack(dev, sg_page(s), s->offset); 1380 1381 if (!PageHighMem(sg_page(s))) { 1382 check_for_illegal_area(dev, sg_virt(s), sg_dma_len(s)); 1383 } 1384 1385 check_sg_segment(dev, s); 1386 1387 add_dma_entry(entry); 1388 } 1389 } 1390 EXPORT_SYMBOL(debug_dma_map_sg); 1391 1392 static int get_nr_mapped_entries(struct device *dev, 1393 struct dma_debug_entry *ref) 1394 { 1395 struct dma_debug_entry *entry; 1396 struct hash_bucket *bucket; 1397 unsigned long flags; 1398 int mapped_ents; 1399 1400 bucket = get_hash_bucket(ref, &flags); 1401 entry = bucket_find_exact(bucket, ref); 1402 mapped_ents = 0; 1403 1404 if (entry) 1405 mapped_ents = entry->sg_mapped_ents; 1406 put_hash_bucket(bucket, &flags); 1407 1408 return mapped_ents; 1409 } 1410 1411 void debug_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, 1412 int nelems, int dir) 1413 { 1414 struct scatterlist *s; 1415 int mapped_ents = 0, i; 1416 1417 if (unlikely(dma_debug_disabled())) 1418 return; 1419 1420 for_each_sg(sglist, s, nelems, i) { 1421 1422 struct dma_debug_entry ref = { 1423 .type = dma_debug_sg, 1424 .dev = dev, 1425 .pfn = page_to_pfn(sg_page(s)), 1426 .offset = s->offset, 1427 .dev_addr = sg_dma_address(s), 1428 .size = sg_dma_len(s), 1429 .direction = dir, 1430 .sg_call_ents = nelems, 1431 }; 1432 1433 if (mapped_ents && i >= mapped_ents) 1434 break; 1435 1436 if (!i) 1437 mapped_ents = get_nr_mapped_entries(dev, &ref); 1438 1439 check_unmap(&ref); 1440 } 1441 } 1442 EXPORT_SYMBOL(debug_dma_unmap_sg); 1443 1444 void debug_dma_alloc_coherent(struct device *dev, size_t size, 1445 dma_addr_t dma_addr, void *virt) 1446 { 1447 struct dma_debug_entry *entry; 1448 1449 if (unlikely(dma_debug_disabled())) 1450 return; 1451 1452 if (unlikely(virt == NULL)) 1453 return; 1454 1455 /* handle vmalloc and linear addresses */ 1456 if (!is_vmalloc_addr(virt) && !virt_addr_valid(virt)) 1457 return; 1458 1459 entry = dma_entry_alloc(); 1460 if (!entry) 1461 return; 1462 1463 entry->type = dma_debug_coherent; 1464 entry->dev = dev; 1465 entry->offset = offset_in_page(virt); 1466 entry->size = size; 1467 entry->dev_addr = dma_addr; 1468 entry->direction = DMA_BIDIRECTIONAL; 1469 1470 if (is_vmalloc_addr(virt)) 1471 entry->pfn = vmalloc_to_pfn(virt); 1472 else 1473 entry->pfn = page_to_pfn(virt_to_page(virt)); 1474 1475 add_dma_entry(entry); 1476 } 1477 1478 void debug_dma_free_coherent(struct device *dev, size_t size, 1479 void *virt, dma_addr_t addr) 1480 { 1481 struct dma_debug_entry ref = { 1482 .type = dma_debug_coherent, 1483 .dev = dev, 1484 .offset = offset_in_page(virt), 1485 .dev_addr = addr, 1486 .size = size, 1487 .direction = DMA_BIDIRECTIONAL, 1488 }; 1489 1490 /* handle vmalloc and linear addresses */ 1491 if (!is_vmalloc_addr(virt) && !virt_addr_valid(virt)) 1492 return; 1493 1494 if (is_vmalloc_addr(virt)) 1495 ref.pfn = vmalloc_to_pfn(virt); 1496 else 1497 ref.pfn = page_to_pfn(virt_to_page(virt)); 1498 1499 if (unlikely(dma_debug_disabled())) 1500 return; 1501 1502 check_unmap(&ref); 1503 } 1504 1505 void debug_dma_map_resource(struct device *dev, phys_addr_t addr, size_t size, 1506 int direction, dma_addr_t dma_addr) 1507 { 1508 struct dma_debug_entry *entry; 1509 1510 if (unlikely(dma_debug_disabled())) 1511 return; 1512 1513 entry = dma_entry_alloc(); 1514 if (!entry) 1515 return; 1516 1517 entry->type = dma_debug_resource; 1518 entry->dev = dev; 1519 entry->pfn = PHYS_PFN(addr); 1520 entry->offset = offset_in_page(addr); 1521 entry->size = size; 1522 entry->dev_addr = dma_addr; 1523 entry->direction = direction; 1524 entry->map_err_type = MAP_ERR_NOT_CHECKED; 1525 1526 add_dma_entry(entry); 1527 } 1528 EXPORT_SYMBOL(debug_dma_map_resource); 1529 1530 void debug_dma_unmap_resource(struct device *dev, dma_addr_t dma_addr, 1531 size_t size, int direction) 1532 { 1533 struct dma_debug_entry ref = { 1534 .type = dma_debug_resource, 1535 .dev = dev, 1536 .dev_addr = dma_addr, 1537 .size = size, 1538 .direction = direction, 1539 }; 1540 1541 if (unlikely(dma_debug_disabled())) 1542 return; 1543 1544 check_unmap(&ref); 1545 } 1546 EXPORT_SYMBOL(debug_dma_unmap_resource); 1547 1548 void debug_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, 1549 size_t size, int direction) 1550 { 1551 struct dma_debug_entry ref; 1552 1553 if (unlikely(dma_debug_disabled())) 1554 return; 1555 1556 ref.type = dma_debug_single; 1557 ref.dev = dev; 1558 ref.dev_addr = dma_handle; 1559 ref.size = size; 1560 ref.direction = direction; 1561 ref.sg_call_ents = 0; 1562 1563 check_sync(dev, &ref, true); 1564 } 1565 EXPORT_SYMBOL(debug_dma_sync_single_for_cpu); 1566 1567 void debug_dma_sync_single_for_device(struct device *dev, 1568 dma_addr_t dma_handle, size_t size, 1569 int direction) 1570 { 1571 struct dma_debug_entry ref; 1572 1573 if (unlikely(dma_debug_disabled())) 1574 return; 1575 1576 ref.type = dma_debug_single; 1577 ref.dev = dev; 1578 ref.dev_addr = dma_handle; 1579 ref.size = size; 1580 ref.direction = direction; 1581 ref.sg_call_ents = 0; 1582 1583 check_sync(dev, &ref, false); 1584 } 1585 EXPORT_SYMBOL(debug_dma_sync_single_for_device); 1586 1587 void debug_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 1588 int nelems, int direction) 1589 { 1590 struct scatterlist *s; 1591 int mapped_ents = 0, i; 1592 1593 if (unlikely(dma_debug_disabled())) 1594 return; 1595 1596 for_each_sg(sg, s, nelems, i) { 1597 1598 struct dma_debug_entry ref = { 1599 .type = dma_debug_sg, 1600 .dev = dev, 1601 .pfn = page_to_pfn(sg_page(s)), 1602 .offset = s->offset, 1603 .dev_addr = sg_dma_address(s), 1604 .size = sg_dma_len(s), 1605 .direction = direction, 1606 .sg_call_ents = nelems, 1607 }; 1608 1609 if (!i) 1610 mapped_ents = get_nr_mapped_entries(dev, &ref); 1611 1612 if (i >= mapped_ents) 1613 break; 1614 1615 check_sync(dev, &ref, true); 1616 } 1617 } 1618 EXPORT_SYMBOL(debug_dma_sync_sg_for_cpu); 1619 1620 void debug_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 1621 int nelems, int direction) 1622 { 1623 struct scatterlist *s; 1624 int mapped_ents = 0, i; 1625 1626 if (unlikely(dma_debug_disabled())) 1627 return; 1628 1629 for_each_sg(sg, s, nelems, i) { 1630 1631 struct dma_debug_entry ref = { 1632 .type = dma_debug_sg, 1633 .dev = dev, 1634 .pfn = page_to_pfn(sg_page(s)), 1635 .offset = s->offset, 1636 .dev_addr = sg_dma_address(s), 1637 .size = sg_dma_len(s), 1638 .direction = direction, 1639 .sg_call_ents = nelems, 1640 }; 1641 if (!i) 1642 mapped_ents = get_nr_mapped_entries(dev, &ref); 1643 1644 if (i >= mapped_ents) 1645 break; 1646 1647 check_sync(dev, &ref, false); 1648 } 1649 } 1650 EXPORT_SYMBOL(debug_dma_sync_sg_for_device); 1651 1652 static int __init dma_debug_driver_setup(char *str) 1653 { 1654 int i; 1655 1656 for (i = 0; i < NAME_MAX_LEN - 1; ++i, ++str) { 1657 current_driver_name[i] = *str; 1658 if (*str == 0) 1659 break; 1660 } 1661 1662 if (current_driver_name[0]) 1663 pr_info("enable driver filter for driver [%s]\n", 1664 current_driver_name); 1665 1666 1667 return 1; 1668 } 1669 __setup("dma_debug_driver=", dma_debug_driver_setup); 1670