xref: /openbmc/linux/kernel/dma/coherent.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Coherent per-device memory handling.
4  * Borrowed from i386
5  */
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-mapping.h>
11 
12 struct dma_coherent_mem {
13 	void		*virt_base;
14 	dma_addr_t	device_base;
15 	unsigned long	pfn_base;
16 	int		size;
17 	unsigned long	*bitmap;
18 	spinlock_t	spinlock;
19 	bool		use_dev_dma_pfn_offset;
20 };
21 
22 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
23 
24 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
25 {
26 	if (dev && dev->dma_mem)
27 		return dev->dma_mem;
28 	return NULL;
29 }
30 
31 static inline dma_addr_t dma_get_device_base(struct device *dev,
32 					     struct dma_coherent_mem * mem)
33 {
34 	if (mem->use_dev_dma_pfn_offset)
35 		return (mem->pfn_base - dev->dma_pfn_offset) << PAGE_SHIFT;
36 	else
37 		return mem->device_base;
38 }
39 
40 static int dma_init_coherent_memory(phys_addr_t phys_addr,
41 		dma_addr_t device_addr, size_t size,
42 		struct dma_coherent_mem **mem)
43 {
44 	struct dma_coherent_mem *dma_mem = NULL;
45 	void *mem_base = NULL;
46 	int pages = size >> PAGE_SHIFT;
47 	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
48 	int ret;
49 
50 	if (!size) {
51 		ret = -EINVAL;
52 		goto out;
53 	}
54 
55 	mem_base = memremap(phys_addr, size, MEMREMAP_WC);
56 	if (!mem_base) {
57 		ret = -EINVAL;
58 		goto out;
59 	}
60 	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
61 	if (!dma_mem) {
62 		ret = -ENOMEM;
63 		goto out;
64 	}
65 	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
66 	if (!dma_mem->bitmap) {
67 		ret = -ENOMEM;
68 		goto out;
69 	}
70 
71 	dma_mem->virt_base = mem_base;
72 	dma_mem->device_base = device_addr;
73 	dma_mem->pfn_base = PFN_DOWN(phys_addr);
74 	dma_mem->size = pages;
75 	spin_lock_init(&dma_mem->spinlock);
76 
77 	*mem = dma_mem;
78 	return 0;
79 
80 out:
81 	kfree(dma_mem);
82 	if (mem_base)
83 		memunmap(mem_base);
84 	return ret;
85 }
86 
87 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
88 {
89 	if (!mem)
90 		return;
91 
92 	memunmap(mem->virt_base);
93 	kfree(mem->bitmap);
94 	kfree(mem);
95 }
96 
97 static int dma_assign_coherent_memory(struct device *dev,
98 				      struct dma_coherent_mem *mem)
99 {
100 	if (!dev)
101 		return -ENODEV;
102 
103 	if (dev->dma_mem)
104 		return -EBUSY;
105 
106 	dev->dma_mem = mem;
107 	return 0;
108 }
109 
110 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
111 				dma_addr_t device_addr, size_t size)
112 {
113 	struct dma_coherent_mem *mem;
114 	int ret;
115 
116 	ret = dma_init_coherent_memory(phys_addr, device_addr, size, &mem);
117 	if (ret)
118 		return ret;
119 
120 	ret = dma_assign_coherent_memory(dev, mem);
121 	if (ret)
122 		dma_release_coherent_memory(mem);
123 	return ret;
124 }
125 
126 static void *__dma_alloc_from_coherent(struct device *dev,
127 				       struct dma_coherent_mem *mem,
128 				       ssize_t size, dma_addr_t *dma_handle)
129 {
130 	int order = get_order(size);
131 	unsigned long flags;
132 	int pageno;
133 	void *ret;
134 
135 	spin_lock_irqsave(&mem->spinlock, flags);
136 
137 	if (unlikely(size > ((dma_addr_t)mem->size << PAGE_SHIFT)))
138 		goto err;
139 
140 	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
141 	if (unlikely(pageno < 0))
142 		goto err;
143 
144 	/*
145 	 * Memory was found in the coherent area.
146 	 */
147 	*dma_handle = dma_get_device_base(dev, mem) +
148 			((dma_addr_t)pageno << PAGE_SHIFT);
149 	ret = mem->virt_base + ((dma_addr_t)pageno << PAGE_SHIFT);
150 	spin_unlock_irqrestore(&mem->spinlock, flags);
151 	memset(ret, 0, size);
152 	return ret;
153 err:
154 	spin_unlock_irqrestore(&mem->spinlock, flags);
155 	return NULL;
156 }
157 
158 /**
159  * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
160  * @dev:	device from which we allocate memory
161  * @size:	size of requested memory area
162  * @dma_handle:	This will be filled with the correct dma handle
163  * @ret:	This pointer will be filled with the virtual address
164  *		to allocated area.
165  *
166  * This function should be only called from per-arch dma_alloc_coherent()
167  * to support allocation from per-device coherent memory pools.
168  *
169  * Returns 0 if dma_alloc_coherent should continue with allocating from
170  * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
171  */
172 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
173 		dma_addr_t *dma_handle, void **ret)
174 {
175 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
176 
177 	if (!mem)
178 		return 0;
179 
180 	*ret = __dma_alloc_from_coherent(dev, mem, size, dma_handle);
181 	return 1;
182 }
183 
184 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
185 				     dma_addr_t *dma_handle)
186 {
187 	if (!dma_coherent_default_memory)
188 		return NULL;
189 
190 	return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size,
191 					 dma_handle);
192 }
193 
194 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
195 				       int order, void *vaddr)
196 {
197 	if (mem && vaddr >= mem->virt_base && vaddr <
198 		   (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
199 		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
200 		unsigned long flags;
201 
202 		spin_lock_irqsave(&mem->spinlock, flags);
203 		bitmap_release_region(mem->bitmap, page, order);
204 		spin_unlock_irqrestore(&mem->spinlock, flags);
205 		return 1;
206 	}
207 	return 0;
208 }
209 
210 /**
211  * dma_release_from_dev_coherent() - free memory to device coherent memory pool
212  * @dev:	device from which the memory was allocated
213  * @order:	the order of pages allocated
214  * @vaddr:	virtual address of allocated pages
215  *
216  * This checks whether the memory was allocated from the per-device
217  * coherent memory pool and if so, releases that memory.
218  *
219  * Returns 1 if we correctly released the memory, or 0 if the caller should
220  * proceed with releasing memory from generic pools.
221  */
222 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
223 {
224 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
225 
226 	return __dma_release_from_coherent(mem, order, vaddr);
227 }
228 
229 int dma_release_from_global_coherent(int order, void *vaddr)
230 {
231 	if (!dma_coherent_default_memory)
232 		return 0;
233 
234 	return __dma_release_from_coherent(dma_coherent_default_memory, order,
235 			vaddr);
236 }
237 
238 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
239 		struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
240 {
241 	if (mem && vaddr >= mem->virt_base && vaddr + size <=
242 		   (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
243 		unsigned long off = vma->vm_pgoff;
244 		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
245 		unsigned long user_count = vma_pages(vma);
246 		int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
247 
248 		*ret = -ENXIO;
249 		if (off < count && user_count <= count - off) {
250 			unsigned long pfn = mem->pfn_base + start + off;
251 			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
252 					       user_count << PAGE_SHIFT,
253 					       vma->vm_page_prot);
254 		}
255 		return 1;
256 	}
257 	return 0;
258 }
259 
260 /**
261  * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
262  * @dev:	device from which the memory was allocated
263  * @vma:	vm_area for the userspace memory
264  * @vaddr:	cpu address returned by dma_alloc_from_dev_coherent
265  * @size:	size of the memory buffer allocated
266  * @ret:	result from remap_pfn_range()
267  *
268  * This checks whether the memory was allocated from the per-device
269  * coherent memory pool and if so, maps that memory to the provided vma.
270  *
271  * Returns 1 if @vaddr belongs to the device coherent pool and the caller
272  * should return @ret, or 0 if they should proceed with mapping memory from
273  * generic areas.
274  */
275 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
276 			   void *vaddr, size_t size, int *ret)
277 {
278 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
279 
280 	return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
281 }
282 
283 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
284 				   size_t size, int *ret)
285 {
286 	if (!dma_coherent_default_memory)
287 		return 0;
288 
289 	return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
290 					vaddr, size, ret);
291 }
292 
293 /*
294  * Support for reserved memory regions defined in device tree
295  */
296 #ifdef CONFIG_OF_RESERVED_MEM
297 #include <linux/of.h>
298 #include <linux/of_fdt.h>
299 #include <linux/of_reserved_mem.h>
300 
301 static struct reserved_mem *dma_reserved_default_memory __initdata;
302 
303 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
304 {
305 	struct dma_coherent_mem *mem = rmem->priv;
306 	int ret;
307 
308 	if (!mem) {
309 		ret = dma_init_coherent_memory(rmem->base, rmem->base,
310 					       rmem->size, &mem);
311 		if (ret) {
312 			pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
313 				&rmem->base, (unsigned long)rmem->size / SZ_1M);
314 			return ret;
315 		}
316 	}
317 	mem->use_dev_dma_pfn_offset = true;
318 	rmem->priv = mem;
319 	dma_assign_coherent_memory(dev, mem);
320 	return 0;
321 }
322 
323 static void rmem_dma_device_release(struct reserved_mem *rmem,
324 				    struct device *dev)
325 {
326 	if (dev)
327 		dev->dma_mem = NULL;
328 }
329 
330 static const struct reserved_mem_ops rmem_dma_ops = {
331 	.device_init	= rmem_dma_device_init,
332 	.device_release	= rmem_dma_device_release,
333 };
334 
335 static int __init rmem_dma_setup(struct reserved_mem *rmem)
336 {
337 	unsigned long node = rmem->fdt_node;
338 
339 	if (of_get_flat_dt_prop(node, "reusable", NULL))
340 		return -EINVAL;
341 
342 #ifdef CONFIG_ARM
343 	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
344 		pr_err("Reserved memory: regions without no-map are not yet supported\n");
345 		return -EINVAL;
346 	}
347 
348 	if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
349 		WARN(dma_reserved_default_memory,
350 		     "Reserved memory: region for default DMA coherent area is redefined\n");
351 		dma_reserved_default_memory = rmem;
352 	}
353 #endif
354 
355 	rmem->ops = &rmem_dma_ops;
356 	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
357 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
358 	return 0;
359 }
360 
361 static int __init dma_init_reserved_memory(void)
362 {
363 	const struct reserved_mem_ops *ops;
364 	int ret;
365 
366 	if (!dma_reserved_default_memory)
367 		return -ENOMEM;
368 
369 	ops = dma_reserved_default_memory->ops;
370 
371 	/*
372 	 * We rely on rmem_dma_device_init() does not propagate error of
373 	 * dma_assign_coherent_memory() for "NULL" device.
374 	 */
375 	ret = ops->device_init(dma_reserved_default_memory, NULL);
376 
377 	if (!ret) {
378 		dma_coherent_default_memory = dma_reserved_default_memory->priv;
379 		pr_info("DMA: default coherent area is set\n");
380 	}
381 
382 	return ret;
383 }
384 
385 core_initcall(dma_init_reserved_memory);
386 
387 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
388 #endif
389