1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/types.h> 16 #include <linux/string.h> 17 #include <linux/kernel.h> 18 #include <linux/kmsg_dump.h> 19 #include <linux/reboot.h> 20 #include <linux/sched.h> 21 #include <linux/sysrq.h> 22 #include <linux/smp.h> 23 #include <linux/utsname.h> 24 #include <linux/vmalloc.h> 25 #include <linux/atomic.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/mm.h> 29 #include <linux/init.h> 30 #include <linux/kallsyms.h> 31 #include <linux/kgdb.h> 32 #include <linux/kdb.h> 33 #include <linux/notifier.h> 34 #include <linux/interrupt.h> 35 #include <linux/delay.h> 36 #include <linux/nmi.h> 37 #include <linux/time.h> 38 #include <linux/ptrace.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/kdebug.h> 42 #include <linux/proc_fs.h> 43 #include <linux/uaccess.h> 44 #include <linux/slab.h> 45 #include "kdb_private.h" 46 47 #undef MODULE_PARAM_PREFIX 48 #define MODULE_PARAM_PREFIX "kdb." 49 50 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE; 51 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600); 52 53 char kdb_grep_string[KDB_GREP_STRLEN]; 54 int kdb_grepping_flag; 55 EXPORT_SYMBOL(kdb_grepping_flag); 56 int kdb_grep_leading; 57 int kdb_grep_trailing; 58 59 /* 60 * Kernel debugger state flags 61 */ 62 int kdb_flags; 63 64 /* 65 * kdb_lock protects updates to kdb_initial_cpu. Used to 66 * single thread processors through the kernel debugger. 67 */ 68 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 69 int kdb_nextline = 1; 70 int kdb_state; /* General KDB state */ 71 72 struct task_struct *kdb_current_task; 73 EXPORT_SYMBOL(kdb_current_task); 74 struct pt_regs *kdb_current_regs; 75 76 const char *kdb_diemsg; 77 static int kdb_go_count; 78 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 79 static unsigned int kdb_continue_catastrophic = 80 CONFIG_KDB_CONTINUE_CATASTROPHIC; 81 #else 82 static unsigned int kdb_continue_catastrophic; 83 #endif 84 85 /* kdb_commands describes the available commands. */ 86 static kdbtab_t *kdb_commands; 87 #define KDB_BASE_CMD_MAX 50 88 static int kdb_max_commands = KDB_BASE_CMD_MAX; 89 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX]; 90 #define for_each_kdbcmd(cmd, num) \ 91 for ((cmd) = kdb_base_commands, (num) = 0; \ 92 num < kdb_max_commands; \ 93 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++) 94 95 typedef struct _kdbmsg { 96 int km_diag; /* kdb diagnostic */ 97 char *km_msg; /* Corresponding message text */ 98 } kdbmsg_t; 99 100 #define KDBMSG(msgnum, text) \ 101 { KDB_##msgnum, text } 102 103 static kdbmsg_t kdbmsgs[] = { 104 KDBMSG(NOTFOUND, "Command Not Found"), 105 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 106 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 107 "8 is only allowed on 64 bit systems"), 108 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 109 KDBMSG(NOTENV, "Cannot find environment variable"), 110 KDBMSG(NOENVVALUE, "Environment variable should have value"), 111 KDBMSG(NOTIMP, "Command not implemented"), 112 KDBMSG(ENVFULL, "Environment full"), 113 KDBMSG(ENVBUFFULL, "Environment buffer full"), 114 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 115 #ifdef CONFIG_CPU_XSCALE 116 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 117 #else 118 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 119 #endif 120 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 121 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 122 KDBMSG(BADMODE, "Invalid IDMODE"), 123 KDBMSG(BADINT, "Illegal numeric value"), 124 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 125 KDBMSG(BADREG, "Invalid register name"), 126 KDBMSG(BADCPUNUM, "Invalid cpu number"), 127 KDBMSG(BADLENGTH, "Invalid length field"), 128 KDBMSG(NOBP, "No Breakpoint exists"), 129 KDBMSG(BADADDR, "Invalid address"), 130 KDBMSG(NOPERM, "Permission denied"), 131 }; 132 #undef KDBMSG 133 134 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs); 135 136 137 /* 138 * Initial environment. This is all kept static and local to 139 * this file. We don't want to rely on the memory allocation 140 * mechanisms in the kernel, so we use a very limited allocate-only 141 * heap for new and altered environment variables. The entire 142 * environment is limited to a fixed number of entries (add more 143 * to __env[] if required) and a fixed amount of heap (add more to 144 * KDB_ENVBUFSIZE if required). 145 */ 146 147 static char *__env[] = { 148 #if defined(CONFIG_SMP) 149 "PROMPT=[%d]kdb> ", 150 #else 151 "PROMPT=kdb> ", 152 #endif 153 "MOREPROMPT=more> ", 154 "RADIX=16", 155 "MDCOUNT=8", /* lines of md output */ 156 KDB_PLATFORM_ENV, 157 "DTABCOUNT=30", 158 "NOSECT=1", 159 (char *)0, 160 (char *)0, 161 (char *)0, 162 (char *)0, 163 (char *)0, 164 (char *)0, 165 (char *)0, 166 (char *)0, 167 (char *)0, 168 (char *)0, 169 (char *)0, 170 (char *)0, 171 (char *)0, 172 (char *)0, 173 (char *)0, 174 (char *)0, 175 (char *)0, 176 (char *)0, 177 (char *)0, 178 (char *)0, 179 (char *)0, 180 (char *)0, 181 (char *)0, 182 (char *)0, 183 }; 184 185 static const int __nenv = ARRAY_SIZE(__env); 186 187 struct task_struct *kdb_curr_task(int cpu) 188 { 189 struct task_struct *p = curr_task(cpu); 190 #ifdef _TIF_MCA_INIT 191 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 192 p = krp->p; 193 #endif 194 return p; 195 } 196 197 /* 198 * Check whether the flags of the current command and the permissions 199 * of the kdb console has allow a command to be run. 200 */ 201 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions, 202 bool no_args) 203 { 204 /* permissions comes from userspace so needs massaging slightly */ 205 permissions &= KDB_ENABLE_MASK; 206 permissions |= KDB_ENABLE_ALWAYS_SAFE; 207 208 /* some commands change group when launched with no arguments */ 209 if (no_args) 210 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT; 211 212 flags |= KDB_ENABLE_ALL; 213 214 return permissions & flags; 215 } 216 217 /* 218 * kdbgetenv - This function will return the character string value of 219 * an environment variable. 220 * Parameters: 221 * match A character string representing an environment variable. 222 * Returns: 223 * NULL No environment variable matches 'match' 224 * char* Pointer to string value of environment variable. 225 */ 226 char *kdbgetenv(const char *match) 227 { 228 char **ep = __env; 229 int matchlen = strlen(match); 230 int i; 231 232 for (i = 0; i < __nenv; i++) { 233 char *e = *ep++; 234 235 if (!e) 236 continue; 237 238 if ((strncmp(match, e, matchlen) == 0) 239 && ((e[matchlen] == '\0') 240 || (e[matchlen] == '='))) { 241 char *cp = strchr(e, '='); 242 return cp ? ++cp : ""; 243 } 244 } 245 return NULL; 246 } 247 248 /* 249 * kdballocenv - This function is used to allocate bytes for 250 * environment entries. 251 * Parameters: 252 * match A character string representing a numeric value 253 * Outputs: 254 * *value the unsigned long representation of the env variable 'match' 255 * Returns: 256 * Zero on success, a kdb diagnostic on failure. 257 * Remarks: 258 * We use a static environment buffer (envbuffer) to hold the values 259 * of dynamically generated environment variables (see kdb_set). Buffer 260 * space once allocated is never free'd, so over time, the amount of space 261 * (currently 512 bytes) will be exhausted if env variables are changed 262 * frequently. 263 */ 264 static char *kdballocenv(size_t bytes) 265 { 266 #define KDB_ENVBUFSIZE 512 267 static char envbuffer[KDB_ENVBUFSIZE]; 268 static int envbufsize; 269 char *ep = NULL; 270 271 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 272 ep = &envbuffer[envbufsize]; 273 envbufsize += bytes; 274 } 275 return ep; 276 } 277 278 /* 279 * kdbgetulenv - This function will return the value of an unsigned 280 * long-valued environment variable. 281 * Parameters: 282 * match A character string representing a numeric value 283 * Outputs: 284 * *value the unsigned long represntation of the env variable 'match' 285 * Returns: 286 * Zero on success, a kdb diagnostic on failure. 287 */ 288 static int kdbgetulenv(const char *match, unsigned long *value) 289 { 290 char *ep; 291 292 ep = kdbgetenv(match); 293 if (!ep) 294 return KDB_NOTENV; 295 if (strlen(ep) == 0) 296 return KDB_NOENVVALUE; 297 298 *value = simple_strtoul(ep, NULL, 0); 299 300 return 0; 301 } 302 303 /* 304 * kdbgetintenv - This function will return the value of an 305 * integer-valued environment variable. 306 * Parameters: 307 * match A character string representing an integer-valued env variable 308 * Outputs: 309 * *value the integer representation of the environment variable 'match' 310 * Returns: 311 * Zero on success, a kdb diagnostic on failure. 312 */ 313 int kdbgetintenv(const char *match, int *value) 314 { 315 unsigned long val; 316 int diag; 317 318 diag = kdbgetulenv(match, &val); 319 if (!diag) 320 *value = (int) val; 321 return diag; 322 } 323 324 /* 325 * kdbgetularg - This function will convert a numeric string into an 326 * unsigned long value. 327 * Parameters: 328 * arg A character string representing a numeric value 329 * Outputs: 330 * *value the unsigned long represntation of arg. 331 * Returns: 332 * Zero on success, a kdb diagnostic on failure. 333 */ 334 int kdbgetularg(const char *arg, unsigned long *value) 335 { 336 char *endp; 337 unsigned long val; 338 339 val = simple_strtoul(arg, &endp, 0); 340 341 if (endp == arg) { 342 /* 343 * Also try base 16, for us folks too lazy to type the 344 * leading 0x... 345 */ 346 val = simple_strtoul(arg, &endp, 16); 347 if (endp == arg) 348 return KDB_BADINT; 349 } 350 351 *value = val; 352 353 return 0; 354 } 355 356 int kdbgetu64arg(const char *arg, u64 *value) 357 { 358 char *endp; 359 u64 val; 360 361 val = simple_strtoull(arg, &endp, 0); 362 363 if (endp == arg) { 364 365 val = simple_strtoull(arg, &endp, 16); 366 if (endp == arg) 367 return KDB_BADINT; 368 } 369 370 *value = val; 371 372 return 0; 373 } 374 375 /* 376 * kdb_set - This function implements the 'set' command. Alter an 377 * existing environment variable or create a new one. 378 */ 379 int kdb_set(int argc, const char **argv) 380 { 381 int i; 382 char *ep; 383 size_t varlen, vallen; 384 385 /* 386 * we can be invoked two ways: 387 * set var=value argv[1]="var", argv[2]="value" 388 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 389 * - if the latter, shift 'em down. 390 */ 391 if (argc == 3) { 392 argv[2] = argv[3]; 393 argc--; 394 } 395 396 if (argc != 2) 397 return KDB_ARGCOUNT; 398 399 /* 400 * Check for internal variables 401 */ 402 if (strcmp(argv[1], "KDBDEBUG") == 0) { 403 unsigned int debugflags; 404 char *cp; 405 406 debugflags = simple_strtoul(argv[2], &cp, 0); 407 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 408 kdb_printf("kdb: illegal debug flags '%s'\n", 409 argv[2]); 410 return 0; 411 } 412 kdb_flags = (kdb_flags & 413 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT)) 414 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 415 416 return 0; 417 } 418 419 /* 420 * Tokenizer squashed the '=' sign. argv[1] is variable 421 * name, argv[2] = value. 422 */ 423 varlen = strlen(argv[1]); 424 vallen = strlen(argv[2]); 425 ep = kdballocenv(varlen + vallen + 2); 426 if (ep == (char *)0) 427 return KDB_ENVBUFFULL; 428 429 sprintf(ep, "%s=%s", argv[1], argv[2]); 430 431 ep[varlen+vallen+1] = '\0'; 432 433 for (i = 0; i < __nenv; i++) { 434 if (__env[i] 435 && ((strncmp(__env[i], argv[1], varlen) == 0) 436 && ((__env[i][varlen] == '\0') 437 || (__env[i][varlen] == '=')))) { 438 __env[i] = ep; 439 return 0; 440 } 441 } 442 443 /* 444 * Wasn't existing variable. Fit into slot. 445 */ 446 for (i = 0; i < __nenv-1; i++) { 447 if (__env[i] == (char *)0) { 448 __env[i] = ep; 449 return 0; 450 } 451 } 452 453 return KDB_ENVFULL; 454 } 455 456 static int kdb_check_regs(void) 457 { 458 if (!kdb_current_regs) { 459 kdb_printf("No current kdb registers." 460 " You may need to select another task\n"); 461 return KDB_BADREG; 462 } 463 return 0; 464 } 465 466 /* 467 * kdbgetaddrarg - This function is responsible for parsing an 468 * address-expression and returning the value of the expression, 469 * symbol name, and offset to the caller. 470 * 471 * The argument may consist of a numeric value (decimal or 472 * hexidecimal), a symbol name, a register name (preceded by the 473 * percent sign), an environment variable with a numeric value 474 * (preceded by a dollar sign) or a simple arithmetic expression 475 * consisting of a symbol name, +/-, and a numeric constant value 476 * (offset). 477 * Parameters: 478 * argc - count of arguments in argv 479 * argv - argument vector 480 * *nextarg - index to next unparsed argument in argv[] 481 * regs - Register state at time of KDB entry 482 * Outputs: 483 * *value - receives the value of the address-expression 484 * *offset - receives the offset specified, if any 485 * *name - receives the symbol name, if any 486 * *nextarg - index to next unparsed argument in argv[] 487 * Returns: 488 * zero is returned on success, a kdb diagnostic code is 489 * returned on error. 490 */ 491 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 492 unsigned long *value, long *offset, 493 char **name) 494 { 495 unsigned long addr; 496 unsigned long off = 0; 497 int positive; 498 int diag; 499 int found = 0; 500 char *symname; 501 char symbol = '\0'; 502 char *cp; 503 kdb_symtab_t symtab; 504 505 /* 506 * If the enable flags prohibit both arbitrary memory access 507 * and flow control then there are no reasonable grounds to 508 * provide symbol lookup. 509 */ 510 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL, 511 kdb_cmd_enabled, false)) 512 return KDB_NOPERM; 513 514 /* 515 * Process arguments which follow the following syntax: 516 * 517 * symbol | numeric-address [+/- numeric-offset] 518 * %register 519 * $environment-variable 520 */ 521 522 if (*nextarg > argc) 523 return KDB_ARGCOUNT; 524 525 symname = (char *)argv[*nextarg]; 526 527 /* 528 * If there is no whitespace between the symbol 529 * or address and the '+' or '-' symbols, we 530 * remember the character and replace it with a 531 * null so the symbol/value can be properly parsed 532 */ 533 cp = strpbrk(symname, "+-"); 534 if (cp != NULL) { 535 symbol = *cp; 536 *cp++ = '\0'; 537 } 538 539 if (symname[0] == '$') { 540 diag = kdbgetulenv(&symname[1], &addr); 541 if (diag) 542 return diag; 543 } else if (symname[0] == '%') { 544 diag = kdb_check_regs(); 545 if (diag) 546 return diag; 547 /* Implement register values with % at a later time as it is 548 * arch optional. 549 */ 550 return KDB_NOTIMP; 551 } else { 552 found = kdbgetsymval(symname, &symtab); 553 if (found) { 554 addr = symtab.sym_start; 555 } else { 556 diag = kdbgetularg(argv[*nextarg], &addr); 557 if (diag) 558 return diag; 559 } 560 } 561 562 if (!found) 563 found = kdbnearsym(addr, &symtab); 564 565 (*nextarg)++; 566 567 if (name) 568 *name = symname; 569 if (value) 570 *value = addr; 571 if (offset && name && *name) 572 *offset = addr - symtab.sym_start; 573 574 if ((*nextarg > argc) 575 && (symbol == '\0')) 576 return 0; 577 578 /* 579 * check for +/- and offset 580 */ 581 582 if (symbol == '\0') { 583 if ((argv[*nextarg][0] != '+') 584 && (argv[*nextarg][0] != '-')) { 585 /* 586 * Not our argument. Return. 587 */ 588 return 0; 589 } else { 590 positive = (argv[*nextarg][0] == '+'); 591 (*nextarg)++; 592 } 593 } else 594 positive = (symbol == '+'); 595 596 /* 597 * Now there must be an offset! 598 */ 599 if ((*nextarg > argc) 600 && (symbol == '\0')) { 601 return KDB_INVADDRFMT; 602 } 603 604 if (!symbol) { 605 cp = (char *)argv[*nextarg]; 606 (*nextarg)++; 607 } 608 609 diag = kdbgetularg(cp, &off); 610 if (diag) 611 return diag; 612 613 if (!positive) 614 off = -off; 615 616 if (offset) 617 *offset += off; 618 619 if (value) 620 *value += off; 621 622 return 0; 623 } 624 625 static void kdb_cmderror(int diag) 626 { 627 int i; 628 629 if (diag >= 0) { 630 kdb_printf("no error detected (diagnostic is %d)\n", diag); 631 return; 632 } 633 634 for (i = 0; i < __nkdb_err; i++) { 635 if (kdbmsgs[i].km_diag == diag) { 636 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 637 return; 638 } 639 } 640 641 kdb_printf("Unknown diag %d\n", -diag); 642 } 643 644 /* 645 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 646 * command which defines one command as a set of other commands, 647 * terminated by endefcmd. kdb_defcmd processes the initial 648 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 649 * the following commands until 'endefcmd'. 650 * Inputs: 651 * argc argument count 652 * argv argument vector 653 * Returns: 654 * zero for success, a kdb diagnostic if error 655 */ 656 struct defcmd_set { 657 int count; 658 int usable; 659 char *name; 660 char *usage; 661 char *help; 662 char **command; 663 }; 664 static struct defcmd_set *defcmd_set; 665 static int defcmd_set_count; 666 static int defcmd_in_progress; 667 668 /* Forward references */ 669 static int kdb_exec_defcmd(int argc, const char **argv); 670 671 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 672 { 673 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; 674 char **save_command = s->command; 675 if (strcmp(argv0, "endefcmd") == 0) { 676 defcmd_in_progress = 0; 677 if (!s->count) 678 s->usable = 0; 679 if (s->usable) 680 /* macros are always safe because when executed each 681 * internal command re-enters kdb_parse() and is 682 * safety checked individually. 683 */ 684 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage, 685 s->help, 0, 686 KDB_ENABLE_ALWAYS_SAFE); 687 return 0; 688 } 689 if (!s->usable) 690 return KDB_NOTIMP; 691 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB); 692 if (!s->command) { 693 kdb_printf("Could not allocate new kdb_defcmd table for %s\n", 694 cmdstr); 695 s->usable = 0; 696 return KDB_NOTIMP; 697 } 698 memcpy(s->command, save_command, s->count * sizeof(*(s->command))); 699 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); 700 kfree(save_command); 701 return 0; 702 } 703 704 static int kdb_defcmd(int argc, const char **argv) 705 { 706 struct defcmd_set *save_defcmd_set = defcmd_set, *s; 707 if (defcmd_in_progress) { 708 kdb_printf("kdb: nested defcmd detected, assuming missing " 709 "endefcmd\n"); 710 kdb_defcmd2("endefcmd", "endefcmd"); 711 } 712 if (argc == 0) { 713 int i; 714 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { 715 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, 716 s->usage, s->help); 717 for (i = 0; i < s->count; ++i) 718 kdb_printf("%s", s->command[i]); 719 kdb_printf("endefcmd\n"); 720 } 721 return 0; 722 } 723 if (argc != 3) 724 return KDB_ARGCOUNT; 725 if (in_dbg_master()) { 726 kdb_printf("Command only available during kdb_init()\n"); 727 return KDB_NOTIMP; 728 } 729 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set), 730 GFP_KDB); 731 if (!defcmd_set) 732 goto fail_defcmd; 733 memcpy(defcmd_set, save_defcmd_set, 734 defcmd_set_count * sizeof(*defcmd_set)); 735 s = defcmd_set + defcmd_set_count; 736 memset(s, 0, sizeof(*s)); 737 s->usable = 1; 738 s->name = kdb_strdup(argv[1], GFP_KDB); 739 if (!s->name) 740 goto fail_name; 741 s->usage = kdb_strdup(argv[2], GFP_KDB); 742 if (!s->usage) 743 goto fail_usage; 744 s->help = kdb_strdup(argv[3], GFP_KDB); 745 if (!s->help) 746 goto fail_help; 747 if (s->usage[0] == '"') { 748 strcpy(s->usage, argv[2]+1); 749 s->usage[strlen(s->usage)-1] = '\0'; 750 } 751 if (s->help[0] == '"') { 752 strcpy(s->help, argv[3]+1); 753 s->help[strlen(s->help)-1] = '\0'; 754 } 755 ++defcmd_set_count; 756 defcmd_in_progress = 1; 757 kfree(save_defcmd_set); 758 return 0; 759 fail_help: 760 kfree(s->usage); 761 fail_usage: 762 kfree(s->name); 763 fail_name: 764 kfree(defcmd_set); 765 fail_defcmd: 766 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]); 767 defcmd_set = save_defcmd_set; 768 return KDB_NOTIMP; 769 } 770 771 /* 772 * kdb_exec_defcmd - Execute the set of commands associated with this 773 * defcmd name. 774 * Inputs: 775 * argc argument count 776 * argv argument vector 777 * Returns: 778 * zero for success, a kdb diagnostic if error 779 */ 780 static int kdb_exec_defcmd(int argc, const char **argv) 781 { 782 int i, ret; 783 struct defcmd_set *s; 784 if (argc != 0) 785 return KDB_ARGCOUNT; 786 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { 787 if (strcmp(s->name, argv[0]) == 0) 788 break; 789 } 790 if (i == defcmd_set_count) { 791 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 792 argv[0]); 793 return KDB_NOTIMP; 794 } 795 for (i = 0; i < s->count; ++i) { 796 /* Recursive use of kdb_parse, do not use argv after 797 * this point */ 798 argv = NULL; 799 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); 800 ret = kdb_parse(s->command[i]); 801 if (ret) 802 return ret; 803 } 804 return 0; 805 } 806 807 /* Command history */ 808 #define KDB_CMD_HISTORY_COUNT 32 809 #define CMD_BUFLEN 200 /* kdb_printf: max printline 810 * size == 256 */ 811 static unsigned int cmd_head, cmd_tail; 812 static unsigned int cmdptr; 813 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 814 static char cmd_cur[CMD_BUFLEN]; 815 816 /* 817 * The "str" argument may point to something like | grep xyz 818 */ 819 static void parse_grep(const char *str) 820 { 821 int len; 822 char *cp = (char *)str, *cp2; 823 824 /* sanity check: we should have been called with the \ first */ 825 if (*cp != '|') 826 return; 827 cp++; 828 while (isspace(*cp)) 829 cp++; 830 if (strncmp(cp, "grep ", 5)) { 831 kdb_printf("invalid 'pipe', see grephelp\n"); 832 return; 833 } 834 cp += 5; 835 while (isspace(*cp)) 836 cp++; 837 cp2 = strchr(cp, '\n'); 838 if (cp2) 839 *cp2 = '\0'; /* remove the trailing newline */ 840 len = strlen(cp); 841 if (len == 0) { 842 kdb_printf("invalid 'pipe', see grephelp\n"); 843 return; 844 } 845 /* now cp points to a nonzero length search string */ 846 if (*cp == '"') { 847 /* allow it be "x y z" by removing the "'s - there must 848 be two of them */ 849 cp++; 850 cp2 = strchr(cp, '"'); 851 if (!cp2) { 852 kdb_printf("invalid quoted string, see grephelp\n"); 853 return; 854 } 855 *cp2 = '\0'; /* end the string where the 2nd " was */ 856 } 857 kdb_grep_leading = 0; 858 if (*cp == '^') { 859 kdb_grep_leading = 1; 860 cp++; 861 } 862 len = strlen(cp); 863 kdb_grep_trailing = 0; 864 if (*(cp+len-1) == '$') { 865 kdb_grep_trailing = 1; 866 *(cp+len-1) = '\0'; 867 } 868 len = strlen(cp); 869 if (!len) 870 return; 871 if (len >= KDB_GREP_STRLEN) { 872 kdb_printf("search string too long\n"); 873 return; 874 } 875 strcpy(kdb_grep_string, cp); 876 kdb_grepping_flag++; 877 return; 878 } 879 880 /* 881 * kdb_parse - Parse the command line, search the command table for a 882 * matching command and invoke the command function. This 883 * function may be called recursively, if it is, the second call 884 * will overwrite argv and cbuf. It is the caller's 885 * responsibility to save their argv if they recursively call 886 * kdb_parse(). 887 * Parameters: 888 * cmdstr The input command line to be parsed. 889 * regs The registers at the time kdb was entered. 890 * Returns: 891 * Zero for success, a kdb diagnostic if failure. 892 * Remarks: 893 * Limited to 20 tokens. 894 * 895 * Real rudimentary tokenization. Basically only whitespace 896 * is considered a token delimeter (but special consideration 897 * is taken of the '=' sign as used by the 'set' command). 898 * 899 * The algorithm used to tokenize the input string relies on 900 * there being at least one whitespace (or otherwise useless) 901 * character between tokens as the character immediately following 902 * the token is altered in-place to a null-byte to terminate the 903 * token string. 904 */ 905 906 #define MAXARGC 20 907 908 int kdb_parse(const char *cmdstr) 909 { 910 static char *argv[MAXARGC]; 911 static int argc; 912 static char cbuf[CMD_BUFLEN+2]; 913 char *cp; 914 char *cpp, quoted; 915 kdbtab_t *tp; 916 int i, escaped, ignore_errors = 0, check_grep = 0; 917 918 /* 919 * First tokenize the command string. 920 */ 921 cp = (char *)cmdstr; 922 923 if (KDB_FLAG(CMD_INTERRUPT)) { 924 /* Previous command was interrupted, newline must not 925 * repeat the command */ 926 KDB_FLAG_CLEAR(CMD_INTERRUPT); 927 KDB_STATE_SET(PAGER); 928 argc = 0; /* no repeat */ 929 } 930 931 if (*cp != '\n' && *cp != '\0') { 932 argc = 0; 933 cpp = cbuf; 934 while (*cp) { 935 /* skip whitespace */ 936 while (isspace(*cp)) 937 cp++; 938 if ((*cp == '\0') || (*cp == '\n') || 939 (*cp == '#' && !defcmd_in_progress)) 940 break; 941 /* special case: check for | grep pattern */ 942 if (*cp == '|') { 943 check_grep++; 944 break; 945 } 946 if (cpp >= cbuf + CMD_BUFLEN) { 947 kdb_printf("kdb_parse: command buffer " 948 "overflow, command ignored\n%s\n", 949 cmdstr); 950 return KDB_NOTFOUND; 951 } 952 if (argc >= MAXARGC - 1) { 953 kdb_printf("kdb_parse: too many arguments, " 954 "command ignored\n%s\n", cmdstr); 955 return KDB_NOTFOUND; 956 } 957 argv[argc++] = cpp; 958 escaped = 0; 959 quoted = '\0'; 960 /* Copy to next unquoted and unescaped 961 * whitespace or '=' */ 962 while (*cp && *cp != '\n' && 963 (escaped || quoted || !isspace(*cp))) { 964 if (cpp >= cbuf + CMD_BUFLEN) 965 break; 966 if (escaped) { 967 escaped = 0; 968 *cpp++ = *cp++; 969 continue; 970 } 971 if (*cp == '\\') { 972 escaped = 1; 973 ++cp; 974 continue; 975 } 976 if (*cp == quoted) 977 quoted = '\0'; 978 else if (*cp == '\'' || *cp == '"') 979 quoted = *cp; 980 *cpp = *cp++; 981 if (*cpp == '=' && !quoted) 982 break; 983 ++cpp; 984 } 985 *cpp++ = '\0'; /* Squash a ws or '=' character */ 986 } 987 } 988 if (!argc) 989 return 0; 990 if (check_grep) 991 parse_grep(cp); 992 if (defcmd_in_progress) { 993 int result = kdb_defcmd2(cmdstr, argv[0]); 994 if (!defcmd_in_progress) { 995 argc = 0; /* avoid repeat on endefcmd */ 996 *(argv[0]) = '\0'; 997 } 998 return result; 999 } 1000 if (argv[0][0] == '-' && argv[0][1] && 1001 (argv[0][1] < '0' || argv[0][1] > '9')) { 1002 ignore_errors = 1; 1003 ++argv[0]; 1004 } 1005 1006 for_each_kdbcmd(tp, i) { 1007 if (tp->cmd_name) { 1008 /* 1009 * If this command is allowed to be abbreviated, 1010 * check to see if this is it. 1011 */ 1012 1013 if (tp->cmd_minlen 1014 && (strlen(argv[0]) <= tp->cmd_minlen)) { 1015 if (strncmp(argv[0], 1016 tp->cmd_name, 1017 tp->cmd_minlen) == 0) { 1018 break; 1019 } 1020 } 1021 1022 if (strcmp(argv[0], tp->cmd_name) == 0) 1023 break; 1024 } 1025 } 1026 1027 /* 1028 * If we don't find a command by this name, see if the first 1029 * few characters of this match any of the known commands. 1030 * e.g., md1c20 should match md. 1031 */ 1032 if (i == kdb_max_commands) { 1033 for_each_kdbcmd(tp, i) { 1034 if (tp->cmd_name) { 1035 if (strncmp(argv[0], 1036 tp->cmd_name, 1037 strlen(tp->cmd_name)) == 0) { 1038 break; 1039 } 1040 } 1041 } 1042 } 1043 1044 if (i < kdb_max_commands) { 1045 int result; 1046 1047 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1)) 1048 return KDB_NOPERM; 1049 1050 KDB_STATE_SET(CMD); 1051 result = (*tp->cmd_func)(argc-1, (const char **)argv); 1052 if (result && ignore_errors && result > KDB_CMD_GO) 1053 result = 0; 1054 KDB_STATE_CLEAR(CMD); 1055 1056 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS) 1057 return result; 1058 1059 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0; 1060 if (argv[argc]) 1061 *(argv[argc]) = '\0'; 1062 return result; 1063 } 1064 1065 /* 1066 * If the input with which we were presented does not 1067 * map to an existing command, attempt to parse it as an 1068 * address argument and display the result. Useful for 1069 * obtaining the address of a variable, or the nearest symbol 1070 * to an address contained in a register. 1071 */ 1072 { 1073 unsigned long value; 1074 char *name = NULL; 1075 long offset; 1076 int nextarg = 0; 1077 1078 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1079 &value, &offset, &name)) { 1080 return KDB_NOTFOUND; 1081 } 1082 1083 kdb_printf("%s = ", argv[0]); 1084 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1085 kdb_printf("\n"); 1086 return 0; 1087 } 1088 } 1089 1090 1091 static int handle_ctrl_cmd(char *cmd) 1092 { 1093 #define CTRL_P 16 1094 #define CTRL_N 14 1095 1096 /* initial situation */ 1097 if (cmd_head == cmd_tail) 1098 return 0; 1099 switch (*cmd) { 1100 case CTRL_P: 1101 if (cmdptr != cmd_tail) 1102 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT; 1103 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1104 return 1; 1105 case CTRL_N: 1106 if (cmdptr != cmd_head) 1107 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1108 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1109 return 1; 1110 } 1111 return 0; 1112 } 1113 1114 /* 1115 * kdb_reboot - This function implements the 'reboot' command. Reboot 1116 * the system immediately, or loop for ever on failure. 1117 */ 1118 static int kdb_reboot(int argc, const char **argv) 1119 { 1120 emergency_restart(); 1121 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1122 while (1) 1123 cpu_relax(); 1124 /* NOTREACHED */ 1125 return 0; 1126 } 1127 1128 static void kdb_dumpregs(struct pt_regs *regs) 1129 { 1130 int old_lvl = console_loglevel; 1131 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 1132 kdb_trap_printk++; 1133 show_regs(regs); 1134 kdb_trap_printk--; 1135 kdb_printf("\n"); 1136 console_loglevel = old_lvl; 1137 } 1138 1139 void kdb_set_current_task(struct task_struct *p) 1140 { 1141 kdb_current_task = p; 1142 1143 if (kdb_task_has_cpu(p)) { 1144 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1145 return; 1146 } 1147 kdb_current_regs = NULL; 1148 } 1149 1150 /* 1151 * kdb_local - The main code for kdb. This routine is invoked on a 1152 * specific processor, it is not global. The main kdb() routine 1153 * ensures that only one processor at a time is in this routine. 1154 * This code is called with the real reason code on the first 1155 * entry to a kdb session, thereafter it is called with reason 1156 * SWITCH, even if the user goes back to the original cpu. 1157 * Inputs: 1158 * reason The reason KDB was invoked 1159 * error The hardware-defined error code 1160 * regs The exception frame at time of fault/breakpoint. 1161 * db_result Result code from the break or debug point. 1162 * Returns: 1163 * 0 KDB was invoked for an event which it wasn't responsible 1164 * 1 KDB handled the event for which it was invoked. 1165 * KDB_CMD_GO User typed 'go'. 1166 * KDB_CMD_CPU User switched to another cpu. 1167 * KDB_CMD_SS Single step. 1168 */ 1169 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1170 kdb_dbtrap_t db_result) 1171 { 1172 char *cmdbuf; 1173 int diag; 1174 struct task_struct *kdb_current = 1175 kdb_curr_task(raw_smp_processor_id()); 1176 1177 KDB_DEBUG_STATE("kdb_local 1", reason); 1178 kdb_go_count = 0; 1179 if (reason == KDB_REASON_DEBUG) { 1180 /* special case below */ 1181 } else { 1182 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ", 1183 kdb_current, kdb_current ? kdb_current->pid : 0); 1184 #if defined(CONFIG_SMP) 1185 kdb_printf("on processor %d ", raw_smp_processor_id()); 1186 #endif 1187 } 1188 1189 switch (reason) { 1190 case KDB_REASON_DEBUG: 1191 { 1192 /* 1193 * If re-entering kdb after a single step 1194 * command, don't print the message. 1195 */ 1196 switch (db_result) { 1197 case KDB_DB_BPT: 1198 kdb_printf("\nEntering kdb (0x%p, pid %d) ", 1199 kdb_current, kdb_current->pid); 1200 #if defined(CONFIG_SMP) 1201 kdb_printf("on processor %d ", raw_smp_processor_id()); 1202 #endif 1203 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1204 instruction_pointer(regs)); 1205 break; 1206 case KDB_DB_SS: 1207 break; 1208 case KDB_DB_SSBPT: 1209 KDB_DEBUG_STATE("kdb_local 4", reason); 1210 return 1; /* kdba_db_trap did the work */ 1211 default: 1212 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1213 db_result); 1214 break; 1215 } 1216 1217 } 1218 break; 1219 case KDB_REASON_ENTER: 1220 if (KDB_STATE(KEYBOARD)) 1221 kdb_printf("due to Keyboard Entry\n"); 1222 else 1223 kdb_printf("due to KDB_ENTER()\n"); 1224 break; 1225 case KDB_REASON_KEYBOARD: 1226 KDB_STATE_SET(KEYBOARD); 1227 kdb_printf("due to Keyboard Entry\n"); 1228 break; 1229 case KDB_REASON_ENTER_SLAVE: 1230 /* drop through, slaves only get released via cpu switch */ 1231 case KDB_REASON_SWITCH: 1232 kdb_printf("due to cpu switch\n"); 1233 break; 1234 case KDB_REASON_OOPS: 1235 kdb_printf("Oops: %s\n", kdb_diemsg); 1236 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1237 instruction_pointer(regs)); 1238 kdb_dumpregs(regs); 1239 break; 1240 case KDB_REASON_SYSTEM_NMI: 1241 kdb_printf("due to System NonMaskable Interrupt\n"); 1242 break; 1243 case KDB_REASON_NMI: 1244 kdb_printf("due to NonMaskable Interrupt @ " 1245 kdb_machreg_fmt "\n", 1246 instruction_pointer(regs)); 1247 break; 1248 case KDB_REASON_SSTEP: 1249 case KDB_REASON_BREAK: 1250 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1251 reason == KDB_REASON_BREAK ? 1252 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1253 /* 1254 * Determine if this breakpoint is one that we 1255 * are interested in. 1256 */ 1257 if (db_result != KDB_DB_BPT) { 1258 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1259 db_result); 1260 KDB_DEBUG_STATE("kdb_local 6", reason); 1261 return 0; /* Not for us, dismiss it */ 1262 } 1263 break; 1264 case KDB_REASON_RECURSE: 1265 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1266 instruction_pointer(regs)); 1267 break; 1268 default: 1269 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1270 KDB_DEBUG_STATE("kdb_local 8", reason); 1271 return 0; /* Not for us, dismiss it */ 1272 } 1273 1274 while (1) { 1275 /* 1276 * Initialize pager context. 1277 */ 1278 kdb_nextline = 1; 1279 KDB_STATE_CLEAR(SUPPRESS); 1280 kdb_grepping_flag = 0; 1281 /* ensure the old search does not leak into '/' commands */ 1282 kdb_grep_string[0] = '\0'; 1283 1284 cmdbuf = cmd_cur; 1285 *cmdbuf = '\0'; 1286 *(cmd_hist[cmd_head]) = '\0'; 1287 1288 do_full_getstr: 1289 #if defined(CONFIG_SMP) 1290 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1291 raw_smp_processor_id()); 1292 #else 1293 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT")); 1294 #endif 1295 if (defcmd_in_progress) 1296 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); 1297 1298 /* 1299 * Fetch command from keyboard 1300 */ 1301 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1302 if (*cmdbuf != '\n') { 1303 if (*cmdbuf < 32) { 1304 if (cmdptr == cmd_head) { 1305 strncpy(cmd_hist[cmd_head], cmd_cur, 1306 CMD_BUFLEN); 1307 *(cmd_hist[cmd_head] + 1308 strlen(cmd_hist[cmd_head])-1) = '\0'; 1309 } 1310 if (!handle_ctrl_cmd(cmdbuf)) 1311 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1312 cmdbuf = cmd_cur; 1313 goto do_full_getstr; 1314 } else { 1315 strncpy(cmd_hist[cmd_head], cmd_cur, 1316 CMD_BUFLEN); 1317 } 1318 1319 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1320 if (cmd_head == cmd_tail) 1321 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1322 } 1323 1324 cmdptr = cmd_head; 1325 diag = kdb_parse(cmdbuf); 1326 if (diag == KDB_NOTFOUND) { 1327 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1328 diag = 0; 1329 } 1330 if (diag == KDB_CMD_GO 1331 || diag == KDB_CMD_CPU 1332 || diag == KDB_CMD_SS 1333 || diag == KDB_CMD_KGDB) 1334 break; 1335 1336 if (diag) 1337 kdb_cmderror(diag); 1338 } 1339 KDB_DEBUG_STATE("kdb_local 9", diag); 1340 return diag; 1341 } 1342 1343 1344 /* 1345 * kdb_print_state - Print the state data for the current processor 1346 * for debugging. 1347 * Inputs: 1348 * text Identifies the debug point 1349 * value Any integer value to be printed, e.g. reason code. 1350 */ 1351 void kdb_print_state(const char *text, int value) 1352 { 1353 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1354 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1355 kdb_state); 1356 } 1357 1358 /* 1359 * kdb_main_loop - After initial setup and assignment of the 1360 * controlling cpu, all cpus are in this loop. One cpu is in 1361 * control and will issue the kdb prompt, the others will spin 1362 * until 'go' or cpu switch. 1363 * 1364 * To get a consistent view of the kernel stacks for all 1365 * processes, this routine is invoked from the main kdb code via 1366 * an architecture specific routine. kdba_main_loop is 1367 * responsible for making the kernel stacks consistent for all 1368 * processes, there should be no difference between a blocked 1369 * process and a running process as far as kdb is concerned. 1370 * Inputs: 1371 * reason The reason KDB was invoked 1372 * error The hardware-defined error code 1373 * reason2 kdb's current reason code. 1374 * Initially error but can change 1375 * according to kdb state. 1376 * db_result Result code from break or debug point. 1377 * regs The exception frame at time of fault/breakpoint. 1378 * should always be valid. 1379 * Returns: 1380 * 0 KDB was invoked for an event which it wasn't responsible 1381 * 1 KDB handled the event for which it was invoked. 1382 */ 1383 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1384 kdb_dbtrap_t db_result, struct pt_regs *regs) 1385 { 1386 int result = 1; 1387 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1388 while (1) { 1389 /* 1390 * All processors except the one that is in control 1391 * will spin here. 1392 */ 1393 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1394 while (KDB_STATE(HOLD_CPU)) { 1395 /* state KDB is turned off by kdb_cpu to see if the 1396 * other cpus are still live, each cpu in this loop 1397 * turns it back on. 1398 */ 1399 if (!KDB_STATE(KDB)) 1400 KDB_STATE_SET(KDB); 1401 } 1402 1403 KDB_STATE_CLEAR(SUPPRESS); 1404 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1405 if (KDB_STATE(LEAVING)) 1406 break; /* Another cpu said 'go' */ 1407 /* Still using kdb, this processor is in control */ 1408 result = kdb_local(reason2, error, regs, db_result); 1409 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1410 1411 if (result == KDB_CMD_CPU) 1412 break; 1413 1414 if (result == KDB_CMD_SS) { 1415 KDB_STATE_SET(DOING_SS); 1416 break; 1417 } 1418 1419 if (result == KDB_CMD_KGDB) { 1420 if (!KDB_STATE(DOING_KGDB)) 1421 kdb_printf("Entering please attach debugger " 1422 "or use $D#44+ or $3#33\n"); 1423 break; 1424 } 1425 if (result && result != 1 && result != KDB_CMD_GO) 1426 kdb_printf("\nUnexpected kdb_local return code %d\n", 1427 result); 1428 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1429 break; 1430 } 1431 if (KDB_STATE(DOING_SS)) 1432 KDB_STATE_CLEAR(SSBPT); 1433 1434 /* Clean up any keyboard devices before leaving */ 1435 kdb_kbd_cleanup_state(); 1436 1437 return result; 1438 } 1439 1440 /* 1441 * kdb_mdr - This function implements the guts of the 'mdr', memory 1442 * read command. 1443 * mdr <addr arg>,<byte count> 1444 * Inputs: 1445 * addr Start address 1446 * count Number of bytes 1447 * Returns: 1448 * Always 0. Any errors are detected and printed by kdb_getarea. 1449 */ 1450 static int kdb_mdr(unsigned long addr, unsigned int count) 1451 { 1452 unsigned char c; 1453 while (count--) { 1454 if (kdb_getarea(c, addr)) 1455 return 0; 1456 kdb_printf("%02x", c); 1457 addr++; 1458 } 1459 kdb_printf("\n"); 1460 return 0; 1461 } 1462 1463 /* 1464 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1465 * 'md8' 'mdr' and 'mds' commands. 1466 * 1467 * md|mds [<addr arg> [<line count> [<radix>]]] 1468 * mdWcN [<addr arg> [<line count> [<radix>]]] 1469 * where W = is the width (1, 2, 4 or 8) and N is the count. 1470 * for eg., md1c20 reads 20 bytes, 1 at a time. 1471 * mdr <addr arg>,<byte count> 1472 */ 1473 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1474 int symbolic, int nosect, int bytesperword, 1475 int num, int repeat, int phys) 1476 { 1477 /* print just one line of data */ 1478 kdb_symtab_t symtab; 1479 char cbuf[32]; 1480 char *c = cbuf; 1481 int i; 1482 unsigned long word; 1483 1484 memset(cbuf, '\0', sizeof(cbuf)); 1485 if (phys) 1486 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1487 else 1488 kdb_printf(kdb_machreg_fmt0 " ", addr); 1489 1490 for (i = 0; i < num && repeat--; i++) { 1491 if (phys) { 1492 if (kdb_getphysword(&word, addr, bytesperword)) 1493 break; 1494 } else if (kdb_getword(&word, addr, bytesperword)) 1495 break; 1496 kdb_printf(fmtstr, word); 1497 if (symbolic) 1498 kdbnearsym(word, &symtab); 1499 else 1500 memset(&symtab, 0, sizeof(symtab)); 1501 if (symtab.sym_name) { 1502 kdb_symbol_print(word, &symtab, 0); 1503 if (!nosect) { 1504 kdb_printf("\n"); 1505 kdb_printf(" %s %s " 1506 kdb_machreg_fmt " " 1507 kdb_machreg_fmt " " 1508 kdb_machreg_fmt, symtab.mod_name, 1509 symtab.sec_name, symtab.sec_start, 1510 symtab.sym_start, symtab.sym_end); 1511 } 1512 addr += bytesperword; 1513 } else { 1514 union { 1515 u64 word; 1516 unsigned char c[8]; 1517 } wc; 1518 unsigned char *cp; 1519 #ifdef __BIG_ENDIAN 1520 cp = wc.c + 8 - bytesperword; 1521 #else 1522 cp = wc.c; 1523 #endif 1524 wc.word = word; 1525 #define printable_char(c) \ 1526 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1527 switch (bytesperword) { 1528 case 8: 1529 *c++ = printable_char(*cp++); 1530 *c++ = printable_char(*cp++); 1531 *c++ = printable_char(*cp++); 1532 *c++ = printable_char(*cp++); 1533 addr += 4; 1534 case 4: 1535 *c++ = printable_char(*cp++); 1536 *c++ = printable_char(*cp++); 1537 addr += 2; 1538 case 2: 1539 *c++ = printable_char(*cp++); 1540 addr++; 1541 case 1: 1542 *c++ = printable_char(*cp++); 1543 addr++; 1544 break; 1545 } 1546 #undef printable_char 1547 } 1548 } 1549 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1550 " ", cbuf); 1551 } 1552 1553 static int kdb_md(int argc, const char **argv) 1554 { 1555 static unsigned long last_addr; 1556 static int last_radix, last_bytesperword, last_repeat; 1557 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1558 int nosect = 0; 1559 char fmtchar, fmtstr[64]; 1560 unsigned long addr; 1561 unsigned long word; 1562 long offset = 0; 1563 int symbolic = 0; 1564 int valid = 0; 1565 int phys = 0; 1566 1567 kdbgetintenv("MDCOUNT", &mdcount); 1568 kdbgetintenv("RADIX", &radix); 1569 kdbgetintenv("BYTESPERWORD", &bytesperword); 1570 1571 /* Assume 'md <addr>' and start with environment values */ 1572 repeat = mdcount * 16 / bytesperword; 1573 1574 if (strcmp(argv[0], "mdr") == 0) { 1575 if (argc != 2) 1576 return KDB_ARGCOUNT; 1577 valid = 1; 1578 } else if (isdigit(argv[0][2])) { 1579 bytesperword = (int)(argv[0][2] - '0'); 1580 if (bytesperword == 0) { 1581 bytesperword = last_bytesperword; 1582 if (bytesperword == 0) 1583 bytesperword = 4; 1584 } 1585 last_bytesperword = bytesperword; 1586 repeat = mdcount * 16 / bytesperword; 1587 if (!argv[0][3]) 1588 valid = 1; 1589 else if (argv[0][3] == 'c' && argv[0][4]) { 1590 char *p; 1591 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1592 mdcount = ((repeat * bytesperword) + 15) / 16; 1593 valid = !*p; 1594 } 1595 last_repeat = repeat; 1596 } else if (strcmp(argv[0], "md") == 0) 1597 valid = 1; 1598 else if (strcmp(argv[0], "mds") == 0) 1599 valid = 1; 1600 else if (strcmp(argv[0], "mdp") == 0) { 1601 phys = valid = 1; 1602 } 1603 if (!valid) 1604 return KDB_NOTFOUND; 1605 1606 if (argc == 0) { 1607 if (last_addr == 0) 1608 return KDB_ARGCOUNT; 1609 addr = last_addr; 1610 radix = last_radix; 1611 bytesperword = last_bytesperword; 1612 repeat = last_repeat; 1613 mdcount = ((repeat * bytesperword) + 15) / 16; 1614 } 1615 1616 if (argc) { 1617 unsigned long val; 1618 int diag, nextarg = 1; 1619 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1620 &offset, NULL); 1621 if (diag) 1622 return diag; 1623 if (argc > nextarg+2) 1624 return KDB_ARGCOUNT; 1625 1626 if (argc >= nextarg) { 1627 diag = kdbgetularg(argv[nextarg], &val); 1628 if (!diag) { 1629 mdcount = (int) val; 1630 repeat = mdcount * 16 / bytesperword; 1631 } 1632 } 1633 if (argc >= nextarg+1) { 1634 diag = kdbgetularg(argv[nextarg+1], &val); 1635 if (!diag) 1636 radix = (int) val; 1637 } 1638 } 1639 1640 if (strcmp(argv[0], "mdr") == 0) 1641 return kdb_mdr(addr, mdcount); 1642 1643 switch (radix) { 1644 case 10: 1645 fmtchar = 'd'; 1646 break; 1647 case 16: 1648 fmtchar = 'x'; 1649 break; 1650 case 8: 1651 fmtchar = 'o'; 1652 break; 1653 default: 1654 return KDB_BADRADIX; 1655 } 1656 1657 last_radix = radix; 1658 1659 if (bytesperword > KDB_WORD_SIZE) 1660 return KDB_BADWIDTH; 1661 1662 switch (bytesperword) { 1663 case 8: 1664 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1665 break; 1666 case 4: 1667 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1668 break; 1669 case 2: 1670 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1671 break; 1672 case 1: 1673 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1674 break; 1675 default: 1676 return KDB_BADWIDTH; 1677 } 1678 1679 last_repeat = repeat; 1680 last_bytesperword = bytesperword; 1681 1682 if (strcmp(argv[0], "mds") == 0) { 1683 symbolic = 1; 1684 /* Do not save these changes as last_*, they are temporary mds 1685 * overrides. 1686 */ 1687 bytesperword = KDB_WORD_SIZE; 1688 repeat = mdcount; 1689 kdbgetintenv("NOSECT", &nosect); 1690 } 1691 1692 /* Round address down modulo BYTESPERWORD */ 1693 1694 addr &= ~(bytesperword-1); 1695 1696 while (repeat > 0) { 1697 unsigned long a; 1698 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1699 1700 if (KDB_FLAG(CMD_INTERRUPT)) 1701 return 0; 1702 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1703 if (phys) { 1704 if (kdb_getphysword(&word, a, bytesperword) 1705 || word) 1706 break; 1707 } else if (kdb_getword(&word, a, bytesperword) || word) 1708 break; 1709 } 1710 n = min(num, repeat); 1711 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1712 num, repeat, phys); 1713 addr += bytesperword * n; 1714 repeat -= n; 1715 z = (z + num - 1) / num; 1716 if (z > 2) { 1717 int s = num * (z-2); 1718 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1719 " zero suppressed\n", 1720 addr, addr + bytesperword * s - 1); 1721 addr += bytesperword * s; 1722 repeat -= s; 1723 } 1724 } 1725 last_addr = addr; 1726 1727 return 0; 1728 } 1729 1730 /* 1731 * kdb_mm - This function implements the 'mm' command. 1732 * mm address-expression new-value 1733 * Remarks: 1734 * mm works on machine words, mmW works on bytes. 1735 */ 1736 static int kdb_mm(int argc, const char **argv) 1737 { 1738 int diag; 1739 unsigned long addr; 1740 long offset = 0; 1741 unsigned long contents; 1742 int nextarg; 1743 int width; 1744 1745 if (argv[0][2] && !isdigit(argv[0][2])) 1746 return KDB_NOTFOUND; 1747 1748 if (argc < 2) 1749 return KDB_ARGCOUNT; 1750 1751 nextarg = 1; 1752 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1753 if (diag) 1754 return diag; 1755 1756 if (nextarg > argc) 1757 return KDB_ARGCOUNT; 1758 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1759 if (diag) 1760 return diag; 1761 1762 if (nextarg != argc + 1) 1763 return KDB_ARGCOUNT; 1764 1765 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1766 diag = kdb_putword(addr, contents, width); 1767 if (diag) 1768 return diag; 1769 1770 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1771 1772 return 0; 1773 } 1774 1775 /* 1776 * kdb_go - This function implements the 'go' command. 1777 * go [address-expression] 1778 */ 1779 static int kdb_go(int argc, const char **argv) 1780 { 1781 unsigned long addr; 1782 int diag; 1783 int nextarg; 1784 long offset; 1785 1786 if (raw_smp_processor_id() != kdb_initial_cpu) { 1787 kdb_printf("go must execute on the entry cpu, " 1788 "please use \"cpu %d\" and then execute go\n", 1789 kdb_initial_cpu); 1790 return KDB_BADCPUNUM; 1791 } 1792 if (argc == 1) { 1793 nextarg = 1; 1794 diag = kdbgetaddrarg(argc, argv, &nextarg, 1795 &addr, &offset, NULL); 1796 if (diag) 1797 return diag; 1798 } else if (argc) { 1799 return KDB_ARGCOUNT; 1800 } 1801 1802 diag = KDB_CMD_GO; 1803 if (KDB_FLAG(CATASTROPHIC)) { 1804 kdb_printf("Catastrophic error detected\n"); 1805 kdb_printf("kdb_continue_catastrophic=%d, ", 1806 kdb_continue_catastrophic); 1807 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1808 kdb_printf("type go a second time if you really want " 1809 "to continue\n"); 1810 return 0; 1811 } 1812 if (kdb_continue_catastrophic == 2) { 1813 kdb_printf("forcing reboot\n"); 1814 kdb_reboot(0, NULL); 1815 } 1816 kdb_printf("attempting to continue\n"); 1817 } 1818 return diag; 1819 } 1820 1821 /* 1822 * kdb_rd - This function implements the 'rd' command. 1823 */ 1824 static int kdb_rd(int argc, const char **argv) 1825 { 1826 int len = kdb_check_regs(); 1827 #if DBG_MAX_REG_NUM > 0 1828 int i; 1829 char *rname; 1830 int rsize; 1831 u64 reg64; 1832 u32 reg32; 1833 u16 reg16; 1834 u8 reg8; 1835 1836 if (len) 1837 return len; 1838 1839 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1840 rsize = dbg_reg_def[i].size * 2; 1841 if (rsize > 16) 1842 rsize = 2; 1843 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1844 len = 0; 1845 kdb_printf("\n"); 1846 } 1847 if (len) 1848 len += kdb_printf(" "); 1849 switch(dbg_reg_def[i].size * 8) { 1850 case 8: 1851 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1852 if (!rname) 1853 break; 1854 len += kdb_printf("%s: %02x", rname, reg8); 1855 break; 1856 case 16: 1857 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1858 if (!rname) 1859 break; 1860 len += kdb_printf("%s: %04x", rname, reg16); 1861 break; 1862 case 32: 1863 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1864 if (!rname) 1865 break; 1866 len += kdb_printf("%s: %08x", rname, reg32); 1867 break; 1868 case 64: 1869 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1870 if (!rname) 1871 break; 1872 len += kdb_printf("%s: %016llx", rname, reg64); 1873 break; 1874 default: 1875 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1876 } 1877 } 1878 kdb_printf("\n"); 1879 #else 1880 if (len) 1881 return len; 1882 1883 kdb_dumpregs(kdb_current_regs); 1884 #endif 1885 return 0; 1886 } 1887 1888 /* 1889 * kdb_rm - This function implements the 'rm' (register modify) command. 1890 * rm register-name new-contents 1891 * Remarks: 1892 * Allows register modification with the same restrictions as gdb 1893 */ 1894 static int kdb_rm(int argc, const char **argv) 1895 { 1896 #if DBG_MAX_REG_NUM > 0 1897 int diag; 1898 const char *rname; 1899 int i; 1900 u64 reg64; 1901 u32 reg32; 1902 u16 reg16; 1903 u8 reg8; 1904 1905 if (argc != 2) 1906 return KDB_ARGCOUNT; 1907 /* 1908 * Allow presence or absence of leading '%' symbol. 1909 */ 1910 rname = argv[1]; 1911 if (*rname == '%') 1912 rname++; 1913 1914 diag = kdbgetu64arg(argv[2], ®64); 1915 if (diag) 1916 return diag; 1917 1918 diag = kdb_check_regs(); 1919 if (diag) 1920 return diag; 1921 1922 diag = KDB_BADREG; 1923 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1924 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1925 diag = 0; 1926 break; 1927 } 1928 } 1929 if (!diag) { 1930 switch(dbg_reg_def[i].size * 8) { 1931 case 8: 1932 reg8 = reg64; 1933 dbg_set_reg(i, ®8, kdb_current_regs); 1934 break; 1935 case 16: 1936 reg16 = reg64; 1937 dbg_set_reg(i, ®16, kdb_current_regs); 1938 break; 1939 case 32: 1940 reg32 = reg64; 1941 dbg_set_reg(i, ®32, kdb_current_regs); 1942 break; 1943 case 64: 1944 dbg_set_reg(i, ®64, kdb_current_regs); 1945 break; 1946 } 1947 } 1948 return diag; 1949 #else 1950 kdb_printf("ERROR: Register set currently not implemented\n"); 1951 return 0; 1952 #endif 1953 } 1954 1955 #if defined(CONFIG_MAGIC_SYSRQ) 1956 /* 1957 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 1958 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 1959 * sr <magic-sysrq-code> 1960 */ 1961 static int kdb_sr(int argc, const char **argv) 1962 { 1963 bool check_mask = 1964 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false); 1965 1966 if (argc != 1) 1967 return KDB_ARGCOUNT; 1968 1969 kdb_trap_printk++; 1970 __handle_sysrq(*argv[1], check_mask); 1971 kdb_trap_printk--; 1972 1973 return 0; 1974 } 1975 #endif /* CONFIG_MAGIC_SYSRQ */ 1976 1977 /* 1978 * kdb_ef - This function implements the 'regs' (display exception 1979 * frame) command. This command takes an address and expects to 1980 * find an exception frame at that address, formats and prints 1981 * it. 1982 * regs address-expression 1983 * Remarks: 1984 * Not done yet. 1985 */ 1986 static int kdb_ef(int argc, const char **argv) 1987 { 1988 int diag; 1989 unsigned long addr; 1990 long offset; 1991 int nextarg; 1992 1993 if (argc != 1) 1994 return KDB_ARGCOUNT; 1995 1996 nextarg = 1; 1997 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1998 if (diag) 1999 return diag; 2000 show_regs((struct pt_regs *)addr); 2001 return 0; 2002 } 2003 2004 #if defined(CONFIG_MODULES) 2005 /* 2006 * kdb_lsmod - This function implements the 'lsmod' command. Lists 2007 * currently loaded kernel modules. 2008 * Mostly taken from userland lsmod. 2009 */ 2010 static int kdb_lsmod(int argc, const char **argv) 2011 { 2012 struct module *mod; 2013 2014 if (argc != 0) 2015 return KDB_ARGCOUNT; 2016 2017 kdb_printf("Module Size modstruct Used by\n"); 2018 list_for_each_entry(mod, kdb_modules, list) { 2019 if (mod->state == MODULE_STATE_UNFORMED) 2020 continue; 2021 2022 kdb_printf("%-20s%8u 0x%p ", mod->name, 2023 mod->core_layout.size, (void *)mod); 2024 #ifdef CONFIG_MODULE_UNLOAD 2025 kdb_printf("%4d ", module_refcount(mod)); 2026 #endif 2027 if (mod->state == MODULE_STATE_GOING) 2028 kdb_printf(" (Unloading)"); 2029 else if (mod->state == MODULE_STATE_COMING) 2030 kdb_printf(" (Loading)"); 2031 else 2032 kdb_printf(" (Live)"); 2033 kdb_printf(" 0x%p", mod->core_layout.base); 2034 2035 #ifdef CONFIG_MODULE_UNLOAD 2036 { 2037 struct module_use *use; 2038 kdb_printf(" [ "); 2039 list_for_each_entry(use, &mod->source_list, 2040 source_list) 2041 kdb_printf("%s ", use->target->name); 2042 kdb_printf("]\n"); 2043 } 2044 #endif 2045 } 2046 2047 return 0; 2048 } 2049 2050 #endif /* CONFIG_MODULES */ 2051 2052 /* 2053 * kdb_env - This function implements the 'env' command. Display the 2054 * current environment variables. 2055 */ 2056 2057 static int kdb_env(int argc, const char **argv) 2058 { 2059 int i; 2060 2061 for (i = 0; i < __nenv; i++) { 2062 if (__env[i]) 2063 kdb_printf("%s\n", __env[i]); 2064 } 2065 2066 if (KDB_DEBUG(MASK)) 2067 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags); 2068 2069 return 0; 2070 } 2071 2072 #ifdef CONFIG_PRINTK 2073 /* 2074 * kdb_dmesg - This function implements the 'dmesg' command to display 2075 * the contents of the syslog buffer. 2076 * dmesg [lines] [adjust] 2077 */ 2078 static int kdb_dmesg(int argc, const char **argv) 2079 { 2080 int diag; 2081 int logging; 2082 int lines = 0; 2083 int adjust = 0; 2084 int n = 0; 2085 int skip = 0; 2086 struct kmsg_dumper dumper = { .active = 1 }; 2087 size_t len; 2088 char buf[201]; 2089 2090 if (argc > 2) 2091 return KDB_ARGCOUNT; 2092 if (argc) { 2093 char *cp; 2094 lines = simple_strtol(argv[1], &cp, 0); 2095 if (*cp) 2096 lines = 0; 2097 if (argc > 1) { 2098 adjust = simple_strtoul(argv[2], &cp, 0); 2099 if (*cp || adjust < 0) 2100 adjust = 0; 2101 } 2102 } 2103 2104 /* disable LOGGING if set */ 2105 diag = kdbgetintenv("LOGGING", &logging); 2106 if (!diag && logging) { 2107 const char *setargs[] = { "set", "LOGGING", "0" }; 2108 kdb_set(2, setargs); 2109 } 2110 2111 kmsg_dump_rewind_nolock(&dumper); 2112 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL)) 2113 n++; 2114 2115 if (lines < 0) { 2116 if (adjust >= n) 2117 kdb_printf("buffer only contains %d lines, nothing " 2118 "printed\n", n); 2119 else if (adjust - lines >= n) 2120 kdb_printf("buffer only contains %d lines, last %d " 2121 "lines printed\n", n, n - adjust); 2122 skip = adjust; 2123 lines = abs(lines); 2124 } else if (lines > 0) { 2125 skip = n - lines - adjust; 2126 lines = abs(lines); 2127 if (adjust >= n) { 2128 kdb_printf("buffer only contains %d lines, " 2129 "nothing printed\n", n); 2130 skip = n; 2131 } else if (skip < 0) { 2132 lines += skip; 2133 skip = 0; 2134 kdb_printf("buffer only contains %d lines, first " 2135 "%d lines printed\n", n, lines); 2136 } 2137 } else { 2138 lines = n; 2139 } 2140 2141 if (skip >= n || skip < 0) 2142 return 0; 2143 2144 kmsg_dump_rewind_nolock(&dumper); 2145 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) { 2146 if (skip) { 2147 skip--; 2148 continue; 2149 } 2150 if (!lines--) 2151 break; 2152 if (KDB_FLAG(CMD_INTERRUPT)) 2153 return 0; 2154 2155 kdb_printf("%.*s\n", (int)len - 1, buf); 2156 } 2157 2158 return 0; 2159 } 2160 #endif /* CONFIG_PRINTK */ 2161 2162 /* Make sure we balance enable/disable calls, must disable first. */ 2163 static atomic_t kdb_nmi_disabled; 2164 2165 static int kdb_disable_nmi(int argc, const char *argv[]) 2166 { 2167 if (atomic_read(&kdb_nmi_disabled)) 2168 return 0; 2169 atomic_set(&kdb_nmi_disabled, 1); 2170 arch_kgdb_ops.enable_nmi(0); 2171 return 0; 2172 } 2173 2174 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2175 { 2176 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2177 return -EINVAL; 2178 arch_kgdb_ops.enable_nmi(1); 2179 return 0; 2180 } 2181 2182 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2183 .set = kdb_param_enable_nmi, 2184 }; 2185 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2186 2187 /* 2188 * kdb_cpu - This function implements the 'cpu' command. 2189 * cpu [<cpunum>] 2190 * Returns: 2191 * KDB_CMD_CPU for success, a kdb diagnostic if error 2192 */ 2193 static void kdb_cpu_status(void) 2194 { 2195 int i, start_cpu, first_print = 1; 2196 char state, prev_state = '?'; 2197 2198 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2199 kdb_printf("Available cpus: "); 2200 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2201 if (!cpu_online(i)) { 2202 state = 'F'; /* cpu is offline */ 2203 } else if (!kgdb_info[i].enter_kgdb) { 2204 state = 'D'; /* cpu is online but unresponsive */ 2205 } else { 2206 state = ' '; /* cpu is responding to kdb */ 2207 if (kdb_task_state_char(KDB_TSK(i)) == 'I') 2208 state = 'I'; /* idle task */ 2209 } 2210 if (state != prev_state) { 2211 if (prev_state != '?') { 2212 if (!first_print) 2213 kdb_printf(", "); 2214 first_print = 0; 2215 kdb_printf("%d", start_cpu); 2216 if (start_cpu < i-1) 2217 kdb_printf("-%d", i-1); 2218 if (prev_state != ' ') 2219 kdb_printf("(%c)", prev_state); 2220 } 2221 prev_state = state; 2222 start_cpu = i; 2223 } 2224 } 2225 /* print the trailing cpus, ignoring them if they are all offline */ 2226 if (prev_state != 'F') { 2227 if (!first_print) 2228 kdb_printf(", "); 2229 kdb_printf("%d", start_cpu); 2230 if (start_cpu < i-1) 2231 kdb_printf("-%d", i-1); 2232 if (prev_state != ' ') 2233 kdb_printf("(%c)", prev_state); 2234 } 2235 kdb_printf("\n"); 2236 } 2237 2238 static int kdb_cpu(int argc, const char **argv) 2239 { 2240 unsigned long cpunum; 2241 int diag; 2242 2243 if (argc == 0) { 2244 kdb_cpu_status(); 2245 return 0; 2246 } 2247 2248 if (argc != 1) 2249 return KDB_ARGCOUNT; 2250 2251 diag = kdbgetularg(argv[1], &cpunum); 2252 if (diag) 2253 return diag; 2254 2255 /* 2256 * Validate cpunum 2257 */ 2258 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb) 2259 return KDB_BADCPUNUM; 2260 2261 dbg_switch_cpu = cpunum; 2262 2263 /* 2264 * Switch to other cpu 2265 */ 2266 return KDB_CMD_CPU; 2267 } 2268 2269 /* The user may not realize that ps/bta with no parameters does not print idle 2270 * or sleeping system daemon processes, so tell them how many were suppressed. 2271 */ 2272 void kdb_ps_suppressed(void) 2273 { 2274 int idle = 0, daemon = 0; 2275 unsigned long mask_I = kdb_task_state_string("I"), 2276 mask_M = kdb_task_state_string("M"); 2277 unsigned long cpu; 2278 const struct task_struct *p, *g; 2279 for_each_online_cpu(cpu) { 2280 p = kdb_curr_task(cpu); 2281 if (kdb_task_state(p, mask_I)) 2282 ++idle; 2283 } 2284 kdb_do_each_thread(g, p) { 2285 if (kdb_task_state(p, mask_M)) 2286 ++daemon; 2287 } kdb_while_each_thread(g, p); 2288 if (idle || daemon) { 2289 if (idle) 2290 kdb_printf("%d idle process%s (state I)%s\n", 2291 idle, idle == 1 ? "" : "es", 2292 daemon ? " and " : ""); 2293 if (daemon) 2294 kdb_printf("%d sleeping system daemon (state M) " 2295 "process%s", daemon, 2296 daemon == 1 ? "" : "es"); 2297 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2298 } 2299 } 2300 2301 /* 2302 * kdb_ps - This function implements the 'ps' command which shows a 2303 * list of the active processes. 2304 * ps [DRSTCZEUIMA] All processes, optionally filtered by state 2305 */ 2306 void kdb_ps1(const struct task_struct *p) 2307 { 2308 int cpu; 2309 unsigned long tmp; 2310 2311 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) 2312 return; 2313 2314 cpu = kdb_process_cpu(p); 2315 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n", 2316 (void *)p, p->pid, p->parent->pid, 2317 kdb_task_has_cpu(p), kdb_process_cpu(p), 2318 kdb_task_state_char(p), 2319 (void *)(&p->thread), 2320 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2321 p->comm); 2322 if (kdb_task_has_cpu(p)) { 2323 if (!KDB_TSK(cpu)) { 2324 kdb_printf(" Error: no saved data for this cpu\n"); 2325 } else { 2326 if (KDB_TSK(cpu) != p) 2327 kdb_printf(" Error: does not match running " 2328 "process table (0x%p)\n", KDB_TSK(cpu)); 2329 } 2330 } 2331 } 2332 2333 static int kdb_ps(int argc, const char **argv) 2334 { 2335 struct task_struct *g, *p; 2336 unsigned long mask, cpu; 2337 2338 if (argc == 0) 2339 kdb_ps_suppressed(); 2340 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2341 (int)(2*sizeof(void *))+2, "Task Addr", 2342 (int)(2*sizeof(void *))+2, "Thread"); 2343 mask = kdb_task_state_string(argc ? argv[1] : NULL); 2344 /* Run the active tasks first */ 2345 for_each_online_cpu(cpu) { 2346 if (KDB_FLAG(CMD_INTERRUPT)) 2347 return 0; 2348 p = kdb_curr_task(cpu); 2349 if (kdb_task_state(p, mask)) 2350 kdb_ps1(p); 2351 } 2352 kdb_printf("\n"); 2353 /* Now the real tasks */ 2354 kdb_do_each_thread(g, p) { 2355 if (KDB_FLAG(CMD_INTERRUPT)) 2356 return 0; 2357 if (kdb_task_state(p, mask)) 2358 kdb_ps1(p); 2359 } kdb_while_each_thread(g, p); 2360 2361 return 0; 2362 } 2363 2364 /* 2365 * kdb_pid - This function implements the 'pid' command which switches 2366 * the currently active process. 2367 * pid [<pid> | R] 2368 */ 2369 static int kdb_pid(int argc, const char **argv) 2370 { 2371 struct task_struct *p; 2372 unsigned long val; 2373 int diag; 2374 2375 if (argc > 1) 2376 return KDB_ARGCOUNT; 2377 2378 if (argc) { 2379 if (strcmp(argv[1], "R") == 0) { 2380 p = KDB_TSK(kdb_initial_cpu); 2381 } else { 2382 diag = kdbgetularg(argv[1], &val); 2383 if (diag) 2384 return KDB_BADINT; 2385 2386 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2387 if (!p) { 2388 kdb_printf("No task with pid=%d\n", (pid_t)val); 2389 return 0; 2390 } 2391 } 2392 kdb_set_current_task(p); 2393 } 2394 kdb_printf("KDB current process is %s(pid=%d)\n", 2395 kdb_current_task->comm, 2396 kdb_current_task->pid); 2397 2398 return 0; 2399 } 2400 2401 static int kdb_kgdb(int argc, const char **argv) 2402 { 2403 return KDB_CMD_KGDB; 2404 } 2405 2406 /* 2407 * kdb_help - This function implements the 'help' and '?' commands. 2408 */ 2409 static int kdb_help(int argc, const char **argv) 2410 { 2411 kdbtab_t *kt; 2412 int i; 2413 2414 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2415 kdb_printf("-----------------------------" 2416 "-----------------------------\n"); 2417 for_each_kdbcmd(kt, i) { 2418 char *space = ""; 2419 if (KDB_FLAG(CMD_INTERRUPT)) 2420 return 0; 2421 if (!kt->cmd_name) 2422 continue; 2423 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true)) 2424 continue; 2425 if (strlen(kt->cmd_usage) > 20) 2426 space = "\n "; 2427 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name, 2428 kt->cmd_usage, space, kt->cmd_help); 2429 } 2430 return 0; 2431 } 2432 2433 /* 2434 * kdb_kill - This function implements the 'kill' commands. 2435 */ 2436 static int kdb_kill(int argc, const char **argv) 2437 { 2438 long sig, pid; 2439 char *endp; 2440 struct task_struct *p; 2441 struct siginfo info; 2442 2443 if (argc != 2) 2444 return KDB_ARGCOUNT; 2445 2446 sig = simple_strtol(argv[1], &endp, 0); 2447 if (*endp) 2448 return KDB_BADINT; 2449 if (sig >= 0) { 2450 kdb_printf("Invalid signal parameter.<-signal>\n"); 2451 return 0; 2452 } 2453 sig = -sig; 2454 2455 pid = simple_strtol(argv[2], &endp, 0); 2456 if (*endp) 2457 return KDB_BADINT; 2458 if (pid <= 0) { 2459 kdb_printf("Process ID must be large than 0.\n"); 2460 return 0; 2461 } 2462 2463 /* Find the process. */ 2464 p = find_task_by_pid_ns(pid, &init_pid_ns); 2465 if (!p) { 2466 kdb_printf("The specified process isn't found.\n"); 2467 return 0; 2468 } 2469 p = p->group_leader; 2470 info.si_signo = sig; 2471 info.si_errno = 0; 2472 info.si_code = SI_USER; 2473 info.si_pid = pid; /* same capabilities as process being signalled */ 2474 info.si_uid = 0; /* kdb has root authority */ 2475 kdb_send_sig_info(p, &info); 2476 return 0; 2477 } 2478 2479 struct kdb_tm { 2480 int tm_sec; /* seconds */ 2481 int tm_min; /* minutes */ 2482 int tm_hour; /* hours */ 2483 int tm_mday; /* day of the month */ 2484 int tm_mon; /* month */ 2485 int tm_year; /* year */ 2486 }; 2487 2488 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm) 2489 { 2490 /* This will work from 1970-2099, 2100 is not a leap year */ 2491 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31, 2492 31, 30, 31, 30, 31 }; 2493 memset(tm, 0, sizeof(*tm)); 2494 tm->tm_sec = tv->tv_sec % (24 * 60 * 60); 2495 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) + 2496 (2 * 365 + 1); /* shift base from 1970 to 1968 */ 2497 tm->tm_min = tm->tm_sec / 60 % 60; 2498 tm->tm_hour = tm->tm_sec / 60 / 60; 2499 tm->tm_sec = tm->tm_sec % 60; 2500 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1)); 2501 tm->tm_mday %= (4*365+1); 2502 mon_day[1] = 29; 2503 while (tm->tm_mday >= mon_day[tm->tm_mon]) { 2504 tm->tm_mday -= mon_day[tm->tm_mon]; 2505 if (++tm->tm_mon == 12) { 2506 tm->tm_mon = 0; 2507 ++tm->tm_year; 2508 mon_day[1] = 28; 2509 } 2510 } 2511 ++tm->tm_mday; 2512 } 2513 2514 /* 2515 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2516 * I cannot call that code directly from kdb, it has an unconditional 2517 * cli()/sti() and calls routines that take locks which can stop the debugger. 2518 */ 2519 static void kdb_sysinfo(struct sysinfo *val) 2520 { 2521 struct timespec uptime; 2522 ktime_get_ts(&uptime); 2523 memset(val, 0, sizeof(*val)); 2524 val->uptime = uptime.tv_sec; 2525 val->loads[0] = avenrun[0]; 2526 val->loads[1] = avenrun[1]; 2527 val->loads[2] = avenrun[2]; 2528 val->procs = nr_threads-1; 2529 si_meminfo(val); 2530 2531 return; 2532 } 2533 2534 /* 2535 * kdb_summary - This function implements the 'summary' command. 2536 */ 2537 static int kdb_summary(int argc, const char **argv) 2538 { 2539 struct timespec now; 2540 struct kdb_tm tm; 2541 struct sysinfo val; 2542 2543 if (argc) 2544 return KDB_ARGCOUNT; 2545 2546 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2547 kdb_printf("release %s\n", init_uts_ns.name.release); 2548 kdb_printf("version %s\n", init_uts_ns.name.version); 2549 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2550 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2551 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2552 kdb_printf("ccversion %s\n", __stringify(CCVERSION)); 2553 2554 now = __current_kernel_time(); 2555 kdb_gmtime(&now, &tm); 2556 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d " 2557 "tz_minuteswest %d\n", 2558 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, 2559 tm.tm_hour, tm.tm_min, tm.tm_sec, 2560 sys_tz.tz_minuteswest); 2561 2562 kdb_sysinfo(&val); 2563 kdb_printf("uptime "); 2564 if (val.uptime > (24*60*60)) { 2565 int days = val.uptime / (24*60*60); 2566 val.uptime %= (24*60*60); 2567 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2568 } 2569 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2570 2571 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */ 2572 2573 #define LOAD_INT(x) ((x) >> FSHIFT) 2574 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) 2575 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2576 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2577 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2578 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2579 #undef LOAD_INT 2580 #undef LOAD_FRAC 2581 /* Display in kilobytes */ 2582 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2583 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2584 "Buffers: %8lu kB\n", 2585 K(val.totalram), K(val.freeram), K(val.bufferram)); 2586 return 0; 2587 } 2588 2589 /* 2590 * kdb_per_cpu - This function implements the 'per_cpu' command. 2591 */ 2592 static int kdb_per_cpu(int argc, const char **argv) 2593 { 2594 char fmtstr[64]; 2595 int cpu, diag, nextarg = 1; 2596 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2597 2598 if (argc < 1 || argc > 3) 2599 return KDB_ARGCOUNT; 2600 2601 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2602 if (diag) 2603 return diag; 2604 2605 if (argc >= 2) { 2606 diag = kdbgetularg(argv[2], &bytesperword); 2607 if (diag) 2608 return diag; 2609 } 2610 if (!bytesperword) 2611 bytesperword = KDB_WORD_SIZE; 2612 else if (bytesperword > KDB_WORD_SIZE) 2613 return KDB_BADWIDTH; 2614 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2615 if (argc >= 3) { 2616 diag = kdbgetularg(argv[3], &whichcpu); 2617 if (diag) 2618 return diag; 2619 if (!cpu_online(whichcpu)) { 2620 kdb_printf("cpu %ld is not online\n", whichcpu); 2621 return KDB_BADCPUNUM; 2622 } 2623 } 2624 2625 /* Most architectures use __per_cpu_offset[cpu], some use 2626 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2627 */ 2628 #ifdef __per_cpu_offset 2629 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2630 #else 2631 #ifdef CONFIG_SMP 2632 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2633 #else 2634 #define KDB_PCU(cpu) 0 2635 #endif 2636 #endif 2637 for_each_online_cpu(cpu) { 2638 if (KDB_FLAG(CMD_INTERRUPT)) 2639 return 0; 2640 2641 if (whichcpu != ~0UL && whichcpu != cpu) 2642 continue; 2643 addr = symaddr + KDB_PCU(cpu); 2644 diag = kdb_getword(&val, addr, bytesperword); 2645 if (diag) { 2646 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2647 "read, diag=%d\n", cpu, addr, diag); 2648 continue; 2649 } 2650 kdb_printf("%5d ", cpu); 2651 kdb_md_line(fmtstr, addr, 2652 bytesperword == KDB_WORD_SIZE, 2653 1, bytesperword, 1, 1, 0); 2654 } 2655 #undef KDB_PCU 2656 return 0; 2657 } 2658 2659 /* 2660 * display help for the use of cmd | grep pattern 2661 */ 2662 static int kdb_grep_help(int argc, const char **argv) 2663 { 2664 kdb_printf("Usage of cmd args | grep pattern:\n"); 2665 kdb_printf(" Any command's output may be filtered through an "); 2666 kdb_printf("emulated 'pipe'.\n"); 2667 kdb_printf(" 'grep' is just a key word.\n"); 2668 kdb_printf(" The pattern may include a very limited set of " 2669 "metacharacters:\n"); 2670 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2671 kdb_printf(" And if there are spaces in the pattern, you may " 2672 "quote it:\n"); 2673 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2674 " or \"^pat tern$\"\n"); 2675 return 0; 2676 } 2677 2678 /* 2679 * kdb_register_flags - This function is used to register a kernel 2680 * debugger command. 2681 * Inputs: 2682 * cmd Command name 2683 * func Function to execute the command 2684 * usage A simple usage string showing arguments 2685 * help A simple help string describing command 2686 * repeat Does the command auto repeat on enter? 2687 * Returns: 2688 * zero for success, one if a duplicate command. 2689 */ 2690 #define kdb_command_extend 50 /* arbitrary */ 2691 int kdb_register_flags(char *cmd, 2692 kdb_func_t func, 2693 char *usage, 2694 char *help, 2695 short minlen, 2696 kdb_cmdflags_t flags) 2697 { 2698 int i; 2699 kdbtab_t *kp; 2700 2701 /* 2702 * Brute force method to determine duplicates 2703 */ 2704 for_each_kdbcmd(kp, i) { 2705 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2706 kdb_printf("Duplicate kdb command registered: " 2707 "%s, func %p help %s\n", cmd, func, help); 2708 return 1; 2709 } 2710 } 2711 2712 /* 2713 * Insert command into first available location in table 2714 */ 2715 for_each_kdbcmd(kp, i) { 2716 if (kp->cmd_name == NULL) 2717 break; 2718 } 2719 2720 if (i >= kdb_max_commands) { 2721 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX + 2722 kdb_command_extend) * sizeof(*new), GFP_KDB); 2723 if (!new) { 2724 kdb_printf("Could not allocate new kdb_command " 2725 "table\n"); 2726 return 1; 2727 } 2728 if (kdb_commands) { 2729 memcpy(new, kdb_commands, 2730 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new)); 2731 kfree(kdb_commands); 2732 } 2733 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0, 2734 kdb_command_extend * sizeof(*new)); 2735 kdb_commands = new; 2736 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX; 2737 kdb_max_commands += kdb_command_extend; 2738 } 2739 2740 kp->cmd_name = cmd; 2741 kp->cmd_func = func; 2742 kp->cmd_usage = usage; 2743 kp->cmd_help = help; 2744 kp->cmd_minlen = minlen; 2745 kp->cmd_flags = flags; 2746 2747 return 0; 2748 } 2749 EXPORT_SYMBOL_GPL(kdb_register_flags); 2750 2751 2752 /* 2753 * kdb_register - Compatibility register function for commands that do 2754 * not need to specify a repeat state. Equivalent to 2755 * kdb_register_flags with flags set to 0. 2756 * Inputs: 2757 * cmd Command name 2758 * func Function to execute the command 2759 * usage A simple usage string showing arguments 2760 * help A simple help string describing command 2761 * Returns: 2762 * zero for success, one if a duplicate command. 2763 */ 2764 int kdb_register(char *cmd, 2765 kdb_func_t func, 2766 char *usage, 2767 char *help, 2768 short minlen) 2769 { 2770 return kdb_register_flags(cmd, func, usage, help, minlen, 0); 2771 } 2772 EXPORT_SYMBOL_GPL(kdb_register); 2773 2774 /* 2775 * kdb_unregister - This function is used to unregister a kernel 2776 * debugger command. It is generally called when a module which 2777 * implements kdb commands is unloaded. 2778 * Inputs: 2779 * cmd Command name 2780 * Returns: 2781 * zero for success, one command not registered. 2782 */ 2783 int kdb_unregister(char *cmd) 2784 { 2785 int i; 2786 kdbtab_t *kp; 2787 2788 /* 2789 * find the command. 2790 */ 2791 for_each_kdbcmd(kp, i) { 2792 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2793 kp->cmd_name = NULL; 2794 return 0; 2795 } 2796 } 2797 2798 /* Couldn't find it. */ 2799 return 1; 2800 } 2801 EXPORT_SYMBOL_GPL(kdb_unregister); 2802 2803 /* Initialize the kdb command table. */ 2804 static void __init kdb_inittab(void) 2805 { 2806 int i; 2807 kdbtab_t *kp; 2808 2809 for_each_kdbcmd(kp, i) 2810 kp->cmd_name = NULL; 2811 2812 kdb_register_flags("md", kdb_md, "<vaddr>", 2813 "Display Memory Contents, also mdWcN, e.g. md8c1", 1, 2814 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2815 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>", 2816 "Display Raw Memory", 0, 2817 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2818 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>", 2819 "Display Physical Memory", 0, 2820 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2821 kdb_register_flags("mds", kdb_md, "<vaddr>", 2822 "Display Memory Symbolically", 0, 2823 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2824 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>", 2825 "Modify Memory Contents", 0, 2826 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS); 2827 kdb_register_flags("go", kdb_go, "[<vaddr>]", 2828 "Continue Execution", 1, 2829 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS); 2830 kdb_register_flags("rd", kdb_rd, "", 2831 "Display Registers", 0, 2832 KDB_ENABLE_REG_READ); 2833 kdb_register_flags("rm", kdb_rm, "<reg> <contents>", 2834 "Modify Registers", 0, 2835 KDB_ENABLE_REG_WRITE); 2836 kdb_register_flags("ef", kdb_ef, "<vaddr>", 2837 "Display exception frame", 0, 2838 KDB_ENABLE_MEM_READ); 2839 kdb_register_flags("bt", kdb_bt, "[<vaddr>]", 2840 "Stack traceback", 1, 2841 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS); 2842 kdb_register_flags("btp", kdb_bt, "<pid>", 2843 "Display stack for process <pid>", 0, 2844 KDB_ENABLE_INSPECT); 2845 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]", 2846 "Backtrace all processes matching state flag", 0, 2847 KDB_ENABLE_INSPECT); 2848 kdb_register_flags("btc", kdb_bt, "", 2849 "Backtrace current process on each cpu", 0, 2850 KDB_ENABLE_INSPECT); 2851 kdb_register_flags("btt", kdb_bt, "<vaddr>", 2852 "Backtrace process given its struct task address", 0, 2853 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS); 2854 kdb_register_flags("env", kdb_env, "", 2855 "Show environment variables", 0, 2856 KDB_ENABLE_ALWAYS_SAFE); 2857 kdb_register_flags("set", kdb_set, "", 2858 "Set environment variables", 0, 2859 KDB_ENABLE_ALWAYS_SAFE); 2860 kdb_register_flags("help", kdb_help, "", 2861 "Display Help Message", 1, 2862 KDB_ENABLE_ALWAYS_SAFE); 2863 kdb_register_flags("?", kdb_help, "", 2864 "Display Help Message", 0, 2865 KDB_ENABLE_ALWAYS_SAFE); 2866 kdb_register_flags("cpu", kdb_cpu, "<cpunum>", 2867 "Switch to new cpu", 0, 2868 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS); 2869 kdb_register_flags("kgdb", kdb_kgdb, "", 2870 "Enter kgdb mode", 0, 0); 2871 kdb_register_flags("ps", kdb_ps, "[<flags>|A]", 2872 "Display active task list", 0, 2873 KDB_ENABLE_INSPECT); 2874 kdb_register_flags("pid", kdb_pid, "<pidnum>", 2875 "Switch to another task", 0, 2876 KDB_ENABLE_INSPECT); 2877 kdb_register_flags("reboot", kdb_reboot, "", 2878 "Reboot the machine immediately", 0, 2879 KDB_ENABLE_REBOOT); 2880 #if defined(CONFIG_MODULES) 2881 kdb_register_flags("lsmod", kdb_lsmod, "", 2882 "List loaded kernel modules", 0, 2883 KDB_ENABLE_INSPECT); 2884 #endif 2885 #if defined(CONFIG_MAGIC_SYSRQ) 2886 kdb_register_flags("sr", kdb_sr, "<key>", 2887 "Magic SysRq key", 0, 2888 KDB_ENABLE_ALWAYS_SAFE); 2889 #endif 2890 #if defined(CONFIG_PRINTK) 2891 kdb_register_flags("dmesg", kdb_dmesg, "[lines]", 2892 "Display syslog buffer", 0, 2893 KDB_ENABLE_ALWAYS_SAFE); 2894 #endif 2895 if (arch_kgdb_ops.enable_nmi) { 2896 kdb_register_flags("disable_nmi", kdb_disable_nmi, "", 2897 "Disable NMI entry to KDB", 0, 2898 KDB_ENABLE_ALWAYS_SAFE); 2899 } 2900 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"", 2901 "Define a set of commands, down to endefcmd", 0, 2902 KDB_ENABLE_ALWAYS_SAFE); 2903 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>", 2904 "Send a signal to a process", 0, 2905 KDB_ENABLE_SIGNAL); 2906 kdb_register_flags("summary", kdb_summary, "", 2907 "Summarize the system", 4, 2908 KDB_ENABLE_ALWAYS_SAFE); 2909 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]", 2910 "Display per_cpu variables", 3, 2911 KDB_ENABLE_MEM_READ); 2912 kdb_register_flags("grephelp", kdb_grep_help, "", 2913 "Display help on | grep", 0, 2914 KDB_ENABLE_ALWAYS_SAFE); 2915 } 2916 2917 /* Execute any commands defined in kdb_cmds. */ 2918 static void __init kdb_cmd_init(void) 2919 { 2920 int i, diag; 2921 for (i = 0; kdb_cmds[i]; ++i) { 2922 diag = kdb_parse(kdb_cmds[i]); 2923 if (diag) 2924 kdb_printf("kdb command %s failed, kdb diag %d\n", 2925 kdb_cmds[i], diag); 2926 } 2927 if (defcmd_in_progress) { 2928 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2929 kdb_parse("endefcmd"); 2930 } 2931 } 2932 2933 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2934 void __init kdb_init(int lvl) 2935 { 2936 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2937 int i; 2938 2939 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2940 return; 2941 for (i = kdb_init_lvl; i < lvl; i++) { 2942 switch (i) { 2943 case KDB_NOT_INITIALIZED: 2944 kdb_inittab(); /* Initialize Command Table */ 2945 kdb_initbptab(); /* Initialize Breakpoints */ 2946 break; 2947 case KDB_INIT_EARLY: 2948 kdb_cmd_init(); /* Build kdb_cmds tables */ 2949 break; 2950 } 2951 } 2952 kdb_init_lvl = lvl; 2953 } 2954