1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/types.h> 16 #include <linux/string.h> 17 #include <linux/kernel.h> 18 #include <linux/kmsg_dump.h> 19 #include <linux/reboot.h> 20 #include <linux/sched.h> 21 #include <linux/sched/loadavg.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sysrq.h> 25 #include <linux/smp.h> 26 #include <linux/utsname.h> 27 #include <linux/vmalloc.h> 28 #include <linux/atomic.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/mm.h> 32 #include <linux/init.h> 33 #include <linux/kallsyms.h> 34 #include <linux/kgdb.h> 35 #include <linux/kdb.h> 36 #include <linux/notifier.h> 37 #include <linux/interrupt.h> 38 #include <linux/delay.h> 39 #include <linux/nmi.h> 40 #include <linux/time.h> 41 #include <linux/ptrace.h> 42 #include <linux/sysctl.h> 43 #include <linux/cpu.h> 44 #include <linux/kdebug.h> 45 #include <linux/proc_fs.h> 46 #include <linux/uaccess.h> 47 #include <linux/slab.h> 48 #include "kdb_private.h" 49 50 #undef MODULE_PARAM_PREFIX 51 #define MODULE_PARAM_PREFIX "kdb." 52 53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE; 54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600); 55 56 char kdb_grep_string[KDB_GREP_STRLEN]; 57 int kdb_grepping_flag; 58 EXPORT_SYMBOL(kdb_grepping_flag); 59 int kdb_grep_leading; 60 int kdb_grep_trailing; 61 62 /* 63 * Kernel debugger state flags 64 */ 65 int kdb_flags; 66 67 /* 68 * kdb_lock protects updates to kdb_initial_cpu. Used to 69 * single thread processors through the kernel debugger. 70 */ 71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 72 int kdb_nextline = 1; 73 int kdb_state; /* General KDB state */ 74 75 struct task_struct *kdb_current_task; 76 struct pt_regs *kdb_current_regs; 77 78 const char *kdb_diemsg; 79 static int kdb_go_count; 80 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 81 static unsigned int kdb_continue_catastrophic = 82 CONFIG_KDB_CONTINUE_CATASTROPHIC; 83 #else 84 static unsigned int kdb_continue_catastrophic; 85 #endif 86 87 /* kdb_commands describes the available commands. */ 88 static kdbtab_t *kdb_commands; 89 #define KDB_BASE_CMD_MAX 50 90 static int kdb_max_commands = KDB_BASE_CMD_MAX; 91 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX]; 92 #define for_each_kdbcmd(cmd, num) \ 93 for ((cmd) = kdb_base_commands, (num) = 0; \ 94 num < kdb_max_commands; \ 95 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++) 96 97 typedef struct _kdbmsg { 98 int km_diag; /* kdb diagnostic */ 99 char *km_msg; /* Corresponding message text */ 100 } kdbmsg_t; 101 102 #define KDBMSG(msgnum, text) \ 103 { KDB_##msgnum, text } 104 105 static kdbmsg_t kdbmsgs[] = { 106 KDBMSG(NOTFOUND, "Command Not Found"), 107 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 108 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 109 "8 is only allowed on 64 bit systems"), 110 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 111 KDBMSG(NOTENV, "Cannot find environment variable"), 112 KDBMSG(NOENVVALUE, "Environment variable should have value"), 113 KDBMSG(NOTIMP, "Command not implemented"), 114 KDBMSG(ENVFULL, "Environment full"), 115 KDBMSG(ENVBUFFULL, "Environment buffer full"), 116 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 117 #ifdef CONFIG_CPU_XSCALE 118 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 119 #else 120 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 121 #endif 122 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 123 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 124 KDBMSG(BADMODE, "Invalid IDMODE"), 125 KDBMSG(BADINT, "Illegal numeric value"), 126 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 127 KDBMSG(BADREG, "Invalid register name"), 128 KDBMSG(BADCPUNUM, "Invalid cpu number"), 129 KDBMSG(BADLENGTH, "Invalid length field"), 130 KDBMSG(NOBP, "No Breakpoint exists"), 131 KDBMSG(BADADDR, "Invalid address"), 132 KDBMSG(NOPERM, "Permission denied"), 133 }; 134 #undef KDBMSG 135 136 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs); 137 138 139 /* 140 * Initial environment. This is all kept static and local to 141 * this file. We don't want to rely on the memory allocation 142 * mechanisms in the kernel, so we use a very limited allocate-only 143 * heap for new and altered environment variables. The entire 144 * environment is limited to a fixed number of entries (add more 145 * to __env[] if required) and a fixed amount of heap (add more to 146 * KDB_ENVBUFSIZE if required). 147 */ 148 149 static char *__env[] = { 150 #if defined(CONFIG_SMP) 151 "PROMPT=[%d]kdb> ", 152 #else 153 "PROMPT=kdb> ", 154 #endif 155 "MOREPROMPT=more> ", 156 "RADIX=16", 157 "MDCOUNT=8", /* lines of md output */ 158 KDB_PLATFORM_ENV, 159 "DTABCOUNT=30", 160 "NOSECT=1", 161 (char *)0, 162 (char *)0, 163 (char *)0, 164 (char *)0, 165 (char *)0, 166 (char *)0, 167 (char *)0, 168 (char *)0, 169 (char *)0, 170 (char *)0, 171 (char *)0, 172 (char *)0, 173 (char *)0, 174 (char *)0, 175 (char *)0, 176 (char *)0, 177 (char *)0, 178 (char *)0, 179 (char *)0, 180 (char *)0, 181 (char *)0, 182 (char *)0, 183 (char *)0, 184 (char *)0, 185 }; 186 187 static const int __nenv = ARRAY_SIZE(__env); 188 189 struct task_struct *kdb_curr_task(int cpu) 190 { 191 struct task_struct *p = curr_task(cpu); 192 #ifdef _TIF_MCA_INIT 193 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 194 p = krp->p; 195 #endif 196 return p; 197 } 198 199 /* 200 * Check whether the flags of the current command and the permissions 201 * of the kdb console has allow a command to be run. 202 */ 203 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions, 204 bool no_args) 205 { 206 /* permissions comes from userspace so needs massaging slightly */ 207 permissions &= KDB_ENABLE_MASK; 208 permissions |= KDB_ENABLE_ALWAYS_SAFE; 209 210 /* some commands change group when launched with no arguments */ 211 if (no_args) 212 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT; 213 214 flags |= KDB_ENABLE_ALL; 215 216 return permissions & flags; 217 } 218 219 /* 220 * kdbgetenv - This function will return the character string value of 221 * an environment variable. 222 * Parameters: 223 * match A character string representing an environment variable. 224 * Returns: 225 * NULL No environment variable matches 'match' 226 * char* Pointer to string value of environment variable. 227 */ 228 char *kdbgetenv(const char *match) 229 { 230 char **ep = __env; 231 int matchlen = strlen(match); 232 int i; 233 234 for (i = 0; i < __nenv; i++) { 235 char *e = *ep++; 236 237 if (!e) 238 continue; 239 240 if ((strncmp(match, e, matchlen) == 0) 241 && ((e[matchlen] == '\0') 242 || (e[matchlen] == '='))) { 243 char *cp = strchr(e, '='); 244 return cp ? ++cp : ""; 245 } 246 } 247 return NULL; 248 } 249 250 /* 251 * kdballocenv - This function is used to allocate bytes for 252 * environment entries. 253 * Parameters: 254 * match A character string representing a numeric value 255 * Outputs: 256 * *value the unsigned long representation of the env variable 'match' 257 * Returns: 258 * Zero on success, a kdb diagnostic on failure. 259 * Remarks: 260 * We use a static environment buffer (envbuffer) to hold the values 261 * of dynamically generated environment variables (see kdb_set). Buffer 262 * space once allocated is never free'd, so over time, the amount of space 263 * (currently 512 bytes) will be exhausted if env variables are changed 264 * frequently. 265 */ 266 static char *kdballocenv(size_t bytes) 267 { 268 #define KDB_ENVBUFSIZE 512 269 static char envbuffer[KDB_ENVBUFSIZE]; 270 static int envbufsize; 271 char *ep = NULL; 272 273 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 274 ep = &envbuffer[envbufsize]; 275 envbufsize += bytes; 276 } 277 return ep; 278 } 279 280 /* 281 * kdbgetulenv - This function will return the value of an unsigned 282 * long-valued environment variable. 283 * Parameters: 284 * match A character string representing a numeric value 285 * Outputs: 286 * *value the unsigned long represntation of the env variable 'match' 287 * Returns: 288 * Zero on success, a kdb diagnostic on failure. 289 */ 290 static int kdbgetulenv(const char *match, unsigned long *value) 291 { 292 char *ep; 293 294 ep = kdbgetenv(match); 295 if (!ep) 296 return KDB_NOTENV; 297 if (strlen(ep) == 0) 298 return KDB_NOENVVALUE; 299 300 *value = simple_strtoul(ep, NULL, 0); 301 302 return 0; 303 } 304 305 /* 306 * kdbgetintenv - This function will return the value of an 307 * integer-valued environment variable. 308 * Parameters: 309 * match A character string representing an integer-valued env variable 310 * Outputs: 311 * *value the integer representation of the environment variable 'match' 312 * Returns: 313 * Zero on success, a kdb diagnostic on failure. 314 */ 315 int kdbgetintenv(const char *match, int *value) 316 { 317 unsigned long val; 318 int diag; 319 320 diag = kdbgetulenv(match, &val); 321 if (!diag) 322 *value = (int) val; 323 return diag; 324 } 325 326 /* 327 * kdbgetularg - This function will convert a numeric string into an 328 * unsigned long value. 329 * Parameters: 330 * arg A character string representing a numeric value 331 * Outputs: 332 * *value the unsigned long represntation of arg. 333 * Returns: 334 * Zero on success, a kdb diagnostic on failure. 335 */ 336 int kdbgetularg(const char *arg, unsigned long *value) 337 { 338 char *endp; 339 unsigned long val; 340 341 val = simple_strtoul(arg, &endp, 0); 342 343 if (endp == arg) { 344 /* 345 * Also try base 16, for us folks too lazy to type the 346 * leading 0x... 347 */ 348 val = simple_strtoul(arg, &endp, 16); 349 if (endp == arg) 350 return KDB_BADINT; 351 } 352 353 *value = val; 354 355 return 0; 356 } 357 358 int kdbgetu64arg(const char *arg, u64 *value) 359 { 360 char *endp; 361 u64 val; 362 363 val = simple_strtoull(arg, &endp, 0); 364 365 if (endp == arg) { 366 367 val = simple_strtoull(arg, &endp, 16); 368 if (endp == arg) 369 return KDB_BADINT; 370 } 371 372 *value = val; 373 374 return 0; 375 } 376 377 /* 378 * kdb_set - This function implements the 'set' command. Alter an 379 * existing environment variable or create a new one. 380 */ 381 int kdb_set(int argc, const char **argv) 382 { 383 int i; 384 char *ep; 385 size_t varlen, vallen; 386 387 /* 388 * we can be invoked two ways: 389 * set var=value argv[1]="var", argv[2]="value" 390 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 391 * - if the latter, shift 'em down. 392 */ 393 if (argc == 3) { 394 argv[2] = argv[3]; 395 argc--; 396 } 397 398 if (argc != 2) 399 return KDB_ARGCOUNT; 400 401 /* 402 * Check for internal variables 403 */ 404 if (strcmp(argv[1], "KDBDEBUG") == 0) { 405 unsigned int debugflags; 406 char *cp; 407 408 debugflags = simple_strtoul(argv[2], &cp, 0); 409 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 410 kdb_printf("kdb: illegal debug flags '%s'\n", 411 argv[2]); 412 return 0; 413 } 414 kdb_flags = (kdb_flags & 415 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT)) 416 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 417 418 return 0; 419 } 420 421 /* 422 * Tokenizer squashed the '=' sign. argv[1] is variable 423 * name, argv[2] = value. 424 */ 425 varlen = strlen(argv[1]); 426 vallen = strlen(argv[2]); 427 ep = kdballocenv(varlen + vallen + 2); 428 if (ep == (char *)0) 429 return KDB_ENVBUFFULL; 430 431 sprintf(ep, "%s=%s", argv[1], argv[2]); 432 433 ep[varlen+vallen+1] = '\0'; 434 435 for (i = 0; i < __nenv; i++) { 436 if (__env[i] 437 && ((strncmp(__env[i], argv[1], varlen) == 0) 438 && ((__env[i][varlen] == '\0') 439 || (__env[i][varlen] == '=')))) { 440 __env[i] = ep; 441 return 0; 442 } 443 } 444 445 /* 446 * Wasn't existing variable. Fit into slot. 447 */ 448 for (i = 0; i < __nenv-1; i++) { 449 if (__env[i] == (char *)0) { 450 __env[i] = ep; 451 return 0; 452 } 453 } 454 455 return KDB_ENVFULL; 456 } 457 458 static int kdb_check_regs(void) 459 { 460 if (!kdb_current_regs) { 461 kdb_printf("No current kdb registers." 462 " You may need to select another task\n"); 463 return KDB_BADREG; 464 } 465 return 0; 466 } 467 468 /* 469 * kdbgetaddrarg - This function is responsible for parsing an 470 * address-expression and returning the value of the expression, 471 * symbol name, and offset to the caller. 472 * 473 * The argument may consist of a numeric value (decimal or 474 * hexidecimal), a symbol name, a register name (preceded by the 475 * percent sign), an environment variable with a numeric value 476 * (preceded by a dollar sign) or a simple arithmetic expression 477 * consisting of a symbol name, +/-, and a numeric constant value 478 * (offset). 479 * Parameters: 480 * argc - count of arguments in argv 481 * argv - argument vector 482 * *nextarg - index to next unparsed argument in argv[] 483 * regs - Register state at time of KDB entry 484 * Outputs: 485 * *value - receives the value of the address-expression 486 * *offset - receives the offset specified, if any 487 * *name - receives the symbol name, if any 488 * *nextarg - index to next unparsed argument in argv[] 489 * Returns: 490 * zero is returned on success, a kdb diagnostic code is 491 * returned on error. 492 */ 493 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 494 unsigned long *value, long *offset, 495 char **name) 496 { 497 unsigned long addr; 498 unsigned long off = 0; 499 int positive; 500 int diag; 501 int found = 0; 502 char *symname; 503 char symbol = '\0'; 504 char *cp; 505 kdb_symtab_t symtab; 506 507 /* 508 * If the enable flags prohibit both arbitrary memory access 509 * and flow control then there are no reasonable grounds to 510 * provide symbol lookup. 511 */ 512 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL, 513 kdb_cmd_enabled, false)) 514 return KDB_NOPERM; 515 516 /* 517 * Process arguments which follow the following syntax: 518 * 519 * symbol | numeric-address [+/- numeric-offset] 520 * %register 521 * $environment-variable 522 */ 523 524 if (*nextarg > argc) 525 return KDB_ARGCOUNT; 526 527 symname = (char *)argv[*nextarg]; 528 529 /* 530 * If there is no whitespace between the symbol 531 * or address and the '+' or '-' symbols, we 532 * remember the character and replace it with a 533 * null so the symbol/value can be properly parsed 534 */ 535 cp = strpbrk(symname, "+-"); 536 if (cp != NULL) { 537 symbol = *cp; 538 *cp++ = '\0'; 539 } 540 541 if (symname[0] == '$') { 542 diag = kdbgetulenv(&symname[1], &addr); 543 if (diag) 544 return diag; 545 } else if (symname[0] == '%') { 546 diag = kdb_check_regs(); 547 if (diag) 548 return diag; 549 /* Implement register values with % at a later time as it is 550 * arch optional. 551 */ 552 return KDB_NOTIMP; 553 } else { 554 found = kdbgetsymval(symname, &symtab); 555 if (found) { 556 addr = symtab.sym_start; 557 } else { 558 diag = kdbgetularg(argv[*nextarg], &addr); 559 if (diag) 560 return diag; 561 } 562 } 563 564 if (!found) 565 found = kdbnearsym(addr, &symtab); 566 567 (*nextarg)++; 568 569 if (name) 570 *name = symname; 571 if (value) 572 *value = addr; 573 if (offset && name && *name) 574 *offset = addr - symtab.sym_start; 575 576 if ((*nextarg > argc) 577 && (symbol == '\0')) 578 return 0; 579 580 /* 581 * check for +/- and offset 582 */ 583 584 if (symbol == '\0') { 585 if ((argv[*nextarg][0] != '+') 586 && (argv[*nextarg][0] != '-')) { 587 /* 588 * Not our argument. Return. 589 */ 590 return 0; 591 } else { 592 positive = (argv[*nextarg][0] == '+'); 593 (*nextarg)++; 594 } 595 } else 596 positive = (symbol == '+'); 597 598 /* 599 * Now there must be an offset! 600 */ 601 if ((*nextarg > argc) 602 && (symbol == '\0')) { 603 return KDB_INVADDRFMT; 604 } 605 606 if (!symbol) { 607 cp = (char *)argv[*nextarg]; 608 (*nextarg)++; 609 } 610 611 diag = kdbgetularg(cp, &off); 612 if (diag) 613 return diag; 614 615 if (!positive) 616 off = -off; 617 618 if (offset) 619 *offset += off; 620 621 if (value) 622 *value += off; 623 624 return 0; 625 } 626 627 static void kdb_cmderror(int diag) 628 { 629 int i; 630 631 if (diag >= 0) { 632 kdb_printf("no error detected (diagnostic is %d)\n", diag); 633 return; 634 } 635 636 for (i = 0; i < __nkdb_err; i++) { 637 if (kdbmsgs[i].km_diag == diag) { 638 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 639 return; 640 } 641 } 642 643 kdb_printf("Unknown diag %d\n", -diag); 644 } 645 646 /* 647 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 648 * command which defines one command as a set of other commands, 649 * terminated by endefcmd. kdb_defcmd processes the initial 650 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 651 * the following commands until 'endefcmd'. 652 * Inputs: 653 * argc argument count 654 * argv argument vector 655 * Returns: 656 * zero for success, a kdb diagnostic if error 657 */ 658 struct defcmd_set { 659 int count; 660 bool usable; 661 char *name; 662 char *usage; 663 char *help; 664 char **command; 665 }; 666 static struct defcmd_set *defcmd_set; 667 static int defcmd_set_count; 668 static bool defcmd_in_progress; 669 670 /* Forward references */ 671 static int kdb_exec_defcmd(int argc, const char **argv); 672 673 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 674 { 675 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; 676 char **save_command = s->command; 677 if (strcmp(argv0, "endefcmd") == 0) { 678 defcmd_in_progress = false; 679 if (!s->count) 680 s->usable = false; 681 if (s->usable) 682 /* macros are always safe because when executed each 683 * internal command re-enters kdb_parse() and is 684 * safety checked individually. 685 */ 686 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage, 687 s->help, 0, 688 KDB_ENABLE_ALWAYS_SAFE); 689 return 0; 690 } 691 if (!s->usable) 692 return KDB_NOTIMP; 693 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB); 694 if (!s->command) { 695 kdb_printf("Could not allocate new kdb_defcmd table for %s\n", 696 cmdstr); 697 s->usable = false; 698 return KDB_NOTIMP; 699 } 700 memcpy(s->command, save_command, s->count * sizeof(*(s->command))); 701 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); 702 kfree(save_command); 703 return 0; 704 } 705 706 static int kdb_defcmd(int argc, const char **argv) 707 { 708 struct defcmd_set *save_defcmd_set = defcmd_set, *s; 709 if (defcmd_in_progress) { 710 kdb_printf("kdb: nested defcmd detected, assuming missing " 711 "endefcmd\n"); 712 kdb_defcmd2("endefcmd", "endefcmd"); 713 } 714 if (argc == 0) { 715 int i; 716 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { 717 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, 718 s->usage, s->help); 719 for (i = 0; i < s->count; ++i) 720 kdb_printf("%s", s->command[i]); 721 kdb_printf("endefcmd\n"); 722 } 723 return 0; 724 } 725 if (argc != 3) 726 return KDB_ARGCOUNT; 727 if (in_dbg_master()) { 728 kdb_printf("Command only available during kdb_init()\n"); 729 return KDB_NOTIMP; 730 } 731 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set), 732 GFP_KDB); 733 if (!defcmd_set) 734 goto fail_defcmd; 735 memcpy(defcmd_set, save_defcmd_set, 736 defcmd_set_count * sizeof(*defcmd_set)); 737 s = defcmd_set + defcmd_set_count; 738 memset(s, 0, sizeof(*s)); 739 s->usable = true; 740 s->name = kdb_strdup(argv[1], GFP_KDB); 741 if (!s->name) 742 goto fail_name; 743 s->usage = kdb_strdup(argv[2], GFP_KDB); 744 if (!s->usage) 745 goto fail_usage; 746 s->help = kdb_strdup(argv[3], GFP_KDB); 747 if (!s->help) 748 goto fail_help; 749 if (s->usage[0] == '"') { 750 strcpy(s->usage, argv[2]+1); 751 s->usage[strlen(s->usage)-1] = '\0'; 752 } 753 if (s->help[0] == '"') { 754 strcpy(s->help, argv[3]+1); 755 s->help[strlen(s->help)-1] = '\0'; 756 } 757 ++defcmd_set_count; 758 defcmd_in_progress = true; 759 kfree(save_defcmd_set); 760 return 0; 761 fail_help: 762 kfree(s->usage); 763 fail_usage: 764 kfree(s->name); 765 fail_name: 766 kfree(defcmd_set); 767 fail_defcmd: 768 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]); 769 defcmd_set = save_defcmd_set; 770 return KDB_NOTIMP; 771 } 772 773 /* 774 * kdb_exec_defcmd - Execute the set of commands associated with this 775 * defcmd name. 776 * Inputs: 777 * argc argument count 778 * argv argument vector 779 * Returns: 780 * zero for success, a kdb diagnostic if error 781 */ 782 static int kdb_exec_defcmd(int argc, const char **argv) 783 { 784 int i, ret; 785 struct defcmd_set *s; 786 if (argc != 0) 787 return KDB_ARGCOUNT; 788 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { 789 if (strcmp(s->name, argv[0]) == 0) 790 break; 791 } 792 if (i == defcmd_set_count) { 793 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 794 argv[0]); 795 return KDB_NOTIMP; 796 } 797 for (i = 0; i < s->count; ++i) { 798 /* Recursive use of kdb_parse, do not use argv after 799 * this point */ 800 argv = NULL; 801 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); 802 ret = kdb_parse(s->command[i]); 803 if (ret) 804 return ret; 805 } 806 return 0; 807 } 808 809 /* Command history */ 810 #define KDB_CMD_HISTORY_COUNT 32 811 #define CMD_BUFLEN 200 /* kdb_printf: max printline 812 * size == 256 */ 813 static unsigned int cmd_head, cmd_tail; 814 static unsigned int cmdptr; 815 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 816 static char cmd_cur[CMD_BUFLEN]; 817 818 /* 819 * The "str" argument may point to something like | grep xyz 820 */ 821 static void parse_grep(const char *str) 822 { 823 int len; 824 char *cp = (char *)str, *cp2; 825 826 /* sanity check: we should have been called with the \ first */ 827 if (*cp != '|') 828 return; 829 cp++; 830 while (isspace(*cp)) 831 cp++; 832 if (!str_has_prefix(cp, "grep ")) { 833 kdb_printf("invalid 'pipe', see grephelp\n"); 834 return; 835 } 836 cp += 5; 837 while (isspace(*cp)) 838 cp++; 839 cp2 = strchr(cp, '\n'); 840 if (cp2) 841 *cp2 = '\0'; /* remove the trailing newline */ 842 len = strlen(cp); 843 if (len == 0) { 844 kdb_printf("invalid 'pipe', see grephelp\n"); 845 return; 846 } 847 /* now cp points to a nonzero length search string */ 848 if (*cp == '"') { 849 /* allow it be "x y z" by removing the "'s - there must 850 be two of them */ 851 cp++; 852 cp2 = strchr(cp, '"'); 853 if (!cp2) { 854 kdb_printf("invalid quoted string, see grephelp\n"); 855 return; 856 } 857 *cp2 = '\0'; /* end the string where the 2nd " was */ 858 } 859 kdb_grep_leading = 0; 860 if (*cp == '^') { 861 kdb_grep_leading = 1; 862 cp++; 863 } 864 len = strlen(cp); 865 kdb_grep_trailing = 0; 866 if (*(cp+len-1) == '$') { 867 kdb_grep_trailing = 1; 868 *(cp+len-1) = '\0'; 869 } 870 len = strlen(cp); 871 if (!len) 872 return; 873 if (len >= KDB_GREP_STRLEN) { 874 kdb_printf("search string too long\n"); 875 return; 876 } 877 strcpy(kdb_grep_string, cp); 878 kdb_grepping_flag++; 879 return; 880 } 881 882 /* 883 * kdb_parse - Parse the command line, search the command table for a 884 * matching command and invoke the command function. This 885 * function may be called recursively, if it is, the second call 886 * will overwrite argv and cbuf. It is the caller's 887 * responsibility to save their argv if they recursively call 888 * kdb_parse(). 889 * Parameters: 890 * cmdstr The input command line to be parsed. 891 * regs The registers at the time kdb was entered. 892 * Returns: 893 * Zero for success, a kdb diagnostic if failure. 894 * Remarks: 895 * Limited to 20 tokens. 896 * 897 * Real rudimentary tokenization. Basically only whitespace 898 * is considered a token delimeter (but special consideration 899 * is taken of the '=' sign as used by the 'set' command). 900 * 901 * The algorithm used to tokenize the input string relies on 902 * there being at least one whitespace (or otherwise useless) 903 * character between tokens as the character immediately following 904 * the token is altered in-place to a null-byte to terminate the 905 * token string. 906 */ 907 908 #define MAXARGC 20 909 910 int kdb_parse(const char *cmdstr) 911 { 912 static char *argv[MAXARGC]; 913 static int argc; 914 static char cbuf[CMD_BUFLEN+2]; 915 char *cp; 916 char *cpp, quoted; 917 kdbtab_t *tp; 918 int i, escaped, ignore_errors = 0, check_grep = 0; 919 920 /* 921 * First tokenize the command string. 922 */ 923 cp = (char *)cmdstr; 924 925 if (KDB_FLAG(CMD_INTERRUPT)) { 926 /* Previous command was interrupted, newline must not 927 * repeat the command */ 928 KDB_FLAG_CLEAR(CMD_INTERRUPT); 929 KDB_STATE_SET(PAGER); 930 argc = 0; /* no repeat */ 931 } 932 933 if (*cp != '\n' && *cp != '\0') { 934 argc = 0; 935 cpp = cbuf; 936 while (*cp) { 937 /* skip whitespace */ 938 while (isspace(*cp)) 939 cp++; 940 if ((*cp == '\0') || (*cp == '\n') || 941 (*cp == '#' && !defcmd_in_progress)) 942 break; 943 /* special case: check for | grep pattern */ 944 if (*cp == '|') { 945 check_grep++; 946 break; 947 } 948 if (cpp >= cbuf + CMD_BUFLEN) { 949 kdb_printf("kdb_parse: command buffer " 950 "overflow, command ignored\n%s\n", 951 cmdstr); 952 return KDB_NOTFOUND; 953 } 954 if (argc >= MAXARGC - 1) { 955 kdb_printf("kdb_parse: too many arguments, " 956 "command ignored\n%s\n", cmdstr); 957 return KDB_NOTFOUND; 958 } 959 argv[argc++] = cpp; 960 escaped = 0; 961 quoted = '\0'; 962 /* Copy to next unquoted and unescaped 963 * whitespace or '=' */ 964 while (*cp && *cp != '\n' && 965 (escaped || quoted || !isspace(*cp))) { 966 if (cpp >= cbuf + CMD_BUFLEN) 967 break; 968 if (escaped) { 969 escaped = 0; 970 *cpp++ = *cp++; 971 continue; 972 } 973 if (*cp == '\\') { 974 escaped = 1; 975 ++cp; 976 continue; 977 } 978 if (*cp == quoted) 979 quoted = '\0'; 980 else if (*cp == '\'' || *cp == '"') 981 quoted = *cp; 982 *cpp = *cp++; 983 if (*cpp == '=' && !quoted) 984 break; 985 ++cpp; 986 } 987 *cpp++ = '\0'; /* Squash a ws or '=' character */ 988 } 989 } 990 if (!argc) 991 return 0; 992 if (check_grep) 993 parse_grep(cp); 994 if (defcmd_in_progress) { 995 int result = kdb_defcmd2(cmdstr, argv[0]); 996 if (!defcmd_in_progress) { 997 argc = 0; /* avoid repeat on endefcmd */ 998 *(argv[0]) = '\0'; 999 } 1000 return result; 1001 } 1002 if (argv[0][0] == '-' && argv[0][1] && 1003 (argv[0][1] < '0' || argv[0][1] > '9')) { 1004 ignore_errors = 1; 1005 ++argv[0]; 1006 } 1007 1008 for_each_kdbcmd(tp, i) { 1009 if (tp->cmd_name) { 1010 /* 1011 * If this command is allowed to be abbreviated, 1012 * check to see if this is it. 1013 */ 1014 1015 if (tp->cmd_minlen 1016 && (strlen(argv[0]) <= tp->cmd_minlen)) { 1017 if (strncmp(argv[0], 1018 tp->cmd_name, 1019 tp->cmd_minlen) == 0) { 1020 break; 1021 } 1022 } 1023 1024 if (strcmp(argv[0], tp->cmd_name) == 0) 1025 break; 1026 } 1027 } 1028 1029 /* 1030 * If we don't find a command by this name, see if the first 1031 * few characters of this match any of the known commands. 1032 * e.g., md1c20 should match md. 1033 */ 1034 if (i == kdb_max_commands) { 1035 for_each_kdbcmd(tp, i) { 1036 if (tp->cmd_name) { 1037 if (strncmp(argv[0], 1038 tp->cmd_name, 1039 strlen(tp->cmd_name)) == 0) { 1040 break; 1041 } 1042 } 1043 } 1044 } 1045 1046 if (i < kdb_max_commands) { 1047 int result; 1048 1049 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1)) 1050 return KDB_NOPERM; 1051 1052 KDB_STATE_SET(CMD); 1053 result = (*tp->cmd_func)(argc-1, (const char **)argv); 1054 if (result && ignore_errors && result > KDB_CMD_GO) 1055 result = 0; 1056 KDB_STATE_CLEAR(CMD); 1057 1058 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS) 1059 return result; 1060 1061 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0; 1062 if (argv[argc]) 1063 *(argv[argc]) = '\0'; 1064 return result; 1065 } 1066 1067 /* 1068 * If the input with which we were presented does not 1069 * map to an existing command, attempt to parse it as an 1070 * address argument and display the result. Useful for 1071 * obtaining the address of a variable, or the nearest symbol 1072 * to an address contained in a register. 1073 */ 1074 { 1075 unsigned long value; 1076 char *name = NULL; 1077 long offset; 1078 int nextarg = 0; 1079 1080 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1081 &value, &offset, &name)) { 1082 return KDB_NOTFOUND; 1083 } 1084 1085 kdb_printf("%s = ", argv[0]); 1086 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1087 kdb_printf("\n"); 1088 return 0; 1089 } 1090 } 1091 1092 1093 static int handle_ctrl_cmd(char *cmd) 1094 { 1095 #define CTRL_P 16 1096 #define CTRL_N 14 1097 1098 /* initial situation */ 1099 if (cmd_head == cmd_tail) 1100 return 0; 1101 switch (*cmd) { 1102 case CTRL_P: 1103 if (cmdptr != cmd_tail) 1104 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT; 1105 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1106 return 1; 1107 case CTRL_N: 1108 if (cmdptr != cmd_head) 1109 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1110 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1111 return 1; 1112 } 1113 return 0; 1114 } 1115 1116 /* 1117 * kdb_reboot - This function implements the 'reboot' command. Reboot 1118 * the system immediately, or loop for ever on failure. 1119 */ 1120 static int kdb_reboot(int argc, const char **argv) 1121 { 1122 emergency_restart(); 1123 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1124 while (1) 1125 cpu_relax(); 1126 /* NOTREACHED */ 1127 return 0; 1128 } 1129 1130 static void kdb_dumpregs(struct pt_regs *regs) 1131 { 1132 int old_lvl = console_loglevel; 1133 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 1134 kdb_trap_printk++; 1135 show_regs(regs); 1136 kdb_trap_printk--; 1137 kdb_printf("\n"); 1138 console_loglevel = old_lvl; 1139 } 1140 1141 static void kdb_set_current_task(struct task_struct *p) 1142 { 1143 kdb_current_task = p; 1144 1145 if (kdb_task_has_cpu(p)) { 1146 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1147 return; 1148 } 1149 kdb_current_regs = NULL; 1150 } 1151 1152 static void drop_newline(char *buf) 1153 { 1154 size_t len = strlen(buf); 1155 1156 if (len == 0) 1157 return; 1158 if (*(buf + len - 1) == '\n') 1159 *(buf + len - 1) = '\0'; 1160 } 1161 1162 /* 1163 * kdb_local - The main code for kdb. This routine is invoked on a 1164 * specific processor, it is not global. The main kdb() routine 1165 * ensures that only one processor at a time is in this routine. 1166 * This code is called with the real reason code on the first 1167 * entry to a kdb session, thereafter it is called with reason 1168 * SWITCH, even if the user goes back to the original cpu. 1169 * Inputs: 1170 * reason The reason KDB was invoked 1171 * error The hardware-defined error code 1172 * regs The exception frame at time of fault/breakpoint. 1173 * db_result Result code from the break or debug point. 1174 * Returns: 1175 * 0 KDB was invoked for an event which it wasn't responsible 1176 * 1 KDB handled the event for which it was invoked. 1177 * KDB_CMD_GO User typed 'go'. 1178 * KDB_CMD_CPU User switched to another cpu. 1179 * KDB_CMD_SS Single step. 1180 */ 1181 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1182 kdb_dbtrap_t db_result) 1183 { 1184 char *cmdbuf; 1185 int diag; 1186 struct task_struct *kdb_current = 1187 kdb_curr_task(raw_smp_processor_id()); 1188 1189 KDB_DEBUG_STATE("kdb_local 1", reason); 1190 kdb_go_count = 0; 1191 if (reason == KDB_REASON_DEBUG) { 1192 /* special case below */ 1193 } else { 1194 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ", 1195 kdb_current, kdb_current ? kdb_current->pid : 0); 1196 #if defined(CONFIG_SMP) 1197 kdb_printf("on processor %d ", raw_smp_processor_id()); 1198 #endif 1199 } 1200 1201 switch (reason) { 1202 case KDB_REASON_DEBUG: 1203 { 1204 /* 1205 * If re-entering kdb after a single step 1206 * command, don't print the message. 1207 */ 1208 switch (db_result) { 1209 case KDB_DB_BPT: 1210 kdb_printf("\nEntering kdb (0x%px, pid %d) ", 1211 kdb_current, kdb_current->pid); 1212 #if defined(CONFIG_SMP) 1213 kdb_printf("on processor %d ", raw_smp_processor_id()); 1214 #endif 1215 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1216 instruction_pointer(regs)); 1217 break; 1218 case KDB_DB_SS: 1219 break; 1220 case KDB_DB_SSBPT: 1221 KDB_DEBUG_STATE("kdb_local 4", reason); 1222 return 1; /* kdba_db_trap did the work */ 1223 default: 1224 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1225 db_result); 1226 break; 1227 } 1228 1229 } 1230 break; 1231 case KDB_REASON_ENTER: 1232 if (KDB_STATE(KEYBOARD)) 1233 kdb_printf("due to Keyboard Entry\n"); 1234 else 1235 kdb_printf("due to KDB_ENTER()\n"); 1236 break; 1237 case KDB_REASON_KEYBOARD: 1238 KDB_STATE_SET(KEYBOARD); 1239 kdb_printf("due to Keyboard Entry\n"); 1240 break; 1241 case KDB_REASON_ENTER_SLAVE: 1242 /* drop through, slaves only get released via cpu switch */ 1243 case KDB_REASON_SWITCH: 1244 kdb_printf("due to cpu switch\n"); 1245 break; 1246 case KDB_REASON_OOPS: 1247 kdb_printf("Oops: %s\n", kdb_diemsg); 1248 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1249 instruction_pointer(regs)); 1250 kdb_dumpregs(regs); 1251 break; 1252 case KDB_REASON_SYSTEM_NMI: 1253 kdb_printf("due to System NonMaskable Interrupt\n"); 1254 break; 1255 case KDB_REASON_NMI: 1256 kdb_printf("due to NonMaskable Interrupt @ " 1257 kdb_machreg_fmt "\n", 1258 instruction_pointer(regs)); 1259 break; 1260 case KDB_REASON_SSTEP: 1261 case KDB_REASON_BREAK: 1262 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1263 reason == KDB_REASON_BREAK ? 1264 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1265 /* 1266 * Determine if this breakpoint is one that we 1267 * are interested in. 1268 */ 1269 if (db_result != KDB_DB_BPT) { 1270 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1271 db_result); 1272 KDB_DEBUG_STATE("kdb_local 6", reason); 1273 return 0; /* Not for us, dismiss it */ 1274 } 1275 break; 1276 case KDB_REASON_RECURSE: 1277 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1278 instruction_pointer(regs)); 1279 break; 1280 default: 1281 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1282 KDB_DEBUG_STATE("kdb_local 8", reason); 1283 return 0; /* Not for us, dismiss it */ 1284 } 1285 1286 while (1) { 1287 /* 1288 * Initialize pager context. 1289 */ 1290 kdb_nextline = 1; 1291 KDB_STATE_CLEAR(SUPPRESS); 1292 kdb_grepping_flag = 0; 1293 /* ensure the old search does not leak into '/' commands */ 1294 kdb_grep_string[0] = '\0'; 1295 1296 cmdbuf = cmd_cur; 1297 *cmdbuf = '\0'; 1298 *(cmd_hist[cmd_head]) = '\0'; 1299 1300 do_full_getstr: 1301 #if defined(CONFIG_SMP) 1302 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1303 raw_smp_processor_id()); 1304 #else 1305 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT")); 1306 #endif 1307 if (defcmd_in_progress) 1308 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); 1309 1310 /* 1311 * Fetch command from keyboard 1312 */ 1313 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1314 if (*cmdbuf != '\n') { 1315 if (*cmdbuf < 32) { 1316 if (cmdptr == cmd_head) { 1317 strncpy(cmd_hist[cmd_head], cmd_cur, 1318 CMD_BUFLEN); 1319 *(cmd_hist[cmd_head] + 1320 strlen(cmd_hist[cmd_head])-1) = '\0'; 1321 } 1322 if (!handle_ctrl_cmd(cmdbuf)) 1323 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1324 cmdbuf = cmd_cur; 1325 goto do_full_getstr; 1326 } else { 1327 strncpy(cmd_hist[cmd_head], cmd_cur, 1328 CMD_BUFLEN); 1329 } 1330 1331 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1332 if (cmd_head == cmd_tail) 1333 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1334 } 1335 1336 cmdptr = cmd_head; 1337 diag = kdb_parse(cmdbuf); 1338 if (diag == KDB_NOTFOUND) { 1339 drop_newline(cmdbuf); 1340 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1341 diag = 0; 1342 } 1343 if (diag == KDB_CMD_GO 1344 || diag == KDB_CMD_CPU 1345 || diag == KDB_CMD_SS 1346 || diag == KDB_CMD_KGDB) 1347 break; 1348 1349 if (diag) 1350 kdb_cmderror(diag); 1351 } 1352 KDB_DEBUG_STATE("kdb_local 9", diag); 1353 return diag; 1354 } 1355 1356 1357 /* 1358 * kdb_print_state - Print the state data for the current processor 1359 * for debugging. 1360 * Inputs: 1361 * text Identifies the debug point 1362 * value Any integer value to be printed, e.g. reason code. 1363 */ 1364 void kdb_print_state(const char *text, int value) 1365 { 1366 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1367 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1368 kdb_state); 1369 } 1370 1371 /* 1372 * kdb_main_loop - After initial setup and assignment of the 1373 * controlling cpu, all cpus are in this loop. One cpu is in 1374 * control and will issue the kdb prompt, the others will spin 1375 * until 'go' or cpu switch. 1376 * 1377 * To get a consistent view of the kernel stacks for all 1378 * processes, this routine is invoked from the main kdb code via 1379 * an architecture specific routine. kdba_main_loop is 1380 * responsible for making the kernel stacks consistent for all 1381 * processes, there should be no difference between a blocked 1382 * process and a running process as far as kdb is concerned. 1383 * Inputs: 1384 * reason The reason KDB was invoked 1385 * error The hardware-defined error code 1386 * reason2 kdb's current reason code. 1387 * Initially error but can change 1388 * according to kdb state. 1389 * db_result Result code from break or debug point. 1390 * regs The exception frame at time of fault/breakpoint. 1391 * should always be valid. 1392 * Returns: 1393 * 0 KDB was invoked for an event which it wasn't responsible 1394 * 1 KDB handled the event for which it was invoked. 1395 */ 1396 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1397 kdb_dbtrap_t db_result, struct pt_regs *regs) 1398 { 1399 int result = 1; 1400 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1401 while (1) { 1402 /* 1403 * All processors except the one that is in control 1404 * will spin here. 1405 */ 1406 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1407 while (KDB_STATE(HOLD_CPU)) { 1408 /* state KDB is turned off by kdb_cpu to see if the 1409 * other cpus are still live, each cpu in this loop 1410 * turns it back on. 1411 */ 1412 if (!KDB_STATE(KDB)) 1413 KDB_STATE_SET(KDB); 1414 } 1415 1416 KDB_STATE_CLEAR(SUPPRESS); 1417 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1418 if (KDB_STATE(LEAVING)) 1419 break; /* Another cpu said 'go' */ 1420 /* Still using kdb, this processor is in control */ 1421 result = kdb_local(reason2, error, regs, db_result); 1422 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1423 1424 if (result == KDB_CMD_CPU) 1425 break; 1426 1427 if (result == KDB_CMD_SS) { 1428 KDB_STATE_SET(DOING_SS); 1429 break; 1430 } 1431 1432 if (result == KDB_CMD_KGDB) { 1433 if (!KDB_STATE(DOING_KGDB)) 1434 kdb_printf("Entering please attach debugger " 1435 "or use $D#44+ or $3#33\n"); 1436 break; 1437 } 1438 if (result && result != 1 && result != KDB_CMD_GO) 1439 kdb_printf("\nUnexpected kdb_local return code %d\n", 1440 result); 1441 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1442 break; 1443 } 1444 if (KDB_STATE(DOING_SS)) 1445 KDB_STATE_CLEAR(SSBPT); 1446 1447 /* Clean up any keyboard devices before leaving */ 1448 kdb_kbd_cleanup_state(); 1449 1450 return result; 1451 } 1452 1453 /* 1454 * kdb_mdr - This function implements the guts of the 'mdr', memory 1455 * read command. 1456 * mdr <addr arg>,<byte count> 1457 * Inputs: 1458 * addr Start address 1459 * count Number of bytes 1460 * Returns: 1461 * Always 0. Any errors are detected and printed by kdb_getarea. 1462 */ 1463 static int kdb_mdr(unsigned long addr, unsigned int count) 1464 { 1465 unsigned char c; 1466 while (count--) { 1467 if (kdb_getarea(c, addr)) 1468 return 0; 1469 kdb_printf("%02x", c); 1470 addr++; 1471 } 1472 kdb_printf("\n"); 1473 return 0; 1474 } 1475 1476 /* 1477 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1478 * 'md8' 'mdr' and 'mds' commands. 1479 * 1480 * md|mds [<addr arg> [<line count> [<radix>]]] 1481 * mdWcN [<addr arg> [<line count> [<radix>]]] 1482 * where W = is the width (1, 2, 4 or 8) and N is the count. 1483 * for eg., md1c20 reads 20 bytes, 1 at a time. 1484 * mdr <addr arg>,<byte count> 1485 */ 1486 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1487 int symbolic, int nosect, int bytesperword, 1488 int num, int repeat, int phys) 1489 { 1490 /* print just one line of data */ 1491 kdb_symtab_t symtab; 1492 char cbuf[32]; 1493 char *c = cbuf; 1494 int i; 1495 int j; 1496 unsigned long word; 1497 1498 memset(cbuf, '\0', sizeof(cbuf)); 1499 if (phys) 1500 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1501 else 1502 kdb_printf(kdb_machreg_fmt0 " ", addr); 1503 1504 for (i = 0; i < num && repeat--; i++) { 1505 if (phys) { 1506 if (kdb_getphysword(&word, addr, bytesperword)) 1507 break; 1508 } else if (kdb_getword(&word, addr, bytesperword)) 1509 break; 1510 kdb_printf(fmtstr, word); 1511 if (symbolic) 1512 kdbnearsym(word, &symtab); 1513 else 1514 memset(&symtab, 0, sizeof(symtab)); 1515 if (symtab.sym_name) { 1516 kdb_symbol_print(word, &symtab, 0); 1517 if (!nosect) { 1518 kdb_printf("\n"); 1519 kdb_printf(" %s %s " 1520 kdb_machreg_fmt " " 1521 kdb_machreg_fmt " " 1522 kdb_machreg_fmt, symtab.mod_name, 1523 symtab.sec_name, symtab.sec_start, 1524 symtab.sym_start, symtab.sym_end); 1525 } 1526 addr += bytesperword; 1527 } else { 1528 union { 1529 u64 word; 1530 unsigned char c[8]; 1531 } wc; 1532 unsigned char *cp; 1533 #ifdef __BIG_ENDIAN 1534 cp = wc.c + 8 - bytesperword; 1535 #else 1536 cp = wc.c; 1537 #endif 1538 wc.word = word; 1539 #define printable_char(c) \ 1540 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1541 for (j = 0; j < bytesperword; j++) 1542 *c++ = printable_char(*cp++); 1543 addr += bytesperword; 1544 #undef printable_char 1545 } 1546 } 1547 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1548 " ", cbuf); 1549 } 1550 1551 static int kdb_md(int argc, const char **argv) 1552 { 1553 static unsigned long last_addr; 1554 static int last_radix, last_bytesperword, last_repeat; 1555 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1556 int nosect = 0; 1557 char fmtchar, fmtstr[64]; 1558 unsigned long addr; 1559 unsigned long word; 1560 long offset = 0; 1561 int symbolic = 0; 1562 int valid = 0; 1563 int phys = 0; 1564 int raw = 0; 1565 1566 kdbgetintenv("MDCOUNT", &mdcount); 1567 kdbgetintenv("RADIX", &radix); 1568 kdbgetintenv("BYTESPERWORD", &bytesperword); 1569 1570 /* Assume 'md <addr>' and start with environment values */ 1571 repeat = mdcount * 16 / bytesperword; 1572 1573 if (strcmp(argv[0], "mdr") == 0) { 1574 if (argc == 2 || (argc == 0 && last_addr != 0)) 1575 valid = raw = 1; 1576 else 1577 return KDB_ARGCOUNT; 1578 } else if (isdigit(argv[0][2])) { 1579 bytesperword = (int)(argv[0][2] - '0'); 1580 if (bytesperword == 0) { 1581 bytesperword = last_bytesperword; 1582 if (bytesperword == 0) 1583 bytesperword = 4; 1584 } 1585 last_bytesperword = bytesperword; 1586 repeat = mdcount * 16 / bytesperword; 1587 if (!argv[0][3]) 1588 valid = 1; 1589 else if (argv[0][3] == 'c' && argv[0][4]) { 1590 char *p; 1591 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1592 mdcount = ((repeat * bytesperword) + 15) / 16; 1593 valid = !*p; 1594 } 1595 last_repeat = repeat; 1596 } else if (strcmp(argv[0], "md") == 0) 1597 valid = 1; 1598 else if (strcmp(argv[0], "mds") == 0) 1599 valid = 1; 1600 else if (strcmp(argv[0], "mdp") == 0) { 1601 phys = valid = 1; 1602 } 1603 if (!valid) 1604 return KDB_NOTFOUND; 1605 1606 if (argc == 0) { 1607 if (last_addr == 0) 1608 return KDB_ARGCOUNT; 1609 addr = last_addr; 1610 radix = last_radix; 1611 bytesperword = last_bytesperword; 1612 repeat = last_repeat; 1613 if (raw) 1614 mdcount = repeat; 1615 else 1616 mdcount = ((repeat * bytesperword) + 15) / 16; 1617 } 1618 1619 if (argc) { 1620 unsigned long val; 1621 int diag, nextarg = 1; 1622 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1623 &offset, NULL); 1624 if (diag) 1625 return diag; 1626 if (argc > nextarg+2) 1627 return KDB_ARGCOUNT; 1628 1629 if (argc >= nextarg) { 1630 diag = kdbgetularg(argv[nextarg], &val); 1631 if (!diag) { 1632 mdcount = (int) val; 1633 if (raw) 1634 repeat = mdcount; 1635 else 1636 repeat = mdcount * 16 / bytesperword; 1637 } 1638 } 1639 if (argc >= nextarg+1) { 1640 diag = kdbgetularg(argv[nextarg+1], &val); 1641 if (!diag) 1642 radix = (int) val; 1643 } 1644 } 1645 1646 if (strcmp(argv[0], "mdr") == 0) { 1647 int ret; 1648 last_addr = addr; 1649 ret = kdb_mdr(addr, mdcount); 1650 last_addr += mdcount; 1651 last_repeat = mdcount; 1652 last_bytesperword = bytesperword; // to make REPEAT happy 1653 return ret; 1654 } 1655 1656 switch (radix) { 1657 case 10: 1658 fmtchar = 'd'; 1659 break; 1660 case 16: 1661 fmtchar = 'x'; 1662 break; 1663 case 8: 1664 fmtchar = 'o'; 1665 break; 1666 default: 1667 return KDB_BADRADIX; 1668 } 1669 1670 last_radix = radix; 1671 1672 if (bytesperword > KDB_WORD_SIZE) 1673 return KDB_BADWIDTH; 1674 1675 switch (bytesperword) { 1676 case 8: 1677 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1678 break; 1679 case 4: 1680 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1681 break; 1682 case 2: 1683 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1684 break; 1685 case 1: 1686 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1687 break; 1688 default: 1689 return KDB_BADWIDTH; 1690 } 1691 1692 last_repeat = repeat; 1693 last_bytesperword = bytesperword; 1694 1695 if (strcmp(argv[0], "mds") == 0) { 1696 symbolic = 1; 1697 /* Do not save these changes as last_*, they are temporary mds 1698 * overrides. 1699 */ 1700 bytesperword = KDB_WORD_SIZE; 1701 repeat = mdcount; 1702 kdbgetintenv("NOSECT", &nosect); 1703 } 1704 1705 /* Round address down modulo BYTESPERWORD */ 1706 1707 addr &= ~(bytesperword-1); 1708 1709 while (repeat > 0) { 1710 unsigned long a; 1711 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1712 1713 if (KDB_FLAG(CMD_INTERRUPT)) 1714 return 0; 1715 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1716 if (phys) { 1717 if (kdb_getphysword(&word, a, bytesperword) 1718 || word) 1719 break; 1720 } else if (kdb_getword(&word, a, bytesperword) || word) 1721 break; 1722 } 1723 n = min(num, repeat); 1724 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1725 num, repeat, phys); 1726 addr += bytesperword * n; 1727 repeat -= n; 1728 z = (z + num - 1) / num; 1729 if (z > 2) { 1730 int s = num * (z-2); 1731 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1732 " zero suppressed\n", 1733 addr, addr + bytesperword * s - 1); 1734 addr += bytesperword * s; 1735 repeat -= s; 1736 } 1737 } 1738 last_addr = addr; 1739 1740 return 0; 1741 } 1742 1743 /* 1744 * kdb_mm - This function implements the 'mm' command. 1745 * mm address-expression new-value 1746 * Remarks: 1747 * mm works on machine words, mmW works on bytes. 1748 */ 1749 static int kdb_mm(int argc, const char **argv) 1750 { 1751 int diag; 1752 unsigned long addr; 1753 long offset = 0; 1754 unsigned long contents; 1755 int nextarg; 1756 int width; 1757 1758 if (argv[0][2] && !isdigit(argv[0][2])) 1759 return KDB_NOTFOUND; 1760 1761 if (argc < 2) 1762 return KDB_ARGCOUNT; 1763 1764 nextarg = 1; 1765 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1766 if (diag) 1767 return diag; 1768 1769 if (nextarg > argc) 1770 return KDB_ARGCOUNT; 1771 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1772 if (diag) 1773 return diag; 1774 1775 if (nextarg != argc + 1) 1776 return KDB_ARGCOUNT; 1777 1778 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1779 diag = kdb_putword(addr, contents, width); 1780 if (diag) 1781 return diag; 1782 1783 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1784 1785 return 0; 1786 } 1787 1788 /* 1789 * kdb_go - This function implements the 'go' command. 1790 * go [address-expression] 1791 */ 1792 static int kdb_go(int argc, const char **argv) 1793 { 1794 unsigned long addr; 1795 int diag; 1796 int nextarg; 1797 long offset; 1798 1799 if (raw_smp_processor_id() != kdb_initial_cpu) { 1800 kdb_printf("go must execute on the entry cpu, " 1801 "please use \"cpu %d\" and then execute go\n", 1802 kdb_initial_cpu); 1803 return KDB_BADCPUNUM; 1804 } 1805 if (argc == 1) { 1806 nextarg = 1; 1807 diag = kdbgetaddrarg(argc, argv, &nextarg, 1808 &addr, &offset, NULL); 1809 if (diag) 1810 return diag; 1811 } else if (argc) { 1812 return KDB_ARGCOUNT; 1813 } 1814 1815 diag = KDB_CMD_GO; 1816 if (KDB_FLAG(CATASTROPHIC)) { 1817 kdb_printf("Catastrophic error detected\n"); 1818 kdb_printf("kdb_continue_catastrophic=%d, ", 1819 kdb_continue_catastrophic); 1820 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1821 kdb_printf("type go a second time if you really want " 1822 "to continue\n"); 1823 return 0; 1824 } 1825 if (kdb_continue_catastrophic == 2) { 1826 kdb_printf("forcing reboot\n"); 1827 kdb_reboot(0, NULL); 1828 } 1829 kdb_printf("attempting to continue\n"); 1830 } 1831 return diag; 1832 } 1833 1834 /* 1835 * kdb_rd - This function implements the 'rd' command. 1836 */ 1837 static int kdb_rd(int argc, const char **argv) 1838 { 1839 int len = kdb_check_regs(); 1840 #if DBG_MAX_REG_NUM > 0 1841 int i; 1842 char *rname; 1843 int rsize; 1844 u64 reg64; 1845 u32 reg32; 1846 u16 reg16; 1847 u8 reg8; 1848 1849 if (len) 1850 return len; 1851 1852 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1853 rsize = dbg_reg_def[i].size * 2; 1854 if (rsize > 16) 1855 rsize = 2; 1856 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1857 len = 0; 1858 kdb_printf("\n"); 1859 } 1860 if (len) 1861 len += kdb_printf(" "); 1862 switch(dbg_reg_def[i].size * 8) { 1863 case 8: 1864 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1865 if (!rname) 1866 break; 1867 len += kdb_printf("%s: %02x", rname, reg8); 1868 break; 1869 case 16: 1870 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1871 if (!rname) 1872 break; 1873 len += kdb_printf("%s: %04x", rname, reg16); 1874 break; 1875 case 32: 1876 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1877 if (!rname) 1878 break; 1879 len += kdb_printf("%s: %08x", rname, reg32); 1880 break; 1881 case 64: 1882 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1883 if (!rname) 1884 break; 1885 len += kdb_printf("%s: %016llx", rname, reg64); 1886 break; 1887 default: 1888 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1889 } 1890 } 1891 kdb_printf("\n"); 1892 #else 1893 if (len) 1894 return len; 1895 1896 kdb_dumpregs(kdb_current_regs); 1897 #endif 1898 return 0; 1899 } 1900 1901 /* 1902 * kdb_rm - This function implements the 'rm' (register modify) command. 1903 * rm register-name new-contents 1904 * Remarks: 1905 * Allows register modification with the same restrictions as gdb 1906 */ 1907 static int kdb_rm(int argc, const char **argv) 1908 { 1909 #if DBG_MAX_REG_NUM > 0 1910 int diag; 1911 const char *rname; 1912 int i; 1913 u64 reg64; 1914 u32 reg32; 1915 u16 reg16; 1916 u8 reg8; 1917 1918 if (argc != 2) 1919 return KDB_ARGCOUNT; 1920 /* 1921 * Allow presence or absence of leading '%' symbol. 1922 */ 1923 rname = argv[1]; 1924 if (*rname == '%') 1925 rname++; 1926 1927 diag = kdbgetu64arg(argv[2], ®64); 1928 if (diag) 1929 return diag; 1930 1931 diag = kdb_check_regs(); 1932 if (diag) 1933 return diag; 1934 1935 diag = KDB_BADREG; 1936 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1937 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1938 diag = 0; 1939 break; 1940 } 1941 } 1942 if (!diag) { 1943 switch(dbg_reg_def[i].size * 8) { 1944 case 8: 1945 reg8 = reg64; 1946 dbg_set_reg(i, ®8, kdb_current_regs); 1947 break; 1948 case 16: 1949 reg16 = reg64; 1950 dbg_set_reg(i, ®16, kdb_current_regs); 1951 break; 1952 case 32: 1953 reg32 = reg64; 1954 dbg_set_reg(i, ®32, kdb_current_regs); 1955 break; 1956 case 64: 1957 dbg_set_reg(i, ®64, kdb_current_regs); 1958 break; 1959 } 1960 } 1961 return diag; 1962 #else 1963 kdb_printf("ERROR: Register set currently not implemented\n"); 1964 return 0; 1965 #endif 1966 } 1967 1968 #if defined(CONFIG_MAGIC_SYSRQ) 1969 /* 1970 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 1971 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 1972 * sr <magic-sysrq-code> 1973 */ 1974 static int kdb_sr(int argc, const char **argv) 1975 { 1976 bool check_mask = 1977 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false); 1978 1979 if (argc != 1) 1980 return KDB_ARGCOUNT; 1981 1982 kdb_trap_printk++; 1983 __handle_sysrq(*argv[1], check_mask); 1984 kdb_trap_printk--; 1985 1986 return 0; 1987 } 1988 #endif /* CONFIG_MAGIC_SYSRQ */ 1989 1990 /* 1991 * kdb_ef - This function implements the 'regs' (display exception 1992 * frame) command. This command takes an address and expects to 1993 * find an exception frame at that address, formats and prints 1994 * it. 1995 * regs address-expression 1996 * Remarks: 1997 * Not done yet. 1998 */ 1999 static int kdb_ef(int argc, const char **argv) 2000 { 2001 int diag; 2002 unsigned long addr; 2003 long offset; 2004 int nextarg; 2005 2006 if (argc != 1) 2007 return KDB_ARGCOUNT; 2008 2009 nextarg = 1; 2010 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2011 if (diag) 2012 return diag; 2013 show_regs((struct pt_regs *)addr); 2014 return 0; 2015 } 2016 2017 #if defined(CONFIG_MODULES) 2018 /* 2019 * kdb_lsmod - This function implements the 'lsmod' command. Lists 2020 * currently loaded kernel modules. 2021 * Mostly taken from userland lsmod. 2022 */ 2023 static int kdb_lsmod(int argc, const char **argv) 2024 { 2025 struct module *mod; 2026 2027 if (argc != 0) 2028 return KDB_ARGCOUNT; 2029 2030 kdb_printf("Module Size modstruct Used by\n"); 2031 list_for_each_entry(mod, kdb_modules, list) { 2032 if (mod->state == MODULE_STATE_UNFORMED) 2033 continue; 2034 2035 kdb_printf("%-20s%8u 0x%px ", mod->name, 2036 mod->core_layout.size, (void *)mod); 2037 #ifdef CONFIG_MODULE_UNLOAD 2038 kdb_printf("%4d ", module_refcount(mod)); 2039 #endif 2040 if (mod->state == MODULE_STATE_GOING) 2041 kdb_printf(" (Unloading)"); 2042 else if (mod->state == MODULE_STATE_COMING) 2043 kdb_printf(" (Loading)"); 2044 else 2045 kdb_printf(" (Live)"); 2046 kdb_printf(" 0x%px", mod->core_layout.base); 2047 2048 #ifdef CONFIG_MODULE_UNLOAD 2049 { 2050 struct module_use *use; 2051 kdb_printf(" [ "); 2052 list_for_each_entry(use, &mod->source_list, 2053 source_list) 2054 kdb_printf("%s ", use->target->name); 2055 kdb_printf("]\n"); 2056 } 2057 #endif 2058 } 2059 2060 return 0; 2061 } 2062 2063 #endif /* CONFIG_MODULES */ 2064 2065 /* 2066 * kdb_env - This function implements the 'env' command. Display the 2067 * current environment variables. 2068 */ 2069 2070 static int kdb_env(int argc, const char **argv) 2071 { 2072 int i; 2073 2074 for (i = 0; i < __nenv; i++) { 2075 if (__env[i]) 2076 kdb_printf("%s\n", __env[i]); 2077 } 2078 2079 if (KDB_DEBUG(MASK)) 2080 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags); 2081 2082 return 0; 2083 } 2084 2085 #ifdef CONFIG_PRINTK 2086 /* 2087 * kdb_dmesg - This function implements the 'dmesg' command to display 2088 * the contents of the syslog buffer. 2089 * dmesg [lines] [adjust] 2090 */ 2091 static int kdb_dmesg(int argc, const char **argv) 2092 { 2093 int diag; 2094 int logging; 2095 int lines = 0; 2096 int adjust = 0; 2097 int n = 0; 2098 int skip = 0; 2099 struct kmsg_dumper dumper = { .active = 1 }; 2100 size_t len; 2101 char buf[201]; 2102 2103 if (argc > 2) 2104 return KDB_ARGCOUNT; 2105 if (argc) { 2106 char *cp; 2107 lines = simple_strtol(argv[1], &cp, 0); 2108 if (*cp) 2109 lines = 0; 2110 if (argc > 1) { 2111 adjust = simple_strtoul(argv[2], &cp, 0); 2112 if (*cp || adjust < 0) 2113 adjust = 0; 2114 } 2115 } 2116 2117 /* disable LOGGING if set */ 2118 diag = kdbgetintenv("LOGGING", &logging); 2119 if (!diag && logging) { 2120 const char *setargs[] = { "set", "LOGGING", "0" }; 2121 kdb_set(2, setargs); 2122 } 2123 2124 kmsg_dump_rewind_nolock(&dumper); 2125 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL)) 2126 n++; 2127 2128 if (lines < 0) { 2129 if (adjust >= n) 2130 kdb_printf("buffer only contains %d lines, nothing " 2131 "printed\n", n); 2132 else if (adjust - lines >= n) 2133 kdb_printf("buffer only contains %d lines, last %d " 2134 "lines printed\n", n, n - adjust); 2135 skip = adjust; 2136 lines = abs(lines); 2137 } else if (lines > 0) { 2138 skip = n - lines - adjust; 2139 lines = abs(lines); 2140 if (adjust >= n) { 2141 kdb_printf("buffer only contains %d lines, " 2142 "nothing printed\n", n); 2143 skip = n; 2144 } else if (skip < 0) { 2145 lines += skip; 2146 skip = 0; 2147 kdb_printf("buffer only contains %d lines, first " 2148 "%d lines printed\n", n, lines); 2149 } 2150 } else { 2151 lines = n; 2152 } 2153 2154 if (skip >= n || skip < 0) 2155 return 0; 2156 2157 kmsg_dump_rewind_nolock(&dumper); 2158 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) { 2159 if (skip) { 2160 skip--; 2161 continue; 2162 } 2163 if (!lines--) 2164 break; 2165 if (KDB_FLAG(CMD_INTERRUPT)) 2166 return 0; 2167 2168 kdb_printf("%.*s\n", (int)len - 1, buf); 2169 } 2170 2171 return 0; 2172 } 2173 #endif /* CONFIG_PRINTK */ 2174 2175 /* Make sure we balance enable/disable calls, must disable first. */ 2176 static atomic_t kdb_nmi_disabled; 2177 2178 static int kdb_disable_nmi(int argc, const char *argv[]) 2179 { 2180 if (atomic_read(&kdb_nmi_disabled)) 2181 return 0; 2182 atomic_set(&kdb_nmi_disabled, 1); 2183 arch_kgdb_ops.enable_nmi(0); 2184 return 0; 2185 } 2186 2187 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2188 { 2189 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2190 return -EINVAL; 2191 arch_kgdb_ops.enable_nmi(1); 2192 return 0; 2193 } 2194 2195 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2196 .set = kdb_param_enable_nmi, 2197 }; 2198 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2199 2200 /* 2201 * kdb_cpu - This function implements the 'cpu' command. 2202 * cpu [<cpunum>] 2203 * Returns: 2204 * KDB_CMD_CPU for success, a kdb diagnostic if error 2205 */ 2206 static void kdb_cpu_status(void) 2207 { 2208 int i, start_cpu, first_print = 1; 2209 char state, prev_state = '?'; 2210 2211 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2212 kdb_printf("Available cpus: "); 2213 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2214 if (!cpu_online(i)) { 2215 state = 'F'; /* cpu is offline */ 2216 } else if (!kgdb_info[i].enter_kgdb) { 2217 state = 'D'; /* cpu is online but unresponsive */ 2218 } else { 2219 state = ' '; /* cpu is responding to kdb */ 2220 if (kdb_task_state_char(KDB_TSK(i)) == 'I') 2221 state = 'I'; /* idle task */ 2222 } 2223 if (state != prev_state) { 2224 if (prev_state != '?') { 2225 if (!first_print) 2226 kdb_printf(", "); 2227 first_print = 0; 2228 kdb_printf("%d", start_cpu); 2229 if (start_cpu < i-1) 2230 kdb_printf("-%d", i-1); 2231 if (prev_state != ' ') 2232 kdb_printf("(%c)", prev_state); 2233 } 2234 prev_state = state; 2235 start_cpu = i; 2236 } 2237 } 2238 /* print the trailing cpus, ignoring them if they are all offline */ 2239 if (prev_state != 'F') { 2240 if (!first_print) 2241 kdb_printf(", "); 2242 kdb_printf("%d", start_cpu); 2243 if (start_cpu < i-1) 2244 kdb_printf("-%d", i-1); 2245 if (prev_state != ' ') 2246 kdb_printf("(%c)", prev_state); 2247 } 2248 kdb_printf("\n"); 2249 } 2250 2251 static int kdb_cpu(int argc, const char **argv) 2252 { 2253 unsigned long cpunum; 2254 int diag; 2255 2256 if (argc == 0) { 2257 kdb_cpu_status(); 2258 return 0; 2259 } 2260 2261 if (argc != 1) 2262 return KDB_ARGCOUNT; 2263 2264 diag = kdbgetularg(argv[1], &cpunum); 2265 if (diag) 2266 return diag; 2267 2268 /* 2269 * Validate cpunum 2270 */ 2271 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb) 2272 return KDB_BADCPUNUM; 2273 2274 dbg_switch_cpu = cpunum; 2275 2276 /* 2277 * Switch to other cpu 2278 */ 2279 return KDB_CMD_CPU; 2280 } 2281 2282 /* The user may not realize that ps/bta with no parameters does not print idle 2283 * or sleeping system daemon processes, so tell them how many were suppressed. 2284 */ 2285 void kdb_ps_suppressed(void) 2286 { 2287 int idle = 0, daemon = 0; 2288 unsigned long mask_I = kdb_task_state_string("I"), 2289 mask_M = kdb_task_state_string("M"); 2290 unsigned long cpu; 2291 const struct task_struct *p, *g; 2292 for_each_online_cpu(cpu) { 2293 p = kdb_curr_task(cpu); 2294 if (kdb_task_state(p, mask_I)) 2295 ++idle; 2296 } 2297 kdb_do_each_thread(g, p) { 2298 if (kdb_task_state(p, mask_M)) 2299 ++daemon; 2300 } kdb_while_each_thread(g, p); 2301 if (idle || daemon) { 2302 if (idle) 2303 kdb_printf("%d idle process%s (state I)%s\n", 2304 idle, idle == 1 ? "" : "es", 2305 daemon ? " and " : ""); 2306 if (daemon) 2307 kdb_printf("%d sleeping system daemon (state M) " 2308 "process%s", daemon, 2309 daemon == 1 ? "" : "es"); 2310 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2311 } 2312 } 2313 2314 /* 2315 * kdb_ps - This function implements the 'ps' command which shows a 2316 * list of the active processes. 2317 * ps [DRSTCZEUIMA] All processes, optionally filtered by state 2318 */ 2319 void kdb_ps1(const struct task_struct *p) 2320 { 2321 int cpu; 2322 unsigned long tmp; 2323 2324 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) 2325 return; 2326 2327 cpu = kdb_process_cpu(p); 2328 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n", 2329 (void *)p, p->pid, p->parent->pid, 2330 kdb_task_has_cpu(p), kdb_process_cpu(p), 2331 kdb_task_state_char(p), 2332 (void *)(&p->thread), 2333 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2334 p->comm); 2335 if (kdb_task_has_cpu(p)) { 2336 if (!KDB_TSK(cpu)) { 2337 kdb_printf(" Error: no saved data for this cpu\n"); 2338 } else { 2339 if (KDB_TSK(cpu) != p) 2340 kdb_printf(" Error: does not match running " 2341 "process table (0x%px)\n", KDB_TSK(cpu)); 2342 } 2343 } 2344 } 2345 2346 static int kdb_ps(int argc, const char **argv) 2347 { 2348 struct task_struct *g, *p; 2349 unsigned long mask, cpu; 2350 2351 if (argc == 0) 2352 kdb_ps_suppressed(); 2353 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2354 (int)(2*sizeof(void *))+2, "Task Addr", 2355 (int)(2*sizeof(void *))+2, "Thread"); 2356 mask = kdb_task_state_string(argc ? argv[1] : NULL); 2357 /* Run the active tasks first */ 2358 for_each_online_cpu(cpu) { 2359 if (KDB_FLAG(CMD_INTERRUPT)) 2360 return 0; 2361 p = kdb_curr_task(cpu); 2362 if (kdb_task_state(p, mask)) 2363 kdb_ps1(p); 2364 } 2365 kdb_printf("\n"); 2366 /* Now the real tasks */ 2367 kdb_do_each_thread(g, p) { 2368 if (KDB_FLAG(CMD_INTERRUPT)) 2369 return 0; 2370 if (kdb_task_state(p, mask)) 2371 kdb_ps1(p); 2372 } kdb_while_each_thread(g, p); 2373 2374 return 0; 2375 } 2376 2377 /* 2378 * kdb_pid - This function implements the 'pid' command which switches 2379 * the currently active process. 2380 * pid [<pid> | R] 2381 */ 2382 static int kdb_pid(int argc, const char **argv) 2383 { 2384 struct task_struct *p; 2385 unsigned long val; 2386 int diag; 2387 2388 if (argc > 1) 2389 return KDB_ARGCOUNT; 2390 2391 if (argc) { 2392 if (strcmp(argv[1], "R") == 0) { 2393 p = KDB_TSK(kdb_initial_cpu); 2394 } else { 2395 diag = kdbgetularg(argv[1], &val); 2396 if (diag) 2397 return KDB_BADINT; 2398 2399 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2400 if (!p) { 2401 kdb_printf("No task with pid=%d\n", (pid_t)val); 2402 return 0; 2403 } 2404 } 2405 kdb_set_current_task(p); 2406 } 2407 kdb_printf("KDB current process is %s(pid=%d)\n", 2408 kdb_current_task->comm, 2409 kdb_current_task->pid); 2410 2411 return 0; 2412 } 2413 2414 static int kdb_kgdb(int argc, const char **argv) 2415 { 2416 return KDB_CMD_KGDB; 2417 } 2418 2419 /* 2420 * kdb_help - This function implements the 'help' and '?' commands. 2421 */ 2422 static int kdb_help(int argc, const char **argv) 2423 { 2424 kdbtab_t *kt; 2425 int i; 2426 2427 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2428 kdb_printf("-----------------------------" 2429 "-----------------------------\n"); 2430 for_each_kdbcmd(kt, i) { 2431 char *space = ""; 2432 if (KDB_FLAG(CMD_INTERRUPT)) 2433 return 0; 2434 if (!kt->cmd_name) 2435 continue; 2436 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true)) 2437 continue; 2438 if (strlen(kt->cmd_usage) > 20) 2439 space = "\n "; 2440 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name, 2441 kt->cmd_usage, space, kt->cmd_help); 2442 } 2443 return 0; 2444 } 2445 2446 /* 2447 * kdb_kill - This function implements the 'kill' commands. 2448 */ 2449 static int kdb_kill(int argc, const char **argv) 2450 { 2451 long sig, pid; 2452 char *endp; 2453 struct task_struct *p; 2454 2455 if (argc != 2) 2456 return KDB_ARGCOUNT; 2457 2458 sig = simple_strtol(argv[1], &endp, 0); 2459 if (*endp) 2460 return KDB_BADINT; 2461 if ((sig >= 0) || !valid_signal(-sig)) { 2462 kdb_printf("Invalid signal parameter.<-signal>\n"); 2463 return 0; 2464 } 2465 sig = -sig; 2466 2467 pid = simple_strtol(argv[2], &endp, 0); 2468 if (*endp) 2469 return KDB_BADINT; 2470 if (pid <= 0) { 2471 kdb_printf("Process ID must be large than 0.\n"); 2472 return 0; 2473 } 2474 2475 /* Find the process. */ 2476 p = find_task_by_pid_ns(pid, &init_pid_ns); 2477 if (!p) { 2478 kdb_printf("The specified process isn't found.\n"); 2479 return 0; 2480 } 2481 p = p->group_leader; 2482 kdb_send_sig(p, sig); 2483 return 0; 2484 } 2485 2486 /* 2487 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2488 * I cannot call that code directly from kdb, it has an unconditional 2489 * cli()/sti() and calls routines that take locks which can stop the debugger. 2490 */ 2491 static void kdb_sysinfo(struct sysinfo *val) 2492 { 2493 u64 uptime = ktime_get_mono_fast_ns(); 2494 2495 memset(val, 0, sizeof(*val)); 2496 val->uptime = div_u64(uptime, NSEC_PER_SEC); 2497 val->loads[0] = avenrun[0]; 2498 val->loads[1] = avenrun[1]; 2499 val->loads[2] = avenrun[2]; 2500 val->procs = nr_threads-1; 2501 si_meminfo(val); 2502 2503 return; 2504 } 2505 2506 /* 2507 * kdb_summary - This function implements the 'summary' command. 2508 */ 2509 static int kdb_summary(int argc, const char **argv) 2510 { 2511 time64_t now; 2512 struct tm tm; 2513 struct sysinfo val; 2514 2515 if (argc) 2516 return KDB_ARGCOUNT; 2517 2518 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2519 kdb_printf("release %s\n", init_uts_ns.name.release); 2520 kdb_printf("version %s\n", init_uts_ns.name.version); 2521 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2522 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2523 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2524 2525 now = __ktime_get_real_seconds(); 2526 time64_to_tm(now, 0, &tm); 2527 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d " 2528 "tz_minuteswest %d\n", 2529 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, 2530 tm.tm_hour, tm.tm_min, tm.tm_sec, 2531 sys_tz.tz_minuteswest); 2532 2533 kdb_sysinfo(&val); 2534 kdb_printf("uptime "); 2535 if (val.uptime > (24*60*60)) { 2536 int days = val.uptime / (24*60*60); 2537 val.uptime %= (24*60*60); 2538 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2539 } 2540 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2541 2542 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2543 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2544 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2545 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2546 2547 /* Display in kilobytes */ 2548 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2549 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2550 "Buffers: %8lu kB\n", 2551 K(val.totalram), K(val.freeram), K(val.bufferram)); 2552 return 0; 2553 } 2554 2555 /* 2556 * kdb_per_cpu - This function implements the 'per_cpu' command. 2557 */ 2558 static int kdb_per_cpu(int argc, const char **argv) 2559 { 2560 char fmtstr[64]; 2561 int cpu, diag, nextarg = 1; 2562 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2563 2564 if (argc < 1 || argc > 3) 2565 return KDB_ARGCOUNT; 2566 2567 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2568 if (diag) 2569 return diag; 2570 2571 if (argc >= 2) { 2572 diag = kdbgetularg(argv[2], &bytesperword); 2573 if (diag) 2574 return diag; 2575 } 2576 if (!bytesperword) 2577 bytesperword = KDB_WORD_SIZE; 2578 else if (bytesperword > KDB_WORD_SIZE) 2579 return KDB_BADWIDTH; 2580 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2581 if (argc >= 3) { 2582 diag = kdbgetularg(argv[3], &whichcpu); 2583 if (diag) 2584 return diag; 2585 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) { 2586 kdb_printf("cpu %ld is not online\n", whichcpu); 2587 return KDB_BADCPUNUM; 2588 } 2589 } 2590 2591 /* Most architectures use __per_cpu_offset[cpu], some use 2592 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2593 */ 2594 #ifdef __per_cpu_offset 2595 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2596 #else 2597 #ifdef CONFIG_SMP 2598 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2599 #else 2600 #define KDB_PCU(cpu) 0 2601 #endif 2602 #endif 2603 for_each_online_cpu(cpu) { 2604 if (KDB_FLAG(CMD_INTERRUPT)) 2605 return 0; 2606 2607 if (whichcpu != ~0UL && whichcpu != cpu) 2608 continue; 2609 addr = symaddr + KDB_PCU(cpu); 2610 diag = kdb_getword(&val, addr, bytesperword); 2611 if (diag) { 2612 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2613 "read, diag=%d\n", cpu, addr, diag); 2614 continue; 2615 } 2616 kdb_printf("%5d ", cpu); 2617 kdb_md_line(fmtstr, addr, 2618 bytesperword == KDB_WORD_SIZE, 2619 1, bytesperword, 1, 1, 0); 2620 } 2621 #undef KDB_PCU 2622 return 0; 2623 } 2624 2625 /* 2626 * display help for the use of cmd | grep pattern 2627 */ 2628 static int kdb_grep_help(int argc, const char **argv) 2629 { 2630 kdb_printf("Usage of cmd args | grep pattern:\n"); 2631 kdb_printf(" Any command's output may be filtered through an "); 2632 kdb_printf("emulated 'pipe'.\n"); 2633 kdb_printf(" 'grep' is just a key word.\n"); 2634 kdb_printf(" The pattern may include a very limited set of " 2635 "metacharacters:\n"); 2636 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2637 kdb_printf(" And if there are spaces in the pattern, you may " 2638 "quote it:\n"); 2639 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2640 " or \"^pat tern$\"\n"); 2641 return 0; 2642 } 2643 2644 /* 2645 * kdb_register_flags - This function is used to register a kernel 2646 * debugger command. 2647 * Inputs: 2648 * cmd Command name 2649 * func Function to execute the command 2650 * usage A simple usage string showing arguments 2651 * help A simple help string describing command 2652 * repeat Does the command auto repeat on enter? 2653 * Returns: 2654 * zero for success, one if a duplicate command. 2655 */ 2656 #define kdb_command_extend 50 /* arbitrary */ 2657 int kdb_register_flags(char *cmd, 2658 kdb_func_t func, 2659 char *usage, 2660 char *help, 2661 short minlen, 2662 kdb_cmdflags_t flags) 2663 { 2664 int i; 2665 kdbtab_t *kp; 2666 2667 /* 2668 * Brute force method to determine duplicates 2669 */ 2670 for_each_kdbcmd(kp, i) { 2671 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2672 kdb_printf("Duplicate kdb command registered: " 2673 "%s, func %px help %s\n", cmd, func, help); 2674 return 1; 2675 } 2676 } 2677 2678 /* 2679 * Insert command into first available location in table 2680 */ 2681 for_each_kdbcmd(kp, i) { 2682 if (kp->cmd_name == NULL) 2683 break; 2684 } 2685 2686 if (i >= kdb_max_commands) { 2687 kdbtab_t *new = kmalloc_array(kdb_max_commands - 2688 KDB_BASE_CMD_MAX + 2689 kdb_command_extend, 2690 sizeof(*new), 2691 GFP_KDB); 2692 if (!new) { 2693 kdb_printf("Could not allocate new kdb_command " 2694 "table\n"); 2695 return 1; 2696 } 2697 if (kdb_commands) { 2698 memcpy(new, kdb_commands, 2699 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new)); 2700 kfree(kdb_commands); 2701 } 2702 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0, 2703 kdb_command_extend * sizeof(*new)); 2704 kdb_commands = new; 2705 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX; 2706 kdb_max_commands += kdb_command_extend; 2707 } 2708 2709 kp->cmd_name = cmd; 2710 kp->cmd_func = func; 2711 kp->cmd_usage = usage; 2712 kp->cmd_help = help; 2713 kp->cmd_minlen = minlen; 2714 kp->cmd_flags = flags; 2715 2716 return 0; 2717 } 2718 EXPORT_SYMBOL_GPL(kdb_register_flags); 2719 2720 2721 /* 2722 * kdb_register - Compatibility register function for commands that do 2723 * not need to specify a repeat state. Equivalent to 2724 * kdb_register_flags with flags set to 0. 2725 * Inputs: 2726 * cmd Command name 2727 * func Function to execute the command 2728 * usage A simple usage string showing arguments 2729 * help A simple help string describing command 2730 * Returns: 2731 * zero for success, one if a duplicate command. 2732 */ 2733 int kdb_register(char *cmd, 2734 kdb_func_t func, 2735 char *usage, 2736 char *help, 2737 short minlen) 2738 { 2739 return kdb_register_flags(cmd, func, usage, help, minlen, 0); 2740 } 2741 EXPORT_SYMBOL_GPL(kdb_register); 2742 2743 /* 2744 * kdb_unregister - This function is used to unregister a kernel 2745 * debugger command. It is generally called when a module which 2746 * implements kdb commands is unloaded. 2747 * Inputs: 2748 * cmd Command name 2749 * Returns: 2750 * zero for success, one command not registered. 2751 */ 2752 int kdb_unregister(char *cmd) 2753 { 2754 int i; 2755 kdbtab_t *kp; 2756 2757 /* 2758 * find the command. 2759 */ 2760 for_each_kdbcmd(kp, i) { 2761 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2762 kp->cmd_name = NULL; 2763 return 0; 2764 } 2765 } 2766 2767 /* Couldn't find it. */ 2768 return 1; 2769 } 2770 EXPORT_SYMBOL_GPL(kdb_unregister); 2771 2772 /* Initialize the kdb command table. */ 2773 static void __init kdb_inittab(void) 2774 { 2775 int i; 2776 kdbtab_t *kp; 2777 2778 for_each_kdbcmd(kp, i) 2779 kp->cmd_name = NULL; 2780 2781 kdb_register_flags("md", kdb_md, "<vaddr>", 2782 "Display Memory Contents, also mdWcN, e.g. md8c1", 1, 2783 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2784 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>", 2785 "Display Raw Memory", 0, 2786 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2787 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>", 2788 "Display Physical Memory", 0, 2789 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2790 kdb_register_flags("mds", kdb_md, "<vaddr>", 2791 "Display Memory Symbolically", 0, 2792 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2793 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>", 2794 "Modify Memory Contents", 0, 2795 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS); 2796 kdb_register_flags("go", kdb_go, "[<vaddr>]", 2797 "Continue Execution", 1, 2798 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS); 2799 kdb_register_flags("rd", kdb_rd, "", 2800 "Display Registers", 0, 2801 KDB_ENABLE_REG_READ); 2802 kdb_register_flags("rm", kdb_rm, "<reg> <contents>", 2803 "Modify Registers", 0, 2804 KDB_ENABLE_REG_WRITE); 2805 kdb_register_flags("ef", kdb_ef, "<vaddr>", 2806 "Display exception frame", 0, 2807 KDB_ENABLE_MEM_READ); 2808 kdb_register_flags("bt", kdb_bt, "[<vaddr>]", 2809 "Stack traceback", 1, 2810 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS); 2811 kdb_register_flags("btp", kdb_bt, "<pid>", 2812 "Display stack for process <pid>", 0, 2813 KDB_ENABLE_INSPECT); 2814 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]", 2815 "Backtrace all processes matching state flag", 0, 2816 KDB_ENABLE_INSPECT); 2817 kdb_register_flags("btc", kdb_bt, "", 2818 "Backtrace current process on each cpu", 0, 2819 KDB_ENABLE_INSPECT); 2820 kdb_register_flags("btt", kdb_bt, "<vaddr>", 2821 "Backtrace process given its struct task address", 0, 2822 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS); 2823 kdb_register_flags("env", kdb_env, "", 2824 "Show environment variables", 0, 2825 KDB_ENABLE_ALWAYS_SAFE); 2826 kdb_register_flags("set", kdb_set, "", 2827 "Set environment variables", 0, 2828 KDB_ENABLE_ALWAYS_SAFE); 2829 kdb_register_flags("help", kdb_help, "", 2830 "Display Help Message", 1, 2831 KDB_ENABLE_ALWAYS_SAFE); 2832 kdb_register_flags("?", kdb_help, "", 2833 "Display Help Message", 0, 2834 KDB_ENABLE_ALWAYS_SAFE); 2835 kdb_register_flags("cpu", kdb_cpu, "<cpunum>", 2836 "Switch to new cpu", 0, 2837 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS); 2838 kdb_register_flags("kgdb", kdb_kgdb, "", 2839 "Enter kgdb mode", 0, 0); 2840 kdb_register_flags("ps", kdb_ps, "[<flags>|A]", 2841 "Display active task list", 0, 2842 KDB_ENABLE_INSPECT); 2843 kdb_register_flags("pid", kdb_pid, "<pidnum>", 2844 "Switch to another task", 0, 2845 KDB_ENABLE_INSPECT); 2846 kdb_register_flags("reboot", kdb_reboot, "", 2847 "Reboot the machine immediately", 0, 2848 KDB_ENABLE_REBOOT); 2849 #if defined(CONFIG_MODULES) 2850 kdb_register_flags("lsmod", kdb_lsmod, "", 2851 "List loaded kernel modules", 0, 2852 KDB_ENABLE_INSPECT); 2853 #endif 2854 #if defined(CONFIG_MAGIC_SYSRQ) 2855 kdb_register_flags("sr", kdb_sr, "<key>", 2856 "Magic SysRq key", 0, 2857 KDB_ENABLE_ALWAYS_SAFE); 2858 #endif 2859 #if defined(CONFIG_PRINTK) 2860 kdb_register_flags("dmesg", kdb_dmesg, "[lines]", 2861 "Display syslog buffer", 0, 2862 KDB_ENABLE_ALWAYS_SAFE); 2863 #endif 2864 if (arch_kgdb_ops.enable_nmi) { 2865 kdb_register_flags("disable_nmi", kdb_disable_nmi, "", 2866 "Disable NMI entry to KDB", 0, 2867 KDB_ENABLE_ALWAYS_SAFE); 2868 } 2869 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"", 2870 "Define a set of commands, down to endefcmd", 0, 2871 KDB_ENABLE_ALWAYS_SAFE); 2872 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>", 2873 "Send a signal to a process", 0, 2874 KDB_ENABLE_SIGNAL); 2875 kdb_register_flags("summary", kdb_summary, "", 2876 "Summarize the system", 4, 2877 KDB_ENABLE_ALWAYS_SAFE); 2878 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]", 2879 "Display per_cpu variables", 3, 2880 KDB_ENABLE_MEM_READ); 2881 kdb_register_flags("grephelp", kdb_grep_help, "", 2882 "Display help on | grep", 0, 2883 KDB_ENABLE_ALWAYS_SAFE); 2884 } 2885 2886 /* Execute any commands defined in kdb_cmds. */ 2887 static void __init kdb_cmd_init(void) 2888 { 2889 int i, diag; 2890 for (i = 0; kdb_cmds[i]; ++i) { 2891 diag = kdb_parse(kdb_cmds[i]); 2892 if (diag) 2893 kdb_printf("kdb command %s failed, kdb diag %d\n", 2894 kdb_cmds[i], diag); 2895 } 2896 if (defcmd_in_progress) { 2897 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2898 kdb_parse("endefcmd"); 2899 } 2900 } 2901 2902 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2903 void __init kdb_init(int lvl) 2904 { 2905 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2906 int i; 2907 2908 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2909 return; 2910 for (i = kdb_init_lvl; i < lvl; i++) { 2911 switch (i) { 2912 case KDB_NOT_INITIALIZED: 2913 kdb_inittab(); /* Initialize Command Table */ 2914 kdb_initbptab(); /* Initialize Breakpoints */ 2915 break; 2916 case KDB_INIT_EARLY: 2917 kdb_cmd_init(); /* Build kdb_cmds tables */ 2918 break; 2919 } 2920 } 2921 kdb_init_lvl = lvl; 2922 } 2923