1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/kernel.h> 17 #include <linux/kmsg_dump.h> 18 #include <linux/reboot.h> 19 #include <linux/sched.h> 20 #include <linux/sysrq.h> 21 #include <linux/smp.h> 22 #include <linux/utsname.h> 23 #include <linux/vmalloc.h> 24 #include <linux/atomic.h> 25 #include <linux/module.h> 26 #include <linux/mm.h> 27 #include <linux/init.h> 28 #include <linux/kallsyms.h> 29 #include <linux/kgdb.h> 30 #include <linux/kdb.h> 31 #include <linux/notifier.h> 32 #include <linux/interrupt.h> 33 #include <linux/delay.h> 34 #include <linux/nmi.h> 35 #include <linux/time.h> 36 #include <linux/ptrace.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/kdebug.h> 40 #include <linux/proc_fs.h> 41 #include <linux/uaccess.h> 42 #include <linux/slab.h> 43 #include "kdb_private.h" 44 45 #define GREP_LEN 256 46 char kdb_grep_string[GREP_LEN]; 47 int kdb_grepping_flag; 48 EXPORT_SYMBOL(kdb_grepping_flag); 49 int kdb_grep_leading; 50 int kdb_grep_trailing; 51 52 /* 53 * Kernel debugger state flags 54 */ 55 int kdb_flags; 56 atomic_t kdb_event; 57 58 /* 59 * kdb_lock protects updates to kdb_initial_cpu. Used to 60 * single thread processors through the kernel debugger. 61 */ 62 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 63 int kdb_nextline = 1; 64 int kdb_state; /* General KDB state */ 65 66 struct task_struct *kdb_current_task; 67 EXPORT_SYMBOL(kdb_current_task); 68 struct pt_regs *kdb_current_regs; 69 70 const char *kdb_diemsg; 71 static int kdb_go_count; 72 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 73 static unsigned int kdb_continue_catastrophic = 74 CONFIG_KDB_CONTINUE_CATASTROPHIC; 75 #else 76 static unsigned int kdb_continue_catastrophic; 77 #endif 78 79 /* kdb_commands describes the available commands. */ 80 static kdbtab_t *kdb_commands; 81 #define KDB_BASE_CMD_MAX 50 82 static int kdb_max_commands = KDB_BASE_CMD_MAX; 83 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX]; 84 #define for_each_kdbcmd(cmd, num) \ 85 for ((cmd) = kdb_base_commands, (num) = 0; \ 86 num < kdb_max_commands; \ 87 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++) 88 89 typedef struct _kdbmsg { 90 int km_diag; /* kdb diagnostic */ 91 char *km_msg; /* Corresponding message text */ 92 } kdbmsg_t; 93 94 #define KDBMSG(msgnum, text) \ 95 { KDB_##msgnum, text } 96 97 static kdbmsg_t kdbmsgs[] = { 98 KDBMSG(NOTFOUND, "Command Not Found"), 99 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 100 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 101 "8 is only allowed on 64 bit systems"), 102 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 103 KDBMSG(NOTENV, "Cannot find environment variable"), 104 KDBMSG(NOENVVALUE, "Environment variable should have value"), 105 KDBMSG(NOTIMP, "Command not implemented"), 106 KDBMSG(ENVFULL, "Environment full"), 107 KDBMSG(ENVBUFFULL, "Environment buffer full"), 108 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 109 #ifdef CONFIG_CPU_XSCALE 110 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 111 #else 112 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 113 #endif 114 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 115 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 116 KDBMSG(BADMODE, "Invalid IDMODE"), 117 KDBMSG(BADINT, "Illegal numeric value"), 118 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 119 KDBMSG(BADREG, "Invalid register name"), 120 KDBMSG(BADCPUNUM, "Invalid cpu number"), 121 KDBMSG(BADLENGTH, "Invalid length field"), 122 KDBMSG(NOBP, "No Breakpoint exists"), 123 KDBMSG(BADADDR, "Invalid address"), 124 }; 125 #undef KDBMSG 126 127 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs); 128 129 130 /* 131 * Initial environment. This is all kept static and local to 132 * this file. We don't want to rely on the memory allocation 133 * mechanisms in the kernel, so we use a very limited allocate-only 134 * heap for new and altered environment variables. The entire 135 * environment is limited to a fixed number of entries (add more 136 * to __env[] if required) and a fixed amount of heap (add more to 137 * KDB_ENVBUFSIZE if required). 138 */ 139 140 static char *__env[] = { 141 #if defined(CONFIG_SMP) 142 "PROMPT=[%d]kdb> ", 143 #else 144 "PROMPT=kdb> ", 145 #endif 146 "MOREPROMPT=more> ", 147 "RADIX=16", 148 "MDCOUNT=8", /* lines of md output */ 149 KDB_PLATFORM_ENV, 150 "DTABCOUNT=30", 151 "NOSECT=1", 152 (char *)0, 153 (char *)0, 154 (char *)0, 155 (char *)0, 156 (char *)0, 157 (char *)0, 158 (char *)0, 159 (char *)0, 160 (char *)0, 161 (char *)0, 162 (char *)0, 163 (char *)0, 164 (char *)0, 165 (char *)0, 166 (char *)0, 167 (char *)0, 168 (char *)0, 169 (char *)0, 170 (char *)0, 171 (char *)0, 172 (char *)0, 173 (char *)0, 174 (char *)0, 175 (char *)0, 176 }; 177 178 static const int __nenv = ARRAY_SIZE(__env); 179 180 struct task_struct *kdb_curr_task(int cpu) 181 { 182 struct task_struct *p = curr_task(cpu); 183 #ifdef _TIF_MCA_INIT 184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 185 p = krp->p; 186 #endif 187 return p; 188 } 189 190 /* 191 * kdbgetenv - This function will return the character string value of 192 * an environment variable. 193 * Parameters: 194 * match A character string representing an environment variable. 195 * Returns: 196 * NULL No environment variable matches 'match' 197 * char* Pointer to string value of environment variable. 198 */ 199 char *kdbgetenv(const char *match) 200 { 201 char **ep = __env; 202 int matchlen = strlen(match); 203 int i; 204 205 for (i = 0; i < __nenv; i++) { 206 char *e = *ep++; 207 208 if (!e) 209 continue; 210 211 if ((strncmp(match, e, matchlen) == 0) 212 && ((e[matchlen] == '\0') 213 || (e[matchlen] == '='))) { 214 char *cp = strchr(e, '='); 215 return cp ? ++cp : ""; 216 } 217 } 218 return NULL; 219 } 220 221 /* 222 * kdballocenv - This function is used to allocate bytes for 223 * environment entries. 224 * Parameters: 225 * match A character string representing a numeric value 226 * Outputs: 227 * *value the unsigned long representation of the env variable 'match' 228 * Returns: 229 * Zero on success, a kdb diagnostic on failure. 230 * Remarks: 231 * We use a static environment buffer (envbuffer) to hold the values 232 * of dynamically generated environment variables (see kdb_set). Buffer 233 * space once allocated is never free'd, so over time, the amount of space 234 * (currently 512 bytes) will be exhausted if env variables are changed 235 * frequently. 236 */ 237 static char *kdballocenv(size_t bytes) 238 { 239 #define KDB_ENVBUFSIZE 512 240 static char envbuffer[KDB_ENVBUFSIZE]; 241 static int envbufsize; 242 char *ep = NULL; 243 244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 245 ep = &envbuffer[envbufsize]; 246 envbufsize += bytes; 247 } 248 return ep; 249 } 250 251 /* 252 * kdbgetulenv - This function will return the value of an unsigned 253 * long-valued environment variable. 254 * Parameters: 255 * match A character string representing a numeric value 256 * Outputs: 257 * *value the unsigned long represntation of the env variable 'match' 258 * Returns: 259 * Zero on success, a kdb diagnostic on failure. 260 */ 261 static int kdbgetulenv(const char *match, unsigned long *value) 262 { 263 char *ep; 264 265 ep = kdbgetenv(match); 266 if (!ep) 267 return KDB_NOTENV; 268 if (strlen(ep) == 0) 269 return KDB_NOENVVALUE; 270 271 *value = simple_strtoul(ep, NULL, 0); 272 273 return 0; 274 } 275 276 /* 277 * kdbgetintenv - This function will return the value of an 278 * integer-valued environment variable. 279 * Parameters: 280 * match A character string representing an integer-valued env variable 281 * Outputs: 282 * *value the integer representation of the environment variable 'match' 283 * Returns: 284 * Zero on success, a kdb diagnostic on failure. 285 */ 286 int kdbgetintenv(const char *match, int *value) 287 { 288 unsigned long val; 289 int diag; 290 291 diag = kdbgetulenv(match, &val); 292 if (!diag) 293 *value = (int) val; 294 return diag; 295 } 296 297 /* 298 * kdbgetularg - This function will convert a numeric string into an 299 * unsigned long value. 300 * Parameters: 301 * arg A character string representing a numeric value 302 * Outputs: 303 * *value the unsigned long represntation of arg. 304 * Returns: 305 * Zero on success, a kdb diagnostic on failure. 306 */ 307 int kdbgetularg(const char *arg, unsigned long *value) 308 { 309 char *endp; 310 unsigned long val; 311 312 val = simple_strtoul(arg, &endp, 0); 313 314 if (endp == arg) { 315 /* 316 * Also try base 16, for us folks too lazy to type the 317 * leading 0x... 318 */ 319 val = simple_strtoul(arg, &endp, 16); 320 if (endp == arg) 321 return KDB_BADINT; 322 } 323 324 *value = val; 325 326 return 0; 327 } 328 329 int kdbgetu64arg(const char *arg, u64 *value) 330 { 331 char *endp; 332 u64 val; 333 334 val = simple_strtoull(arg, &endp, 0); 335 336 if (endp == arg) { 337 338 val = simple_strtoull(arg, &endp, 16); 339 if (endp == arg) 340 return KDB_BADINT; 341 } 342 343 *value = val; 344 345 return 0; 346 } 347 348 /* 349 * kdb_set - This function implements the 'set' command. Alter an 350 * existing environment variable or create a new one. 351 */ 352 int kdb_set(int argc, const char **argv) 353 { 354 int i; 355 char *ep; 356 size_t varlen, vallen; 357 358 /* 359 * we can be invoked two ways: 360 * set var=value argv[1]="var", argv[2]="value" 361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 362 * - if the latter, shift 'em down. 363 */ 364 if (argc == 3) { 365 argv[2] = argv[3]; 366 argc--; 367 } 368 369 if (argc != 2) 370 return KDB_ARGCOUNT; 371 372 /* 373 * Check for internal variables 374 */ 375 if (strcmp(argv[1], "KDBDEBUG") == 0) { 376 unsigned int debugflags; 377 char *cp; 378 379 debugflags = simple_strtoul(argv[2], &cp, 0); 380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 381 kdb_printf("kdb: illegal debug flags '%s'\n", 382 argv[2]); 383 return 0; 384 } 385 kdb_flags = (kdb_flags & 386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT)) 387 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 388 389 return 0; 390 } 391 392 /* 393 * Tokenizer squashed the '=' sign. argv[1] is variable 394 * name, argv[2] = value. 395 */ 396 varlen = strlen(argv[1]); 397 vallen = strlen(argv[2]); 398 ep = kdballocenv(varlen + vallen + 2); 399 if (ep == (char *)0) 400 return KDB_ENVBUFFULL; 401 402 sprintf(ep, "%s=%s", argv[1], argv[2]); 403 404 ep[varlen+vallen+1] = '\0'; 405 406 for (i = 0; i < __nenv; i++) { 407 if (__env[i] 408 && ((strncmp(__env[i], argv[1], varlen) == 0) 409 && ((__env[i][varlen] == '\0') 410 || (__env[i][varlen] == '=')))) { 411 __env[i] = ep; 412 return 0; 413 } 414 } 415 416 /* 417 * Wasn't existing variable. Fit into slot. 418 */ 419 for (i = 0; i < __nenv-1; i++) { 420 if (__env[i] == (char *)0) { 421 __env[i] = ep; 422 return 0; 423 } 424 } 425 426 return KDB_ENVFULL; 427 } 428 429 static int kdb_check_regs(void) 430 { 431 if (!kdb_current_regs) { 432 kdb_printf("No current kdb registers." 433 " You may need to select another task\n"); 434 return KDB_BADREG; 435 } 436 return 0; 437 } 438 439 /* 440 * kdbgetaddrarg - This function is responsible for parsing an 441 * address-expression and returning the value of the expression, 442 * symbol name, and offset to the caller. 443 * 444 * The argument may consist of a numeric value (decimal or 445 * hexidecimal), a symbol name, a register name (preceded by the 446 * percent sign), an environment variable with a numeric value 447 * (preceded by a dollar sign) or a simple arithmetic expression 448 * consisting of a symbol name, +/-, and a numeric constant value 449 * (offset). 450 * Parameters: 451 * argc - count of arguments in argv 452 * argv - argument vector 453 * *nextarg - index to next unparsed argument in argv[] 454 * regs - Register state at time of KDB entry 455 * Outputs: 456 * *value - receives the value of the address-expression 457 * *offset - receives the offset specified, if any 458 * *name - receives the symbol name, if any 459 * *nextarg - index to next unparsed argument in argv[] 460 * Returns: 461 * zero is returned on success, a kdb diagnostic code is 462 * returned on error. 463 */ 464 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 465 unsigned long *value, long *offset, 466 char **name) 467 { 468 unsigned long addr; 469 unsigned long off = 0; 470 int positive; 471 int diag; 472 int found = 0; 473 char *symname; 474 char symbol = '\0'; 475 char *cp; 476 kdb_symtab_t symtab; 477 478 /* 479 * Process arguments which follow the following syntax: 480 * 481 * symbol | numeric-address [+/- numeric-offset] 482 * %register 483 * $environment-variable 484 */ 485 486 if (*nextarg > argc) 487 return KDB_ARGCOUNT; 488 489 symname = (char *)argv[*nextarg]; 490 491 /* 492 * If there is no whitespace between the symbol 493 * or address and the '+' or '-' symbols, we 494 * remember the character and replace it with a 495 * null so the symbol/value can be properly parsed 496 */ 497 cp = strpbrk(symname, "+-"); 498 if (cp != NULL) { 499 symbol = *cp; 500 *cp++ = '\0'; 501 } 502 503 if (symname[0] == '$') { 504 diag = kdbgetulenv(&symname[1], &addr); 505 if (diag) 506 return diag; 507 } else if (symname[0] == '%') { 508 diag = kdb_check_regs(); 509 if (diag) 510 return diag; 511 /* Implement register values with % at a later time as it is 512 * arch optional. 513 */ 514 return KDB_NOTIMP; 515 } else { 516 found = kdbgetsymval(symname, &symtab); 517 if (found) { 518 addr = symtab.sym_start; 519 } else { 520 diag = kdbgetularg(argv[*nextarg], &addr); 521 if (diag) 522 return diag; 523 } 524 } 525 526 if (!found) 527 found = kdbnearsym(addr, &symtab); 528 529 (*nextarg)++; 530 531 if (name) 532 *name = symname; 533 if (value) 534 *value = addr; 535 if (offset && name && *name) 536 *offset = addr - symtab.sym_start; 537 538 if ((*nextarg > argc) 539 && (symbol == '\0')) 540 return 0; 541 542 /* 543 * check for +/- and offset 544 */ 545 546 if (symbol == '\0') { 547 if ((argv[*nextarg][0] != '+') 548 && (argv[*nextarg][0] != '-')) { 549 /* 550 * Not our argument. Return. 551 */ 552 return 0; 553 } else { 554 positive = (argv[*nextarg][0] == '+'); 555 (*nextarg)++; 556 } 557 } else 558 positive = (symbol == '+'); 559 560 /* 561 * Now there must be an offset! 562 */ 563 if ((*nextarg > argc) 564 && (symbol == '\0')) { 565 return KDB_INVADDRFMT; 566 } 567 568 if (!symbol) { 569 cp = (char *)argv[*nextarg]; 570 (*nextarg)++; 571 } 572 573 diag = kdbgetularg(cp, &off); 574 if (diag) 575 return diag; 576 577 if (!positive) 578 off = -off; 579 580 if (offset) 581 *offset += off; 582 583 if (value) 584 *value += off; 585 586 return 0; 587 } 588 589 static void kdb_cmderror(int diag) 590 { 591 int i; 592 593 if (diag >= 0) { 594 kdb_printf("no error detected (diagnostic is %d)\n", diag); 595 return; 596 } 597 598 for (i = 0; i < __nkdb_err; i++) { 599 if (kdbmsgs[i].km_diag == diag) { 600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 601 return; 602 } 603 } 604 605 kdb_printf("Unknown diag %d\n", -diag); 606 } 607 608 /* 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 610 * command which defines one command as a set of other commands, 611 * terminated by endefcmd. kdb_defcmd processes the initial 612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 613 * the following commands until 'endefcmd'. 614 * Inputs: 615 * argc argument count 616 * argv argument vector 617 * Returns: 618 * zero for success, a kdb diagnostic if error 619 */ 620 struct defcmd_set { 621 int count; 622 int usable; 623 char *name; 624 char *usage; 625 char *help; 626 char **command; 627 }; 628 static struct defcmd_set *defcmd_set; 629 static int defcmd_set_count; 630 static int defcmd_in_progress; 631 632 /* Forward references */ 633 static int kdb_exec_defcmd(int argc, const char **argv); 634 635 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 636 { 637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; 638 char **save_command = s->command; 639 if (strcmp(argv0, "endefcmd") == 0) { 640 defcmd_in_progress = 0; 641 if (!s->count) 642 s->usable = 0; 643 if (s->usable) 644 kdb_register(s->name, kdb_exec_defcmd, 645 s->usage, s->help, 0); 646 return 0; 647 } 648 if (!s->usable) 649 return KDB_NOTIMP; 650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB); 651 if (!s->command) { 652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n", 653 cmdstr); 654 s->usable = 0; 655 return KDB_NOTIMP; 656 } 657 memcpy(s->command, save_command, s->count * sizeof(*(s->command))); 658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); 659 kfree(save_command); 660 return 0; 661 } 662 663 static int kdb_defcmd(int argc, const char **argv) 664 { 665 struct defcmd_set *save_defcmd_set = defcmd_set, *s; 666 if (defcmd_in_progress) { 667 kdb_printf("kdb: nested defcmd detected, assuming missing " 668 "endefcmd\n"); 669 kdb_defcmd2("endefcmd", "endefcmd"); 670 } 671 if (argc == 0) { 672 int i; 673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { 674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, 675 s->usage, s->help); 676 for (i = 0; i < s->count; ++i) 677 kdb_printf("%s", s->command[i]); 678 kdb_printf("endefcmd\n"); 679 } 680 return 0; 681 } 682 if (argc != 3) 683 return KDB_ARGCOUNT; 684 if (in_dbg_master()) { 685 kdb_printf("Command only available during kdb_init()\n"); 686 return KDB_NOTIMP; 687 } 688 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set), 689 GFP_KDB); 690 if (!defcmd_set) 691 goto fail_defcmd; 692 memcpy(defcmd_set, save_defcmd_set, 693 defcmd_set_count * sizeof(*defcmd_set)); 694 s = defcmd_set + defcmd_set_count; 695 memset(s, 0, sizeof(*s)); 696 s->usable = 1; 697 s->name = kdb_strdup(argv[1], GFP_KDB); 698 if (!s->name) 699 goto fail_name; 700 s->usage = kdb_strdup(argv[2], GFP_KDB); 701 if (!s->usage) 702 goto fail_usage; 703 s->help = kdb_strdup(argv[3], GFP_KDB); 704 if (!s->help) 705 goto fail_help; 706 if (s->usage[0] == '"') { 707 strcpy(s->usage, argv[2]+1); 708 s->usage[strlen(s->usage)-1] = '\0'; 709 } 710 if (s->help[0] == '"') { 711 strcpy(s->help, argv[3]+1); 712 s->help[strlen(s->help)-1] = '\0'; 713 } 714 ++defcmd_set_count; 715 defcmd_in_progress = 1; 716 kfree(save_defcmd_set); 717 return 0; 718 fail_help: 719 kfree(s->usage); 720 fail_usage: 721 kfree(s->name); 722 fail_name: 723 kfree(defcmd_set); 724 fail_defcmd: 725 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]); 726 defcmd_set = save_defcmd_set; 727 return KDB_NOTIMP; 728 } 729 730 /* 731 * kdb_exec_defcmd - Execute the set of commands associated with this 732 * defcmd name. 733 * Inputs: 734 * argc argument count 735 * argv argument vector 736 * Returns: 737 * zero for success, a kdb diagnostic if error 738 */ 739 static int kdb_exec_defcmd(int argc, const char **argv) 740 { 741 int i, ret; 742 struct defcmd_set *s; 743 if (argc != 0) 744 return KDB_ARGCOUNT; 745 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { 746 if (strcmp(s->name, argv[0]) == 0) 747 break; 748 } 749 if (i == defcmd_set_count) { 750 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 751 argv[0]); 752 return KDB_NOTIMP; 753 } 754 for (i = 0; i < s->count; ++i) { 755 /* Recursive use of kdb_parse, do not use argv after 756 * this point */ 757 argv = NULL; 758 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); 759 ret = kdb_parse(s->command[i]); 760 if (ret) 761 return ret; 762 } 763 return 0; 764 } 765 766 /* Command history */ 767 #define KDB_CMD_HISTORY_COUNT 32 768 #define CMD_BUFLEN 200 /* kdb_printf: max printline 769 * size == 256 */ 770 static unsigned int cmd_head, cmd_tail; 771 static unsigned int cmdptr; 772 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 773 static char cmd_cur[CMD_BUFLEN]; 774 775 /* 776 * The "str" argument may point to something like | grep xyz 777 */ 778 static void parse_grep(const char *str) 779 { 780 int len; 781 char *cp = (char *)str, *cp2; 782 783 /* sanity check: we should have been called with the \ first */ 784 if (*cp != '|') 785 return; 786 cp++; 787 while (isspace(*cp)) 788 cp++; 789 if (strncmp(cp, "grep ", 5)) { 790 kdb_printf("invalid 'pipe', see grephelp\n"); 791 return; 792 } 793 cp += 5; 794 while (isspace(*cp)) 795 cp++; 796 cp2 = strchr(cp, '\n'); 797 if (cp2) 798 *cp2 = '\0'; /* remove the trailing newline */ 799 len = strlen(cp); 800 if (len == 0) { 801 kdb_printf("invalid 'pipe', see grephelp\n"); 802 return; 803 } 804 /* now cp points to a nonzero length search string */ 805 if (*cp == '"') { 806 /* allow it be "x y z" by removing the "'s - there must 807 be two of them */ 808 cp++; 809 cp2 = strchr(cp, '"'); 810 if (!cp2) { 811 kdb_printf("invalid quoted string, see grephelp\n"); 812 return; 813 } 814 *cp2 = '\0'; /* end the string where the 2nd " was */ 815 } 816 kdb_grep_leading = 0; 817 if (*cp == '^') { 818 kdb_grep_leading = 1; 819 cp++; 820 } 821 len = strlen(cp); 822 kdb_grep_trailing = 0; 823 if (*(cp+len-1) == '$') { 824 kdb_grep_trailing = 1; 825 *(cp+len-1) = '\0'; 826 } 827 len = strlen(cp); 828 if (!len) 829 return; 830 if (len >= GREP_LEN) { 831 kdb_printf("search string too long\n"); 832 return; 833 } 834 strcpy(kdb_grep_string, cp); 835 kdb_grepping_flag++; 836 return; 837 } 838 839 /* 840 * kdb_parse - Parse the command line, search the command table for a 841 * matching command and invoke the command function. This 842 * function may be called recursively, if it is, the second call 843 * will overwrite argv and cbuf. It is the caller's 844 * responsibility to save their argv if they recursively call 845 * kdb_parse(). 846 * Parameters: 847 * cmdstr The input command line to be parsed. 848 * regs The registers at the time kdb was entered. 849 * Returns: 850 * Zero for success, a kdb diagnostic if failure. 851 * Remarks: 852 * Limited to 20 tokens. 853 * 854 * Real rudimentary tokenization. Basically only whitespace 855 * is considered a token delimeter (but special consideration 856 * is taken of the '=' sign as used by the 'set' command). 857 * 858 * The algorithm used to tokenize the input string relies on 859 * there being at least one whitespace (or otherwise useless) 860 * character between tokens as the character immediately following 861 * the token is altered in-place to a null-byte to terminate the 862 * token string. 863 */ 864 865 #define MAXARGC 20 866 867 int kdb_parse(const char *cmdstr) 868 { 869 static char *argv[MAXARGC]; 870 static int argc; 871 static char cbuf[CMD_BUFLEN+2]; 872 char *cp; 873 char *cpp, quoted; 874 kdbtab_t *tp; 875 int i, escaped, ignore_errors = 0, check_grep; 876 877 /* 878 * First tokenize the command string. 879 */ 880 cp = (char *)cmdstr; 881 kdb_grepping_flag = check_grep = 0; 882 883 if (KDB_FLAG(CMD_INTERRUPT)) { 884 /* Previous command was interrupted, newline must not 885 * repeat the command */ 886 KDB_FLAG_CLEAR(CMD_INTERRUPT); 887 KDB_STATE_SET(PAGER); 888 argc = 0; /* no repeat */ 889 } 890 891 if (*cp != '\n' && *cp != '\0') { 892 argc = 0; 893 cpp = cbuf; 894 while (*cp) { 895 /* skip whitespace */ 896 while (isspace(*cp)) 897 cp++; 898 if ((*cp == '\0') || (*cp == '\n') || 899 (*cp == '#' && !defcmd_in_progress)) 900 break; 901 /* special case: check for | grep pattern */ 902 if (*cp == '|') { 903 check_grep++; 904 break; 905 } 906 if (cpp >= cbuf + CMD_BUFLEN) { 907 kdb_printf("kdb_parse: command buffer " 908 "overflow, command ignored\n%s\n", 909 cmdstr); 910 return KDB_NOTFOUND; 911 } 912 if (argc >= MAXARGC - 1) { 913 kdb_printf("kdb_parse: too many arguments, " 914 "command ignored\n%s\n", cmdstr); 915 return KDB_NOTFOUND; 916 } 917 argv[argc++] = cpp; 918 escaped = 0; 919 quoted = '\0'; 920 /* Copy to next unquoted and unescaped 921 * whitespace or '=' */ 922 while (*cp && *cp != '\n' && 923 (escaped || quoted || !isspace(*cp))) { 924 if (cpp >= cbuf + CMD_BUFLEN) 925 break; 926 if (escaped) { 927 escaped = 0; 928 *cpp++ = *cp++; 929 continue; 930 } 931 if (*cp == '\\') { 932 escaped = 1; 933 ++cp; 934 continue; 935 } 936 if (*cp == quoted) 937 quoted = '\0'; 938 else if (*cp == '\'' || *cp == '"') 939 quoted = *cp; 940 *cpp = *cp++; 941 if (*cpp == '=' && !quoted) 942 break; 943 ++cpp; 944 } 945 *cpp++ = '\0'; /* Squash a ws or '=' character */ 946 } 947 } 948 if (!argc) 949 return 0; 950 if (check_grep) 951 parse_grep(cp); 952 if (defcmd_in_progress) { 953 int result = kdb_defcmd2(cmdstr, argv[0]); 954 if (!defcmd_in_progress) { 955 argc = 0; /* avoid repeat on endefcmd */ 956 *(argv[0]) = '\0'; 957 } 958 return result; 959 } 960 if (argv[0][0] == '-' && argv[0][1] && 961 (argv[0][1] < '0' || argv[0][1] > '9')) { 962 ignore_errors = 1; 963 ++argv[0]; 964 } 965 966 for_each_kdbcmd(tp, i) { 967 if (tp->cmd_name) { 968 /* 969 * If this command is allowed to be abbreviated, 970 * check to see if this is it. 971 */ 972 973 if (tp->cmd_minlen 974 && (strlen(argv[0]) <= tp->cmd_minlen)) { 975 if (strncmp(argv[0], 976 tp->cmd_name, 977 tp->cmd_minlen) == 0) { 978 break; 979 } 980 } 981 982 if (strcmp(argv[0], tp->cmd_name) == 0) 983 break; 984 } 985 } 986 987 /* 988 * If we don't find a command by this name, see if the first 989 * few characters of this match any of the known commands. 990 * e.g., md1c20 should match md. 991 */ 992 if (i == kdb_max_commands) { 993 for_each_kdbcmd(tp, i) { 994 if (tp->cmd_name) { 995 if (strncmp(argv[0], 996 tp->cmd_name, 997 strlen(tp->cmd_name)) == 0) { 998 break; 999 } 1000 } 1001 } 1002 } 1003 1004 if (i < kdb_max_commands) { 1005 int result; 1006 KDB_STATE_SET(CMD); 1007 result = (*tp->cmd_func)(argc-1, (const char **)argv); 1008 if (result && ignore_errors && result > KDB_CMD_GO) 1009 result = 0; 1010 KDB_STATE_CLEAR(CMD); 1011 switch (tp->cmd_repeat) { 1012 case KDB_REPEAT_NONE: 1013 argc = 0; 1014 if (argv[0]) 1015 *(argv[0]) = '\0'; 1016 break; 1017 case KDB_REPEAT_NO_ARGS: 1018 argc = 1; 1019 if (argv[1]) 1020 *(argv[1]) = '\0'; 1021 break; 1022 case KDB_REPEAT_WITH_ARGS: 1023 break; 1024 } 1025 return result; 1026 } 1027 1028 /* 1029 * If the input with which we were presented does not 1030 * map to an existing command, attempt to parse it as an 1031 * address argument and display the result. Useful for 1032 * obtaining the address of a variable, or the nearest symbol 1033 * to an address contained in a register. 1034 */ 1035 { 1036 unsigned long value; 1037 char *name = NULL; 1038 long offset; 1039 int nextarg = 0; 1040 1041 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1042 &value, &offset, &name)) { 1043 return KDB_NOTFOUND; 1044 } 1045 1046 kdb_printf("%s = ", argv[0]); 1047 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1048 kdb_printf("\n"); 1049 return 0; 1050 } 1051 } 1052 1053 1054 static int handle_ctrl_cmd(char *cmd) 1055 { 1056 #define CTRL_P 16 1057 #define CTRL_N 14 1058 1059 /* initial situation */ 1060 if (cmd_head == cmd_tail) 1061 return 0; 1062 switch (*cmd) { 1063 case CTRL_P: 1064 if (cmdptr != cmd_tail) 1065 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT; 1066 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1067 return 1; 1068 case CTRL_N: 1069 if (cmdptr != cmd_head) 1070 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1071 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1072 return 1; 1073 } 1074 return 0; 1075 } 1076 1077 /* 1078 * kdb_reboot - This function implements the 'reboot' command. Reboot 1079 * the system immediately, or loop for ever on failure. 1080 */ 1081 static int kdb_reboot(int argc, const char **argv) 1082 { 1083 emergency_restart(); 1084 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1085 while (1) 1086 cpu_relax(); 1087 /* NOTREACHED */ 1088 return 0; 1089 } 1090 1091 static void kdb_dumpregs(struct pt_regs *regs) 1092 { 1093 int old_lvl = console_loglevel; 1094 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 1095 kdb_trap_printk++; 1096 show_regs(regs); 1097 kdb_trap_printk--; 1098 kdb_printf("\n"); 1099 console_loglevel = old_lvl; 1100 } 1101 1102 void kdb_set_current_task(struct task_struct *p) 1103 { 1104 kdb_current_task = p; 1105 1106 if (kdb_task_has_cpu(p)) { 1107 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1108 return; 1109 } 1110 kdb_current_regs = NULL; 1111 } 1112 1113 /* 1114 * kdb_local - The main code for kdb. This routine is invoked on a 1115 * specific processor, it is not global. The main kdb() routine 1116 * ensures that only one processor at a time is in this routine. 1117 * This code is called with the real reason code on the first 1118 * entry to a kdb session, thereafter it is called with reason 1119 * SWITCH, even if the user goes back to the original cpu. 1120 * Inputs: 1121 * reason The reason KDB was invoked 1122 * error The hardware-defined error code 1123 * regs The exception frame at time of fault/breakpoint. 1124 * db_result Result code from the break or debug point. 1125 * Returns: 1126 * 0 KDB was invoked for an event which it wasn't responsible 1127 * 1 KDB handled the event for which it was invoked. 1128 * KDB_CMD_GO User typed 'go'. 1129 * KDB_CMD_CPU User switched to another cpu. 1130 * KDB_CMD_SS Single step. 1131 */ 1132 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1133 kdb_dbtrap_t db_result) 1134 { 1135 char *cmdbuf; 1136 int diag; 1137 struct task_struct *kdb_current = 1138 kdb_curr_task(raw_smp_processor_id()); 1139 1140 KDB_DEBUG_STATE("kdb_local 1", reason); 1141 kdb_go_count = 0; 1142 if (reason == KDB_REASON_DEBUG) { 1143 /* special case below */ 1144 } else { 1145 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ", 1146 kdb_current, kdb_current ? kdb_current->pid : 0); 1147 #if defined(CONFIG_SMP) 1148 kdb_printf("on processor %d ", raw_smp_processor_id()); 1149 #endif 1150 } 1151 1152 switch (reason) { 1153 case KDB_REASON_DEBUG: 1154 { 1155 /* 1156 * If re-entering kdb after a single step 1157 * command, don't print the message. 1158 */ 1159 switch (db_result) { 1160 case KDB_DB_BPT: 1161 kdb_printf("\nEntering kdb (0x%p, pid %d) ", 1162 kdb_current, kdb_current->pid); 1163 #if defined(CONFIG_SMP) 1164 kdb_printf("on processor %d ", raw_smp_processor_id()); 1165 #endif 1166 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1167 instruction_pointer(regs)); 1168 break; 1169 case KDB_DB_SS: 1170 break; 1171 case KDB_DB_SSBPT: 1172 KDB_DEBUG_STATE("kdb_local 4", reason); 1173 return 1; /* kdba_db_trap did the work */ 1174 default: 1175 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1176 db_result); 1177 break; 1178 } 1179 1180 } 1181 break; 1182 case KDB_REASON_ENTER: 1183 if (KDB_STATE(KEYBOARD)) 1184 kdb_printf("due to Keyboard Entry\n"); 1185 else 1186 kdb_printf("due to KDB_ENTER()\n"); 1187 break; 1188 case KDB_REASON_KEYBOARD: 1189 KDB_STATE_SET(KEYBOARD); 1190 kdb_printf("due to Keyboard Entry\n"); 1191 break; 1192 case KDB_REASON_ENTER_SLAVE: 1193 /* drop through, slaves only get released via cpu switch */ 1194 case KDB_REASON_SWITCH: 1195 kdb_printf("due to cpu switch\n"); 1196 break; 1197 case KDB_REASON_OOPS: 1198 kdb_printf("Oops: %s\n", kdb_diemsg); 1199 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1200 instruction_pointer(regs)); 1201 kdb_dumpregs(regs); 1202 break; 1203 case KDB_REASON_SYSTEM_NMI: 1204 kdb_printf("due to System NonMaskable Interrupt\n"); 1205 break; 1206 case KDB_REASON_NMI: 1207 kdb_printf("due to NonMaskable Interrupt @ " 1208 kdb_machreg_fmt "\n", 1209 instruction_pointer(regs)); 1210 kdb_dumpregs(regs); 1211 break; 1212 case KDB_REASON_SSTEP: 1213 case KDB_REASON_BREAK: 1214 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1215 reason == KDB_REASON_BREAK ? 1216 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1217 /* 1218 * Determine if this breakpoint is one that we 1219 * are interested in. 1220 */ 1221 if (db_result != KDB_DB_BPT) { 1222 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1223 db_result); 1224 KDB_DEBUG_STATE("kdb_local 6", reason); 1225 return 0; /* Not for us, dismiss it */ 1226 } 1227 break; 1228 case KDB_REASON_RECURSE: 1229 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1230 instruction_pointer(regs)); 1231 break; 1232 default: 1233 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1234 KDB_DEBUG_STATE("kdb_local 8", reason); 1235 return 0; /* Not for us, dismiss it */ 1236 } 1237 1238 while (1) { 1239 /* 1240 * Initialize pager context. 1241 */ 1242 kdb_nextline = 1; 1243 KDB_STATE_CLEAR(SUPPRESS); 1244 1245 cmdbuf = cmd_cur; 1246 *cmdbuf = '\0'; 1247 *(cmd_hist[cmd_head]) = '\0'; 1248 1249 do_full_getstr: 1250 #if defined(CONFIG_SMP) 1251 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1252 raw_smp_processor_id()); 1253 #else 1254 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT")); 1255 #endif 1256 if (defcmd_in_progress) 1257 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); 1258 1259 /* 1260 * Fetch command from keyboard 1261 */ 1262 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1263 if (*cmdbuf != '\n') { 1264 if (*cmdbuf < 32) { 1265 if (cmdptr == cmd_head) { 1266 strncpy(cmd_hist[cmd_head], cmd_cur, 1267 CMD_BUFLEN); 1268 *(cmd_hist[cmd_head] + 1269 strlen(cmd_hist[cmd_head])-1) = '\0'; 1270 } 1271 if (!handle_ctrl_cmd(cmdbuf)) 1272 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1273 cmdbuf = cmd_cur; 1274 goto do_full_getstr; 1275 } else { 1276 strncpy(cmd_hist[cmd_head], cmd_cur, 1277 CMD_BUFLEN); 1278 } 1279 1280 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1281 if (cmd_head == cmd_tail) 1282 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1283 } 1284 1285 cmdptr = cmd_head; 1286 diag = kdb_parse(cmdbuf); 1287 if (diag == KDB_NOTFOUND) { 1288 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1289 diag = 0; 1290 } 1291 if (diag == KDB_CMD_GO 1292 || diag == KDB_CMD_CPU 1293 || diag == KDB_CMD_SS 1294 || diag == KDB_CMD_KGDB) 1295 break; 1296 1297 if (diag) 1298 kdb_cmderror(diag); 1299 } 1300 KDB_DEBUG_STATE("kdb_local 9", diag); 1301 return diag; 1302 } 1303 1304 1305 /* 1306 * kdb_print_state - Print the state data for the current processor 1307 * for debugging. 1308 * Inputs: 1309 * text Identifies the debug point 1310 * value Any integer value to be printed, e.g. reason code. 1311 */ 1312 void kdb_print_state(const char *text, int value) 1313 { 1314 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1315 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1316 kdb_state); 1317 } 1318 1319 /* 1320 * kdb_main_loop - After initial setup and assignment of the 1321 * controlling cpu, all cpus are in this loop. One cpu is in 1322 * control and will issue the kdb prompt, the others will spin 1323 * until 'go' or cpu switch. 1324 * 1325 * To get a consistent view of the kernel stacks for all 1326 * processes, this routine is invoked from the main kdb code via 1327 * an architecture specific routine. kdba_main_loop is 1328 * responsible for making the kernel stacks consistent for all 1329 * processes, there should be no difference between a blocked 1330 * process and a running process as far as kdb is concerned. 1331 * Inputs: 1332 * reason The reason KDB was invoked 1333 * error The hardware-defined error code 1334 * reason2 kdb's current reason code. 1335 * Initially error but can change 1336 * according to kdb state. 1337 * db_result Result code from break or debug point. 1338 * regs The exception frame at time of fault/breakpoint. 1339 * should always be valid. 1340 * Returns: 1341 * 0 KDB was invoked for an event which it wasn't responsible 1342 * 1 KDB handled the event for which it was invoked. 1343 */ 1344 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1345 kdb_dbtrap_t db_result, struct pt_regs *regs) 1346 { 1347 int result = 1; 1348 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1349 while (1) { 1350 /* 1351 * All processors except the one that is in control 1352 * will spin here. 1353 */ 1354 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1355 while (KDB_STATE(HOLD_CPU)) { 1356 /* state KDB is turned off by kdb_cpu to see if the 1357 * other cpus are still live, each cpu in this loop 1358 * turns it back on. 1359 */ 1360 if (!KDB_STATE(KDB)) 1361 KDB_STATE_SET(KDB); 1362 } 1363 1364 KDB_STATE_CLEAR(SUPPRESS); 1365 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1366 if (KDB_STATE(LEAVING)) 1367 break; /* Another cpu said 'go' */ 1368 /* Still using kdb, this processor is in control */ 1369 result = kdb_local(reason2, error, regs, db_result); 1370 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1371 1372 if (result == KDB_CMD_CPU) 1373 break; 1374 1375 if (result == KDB_CMD_SS) { 1376 KDB_STATE_SET(DOING_SS); 1377 break; 1378 } 1379 1380 if (result == KDB_CMD_KGDB) { 1381 if (!KDB_STATE(DOING_KGDB)) 1382 kdb_printf("Entering please attach debugger " 1383 "or use $D#44+ or $3#33\n"); 1384 break; 1385 } 1386 if (result && result != 1 && result != KDB_CMD_GO) 1387 kdb_printf("\nUnexpected kdb_local return code %d\n", 1388 result); 1389 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1390 break; 1391 } 1392 if (KDB_STATE(DOING_SS)) 1393 KDB_STATE_CLEAR(SSBPT); 1394 1395 /* Clean up any keyboard devices before leaving */ 1396 kdb_kbd_cleanup_state(); 1397 1398 return result; 1399 } 1400 1401 /* 1402 * kdb_mdr - This function implements the guts of the 'mdr', memory 1403 * read command. 1404 * mdr <addr arg>,<byte count> 1405 * Inputs: 1406 * addr Start address 1407 * count Number of bytes 1408 * Returns: 1409 * Always 0. Any errors are detected and printed by kdb_getarea. 1410 */ 1411 static int kdb_mdr(unsigned long addr, unsigned int count) 1412 { 1413 unsigned char c; 1414 while (count--) { 1415 if (kdb_getarea(c, addr)) 1416 return 0; 1417 kdb_printf("%02x", c); 1418 addr++; 1419 } 1420 kdb_printf("\n"); 1421 return 0; 1422 } 1423 1424 /* 1425 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1426 * 'md8' 'mdr' and 'mds' commands. 1427 * 1428 * md|mds [<addr arg> [<line count> [<radix>]]] 1429 * mdWcN [<addr arg> [<line count> [<radix>]]] 1430 * where W = is the width (1, 2, 4 or 8) and N is the count. 1431 * for eg., md1c20 reads 20 bytes, 1 at a time. 1432 * mdr <addr arg>,<byte count> 1433 */ 1434 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1435 int symbolic, int nosect, int bytesperword, 1436 int num, int repeat, int phys) 1437 { 1438 /* print just one line of data */ 1439 kdb_symtab_t symtab; 1440 char cbuf[32]; 1441 char *c = cbuf; 1442 int i; 1443 unsigned long word; 1444 1445 memset(cbuf, '\0', sizeof(cbuf)); 1446 if (phys) 1447 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1448 else 1449 kdb_printf(kdb_machreg_fmt0 " ", addr); 1450 1451 for (i = 0; i < num && repeat--; i++) { 1452 if (phys) { 1453 if (kdb_getphysword(&word, addr, bytesperword)) 1454 break; 1455 } else if (kdb_getword(&word, addr, bytesperword)) 1456 break; 1457 kdb_printf(fmtstr, word); 1458 if (symbolic) 1459 kdbnearsym(word, &symtab); 1460 else 1461 memset(&symtab, 0, sizeof(symtab)); 1462 if (symtab.sym_name) { 1463 kdb_symbol_print(word, &symtab, 0); 1464 if (!nosect) { 1465 kdb_printf("\n"); 1466 kdb_printf(" %s %s " 1467 kdb_machreg_fmt " " 1468 kdb_machreg_fmt " " 1469 kdb_machreg_fmt, symtab.mod_name, 1470 symtab.sec_name, symtab.sec_start, 1471 symtab.sym_start, symtab.sym_end); 1472 } 1473 addr += bytesperword; 1474 } else { 1475 union { 1476 u64 word; 1477 unsigned char c[8]; 1478 } wc; 1479 unsigned char *cp; 1480 #ifdef __BIG_ENDIAN 1481 cp = wc.c + 8 - bytesperword; 1482 #else 1483 cp = wc.c; 1484 #endif 1485 wc.word = word; 1486 #define printable_char(c) \ 1487 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1488 switch (bytesperword) { 1489 case 8: 1490 *c++ = printable_char(*cp++); 1491 *c++ = printable_char(*cp++); 1492 *c++ = printable_char(*cp++); 1493 *c++ = printable_char(*cp++); 1494 addr += 4; 1495 case 4: 1496 *c++ = printable_char(*cp++); 1497 *c++ = printable_char(*cp++); 1498 addr += 2; 1499 case 2: 1500 *c++ = printable_char(*cp++); 1501 addr++; 1502 case 1: 1503 *c++ = printable_char(*cp++); 1504 addr++; 1505 break; 1506 } 1507 #undef printable_char 1508 } 1509 } 1510 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1511 " ", cbuf); 1512 } 1513 1514 static int kdb_md(int argc, const char **argv) 1515 { 1516 static unsigned long last_addr; 1517 static int last_radix, last_bytesperword, last_repeat; 1518 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1519 int nosect = 0; 1520 char fmtchar, fmtstr[64]; 1521 unsigned long addr; 1522 unsigned long word; 1523 long offset = 0; 1524 int symbolic = 0; 1525 int valid = 0; 1526 int phys = 0; 1527 1528 kdbgetintenv("MDCOUNT", &mdcount); 1529 kdbgetintenv("RADIX", &radix); 1530 kdbgetintenv("BYTESPERWORD", &bytesperword); 1531 1532 /* Assume 'md <addr>' and start with environment values */ 1533 repeat = mdcount * 16 / bytesperword; 1534 1535 if (strcmp(argv[0], "mdr") == 0) { 1536 if (argc != 2) 1537 return KDB_ARGCOUNT; 1538 valid = 1; 1539 } else if (isdigit(argv[0][2])) { 1540 bytesperword = (int)(argv[0][2] - '0'); 1541 if (bytesperword == 0) { 1542 bytesperword = last_bytesperword; 1543 if (bytesperword == 0) 1544 bytesperword = 4; 1545 } 1546 last_bytesperword = bytesperword; 1547 repeat = mdcount * 16 / bytesperword; 1548 if (!argv[0][3]) 1549 valid = 1; 1550 else if (argv[0][3] == 'c' && argv[0][4]) { 1551 char *p; 1552 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1553 mdcount = ((repeat * bytesperword) + 15) / 16; 1554 valid = !*p; 1555 } 1556 last_repeat = repeat; 1557 } else if (strcmp(argv[0], "md") == 0) 1558 valid = 1; 1559 else if (strcmp(argv[0], "mds") == 0) 1560 valid = 1; 1561 else if (strcmp(argv[0], "mdp") == 0) { 1562 phys = valid = 1; 1563 } 1564 if (!valid) 1565 return KDB_NOTFOUND; 1566 1567 if (argc == 0) { 1568 if (last_addr == 0) 1569 return KDB_ARGCOUNT; 1570 addr = last_addr; 1571 radix = last_radix; 1572 bytesperword = last_bytesperword; 1573 repeat = last_repeat; 1574 mdcount = ((repeat * bytesperword) + 15) / 16; 1575 } 1576 1577 if (argc) { 1578 unsigned long val; 1579 int diag, nextarg = 1; 1580 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1581 &offset, NULL); 1582 if (diag) 1583 return diag; 1584 if (argc > nextarg+2) 1585 return KDB_ARGCOUNT; 1586 1587 if (argc >= nextarg) { 1588 diag = kdbgetularg(argv[nextarg], &val); 1589 if (!diag) { 1590 mdcount = (int) val; 1591 repeat = mdcount * 16 / bytesperword; 1592 } 1593 } 1594 if (argc >= nextarg+1) { 1595 diag = kdbgetularg(argv[nextarg+1], &val); 1596 if (!diag) 1597 radix = (int) val; 1598 } 1599 } 1600 1601 if (strcmp(argv[0], "mdr") == 0) 1602 return kdb_mdr(addr, mdcount); 1603 1604 switch (radix) { 1605 case 10: 1606 fmtchar = 'd'; 1607 break; 1608 case 16: 1609 fmtchar = 'x'; 1610 break; 1611 case 8: 1612 fmtchar = 'o'; 1613 break; 1614 default: 1615 return KDB_BADRADIX; 1616 } 1617 1618 last_radix = radix; 1619 1620 if (bytesperword > KDB_WORD_SIZE) 1621 return KDB_BADWIDTH; 1622 1623 switch (bytesperword) { 1624 case 8: 1625 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1626 break; 1627 case 4: 1628 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1629 break; 1630 case 2: 1631 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1632 break; 1633 case 1: 1634 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1635 break; 1636 default: 1637 return KDB_BADWIDTH; 1638 } 1639 1640 last_repeat = repeat; 1641 last_bytesperword = bytesperword; 1642 1643 if (strcmp(argv[0], "mds") == 0) { 1644 symbolic = 1; 1645 /* Do not save these changes as last_*, they are temporary mds 1646 * overrides. 1647 */ 1648 bytesperword = KDB_WORD_SIZE; 1649 repeat = mdcount; 1650 kdbgetintenv("NOSECT", &nosect); 1651 } 1652 1653 /* Round address down modulo BYTESPERWORD */ 1654 1655 addr &= ~(bytesperword-1); 1656 1657 while (repeat > 0) { 1658 unsigned long a; 1659 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1660 1661 if (KDB_FLAG(CMD_INTERRUPT)) 1662 return 0; 1663 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1664 if (phys) { 1665 if (kdb_getphysword(&word, a, bytesperword) 1666 || word) 1667 break; 1668 } else if (kdb_getword(&word, a, bytesperword) || word) 1669 break; 1670 } 1671 n = min(num, repeat); 1672 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1673 num, repeat, phys); 1674 addr += bytesperword * n; 1675 repeat -= n; 1676 z = (z + num - 1) / num; 1677 if (z > 2) { 1678 int s = num * (z-2); 1679 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1680 " zero suppressed\n", 1681 addr, addr + bytesperword * s - 1); 1682 addr += bytesperword * s; 1683 repeat -= s; 1684 } 1685 } 1686 last_addr = addr; 1687 1688 return 0; 1689 } 1690 1691 /* 1692 * kdb_mm - This function implements the 'mm' command. 1693 * mm address-expression new-value 1694 * Remarks: 1695 * mm works on machine words, mmW works on bytes. 1696 */ 1697 static int kdb_mm(int argc, const char **argv) 1698 { 1699 int diag; 1700 unsigned long addr; 1701 long offset = 0; 1702 unsigned long contents; 1703 int nextarg; 1704 int width; 1705 1706 if (argv[0][2] && !isdigit(argv[0][2])) 1707 return KDB_NOTFOUND; 1708 1709 if (argc < 2) 1710 return KDB_ARGCOUNT; 1711 1712 nextarg = 1; 1713 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1714 if (diag) 1715 return diag; 1716 1717 if (nextarg > argc) 1718 return KDB_ARGCOUNT; 1719 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1720 if (diag) 1721 return diag; 1722 1723 if (nextarg != argc + 1) 1724 return KDB_ARGCOUNT; 1725 1726 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1727 diag = kdb_putword(addr, contents, width); 1728 if (diag) 1729 return diag; 1730 1731 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1732 1733 return 0; 1734 } 1735 1736 /* 1737 * kdb_go - This function implements the 'go' command. 1738 * go [address-expression] 1739 */ 1740 static int kdb_go(int argc, const char **argv) 1741 { 1742 unsigned long addr; 1743 int diag; 1744 int nextarg; 1745 long offset; 1746 1747 if (raw_smp_processor_id() != kdb_initial_cpu) { 1748 kdb_printf("go must execute on the entry cpu, " 1749 "please use \"cpu %d\" and then execute go\n", 1750 kdb_initial_cpu); 1751 return KDB_BADCPUNUM; 1752 } 1753 if (argc == 1) { 1754 nextarg = 1; 1755 diag = kdbgetaddrarg(argc, argv, &nextarg, 1756 &addr, &offset, NULL); 1757 if (diag) 1758 return diag; 1759 } else if (argc) { 1760 return KDB_ARGCOUNT; 1761 } 1762 1763 diag = KDB_CMD_GO; 1764 if (KDB_FLAG(CATASTROPHIC)) { 1765 kdb_printf("Catastrophic error detected\n"); 1766 kdb_printf("kdb_continue_catastrophic=%d, ", 1767 kdb_continue_catastrophic); 1768 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1769 kdb_printf("type go a second time if you really want " 1770 "to continue\n"); 1771 return 0; 1772 } 1773 if (kdb_continue_catastrophic == 2) { 1774 kdb_printf("forcing reboot\n"); 1775 kdb_reboot(0, NULL); 1776 } 1777 kdb_printf("attempting to continue\n"); 1778 } 1779 return diag; 1780 } 1781 1782 /* 1783 * kdb_rd - This function implements the 'rd' command. 1784 */ 1785 static int kdb_rd(int argc, const char **argv) 1786 { 1787 int len = kdb_check_regs(); 1788 #if DBG_MAX_REG_NUM > 0 1789 int i; 1790 char *rname; 1791 int rsize; 1792 u64 reg64; 1793 u32 reg32; 1794 u16 reg16; 1795 u8 reg8; 1796 1797 if (len) 1798 return len; 1799 1800 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1801 rsize = dbg_reg_def[i].size * 2; 1802 if (rsize > 16) 1803 rsize = 2; 1804 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1805 len = 0; 1806 kdb_printf("\n"); 1807 } 1808 if (len) 1809 len += kdb_printf(" "); 1810 switch(dbg_reg_def[i].size * 8) { 1811 case 8: 1812 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1813 if (!rname) 1814 break; 1815 len += kdb_printf("%s: %02x", rname, reg8); 1816 break; 1817 case 16: 1818 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1819 if (!rname) 1820 break; 1821 len += kdb_printf("%s: %04x", rname, reg16); 1822 break; 1823 case 32: 1824 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1825 if (!rname) 1826 break; 1827 len += kdb_printf("%s: %08x", rname, reg32); 1828 break; 1829 case 64: 1830 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1831 if (!rname) 1832 break; 1833 len += kdb_printf("%s: %016llx", rname, reg64); 1834 break; 1835 default: 1836 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1837 } 1838 } 1839 kdb_printf("\n"); 1840 #else 1841 if (len) 1842 return len; 1843 1844 kdb_dumpregs(kdb_current_regs); 1845 #endif 1846 return 0; 1847 } 1848 1849 /* 1850 * kdb_rm - This function implements the 'rm' (register modify) command. 1851 * rm register-name new-contents 1852 * Remarks: 1853 * Allows register modification with the same restrictions as gdb 1854 */ 1855 static int kdb_rm(int argc, const char **argv) 1856 { 1857 #if DBG_MAX_REG_NUM > 0 1858 int diag; 1859 const char *rname; 1860 int i; 1861 u64 reg64; 1862 u32 reg32; 1863 u16 reg16; 1864 u8 reg8; 1865 1866 if (argc != 2) 1867 return KDB_ARGCOUNT; 1868 /* 1869 * Allow presence or absence of leading '%' symbol. 1870 */ 1871 rname = argv[1]; 1872 if (*rname == '%') 1873 rname++; 1874 1875 diag = kdbgetu64arg(argv[2], ®64); 1876 if (diag) 1877 return diag; 1878 1879 diag = kdb_check_regs(); 1880 if (diag) 1881 return diag; 1882 1883 diag = KDB_BADREG; 1884 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1885 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1886 diag = 0; 1887 break; 1888 } 1889 } 1890 if (!diag) { 1891 switch(dbg_reg_def[i].size * 8) { 1892 case 8: 1893 reg8 = reg64; 1894 dbg_set_reg(i, ®8, kdb_current_regs); 1895 break; 1896 case 16: 1897 reg16 = reg64; 1898 dbg_set_reg(i, ®16, kdb_current_regs); 1899 break; 1900 case 32: 1901 reg32 = reg64; 1902 dbg_set_reg(i, ®32, kdb_current_regs); 1903 break; 1904 case 64: 1905 dbg_set_reg(i, ®64, kdb_current_regs); 1906 break; 1907 } 1908 } 1909 return diag; 1910 #else 1911 kdb_printf("ERROR: Register set currently not implemented\n"); 1912 return 0; 1913 #endif 1914 } 1915 1916 #if defined(CONFIG_MAGIC_SYSRQ) 1917 /* 1918 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 1919 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 1920 * sr <magic-sysrq-code> 1921 */ 1922 static int kdb_sr(int argc, const char **argv) 1923 { 1924 if (argc != 1) 1925 return KDB_ARGCOUNT; 1926 kdb_trap_printk++; 1927 __handle_sysrq(*argv[1], false); 1928 kdb_trap_printk--; 1929 1930 return 0; 1931 } 1932 #endif /* CONFIG_MAGIC_SYSRQ */ 1933 1934 /* 1935 * kdb_ef - This function implements the 'regs' (display exception 1936 * frame) command. This command takes an address and expects to 1937 * find an exception frame at that address, formats and prints 1938 * it. 1939 * regs address-expression 1940 * Remarks: 1941 * Not done yet. 1942 */ 1943 static int kdb_ef(int argc, const char **argv) 1944 { 1945 int diag; 1946 unsigned long addr; 1947 long offset; 1948 int nextarg; 1949 1950 if (argc != 1) 1951 return KDB_ARGCOUNT; 1952 1953 nextarg = 1; 1954 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1955 if (diag) 1956 return diag; 1957 show_regs((struct pt_regs *)addr); 1958 return 0; 1959 } 1960 1961 #if defined(CONFIG_MODULES) 1962 /* 1963 * kdb_lsmod - This function implements the 'lsmod' command. Lists 1964 * currently loaded kernel modules. 1965 * Mostly taken from userland lsmod. 1966 */ 1967 static int kdb_lsmod(int argc, const char **argv) 1968 { 1969 struct module *mod; 1970 1971 if (argc != 0) 1972 return KDB_ARGCOUNT; 1973 1974 kdb_printf("Module Size modstruct Used by\n"); 1975 list_for_each_entry(mod, kdb_modules, list) { 1976 if (mod->state == MODULE_STATE_UNFORMED) 1977 continue; 1978 1979 kdb_printf("%-20s%8u 0x%p ", mod->name, 1980 mod->core_size, (void *)mod); 1981 #ifdef CONFIG_MODULE_UNLOAD 1982 kdb_printf("%4ld ", module_refcount(mod)); 1983 #endif 1984 if (mod->state == MODULE_STATE_GOING) 1985 kdb_printf(" (Unloading)"); 1986 else if (mod->state == MODULE_STATE_COMING) 1987 kdb_printf(" (Loading)"); 1988 else 1989 kdb_printf(" (Live)"); 1990 kdb_printf(" 0x%p", mod->module_core); 1991 1992 #ifdef CONFIG_MODULE_UNLOAD 1993 { 1994 struct module_use *use; 1995 kdb_printf(" [ "); 1996 list_for_each_entry(use, &mod->source_list, 1997 source_list) 1998 kdb_printf("%s ", use->target->name); 1999 kdb_printf("]\n"); 2000 } 2001 #endif 2002 } 2003 2004 return 0; 2005 } 2006 2007 #endif /* CONFIG_MODULES */ 2008 2009 /* 2010 * kdb_env - This function implements the 'env' command. Display the 2011 * current environment variables. 2012 */ 2013 2014 static int kdb_env(int argc, const char **argv) 2015 { 2016 int i; 2017 2018 for (i = 0; i < __nenv; i++) { 2019 if (__env[i]) 2020 kdb_printf("%s\n", __env[i]); 2021 } 2022 2023 if (KDB_DEBUG(MASK)) 2024 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags); 2025 2026 return 0; 2027 } 2028 2029 #ifdef CONFIG_PRINTK 2030 /* 2031 * kdb_dmesg - This function implements the 'dmesg' command to display 2032 * the contents of the syslog buffer. 2033 * dmesg [lines] [adjust] 2034 */ 2035 static int kdb_dmesg(int argc, const char **argv) 2036 { 2037 int diag; 2038 int logging; 2039 int lines = 0; 2040 int adjust = 0; 2041 int n = 0; 2042 int skip = 0; 2043 struct kmsg_dumper dumper = { .active = 1 }; 2044 size_t len; 2045 char buf[201]; 2046 2047 if (argc > 2) 2048 return KDB_ARGCOUNT; 2049 if (argc) { 2050 char *cp; 2051 lines = simple_strtol(argv[1], &cp, 0); 2052 if (*cp) 2053 lines = 0; 2054 if (argc > 1) { 2055 adjust = simple_strtoul(argv[2], &cp, 0); 2056 if (*cp || adjust < 0) 2057 adjust = 0; 2058 } 2059 } 2060 2061 /* disable LOGGING if set */ 2062 diag = kdbgetintenv("LOGGING", &logging); 2063 if (!diag && logging) { 2064 const char *setargs[] = { "set", "LOGGING", "0" }; 2065 kdb_set(2, setargs); 2066 } 2067 2068 kmsg_dump_rewind_nolock(&dumper); 2069 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL)) 2070 n++; 2071 2072 if (lines < 0) { 2073 if (adjust >= n) 2074 kdb_printf("buffer only contains %d lines, nothing " 2075 "printed\n", n); 2076 else if (adjust - lines >= n) 2077 kdb_printf("buffer only contains %d lines, last %d " 2078 "lines printed\n", n, n - adjust); 2079 skip = adjust; 2080 lines = abs(lines); 2081 } else if (lines > 0) { 2082 skip = n - lines - adjust; 2083 lines = abs(lines); 2084 if (adjust >= n) { 2085 kdb_printf("buffer only contains %d lines, " 2086 "nothing printed\n", n); 2087 skip = n; 2088 } else if (skip < 0) { 2089 lines += skip; 2090 skip = 0; 2091 kdb_printf("buffer only contains %d lines, first " 2092 "%d lines printed\n", n, lines); 2093 } 2094 } else { 2095 lines = n; 2096 } 2097 2098 if (skip >= n || skip < 0) 2099 return 0; 2100 2101 kmsg_dump_rewind_nolock(&dumper); 2102 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) { 2103 if (skip) { 2104 skip--; 2105 continue; 2106 } 2107 if (!lines--) 2108 break; 2109 if (KDB_FLAG(CMD_INTERRUPT)) 2110 return 0; 2111 2112 kdb_printf("%.*s\n", (int)len - 1, buf); 2113 } 2114 2115 return 0; 2116 } 2117 #endif /* CONFIG_PRINTK */ 2118 2119 /* Make sure we balance enable/disable calls, must disable first. */ 2120 static atomic_t kdb_nmi_disabled; 2121 2122 static int kdb_disable_nmi(int argc, const char *argv[]) 2123 { 2124 if (atomic_read(&kdb_nmi_disabled)) 2125 return 0; 2126 atomic_set(&kdb_nmi_disabled, 1); 2127 arch_kgdb_ops.enable_nmi(0); 2128 return 0; 2129 } 2130 2131 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2132 { 2133 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2134 return -EINVAL; 2135 arch_kgdb_ops.enable_nmi(1); 2136 return 0; 2137 } 2138 2139 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2140 .set = kdb_param_enable_nmi, 2141 }; 2142 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2143 2144 /* 2145 * kdb_cpu - This function implements the 'cpu' command. 2146 * cpu [<cpunum>] 2147 * Returns: 2148 * KDB_CMD_CPU for success, a kdb diagnostic if error 2149 */ 2150 static void kdb_cpu_status(void) 2151 { 2152 int i, start_cpu, first_print = 1; 2153 char state, prev_state = '?'; 2154 2155 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2156 kdb_printf("Available cpus: "); 2157 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2158 if (!cpu_online(i)) { 2159 state = 'F'; /* cpu is offline */ 2160 } else { 2161 state = ' '; /* cpu is responding to kdb */ 2162 if (kdb_task_state_char(KDB_TSK(i)) == 'I') 2163 state = 'I'; /* idle task */ 2164 } 2165 if (state != prev_state) { 2166 if (prev_state != '?') { 2167 if (!first_print) 2168 kdb_printf(", "); 2169 first_print = 0; 2170 kdb_printf("%d", start_cpu); 2171 if (start_cpu < i-1) 2172 kdb_printf("-%d", i-1); 2173 if (prev_state != ' ') 2174 kdb_printf("(%c)", prev_state); 2175 } 2176 prev_state = state; 2177 start_cpu = i; 2178 } 2179 } 2180 /* print the trailing cpus, ignoring them if they are all offline */ 2181 if (prev_state != 'F') { 2182 if (!first_print) 2183 kdb_printf(", "); 2184 kdb_printf("%d", start_cpu); 2185 if (start_cpu < i-1) 2186 kdb_printf("-%d", i-1); 2187 if (prev_state != ' ') 2188 kdb_printf("(%c)", prev_state); 2189 } 2190 kdb_printf("\n"); 2191 } 2192 2193 static int kdb_cpu(int argc, const char **argv) 2194 { 2195 unsigned long cpunum; 2196 int diag; 2197 2198 if (argc == 0) { 2199 kdb_cpu_status(); 2200 return 0; 2201 } 2202 2203 if (argc != 1) 2204 return KDB_ARGCOUNT; 2205 2206 diag = kdbgetularg(argv[1], &cpunum); 2207 if (diag) 2208 return diag; 2209 2210 /* 2211 * Validate cpunum 2212 */ 2213 if ((cpunum > NR_CPUS) || !cpu_online(cpunum)) 2214 return KDB_BADCPUNUM; 2215 2216 dbg_switch_cpu = cpunum; 2217 2218 /* 2219 * Switch to other cpu 2220 */ 2221 return KDB_CMD_CPU; 2222 } 2223 2224 /* The user may not realize that ps/bta with no parameters does not print idle 2225 * or sleeping system daemon processes, so tell them how many were suppressed. 2226 */ 2227 void kdb_ps_suppressed(void) 2228 { 2229 int idle = 0, daemon = 0; 2230 unsigned long mask_I = kdb_task_state_string("I"), 2231 mask_M = kdb_task_state_string("M"); 2232 unsigned long cpu; 2233 const struct task_struct *p, *g; 2234 for_each_online_cpu(cpu) { 2235 p = kdb_curr_task(cpu); 2236 if (kdb_task_state(p, mask_I)) 2237 ++idle; 2238 } 2239 kdb_do_each_thread(g, p) { 2240 if (kdb_task_state(p, mask_M)) 2241 ++daemon; 2242 } kdb_while_each_thread(g, p); 2243 if (idle || daemon) { 2244 if (idle) 2245 kdb_printf("%d idle process%s (state I)%s\n", 2246 idle, idle == 1 ? "" : "es", 2247 daemon ? " and " : ""); 2248 if (daemon) 2249 kdb_printf("%d sleeping system daemon (state M) " 2250 "process%s", daemon, 2251 daemon == 1 ? "" : "es"); 2252 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2253 } 2254 } 2255 2256 /* 2257 * kdb_ps - This function implements the 'ps' command which shows a 2258 * list of the active processes. 2259 * ps [DRSTCZEUIMA] All processes, optionally filtered by state 2260 */ 2261 void kdb_ps1(const struct task_struct *p) 2262 { 2263 int cpu; 2264 unsigned long tmp; 2265 2266 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) 2267 return; 2268 2269 cpu = kdb_process_cpu(p); 2270 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n", 2271 (void *)p, p->pid, p->parent->pid, 2272 kdb_task_has_cpu(p), kdb_process_cpu(p), 2273 kdb_task_state_char(p), 2274 (void *)(&p->thread), 2275 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2276 p->comm); 2277 if (kdb_task_has_cpu(p)) { 2278 if (!KDB_TSK(cpu)) { 2279 kdb_printf(" Error: no saved data for this cpu\n"); 2280 } else { 2281 if (KDB_TSK(cpu) != p) 2282 kdb_printf(" Error: does not match running " 2283 "process table (0x%p)\n", KDB_TSK(cpu)); 2284 } 2285 } 2286 } 2287 2288 static int kdb_ps(int argc, const char **argv) 2289 { 2290 struct task_struct *g, *p; 2291 unsigned long mask, cpu; 2292 2293 if (argc == 0) 2294 kdb_ps_suppressed(); 2295 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2296 (int)(2*sizeof(void *))+2, "Task Addr", 2297 (int)(2*sizeof(void *))+2, "Thread"); 2298 mask = kdb_task_state_string(argc ? argv[1] : NULL); 2299 /* Run the active tasks first */ 2300 for_each_online_cpu(cpu) { 2301 if (KDB_FLAG(CMD_INTERRUPT)) 2302 return 0; 2303 p = kdb_curr_task(cpu); 2304 if (kdb_task_state(p, mask)) 2305 kdb_ps1(p); 2306 } 2307 kdb_printf("\n"); 2308 /* Now the real tasks */ 2309 kdb_do_each_thread(g, p) { 2310 if (KDB_FLAG(CMD_INTERRUPT)) 2311 return 0; 2312 if (kdb_task_state(p, mask)) 2313 kdb_ps1(p); 2314 } kdb_while_each_thread(g, p); 2315 2316 return 0; 2317 } 2318 2319 /* 2320 * kdb_pid - This function implements the 'pid' command which switches 2321 * the currently active process. 2322 * pid [<pid> | R] 2323 */ 2324 static int kdb_pid(int argc, const char **argv) 2325 { 2326 struct task_struct *p; 2327 unsigned long val; 2328 int diag; 2329 2330 if (argc > 1) 2331 return KDB_ARGCOUNT; 2332 2333 if (argc) { 2334 if (strcmp(argv[1], "R") == 0) { 2335 p = KDB_TSK(kdb_initial_cpu); 2336 } else { 2337 diag = kdbgetularg(argv[1], &val); 2338 if (diag) 2339 return KDB_BADINT; 2340 2341 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2342 if (!p) { 2343 kdb_printf("No task with pid=%d\n", (pid_t)val); 2344 return 0; 2345 } 2346 } 2347 kdb_set_current_task(p); 2348 } 2349 kdb_printf("KDB current process is %s(pid=%d)\n", 2350 kdb_current_task->comm, 2351 kdb_current_task->pid); 2352 2353 return 0; 2354 } 2355 2356 static int kdb_kgdb(int argc, const char **argv) 2357 { 2358 return KDB_CMD_KGDB; 2359 } 2360 2361 /* 2362 * kdb_help - This function implements the 'help' and '?' commands. 2363 */ 2364 static int kdb_help(int argc, const char **argv) 2365 { 2366 kdbtab_t *kt; 2367 int i; 2368 2369 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2370 kdb_printf("-----------------------------" 2371 "-----------------------------\n"); 2372 for_each_kdbcmd(kt, i) { 2373 char *space = ""; 2374 if (KDB_FLAG(CMD_INTERRUPT)) 2375 return 0; 2376 if (!kt->cmd_name) 2377 continue; 2378 if (strlen(kt->cmd_usage) > 20) 2379 space = "\n "; 2380 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name, 2381 kt->cmd_usage, space, kt->cmd_help); 2382 } 2383 return 0; 2384 } 2385 2386 /* 2387 * kdb_kill - This function implements the 'kill' commands. 2388 */ 2389 static int kdb_kill(int argc, const char **argv) 2390 { 2391 long sig, pid; 2392 char *endp; 2393 struct task_struct *p; 2394 struct siginfo info; 2395 2396 if (argc != 2) 2397 return KDB_ARGCOUNT; 2398 2399 sig = simple_strtol(argv[1], &endp, 0); 2400 if (*endp) 2401 return KDB_BADINT; 2402 if (sig >= 0) { 2403 kdb_printf("Invalid signal parameter.<-signal>\n"); 2404 return 0; 2405 } 2406 sig = -sig; 2407 2408 pid = simple_strtol(argv[2], &endp, 0); 2409 if (*endp) 2410 return KDB_BADINT; 2411 if (pid <= 0) { 2412 kdb_printf("Process ID must be large than 0.\n"); 2413 return 0; 2414 } 2415 2416 /* Find the process. */ 2417 p = find_task_by_pid_ns(pid, &init_pid_ns); 2418 if (!p) { 2419 kdb_printf("The specified process isn't found.\n"); 2420 return 0; 2421 } 2422 p = p->group_leader; 2423 info.si_signo = sig; 2424 info.si_errno = 0; 2425 info.si_code = SI_USER; 2426 info.si_pid = pid; /* same capabilities as process being signalled */ 2427 info.si_uid = 0; /* kdb has root authority */ 2428 kdb_send_sig_info(p, &info); 2429 return 0; 2430 } 2431 2432 struct kdb_tm { 2433 int tm_sec; /* seconds */ 2434 int tm_min; /* minutes */ 2435 int tm_hour; /* hours */ 2436 int tm_mday; /* day of the month */ 2437 int tm_mon; /* month */ 2438 int tm_year; /* year */ 2439 }; 2440 2441 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm) 2442 { 2443 /* This will work from 1970-2099, 2100 is not a leap year */ 2444 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31, 2445 31, 30, 31, 30, 31 }; 2446 memset(tm, 0, sizeof(*tm)); 2447 tm->tm_sec = tv->tv_sec % (24 * 60 * 60); 2448 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) + 2449 (2 * 365 + 1); /* shift base from 1970 to 1968 */ 2450 tm->tm_min = tm->tm_sec / 60 % 60; 2451 tm->tm_hour = tm->tm_sec / 60 / 60; 2452 tm->tm_sec = tm->tm_sec % 60; 2453 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1)); 2454 tm->tm_mday %= (4*365+1); 2455 mon_day[1] = 29; 2456 while (tm->tm_mday >= mon_day[tm->tm_mon]) { 2457 tm->tm_mday -= mon_day[tm->tm_mon]; 2458 if (++tm->tm_mon == 12) { 2459 tm->tm_mon = 0; 2460 ++tm->tm_year; 2461 mon_day[1] = 28; 2462 } 2463 } 2464 ++tm->tm_mday; 2465 } 2466 2467 /* 2468 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2469 * I cannot call that code directly from kdb, it has an unconditional 2470 * cli()/sti() and calls routines that take locks which can stop the debugger. 2471 */ 2472 static void kdb_sysinfo(struct sysinfo *val) 2473 { 2474 struct timespec uptime; 2475 do_posix_clock_monotonic_gettime(&uptime); 2476 memset(val, 0, sizeof(*val)); 2477 val->uptime = uptime.tv_sec; 2478 val->loads[0] = avenrun[0]; 2479 val->loads[1] = avenrun[1]; 2480 val->loads[2] = avenrun[2]; 2481 val->procs = nr_threads-1; 2482 si_meminfo(val); 2483 2484 return; 2485 } 2486 2487 /* 2488 * kdb_summary - This function implements the 'summary' command. 2489 */ 2490 static int kdb_summary(int argc, const char **argv) 2491 { 2492 struct timespec now; 2493 struct kdb_tm tm; 2494 struct sysinfo val; 2495 2496 if (argc) 2497 return KDB_ARGCOUNT; 2498 2499 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2500 kdb_printf("release %s\n", init_uts_ns.name.release); 2501 kdb_printf("version %s\n", init_uts_ns.name.version); 2502 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2503 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2504 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2505 kdb_printf("ccversion %s\n", __stringify(CCVERSION)); 2506 2507 now = __current_kernel_time(); 2508 kdb_gmtime(&now, &tm); 2509 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d " 2510 "tz_minuteswest %d\n", 2511 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, 2512 tm.tm_hour, tm.tm_min, tm.tm_sec, 2513 sys_tz.tz_minuteswest); 2514 2515 kdb_sysinfo(&val); 2516 kdb_printf("uptime "); 2517 if (val.uptime > (24*60*60)) { 2518 int days = val.uptime / (24*60*60); 2519 val.uptime %= (24*60*60); 2520 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2521 } 2522 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2523 2524 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */ 2525 2526 #define LOAD_INT(x) ((x) >> FSHIFT) 2527 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) 2528 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2529 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2530 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2531 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2532 #undef LOAD_INT 2533 #undef LOAD_FRAC 2534 /* Display in kilobytes */ 2535 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2536 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2537 "Buffers: %8lu kB\n", 2538 val.totalram, val.freeram, val.bufferram); 2539 return 0; 2540 } 2541 2542 /* 2543 * kdb_per_cpu - This function implements the 'per_cpu' command. 2544 */ 2545 static int kdb_per_cpu(int argc, const char **argv) 2546 { 2547 char fmtstr[64]; 2548 int cpu, diag, nextarg = 1; 2549 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2550 2551 if (argc < 1 || argc > 3) 2552 return KDB_ARGCOUNT; 2553 2554 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2555 if (diag) 2556 return diag; 2557 2558 if (argc >= 2) { 2559 diag = kdbgetularg(argv[2], &bytesperword); 2560 if (diag) 2561 return diag; 2562 } 2563 if (!bytesperword) 2564 bytesperword = KDB_WORD_SIZE; 2565 else if (bytesperword > KDB_WORD_SIZE) 2566 return KDB_BADWIDTH; 2567 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2568 if (argc >= 3) { 2569 diag = kdbgetularg(argv[3], &whichcpu); 2570 if (diag) 2571 return diag; 2572 if (!cpu_online(whichcpu)) { 2573 kdb_printf("cpu %ld is not online\n", whichcpu); 2574 return KDB_BADCPUNUM; 2575 } 2576 } 2577 2578 /* Most architectures use __per_cpu_offset[cpu], some use 2579 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2580 */ 2581 #ifdef __per_cpu_offset 2582 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2583 #else 2584 #ifdef CONFIG_SMP 2585 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2586 #else 2587 #define KDB_PCU(cpu) 0 2588 #endif 2589 #endif 2590 for_each_online_cpu(cpu) { 2591 if (KDB_FLAG(CMD_INTERRUPT)) 2592 return 0; 2593 2594 if (whichcpu != ~0UL && whichcpu != cpu) 2595 continue; 2596 addr = symaddr + KDB_PCU(cpu); 2597 diag = kdb_getword(&val, addr, bytesperword); 2598 if (diag) { 2599 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2600 "read, diag=%d\n", cpu, addr, diag); 2601 continue; 2602 } 2603 kdb_printf("%5d ", cpu); 2604 kdb_md_line(fmtstr, addr, 2605 bytesperword == KDB_WORD_SIZE, 2606 1, bytesperword, 1, 1, 0); 2607 } 2608 #undef KDB_PCU 2609 return 0; 2610 } 2611 2612 /* 2613 * display help for the use of cmd | grep pattern 2614 */ 2615 static int kdb_grep_help(int argc, const char **argv) 2616 { 2617 kdb_printf("Usage of cmd args | grep pattern:\n"); 2618 kdb_printf(" Any command's output may be filtered through an "); 2619 kdb_printf("emulated 'pipe'.\n"); 2620 kdb_printf(" 'grep' is just a key word.\n"); 2621 kdb_printf(" The pattern may include a very limited set of " 2622 "metacharacters:\n"); 2623 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2624 kdb_printf(" And if there are spaces in the pattern, you may " 2625 "quote it:\n"); 2626 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2627 " or \"^pat tern$\"\n"); 2628 return 0; 2629 } 2630 2631 /* 2632 * kdb_register_repeat - This function is used to register a kernel 2633 * debugger command. 2634 * Inputs: 2635 * cmd Command name 2636 * func Function to execute the command 2637 * usage A simple usage string showing arguments 2638 * help A simple help string describing command 2639 * repeat Does the command auto repeat on enter? 2640 * Returns: 2641 * zero for success, one if a duplicate command. 2642 */ 2643 #define kdb_command_extend 50 /* arbitrary */ 2644 int kdb_register_repeat(char *cmd, 2645 kdb_func_t func, 2646 char *usage, 2647 char *help, 2648 short minlen, 2649 kdb_repeat_t repeat) 2650 { 2651 int i; 2652 kdbtab_t *kp; 2653 2654 /* 2655 * Brute force method to determine duplicates 2656 */ 2657 for_each_kdbcmd(kp, i) { 2658 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2659 kdb_printf("Duplicate kdb command registered: " 2660 "%s, func %p help %s\n", cmd, func, help); 2661 return 1; 2662 } 2663 } 2664 2665 /* 2666 * Insert command into first available location in table 2667 */ 2668 for_each_kdbcmd(kp, i) { 2669 if (kp->cmd_name == NULL) 2670 break; 2671 } 2672 2673 if (i >= kdb_max_commands) { 2674 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX + 2675 kdb_command_extend) * sizeof(*new), GFP_KDB); 2676 if (!new) { 2677 kdb_printf("Could not allocate new kdb_command " 2678 "table\n"); 2679 return 1; 2680 } 2681 if (kdb_commands) { 2682 memcpy(new, kdb_commands, 2683 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new)); 2684 kfree(kdb_commands); 2685 } 2686 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0, 2687 kdb_command_extend * sizeof(*new)); 2688 kdb_commands = new; 2689 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX; 2690 kdb_max_commands += kdb_command_extend; 2691 } 2692 2693 kp->cmd_name = cmd; 2694 kp->cmd_func = func; 2695 kp->cmd_usage = usage; 2696 kp->cmd_help = help; 2697 kp->cmd_flags = 0; 2698 kp->cmd_minlen = minlen; 2699 kp->cmd_repeat = repeat; 2700 2701 return 0; 2702 } 2703 EXPORT_SYMBOL_GPL(kdb_register_repeat); 2704 2705 2706 /* 2707 * kdb_register - Compatibility register function for commands that do 2708 * not need to specify a repeat state. Equivalent to 2709 * kdb_register_repeat with KDB_REPEAT_NONE. 2710 * Inputs: 2711 * cmd Command name 2712 * func Function to execute the command 2713 * usage A simple usage string showing arguments 2714 * help A simple help string describing command 2715 * Returns: 2716 * zero for success, one if a duplicate command. 2717 */ 2718 int kdb_register(char *cmd, 2719 kdb_func_t func, 2720 char *usage, 2721 char *help, 2722 short minlen) 2723 { 2724 return kdb_register_repeat(cmd, func, usage, help, minlen, 2725 KDB_REPEAT_NONE); 2726 } 2727 EXPORT_SYMBOL_GPL(kdb_register); 2728 2729 /* 2730 * kdb_unregister - This function is used to unregister a kernel 2731 * debugger command. It is generally called when a module which 2732 * implements kdb commands is unloaded. 2733 * Inputs: 2734 * cmd Command name 2735 * Returns: 2736 * zero for success, one command not registered. 2737 */ 2738 int kdb_unregister(char *cmd) 2739 { 2740 int i; 2741 kdbtab_t *kp; 2742 2743 /* 2744 * find the command. 2745 */ 2746 for_each_kdbcmd(kp, i) { 2747 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2748 kp->cmd_name = NULL; 2749 return 0; 2750 } 2751 } 2752 2753 /* Couldn't find it. */ 2754 return 1; 2755 } 2756 EXPORT_SYMBOL_GPL(kdb_unregister); 2757 2758 /* Initialize the kdb command table. */ 2759 static void __init kdb_inittab(void) 2760 { 2761 int i; 2762 kdbtab_t *kp; 2763 2764 for_each_kdbcmd(kp, i) 2765 kp->cmd_name = NULL; 2766 2767 kdb_register_repeat("md", kdb_md, "<vaddr>", 2768 "Display Memory Contents, also mdWcN, e.g. md8c1", 1, 2769 KDB_REPEAT_NO_ARGS); 2770 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>", 2771 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS); 2772 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>", 2773 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS); 2774 kdb_register_repeat("mds", kdb_md, "<vaddr>", 2775 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS); 2776 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>", 2777 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS); 2778 kdb_register_repeat("go", kdb_go, "[<vaddr>]", 2779 "Continue Execution", 1, KDB_REPEAT_NONE); 2780 kdb_register_repeat("rd", kdb_rd, "", 2781 "Display Registers", 0, KDB_REPEAT_NONE); 2782 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>", 2783 "Modify Registers", 0, KDB_REPEAT_NONE); 2784 kdb_register_repeat("ef", kdb_ef, "<vaddr>", 2785 "Display exception frame", 0, KDB_REPEAT_NONE); 2786 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]", 2787 "Stack traceback", 1, KDB_REPEAT_NONE); 2788 kdb_register_repeat("btp", kdb_bt, "<pid>", 2789 "Display stack for process <pid>", 0, KDB_REPEAT_NONE); 2790 kdb_register_repeat("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]", 2791 "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE); 2792 kdb_register_repeat("btc", kdb_bt, "", 2793 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE); 2794 kdb_register_repeat("btt", kdb_bt, "<vaddr>", 2795 "Backtrace process given its struct task address", 0, 2796 KDB_REPEAT_NONE); 2797 kdb_register_repeat("env", kdb_env, "", 2798 "Show environment variables", 0, KDB_REPEAT_NONE); 2799 kdb_register_repeat("set", kdb_set, "", 2800 "Set environment variables", 0, KDB_REPEAT_NONE); 2801 kdb_register_repeat("help", kdb_help, "", 2802 "Display Help Message", 1, KDB_REPEAT_NONE); 2803 kdb_register_repeat("?", kdb_help, "", 2804 "Display Help Message", 0, KDB_REPEAT_NONE); 2805 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>", 2806 "Switch to new cpu", 0, KDB_REPEAT_NONE); 2807 kdb_register_repeat("kgdb", kdb_kgdb, "", 2808 "Enter kgdb mode", 0, KDB_REPEAT_NONE); 2809 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]", 2810 "Display active task list", 0, KDB_REPEAT_NONE); 2811 kdb_register_repeat("pid", kdb_pid, "<pidnum>", 2812 "Switch to another task", 0, KDB_REPEAT_NONE); 2813 kdb_register_repeat("reboot", kdb_reboot, "", 2814 "Reboot the machine immediately", 0, KDB_REPEAT_NONE); 2815 #if defined(CONFIG_MODULES) 2816 kdb_register_repeat("lsmod", kdb_lsmod, "", 2817 "List loaded kernel modules", 0, KDB_REPEAT_NONE); 2818 #endif 2819 #if defined(CONFIG_MAGIC_SYSRQ) 2820 kdb_register_repeat("sr", kdb_sr, "<key>", 2821 "Magic SysRq key", 0, KDB_REPEAT_NONE); 2822 #endif 2823 #if defined(CONFIG_PRINTK) 2824 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]", 2825 "Display syslog buffer", 0, KDB_REPEAT_NONE); 2826 #endif 2827 if (arch_kgdb_ops.enable_nmi) { 2828 kdb_register_repeat("disable_nmi", kdb_disable_nmi, "", 2829 "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE); 2830 } 2831 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"", 2832 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE); 2833 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>", 2834 "Send a signal to a process", 0, KDB_REPEAT_NONE); 2835 kdb_register_repeat("summary", kdb_summary, "", 2836 "Summarize the system", 4, KDB_REPEAT_NONE); 2837 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]", 2838 "Display per_cpu variables", 3, KDB_REPEAT_NONE); 2839 kdb_register_repeat("grephelp", kdb_grep_help, "", 2840 "Display help on | grep", 0, KDB_REPEAT_NONE); 2841 } 2842 2843 /* Execute any commands defined in kdb_cmds. */ 2844 static void __init kdb_cmd_init(void) 2845 { 2846 int i, diag; 2847 for (i = 0; kdb_cmds[i]; ++i) { 2848 diag = kdb_parse(kdb_cmds[i]); 2849 if (diag) 2850 kdb_printf("kdb command %s failed, kdb diag %d\n", 2851 kdb_cmds[i], diag); 2852 } 2853 if (defcmd_in_progress) { 2854 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2855 kdb_parse("endefcmd"); 2856 } 2857 } 2858 2859 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2860 void __init kdb_init(int lvl) 2861 { 2862 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2863 int i; 2864 2865 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2866 return; 2867 for (i = kdb_init_lvl; i < lvl; i++) { 2868 switch (i) { 2869 case KDB_NOT_INITIALIZED: 2870 kdb_inittab(); /* Initialize Command Table */ 2871 kdb_initbptab(); /* Initialize Breakpoints */ 2872 break; 2873 case KDB_INIT_EARLY: 2874 kdb_cmd_init(); /* Build kdb_cmds tables */ 2875 break; 2876 } 2877 } 2878 kdb_init_lvl = lvl; 2879 } 2880