xref: /openbmc/linux/kernel/debug/kdb/kdb_main.c (revision b8d312aa)
1 /*
2  * Kernel Debugger Architecture Independent Main Code
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
9  * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10  * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11  * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
12  */
13 
14 #include <linux/ctype.h>
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/kernel.h>
18 #include <linux/kmsg_dump.h>
19 #include <linux/reboot.h>
20 #include <linux/sched.h>
21 #include <linux/sched/loadavg.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sysrq.h>
25 #include <linux/smp.h>
26 #include <linux/utsname.h>
27 #include <linux/vmalloc.h>
28 #include <linux/atomic.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mm.h>
32 #include <linux/init.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdb.h>
36 #include <linux/notifier.h>
37 #include <linux/interrupt.h>
38 #include <linux/delay.h>
39 #include <linux/nmi.h>
40 #include <linux/time.h>
41 #include <linux/ptrace.h>
42 #include <linux/sysctl.h>
43 #include <linux/cpu.h>
44 #include <linux/kdebug.h>
45 #include <linux/proc_fs.h>
46 #include <linux/uaccess.h>
47 #include <linux/slab.h>
48 #include "kdb_private.h"
49 
50 #undef	MODULE_PARAM_PREFIX
51 #define	MODULE_PARAM_PREFIX "kdb."
52 
53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55 
56 char kdb_grep_string[KDB_GREP_STRLEN];
57 int kdb_grepping_flag;
58 EXPORT_SYMBOL(kdb_grepping_flag);
59 int kdb_grep_leading;
60 int kdb_grep_trailing;
61 
62 /*
63  * Kernel debugger state flags
64  */
65 int kdb_flags;
66 
67 /*
68  * kdb_lock protects updates to kdb_initial_cpu.  Used to
69  * single thread processors through the kernel debugger.
70  */
71 int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
72 int kdb_nextline = 1;
73 int kdb_state;			/* General KDB state */
74 
75 struct task_struct *kdb_current_task;
76 EXPORT_SYMBOL(kdb_current_task);
77 struct pt_regs *kdb_current_regs;
78 
79 const char *kdb_diemsg;
80 static int kdb_go_count;
81 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82 static unsigned int kdb_continue_catastrophic =
83 	CONFIG_KDB_CONTINUE_CATASTROPHIC;
84 #else
85 static unsigned int kdb_continue_catastrophic;
86 #endif
87 
88 /* kdb_commands describes the available commands. */
89 static kdbtab_t *kdb_commands;
90 #define KDB_BASE_CMD_MAX 50
91 static int kdb_max_commands = KDB_BASE_CMD_MAX;
92 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
93 #define for_each_kdbcmd(cmd, num)					\
94 	for ((cmd) = kdb_base_commands, (num) = 0;			\
95 	     num < kdb_max_commands;					\
96 	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
97 
98 typedef struct _kdbmsg {
99 	int	km_diag;	/* kdb diagnostic */
100 	char	*km_msg;	/* Corresponding message text */
101 } kdbmsg_t;
102 
103 #define KDBMSG(msgnum, text) \
104 	{ KDB_##msgnum, text }
105 
106 static kdbmsg_t kdbmsgs[] = {
107 	KDBMSG(NOTFOUND, "Command Not Found"),
108 	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
109 	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
110 	       "8 is only allowed on 64 bit systems"),
111 	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
112 	KDBMSG(NOTENV, "Cannot find environment variable"),
113 	KDBMSG(NOENVVALUE, "Environment variable should have value"),
114 	KDBMSG(NOTIMP, "Command not implemented"),
115 	KDBMSG(ENVFULL, "Environment full"),
116 	KDBMSG(ENVBUFFULL, "Environment buffer full"),
117 	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
118 #ifdef CONFIG_CPU_XSCALE
119 	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
120 #else
121 	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
122 #endif
123 	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
124 	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
125 	KDBMSG(BADMODE, "Invalid IDMODE"),
126 	KDBMSG(BADINT, "Illegal numeric value"),
127 	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
128 	KDBMSG(BADREG, "Invalid register name"),
129 	KDBMSG(BADCPUNUM, "Invalid cpu number"),
130 	KDBMSG(BADLENGTH, "Invalid length field"),
131 	KDBMSG(NOBP, "No Breakpoint exists"),
132 	KDBMSG(BADADDR, "Invalid address"),
133 	KDBMSG(NOPERM, "Permission denied"),
134 };
135 #undef KDBMSG
136 
137 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
138 
139 
140 /*
141  * Initial environment.   This is all kept static and local to
142  * this file.   We don't want to rely on the memory allocation
143  * mechanisms in the kernel, so we use a very limited allocate-only
144  * heap for new and altered environment variables.  The entire
145  * environment is limited to a fixed number of entries (add more
146  * to __env[] if required) and a fixed amount of heap (add more to
147  * KDB_ENVBUFSIZE if required).
148  */
149 
150 static char *__env[] = {
151 #if defined(CONFIG_SMP)
152  "PROMPT=[%d]kdb> ",
153 #else
154  "PROMPT=kdb> ",
155 #endif
156  "MOREPROMPT=more> ",
157  "RADIX=16",
158  "MDCOUNT=8",			/* lines of md output */
159  KDB_PLATFORM_ENV,
160  "DTABCOUNT=30",
161  "NOSECT=1",
162  (char *)0,
163  (char *)0,
164  (char *)0,
165  (char *)0,
166  (char *)0,
167  (char *)0,
168  (char *)0,
169  (char *)0,
170  (char *)0,
171  (char *)0,
172  (char *)0,
173  (char *)0,
174  (char *)0,
175  (char *)0,
176  (char *)0,
177  (char *)0,
178  (char *)0,
179  (char *)0,
180  (char *)0,
181  (char *)0,
182  (char *)0,
183  (char *)0,
184  (char *)0,
185  (char *)0,
186 };
187 
188 static const int __nenv = ARRAY_SIZE(__env);
189 
190 struct task_struct *kdb_curr_task(int cpu)
191 {
192 	struct task_struct *p = curr_task(cpu);
193 #ifdef	_TIF_MCA_INIT
194 	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
195 		p = krp->p;
196 #endif
197 	return p;
198 }
199 
200 /*
201  * Check whether the flags of the current command and the permissions
202  * of the kdb console has allow a command to be run.
203  */
204 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
205 				   bool no_args)
206 {
207 	/* permissions comes from userspace so needs massaging slightly */
208 	permissions &= KDB_ENABLE_MASK;
209 	permissions |= KDB_ENABLE_ALWAYS_SAFE;
210 
211 	/* some commands change group when launched with no arguments */
212 	if (no_args)
213 		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
214 
215 	flags |= KDB_ENABLE_ALL;
216 
217 	return permissions & flags;
218 }
219 
220 /*
221  * kdbgetenv - This function will return the character string value of
222  *	an environment variable.
223  * Parameters:
224  *	match	A character string representing an environment variable.
225  * Returns:
226  *	NULL	No environment variable matches 'match'
227  *	char*	Pointer to string value of environment variable.
228  */
229 char *kdbgetenv(const char *match)
230 {
231 	char **ep = __env;
232 	int matchlen = strlen(match);
233 	int i;
234 
235 	for (i = 0; i < __nenv; i++) {
236 		char *e = *ep++;
237 
238 		if (!e)
239 			continue;
240 
241 		if ((strncmp(match, e, matchlen) == 0)
242 		 && ((e[matchlen] == '\0')
243 		   || (e[matchlen] == '='))) {
244 			char *cp = strchr(e, '=');
245 			return cp ? ++cp : "";
246 		}
247 	}
248 	return NULL;
249 }
250 
251 /*
252  * kdballocenv - This function is used to allocate bytes for
253  *	environment entries.
254  * Parameters:
255  *	match	A character string representing a numeric value
256  * Outputs:
257  *	*value  the unsigned long representation of the env variable 'match'
258  * Returns:
259  *	Zero on success, a kdb diagnostic on failure.
260  * Remarks:
261  *	We use a static environment buffer (envbuffer) to hold the values
262  *	of dynamically generated environment variables (see kdb_set).  Buffer
263  *	space once allocated is never free'd, so over time, the amount of space
264  *	(currently 512 bytes) will be exhausted if env variables are changed
265  *	frequently.
266  */
267 static char *kdballocenv(size_t bytes)
268 {
269 #define	KDB_ENVBUFSIZE	512
270 	static char envbuffer[KDB_ENVBUFSIZE];
271 	static int envbufsize;
272 	char *ep = NULL;
273 
274 	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
275 		ep = &envbuffer[envbufsize];
276 		envbufsize += bytes;
277 	}
278 	return ep;
279 }
280 
281 /*
282  * kdbgetulenv - This function will return the value of an unsigned
283  *	long-valued environment variable.
284  * Parameters:
285  *	match	A character string representing a numeric value
286  * Outputs:
287  *	*value  the unsigned long represntation of the env variable 'match'
288  * Returns:
289  *	Zero on success, a kdb diagnostic on failure.
290  */
291 static int kdbgetulenv(const char *match, unsigned long *value)
292 {
293 	char *ep;
294 
295 	ep = kdbgetenv(match);
296 	if (!ep)
297 		return KDB_NOTENV;
298 	if (strlen(ep) == 0)
299 		return KDB_NOENVVALUE;
300 
301 	*value = simple_strtoul(ep, NULL, 0);
302 
303 	return 0;
304 }
305 
306 /*
307  * kdbgetintenv - This function will return the value of an
308  *	integer-valued environment variable.
309  * Parameters:
310  *	match	A character string representing an integer-valued env variable
311  * Outputs:
312  *	*value  the integer representation of the environment variable 'match'
313  * Returns:
314  *	Zero on success, a kdb diagnostic on failure.
315  */
316 int kdbgetintenv(const char *match, int *value)
317 {
318 	unsigned long val;
319 	int diag;
320 
321 	diag = kdbgetulenv(match, &val);
322 	if (!diag)
323 		*value = (int) val;
324 	return diag;
325 }
326 
327 /*
328  * kdbgetularg - This function will convert a numeric string into an
329  *	unsigned long value.
330  * Parameters:
331  *	arg	A character string representing a numeric value
332  * Outputs:
333  *	*value  the unsigned long represntation of arg.
334  * Returns:
335  *	Zero on success, a kdb diagnostic on failure.
336  */
337 int kdbgetularg(const char *arg, unsigned long *value)
338 {
339 	char *endp;
340 	unsigned long val;
341 
342 	val = simple_strtoul(arg, &endp, 0);
343 
344 	if (endp == arg) {
345 		/*
346 		 * Also try base 16, for us folks too lazy to type the
347 		 * leading 0x...
348 		 */
349 		val = simple_strtoul(arg, &endp, 16);
350 		if (endp == arg)
351 			return KDB_BADINT;
352 	}
353 
354 	*value = val;
355 
356 	return 0;
357 }
358 
359 int kdbgetu64arg(const char *arg, u64 *value)
360 {
361 	char *endp;
362 	u64 val;
363 
364 	val = simple_strtoull(arg, &endp, 0);
365 
366 	if (endp == arg) {
367 
368 		val = simple_strtoull(arg, &endp, 16);
369 		if (endp == arg)
370 			return KDB_BADINT;
371 	}
372 
373 	*value = val;
374 
375 	return 0;
376 }
377 
378 /*
379  * kdb_set - This function implements the 'set' command.  Alter an
380  *	existing environment variable or create a new one.
381  */
382 int kdb_set(int argc, const char **argv)
383 {
384 	int i;
385 	char *ep;
386 	size_t varlen, vallen;
387 
388 	/*
389 	 * we can be invoked two ways:
390 	 *   set var=value    argv[1]="var", argv[2]="value"
391 	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
392 	 * - if the latter, shift 'em down.
393 	 */
394 	if (argc == 3) {
395 		argv[2] = argv[3];
396 		argc--;
397 	}
398 
399 	if (argc != 2)
400 		return KDB_ARGCOUNT;
401 
402 	/*
403 	 * Check for internal variables
404 	 */
405 	if (strcmp(argv[1], "KDBDEBUG") == 0) {
406 		unsigned int debugflags;
407 		char *cp;
408 
409 		debugflags = simple_strtoul(argv[2], &cp, 0);
410 		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
411 			kdb_printf("kdb: illegal debug flags '%s'\n",
412 				    argv[2]);
413 			return 0;
414 		}
415 		kdb_flags = (kdb_flags &
416 			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
417 			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
418 
419 		return 0;
420 	}
421 
422 	/*
423 	 * Tokenizer squashed the '=' sign.  argv[1] is variable
424 	 * name, argv[2] = value.
425 	 */
426 	varlen = strlen(argv[1]);
427 	vallen = strlen(argv[2]);
428 	ep = kdballocenv(varlen + vallen + 2);
429 	if (ep == (char *)0)
430 		return KDB_ENVBUFFULL;
431 
432 	sprintf(ep, "%s=%s", argv[1], argv[2]);
433 
434 	ep[varlen+vallen+1] = '\0';
435 
436 	for (i = 0; i < __nenv; i++) {
437 		if (__env[i]
438 		 && ((strncmp(__env[i], argv[1], varlen) == 0)
439 		   && ((__env[i][varlen] == '\0')
440 		    || (__env[i][varlen] == '=')))) {
441 			__env[i] = ep;
442 			return 0;
443 		}
444 	}
445 
446 	/*
447 	 * Wasn't existing variable.  Fit into slot.
448 	 */
449 	for (i = 0; i < __nenv-1; i++) {
450 		if (__env[i] == (char *)0) {
451 			__env[i] = ep;
452 			return 0;
453 		}
454 	}
455 
456 	return KDB_ENVFULL;
457 }
458 
459 static int kdb_check_regs(void)
460 {
461 	if (!kdb_current_regs) {
462 		kdb_printf("No current kdb registers."
463 			   "  You may need to select another task\n");
464 		return KDB_BADREG;
465 	}
466 	return 0;
467 }
468 
469 /*
470  * kdbgetaddrarg - This function is responsible for parsing an
471  *	address-expression and returning the value of the expression,
472  *	symbol name, and offset to the caller.
473  *
474  *	The argument may consist of a numeric value (decimal or
475  *	hexidecimal), a symbol name, a register name (preceded by the
476  *	percent sign), an environment variable with a numeric value
477  *	(preceded by a dollar sign) or a simple arithmetic expression
478  *	consisting of a symbol name, +/-, and a numeric constant value
479  *	(offset).
480  * Parameters:
481  *	argc	- count of arguments in argv
482  *	argv	- argument vector
483  *	*nextarg - index to next unparsed argument in argv[]
484  *	regs	- Register state at time of KDB entry
485  * Outputs:
486  *	*value	- receives the value of the address-expression
487  *	*offset - receives the offset specified, if any
488  *	*name   - receives the symbol name, if any
489  *	*nextarg - index to next unparsed argument in argv[]
490  * Returns:
491  *	zero is returned on success, a kdb diagnostic code is
492  *      returned on error.
493  */
494 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
495 		  unsigned long *value,  long *offset,
496 		  char **name)
497 {
498 	unsigned long addr;
499 	unsigned long off = 0;
500 	int positive;
501 	int diag;
502 	int found = 0;
503 	char *symname;
504 	char symbol = '\0';
505 	char *cp;
506 	kdb_symtab_t symtab;
507 
508 	/*
509 	 * If the enable flags prohibit both arbitrary memory access
510 	 * and flow control then there are no reasonable grounds to
511 	 * provide symbol lookup.
512 	 */
513 	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
514 			     kdb_cmd_enabled, false))
515 		return KDB_NOPERM;
516 
517 	/*
518 	 * Process arguments which follow the following syntax:
519 	 *
520 	 *  symbol | numeric-address [+/- numeric-offset]
521 	 *  %register
522 	 *  $environment-variable
523 	 */
524 
525 	if (*nextarg > argc)
526 		return KDB_ARGCOUNT;
527 
528 	symname = (char *)argv[*nextarg];
529 
530 	/*
531 	 * If there is no whitespace between the symbol
532 	 * or address and the '+' or '-' symbols, we
533 	 * remember the character and replace it with a
534 	 * null so the symbol/value can be properly parsed
535 	 */
536 	cp = strpbrk(symname, "+-");
537 	if (cp != NULL) {
538 		symbol = *cp;
539 		*cp++ = '\0';
540 	}
541 
542 	if (symname[0] == '$') {
543 		diag = kdbgetulenv(&symname[1], &addr);
544 		if (diag)
545 			return diag;
546 	} else if (symname[0] == '%') {
547 		diag = kdb_check_regs();
548 		if (diag)
549 			return diag;
550 		/* Implement register values with % at a later time as it is
551 		 * arch optional.
552 		 */
553 		return KDB_NOTIMP;
554 	} else {
555 		found = kdbgetsymval(symname, &symtab);
556 		if (found) {
557 			addr = symtab.sym_start;
558 		} else {
559 			diag = kdbgetularg(argv[*nextarg], &addr);
560 			if (diag)
561 				return diag;
562 		}
563 	}
564 
565 	if (!found)
566 		found = kdbnearsym(addr, &symtab);
567 
568 	(*nextarg)++;
569 
570 	if (name)
571 		*name = symname;
572 	if (value)
573 		*value = addr;
574 	if (offset && name && *name)
575 		*offset = addr - symtab.sym_start;
576 
577 	if ((*nextarg > argc)
578 	 && (symbol == '\0'))
579 		return 0;
580 
581 	/*
582 	 * check for +/- and offset
583 	 */
584 
585 	if (symbol == '\0') {
586 		if ((argv[*nextarg][0] != '+')
587 		 && (argv[*nextarg][0] != '-')) {
588 			/*
589 			 * Not our argument.  Return.
590 			 */
591 			return 0;
592 		} else {
593 			positive = (argv[*nextarg][0] == '+');
594 			(*nextarg)++;
595 		}
596 	} else
597 		positive = (symbol == '+');
598 
599 	/*
600 	 * Now there must be an offset!
601 	 */
602 	if ((*nextarg > argc)
603 	 && (symbol == '\0')) {
604 		return KDB_INVADDRFMT;
605 	}
606 
607 	if (!symbol) {
608 		cp = (char *)argv[*nextarg];
609 		(*nextarg)++;
610 	}
611 
612 	diag = kdbgetularg(cp, &off);
613 	if (diag)
614 		return diag;
615 
616 	if (!positive)
617 		off = -off;
618 
619 	if (offset)
620 		*offset += off;
621 
622 	if (value)
623 		*value += off;
624 
625 	return 0;
626 }
627 
628 static void kdb_cmderror(int diag)
629 {
630 	int i;
631 
632 	if (diag >= 0) {
633 		kdb_printf("no error detected (diagnostic is %d)\n", diag);
634 		return;
635 	}
636 
637 	for (i = 0; i < __nkdb_err; i++) {
638 		if (kdbmsgs[i].km_diag == diag) {
639 			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
640 			return;
641 		}
642 	}
643 
644 	kdb_printf("Unknown diag %d\n", -diag);
645 }
646 
647 /*
648  * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
649  *	command which defines one command as a set of other commands,
650  *	terminated by endefcmd.  kdb_defcmd processes the initial
651  *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
652  *	the following commands until 'endefcmd'.
653  * Inputs:
654  *	argc	argument count
655  *	argv	argument vector
656  * Returns:
657  *	zero for success, a kdb diagnostic if error
658  */
659 struct defcmd_set {
660 	int count;
661 	bool usable;
662 	char *name;
663 	char *usage;
664 	char *help;
665 	char **command;
666 };
667 static struct defcmd_set *defcmd_set;
668 static int defcmd_set_count;
669 static bool defcmd_in_progress;
670 
671 /* Forward references */
672 static int kdb_exec_defcmd(int argc, const char **argv);
673 
674 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
675 {
676 	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
677 	char **save_command = s->command;
678 	if (strcmp(argv0, "endefcmd") == 0) {
679 		defcmd_in_progress = false;
680 		if (!s->count)
681 			s->usable = false;
682 		if (s->usable)
683 			/* macros are always safe because when executed each
684 			 * internal command re-enters kdb_parse() and is
685 			 * safety checked individually.
686 			 */
687 			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
688 					   s->help, 0,
689 					   KDB_ENABLE_ALWAYS_SAFE);
690 		return 0;
691 	}
692 	if (!s->usable)
693 		return KDB_NOTIMP;
694 	s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
695 	if (!s->command) {
696 		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
697 			   cmdstr);
698 		s->usable = false;
699 		return KDB_NOTIMP;
700 	}
701 	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
702 	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
703 	kfree(save_command);
704 	return 0;
705 }
706 
707 static int kdb_defcmd(int argc, const char **argv)
708 {
709 	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
710 	if (defcmd_in_progress) {
711 		kdb_printf("kdb: nested defcmd detected, assuming missing "
712 			   "endefcmd\n");
713 		kdb_defcmd2("endefcmd", "endefcmd");
714 	}
715 	if (argc == 0) {
716 		int i;
717 		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
718 			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
719 				   s->usage, s->help);
720 			for (i = 0; i < s->count; ++i)
721 				kdb_printf("%s", s->command[i]);
722 			kdb_printf("endefcmd\n");
723 		}
724 		return 0;
725 	}
726 	if (argc != 3)
727 		return KDB_ARGCOUNT;
728 	if (in_dbg_master()) {
729 		kdb_printf("Command only available during kdb_init()\n");
730 		return KDB_NOTIMP;
731 	}
732 	defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
733 				   GFP_KDB);
734 	if (!defcmd_set)
735 		goto fail_defcmd;
736 	memcpy(defcmd_set, save_defcmd_set,
737 	       defcmd_set_count * sizeof(*defcmd_set));
738 	s = defcmd_set + defcmd_set_count;
739 	memset(s, 0, sizeof(*s));
740 	s->usable = true;
741 	s->name = kdb_strdup(argv[1], GFP_KDB);
742 	if (!s->name)
743 		goto fail_name;
744 	s->usage = kdb_strdup(argv[2], GFP_KDB);
745 	if (!s->usage)
746 		goto fail_usage;
747 	s->help = kdb_strdup(argv[3], GFP_KDB);
748 	if (!s->help)
749 		goto fail_help;
750 	if (s->usage[0] == '"') {
751 		strcpy(s->usage, argv[2]+1);
752 		s->usage[strlen(s->usage)-1] = '\0';
753 	}
754 	if (s->help[0] == '"') {
755 		strcpy(s->help, argv[3]+1);
756 		s->help[strlen(s->help)-1] = '\0';
757 	}
758 	++defcmd_set_count;
759 	defcmd_in_progress = true;
760 	kfree(save_defcmd_set);
761 	return 0;
762 fail_help:
763 	kfree(s->usage);
764 fail_usage:
765 	kfree(s->name);
766 fail_name:
767 	kfree(defcmd_set);
768 fail_defcmd:
769 	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
770 	defcmd_set = save_defcmd_set;
771 	return KDB_NOTIMP;
772 }
773 
774 /*
775  * kdb_exec_defcmd - Execute the set of commands associated with this
776  *	defcmd name.
777  * Inputs:
778  *	argc	argument count
779  *	argv	argument vector
780  * Returns:
781  *	zero for success, a kdb diagnostic if error
782  */
783 static int kdb_exec_defcmd(int argc, const char **argv)
784 {
785 	int i, ret;
786 	struct defcmd_set *s;
787 	if (argc != 0)
788 		return KDB_ARGCOUNT;
789 	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
790 		if (strcmp(s->name, argv[0]) == 0)
791 			break;
792 	}
793 	if (i == defcmd_set_count) {
794 		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
795 			   argv[0]);
796 		return KDB_NOTIMP;
797 	}
798 	for (i = 0; i < s->count; ++i) {
799 		/* Recursive use of kdb_parse, do not use argv after
800 		 * this point */
801 		argv = NULL;
802 		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
803 		ret = kdb_parse(s->command[i]);
804 		if (ret)
805 			return ret;
806 	}
807 	return 0;
808 }
809 
810 /* Command history */
811 #define KDB_CMD_HISTORY_COUNT	32
812 #define CMD_BUFLEN		200	/* kdb_printf: max printline
813 					 * size == 256 */
814 static unsigned int cmd_head, cmd_tail;
815 static unsigned int cmdptr;
816 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
817 static char cmd_cur[CMD_BUFLEN];
818 
819 /*
820  * The "str" argument may point to something like  | grep xyz
821  */
822 static void parse_grep(const char *str)
823 {
824 	int	len;
825 	char	*cp = (char *)str, *cp2;
826 
827 	/* sanity check: we should have been called with the \ first */
828 	if (*cp != '|')
829 		return;
830 	cp++;
831 	while (isspace(*cp))
832 		cp++;
833 	if (strncmp(cp, "grep ", 5)) {
834 		kdb_printf("invalid 'pipe', see grephelp\n");
835 		return;
836 	}
837 	cp += 5;
838 	while (isspace(*cp))
839 		cp++;
840 	cp2 = strchr(cp, '\n');
841 	if (cp2)
842 		*cp2 = '\0'; /* remove the trailing newline */
843 	len = strlen(cp);
844 	if (len == 0) {
845 		kdb_printf("invalid 'pipe', see grephelp\n");
846 		return;
847 	}
848 	/* now cp points to a nonzero length search string */
849 	if (*cp == '"') {
850 		/* allow it be "x y z" by removing the "'s - there must
851 		   be two of them */
852 		cp++;
853 		cp2 = strchr(cp, '"');
854 		if (!cp2) {
855 			kdb_printf("invalid quoted string, see grephelp\n");
856 			return;
857 		}
858 		*cp2 = '\0'; /* end the string where the 2nd " was */
859 	}
860 	kdb_grep_leading = 0;
861 	if (*cp == '^') {
862 		kdb_grep_leading = 1;
863 		cp++;
864 	}
865 	len = strlen(cp);
866 	kdb_grep_trailing = 0;
867 	if (*(cp+len-1) == '$') {
868 		kdb_grep_trailing = 1;
869 		*(cp+len-1) = '\0';
870 	}
871 	len = strlen(cp);
872 	if (!len)
873 		return;
874 	if (len >= KDB_GREP_STRLEN) {
875 		kdb_printf("search string too long\n");
876 		return;
877 	}
878 	strcpy(kdb_grep_string, cp);
879 	kdb_grepping_flag++;
880 	return;
881 }
882 
883 /*
884  * kdb_parse - Parse the command line, search the command table for a
885  *	matching command and invoke the command function.  This
886  *	function may be called recursively, if it is, the second call
887  *	will overwrite argv and cbuf.  It is the caller's
888  *	responsibility to save their argv if they recursively call
889  *	kdb_parse().
890  * Parameters:
891  *      cmdstr	The input command line to be parsed.
892  *	regs	The registers at the time kdb was entered.
893  * Returns:
894  *	Zero for success, a kdb diagnostic if failure.
895  * Remarks:
896  *	Limited to 20 tokens.
897  *
898  *	Real rudimentary tokenization. Basically only whitespace
899  *	is considered a token delimeter (but special consideration
900  *	is taken of the '=' sign as used by the 'set' command).
901  *
902  *	The algorithm used to tokenize the input string relies on
903  *	there being at least one whitespace (or otherwise useless)
904  *	character between tokens as the character immediately following
905  *	the token is altered in-place to a null-byte to terminate the
906  *	token string.
907  */
908 
909 #define MAXARGC	20
910 
911 int kdb_parse(const char *cmdstr)
912 {
913 	static char *argv[MAXARGC];
914 	static int argc;
915 	static char cbuf[CMD_BUFLEN+2];
916 	char *cp;
917 	char *cpp, quoted;
918 	kdbtab_t *tp;
919 	int i, escaped, ignore_errors = 0, check_grep = 0;
920 
921 	/*
922 	 * First tokenize the command string.
923 	 */
924 	cp = (char *)cmdstr;
925 
926 	if (KDB_FLAG(CMD_INTERRUPT)) {
927 		/* Previous command was interrupted, newline must not
928 		 * repeat the command */
929 		KDB_FLAG_CLEAR(CMD_INTERRUPT);
930 		KDB_STATE_SET(PAGER);
931 		argc = 0;	/* no repeat */
932 	}
933 
934 	if (*cp != '\n' && *cp != '\0') {
935 		argc = 0;
936 		cpp = cbuf;
937 		while (*cp) {
938 			/* skip whitespace */
939 			while (isspace(*cp))
940 				cp++;
941 			if ((*cp == '\0') || (*cp == '\n') ||
942 			    (*cp == '#' && !defcmd_in_progress))
943 				break;
944 			/* special case: check for | grep pattern */
945 			if (*cp == '|') {
946 				check_grep++;
947 				break;
948 			}
949 			if (cpp >= cbuf + CMD_BUFLEN) {
950 				kdb_printf("kdb_parse: command buffer "
951 					   "overflow, command ignored\n%s\n",
952 					   cmdstr);
953 				return KDB_NOTFOUND;
954 			}
955 			if (argc >= MAXARGC - 1) {
956 				kdb_printf("kdb_parse: too many arguments, "
957 					   "command ignored\n%s\n", cmdstr);
958 				return KDB_NOTFOUND;
959 			}
960 			argv[argc++] = cpp;
961 			escaped = 0;
962 			quoted = '\0';
963 			/* Copy to next unquoted and unescaped
964 			 * whitespace or '=' */
965 			while (*cp && *cp != '\n' &&
966 			       (escaped || quoted || !isspace(*cp))) {
967 				if (cpp >= cbuf + CMD_BUFLEN)
968 					break;
969 				if (escaped) {
970 					escaped = 0;
971 					*cpp++ = *cp++;
972 					continue;
973 				}
974 				if (*cp == '\\') {
975 					escaped = 1;
976 					++cp;
977 					continue;
978 				}
979 				if (*cp == quoted)
980 					quoted = '\0';
981 				else if (*cp == '\'' || *cp == '"')
982 					quoted = *cp;
983 				*cpp = *cp++;
984 				if (*cpp == '=' && !quoted)
985 					break;
986 				++cpp;
987 			}
988 			*cpp++ = '\0';	/* Squash a ws or '=' character */
989 		}
990 	}
991 	if (!argc)
992 		return 0;
993 	if (check_grep)
994 		parse_grep(cp);
995 	if (defcmd_in_progress) {
996 		int result = kdb_defcmd2(cmdstr, argv[0]);
997 		if (!defcmd_in_progress) {
998 			argc = 0;	/* avoid repeat on endefcmd */
999 			*(argv[0]) = '\0';
1000 		}
1001 		return result;
1002 	}
1003 	if (argv[0][0] == '-' && argv[0][1] &&
1004 	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1005 		ignore_errors = 1;
1006 		++argv[0];
1007 	}
1008 
1009 	for_each_kdbcmd(tp, i) {
1010 		if (tp->cmd_name) {
1011 			/*
1012 			 * If this command is allowed to be abbreviated,
1013 			 * check to see if this is it.
1014 			 */
1015 
1016 			if (tp->cmd_minlen
1017 			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1018 				if (strncmp(argv[0],
1019 					    tp->cmd_name,
1020 					    tp->cmd_minlen) == 0) {
1021 					break;
1022 				}
1023 			}
1024 
1025 			if (strcmp(argv[0], tp->cmd_name) == 0)
1026 				break;
1027 		}
1028 	}
1029 
1030 	/*
1031 	 * If we don't find a command by this name, see if the first
1032 	 * few characters of this match any of the known commands.
1033 	 * e.g., md1c20 should match md.
1034 	 */
1035 	if (i == kdb_max_commands) {
1036 		for_each_kdbcmd(tp, i) {
1037 			if (tp->cmd_name) {
1038 				if (strncmp(argv[0],
1039 					    tp->cmd_name,
1040 					    strlen(tp->cmd_name)) == 0) {
1041 					break;
1042 				}
1043 			}
1044 		}
1045 	}
1046 
1047 	if (i < kdb_max_commands) {
1048 		int result;
1049 
1050 		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1051 			return KDB_NOPERM;
1052 
1053 		KDB_STATE_SET(CMD);
1054 		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1055 		if (result && ignore_errors && result > KDB_CMD_GO)
1056 			result = 0;
1057 		KDB_STATE_CLEAR(CMD);
1058 
1059 		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1060 			return result;
1061 
1062 		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1063 		if (argv[argc])
1064 			*(argv[argc]) = '\0';
1065 		return result;
1066 	}
1067 
1068 	/*
1069 	 * If the input with which we were presented does not
1070 	 * map to an existing command, attempt to parse it as an
1071 	 * address argument and display the result.   Useful for
1072 	 * obtaining the address of a variable, or the nearest symbol
1073 	 * to an address contained in a register.
1074 	 */
1075 	{
1076 		unsigned long value;
1077 		char *name = NULL;
1078 		long offset;
1079 		int nextarg = 0;
1080 
1081 		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1082 				  &value, &offset, &name)) {
1083 			return KDB_NOTFOUND;
1084 		}
1085 
1086 		kdb_printf("%s = ", argv[0]);
1087 		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1088 		kdb_printf("\n");
1089 		return 0;
1090 	}
1091 }
1092 
1093 
1094 static int handle_ctrl_cmd(char *cmd)
1095 {
1096 #define CTRL_P	16
1097 #define CTRL_N	14
1098 
1099 	/* initial situation */
1100 	if (cmd_head == cmd_tail)
1101 		return 0;
1102 	switch (*cmd) {
1103 	case CTRL_P:
1104 		if (cmdptr != cmd_tail)
1105 			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1106 		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1107 		return 1;
1108 	case CTRL_N:
1109 		if (cmdptr != cmd_head)
1110 			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1111 		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1112 		return 1;
1113 	}
1114 	return 0;
1115 }
1116 
1117 /*
1118  * kdb_reboot - This function implements the 'reboot' command.  Reboot
1119  *	the system immediately, or loop for ever on failure.
1120  */
1121 static int kdb_reboot(int argc, const char **argv)
1122 {
1123 	emergency_restart();
1124 	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1125 	while (1)
1126 		cpu_relax();
1127 	/* NOTREACHED */
1128 	return 0;
1129 }
1130 
1131 static void kdb_dumpregs(struct pt_regs *regs)
1132 {
1133 	int old_lvl = console_loglevel;
1134 	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1135 	kdb_trap_printk++;
1136 	show_regs(regs);
1137 	kdb_trap_printk--;
1138 	kdb_printf("\n");
1139 	console_loglevel = old_lvl;
1140 }
1141 
1142 void kdb_set_current_task(struct task_struct *p)
1143 {
1144 	kdb_current_task = p;
1145 
1146 	if (kdb_task_has_cpu(p)) {
1147 		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1148 		return;
1149 	}
1150 	kdb_current_regs = NULL;
1151 }
1152 
1153 static void drop_newline(char *buf)
1154 {
1155 	size_t len = strlen(buf);
1156 
1157 	if (len == 0)
1158 		return;
1159 	if (*(buf + len - 1) == '\n')
1160 		*(buf + len - 1) = '\0';
1161 }
1162 
1163 /*
1164  * kdb_local - The main code for kdb.  This routine is invoked on a
1165  *	specific processor, it is not global.  The main kdb() routine
1166  *	ensures that only one processor at a time is in this routine.
1167  *	This code is called with the real reason code on the first
1168  *	entry to a kdb session, thereafter it is called with reason
1169  *	SWITCH, even if the user goes back to the original cpu.
1170  * Inputs:
1171  *	reason		The reason KDB was invoked
1172  *	error		The hardware-defined error code
1173  *	regs		The exception frame at time of fault/breakpoint.
1174  *	db_result	Result code from the break or debug point.
1175  * Returns:
1176  *	0	KDB was invoked for an event which it wasn't responsible
1177  *	1	KDB handled the event for which it was invoked.
1178  *	KDB_CMD_GO	User typed 'go'.
1179  *	KDB_CMD_CPU	User switched to another cpu.
1180  *	KDB_CMD_SS	Single step.
1181  */
1182 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1183 		     kdb_dbtrap_t db_result)
1184 {
1185 	char *cmdbuf;
1186 	int diag;
1187 	struct task_struct *kdb_current =
1188 		kdb_curr_task(raw_smp_processor_id());
1189 
1190 	KDB_DEBUG_STATE("kdb_local 1", reason);
1191 	kdb_go_count = 0;
1192 	if (reason == KDB_REASON_DEBUG) {
1193 		/* special case below */
1194 	} else {
1195 		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1196 			   kdb_current, kdb_current ? kdb_current->pid : 0);
1197 #if defined(CONFIG_SMP)
1198 		kdb_printf("on processor %d ", raw_smp_processor_id());
1199 #endif
1200 	}
1201 
1202 	switch (reason) {
1203 	case KDB_REASON_DEBUG:
1204 	{
1205 		/*
1206 		 * If re-entering kdb after a single step
1207 		 * command, don't print the message.
1208 		 */
1209 		switch (db_result) {
1210 		case KDB_DB_BPT:
1211 			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1212 				   kdb_current, kdb_current->pid);
1213 #if defined(CONFIG_SMP)
1214 			kdb_printf("on processor %d ", raw_smp_processor_id());
1215 #endif
1216 			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1217 				   instruction_pointer(regs));
1218 			break;
1219 		case KDB_DB_SS:
1220 			break;
1221 		case KDB_DB_SSBPT:
1222 			KDB_DEBUG_STATE("kdb_local 4", reason);
1223 			return 1;	/* kdba_db_trap did the work */
1224 		default:
1225 			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1226 				   db_result);
1227 			break;
1228 		}
1229 
1230 	}
1231 		break;
1232 	case KDB_REASON_ENTER:
1233 		if (KDB_STATE(KEYBOARD))
1234 			kdb_printf("due to Keyboard Entry\n");
1235 		else
1236 			kdb_printf("due to KDB_ENTER()\n");
1237 		break;
1238 	case KDB_REASON_KEYBOARD:
1239 		KDB_STATE_SET(KEYBOARD);
1240 		kdb_printf("due to Keyboard Entry\n");
1241 		break;
1242 	case KDB_REASON_ENTER_SLAVE:
1243 		/* drop through, slaves only get released via cpu switch */
1244 	case KDB_REASON_SWITCH:
1245 		kdb_printf("due to cpu switch\n");
1246 		break;
1247 	case KDB_REASON_OOPS:
1248 		kdb_printf("Oops: %s\n", kdb_diemsg);
1249 		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1250 			   instruction_pointer(regs));
1251 		kdb_dumpregs(regs);
1252 		break;
1253 	case KDB_REASON_SYSTEM_NMI:
1254 		kdb_printf("due to System NonMaskable Interrupt\n");
1255 		break;
1256 	case KDB_REASON_NMI:
1257 		kdb_printf("due to NonMaskable Interrupt @ "
1258 			   kdb_machreg_fmt "\n",
1259 			   instruction_pointer(regs));
1260 		break;
1261 	case KDB_REASON_SSTEP:
1262 	case KDB_REASON_BREAK:
1263 		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1264 			   reason == KDB_REASON_BREAK ?
1265 			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1266 		/*
1267 		 * Determine if this breakpoint is one that we
1268 		 * are interested in.
1269 		 */
1270 		if (db_result != KDB_DB_BPT) {
1271 			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1272 				   db_result);
1273 			KDB_DEBUG_STATE("kdb_local 6", reason);
1274 			return 0;	/* Not for us, dismiss it */
1275 		}
1276 		break;
1277 	case KDB_REASON_RECURSE:
1278 		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1279 			   instruction_pointer(regs));
1280 		break;
1281 	default:
1282 		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1283 		KDB_DEBUG_STATE("kdb_local 8", reason);
1284 		return 0;	/* Not for us, dismiss it */
1285 	}
1286 
1287 	while (1) {
1288 		/*
1289 		 * Initialize pager context.
1290 		 */
1291 		kdb_nextline = 1;
1292 		KDB_STATE_CLEAR(SUPPRESS);
1293 		kdb_grepping_flag = 0;
1294 		/* ensure the old search does not leak into '/' commands */
1295 		kdb_grep_string[0] = '\0';
1296 
1297 		cmdbuf = cmd_cur;
1298 		*cmdbuf = '\0';
1299 		*(cmd_hist[cmd_head]) = '\0';
1300 
1301 do_full_getstr:
1302 #if defined(CONFIG_SMP)
1303 		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1304 			 raw_smp_processor_id());
1305 #else
1306 		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1307 #endif
1308 		if (defcmd_in_progress)
1309 			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1310 
1311 		/*
1312 		 * Fetch command from keyboard
1313 		 */
1314 		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1315 		if (*cmdbuf != '\n') {
1316 			if (*cmdbuf < 32) {
1317 				if (cmdptr == cmd_head) {
1318 					strncpy(cmd_hist[cmd_head], cmd_cur,
1319 						CMD_BUFLEN);
1320 					*(cmd_hist[cmd_head] +
1321 					  strlen(cmd_hist[cmd_head])-1) = '\0';
1322 				}
1323 				if (!handle_ctrl_cmd(cmdbuf))
1324 					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1325 				cmdbuf = cmd_cur;
1326 				goto do_full_getstr;
1327 			} else {
1328 				strncpy(cmd_hist[cmd_head], cmd_cur,
1329 					CMD_BUFLEN);
1330 			}
1331 
1332 			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1333 			if (cmd_head == cmd_tail)
1334 				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1335 		}
1336 
1337 		cmdptr = cmd_head;
1338 		diag = kdb_parse(cmdbuf);
1339 		if (diag == KDB_NOTFOUND) {
1340 			drop_newline(cmdbuf);
1341 			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1342 			diag = 0;
1343 		}
1344 		if (diag == KDB_CMD_GO
1345 		 || diag == KDB_CMD_CPU
1346 		 || diag == KDB_CMD_SS
1347 		 || diag == KDB_CMD_KGDB)
1348 			break;
1349 
1350 		if (diag)
1351 			kdb_cmderror(diag);
1352 	}
1353 	KDB_DEBUG_STATE("kdb_local 9", diag);
1354 	return diag;
1355 }
1356 
1357 
1358 /*
1359  * kdb_print_state - Print the state data for the current processor
1360  *	for debugging.
1361  * Inputs:
1362  *	text		Identifies the debug point
1363  *	value		Any integer value to be printed, e.g. reason code.
1364  */
1365 void kdb_print_state(const char *text, int value)
1366 {
1367 	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1368 		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1369 		   kdb_state);
1370 }
1371 
1372 /*
1373  * kdb_main_loop - After initial setup and assignment of the
1374  *	controlling cpu, all cpus are in this loop.  One cpu is in
1375  *	control and will issue the kdb prompt, the others will spin
1376  *	until 'go' or cpu switch.
1377  *
1378  *	To get a consistent view of the kernel stacks for all
1379  *	processes, this routine is invoked from the main kdb code via
1380  *	an architecture specific routine.  kdba_main_loop is
1381  *	responsible for making the kernel stacks consistent for all
1382  *	processes, there should be no difference between a blocked
1383  *	process and a running process as far as kdb is concerned.
1384  * Inputs:
1385  *	reason		The reason KDB was invoked
1386  *	error		The hardware-defined error code
1387  *	reason2		kdb's current reason code.
1388  *			Initially error but can change
1389  *			according to kdb state.
1390  *	db_result	Result code from break or debug point.
1391  *	regs		The exception frame at time of fault/breakpoint.
1392  *			should always be valid.
1393  * Returns:
1394  *	0	KDB was invoked for an event which it wasn't responsible
1395  *	1	KDB handled the event for which it was invoked.
1396  */
1397 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1398 	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1399 {
1400 	int result = 1;
1401 	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1402 	while (1) {
1403 		/*
1404 		 * All processors except the one that is in control
1405 		 * will spin here.
1406 		 */
1407 		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1408 		while (KDB_STATE(HOLD_CPU)) {
1409 			/* state KDB is turned off by kdb_cpu to see if the
1410 			 * other cpus are still live, each cpu in this loop
1411 			 * turns it back on.
1412 			 */
1413 			if (!KDB_STATE(KDB))
1414 				KDB_STATE_SET(KDB);
1415 		}
1416 
1417 		KDB_STATE_CLEAR(SUPPRESS);
1418 		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1419 		if (KDB_STATE(LEAVING))
1420 			break;	/* Another cpu said 'go' */
1421 		/* Still using kdb, this processor is in control */
1422 		result = kdb_local(reason2, error, regs, db_result);
1423 		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1424 
1425 		if (result == KDB_CMD_CPU)
1426 			break;
1427 
1428 		if (result == KDB_CMD_SS) {
1429 			KDB_STATE_SET(DOING_SS);
1430 			break;
1431 		}
1432 
1433 		if (result == KDB_CMD_KGDB) {
1434 			if (!KDB_STATE(DOING_KGDB))
1435 				kdb_printf("Entering please attach debugger "
1436 					   "or use $D#44+ or $3#33\n");
1437 			break;
1438 		}
1439 		if (result && result != 1 && result != KDB_CMD_GO)
1440 			kdb_printf("\nUnexpected kdb_local return code %d\n",
1441 				   result);
1442 		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1443 		break;
1444 	}
1445 	if (KDB_STATE(DOING_SS))
1446 		KDB_STATE_CLEAR(SSBPT);
1447 
1448 	/* Clean up any keyboard devices before leaving */
1449 	kdb_kbd_cleanup_state();
1450 
1451 	return result;
1452 }
1453 
1454 /*
1455  * kdb_mdr - This function implements the guts of the 'mdr', memory
1456  * read command.
1457  *	mdr  <addr arg>,<byte count>
1458  * Inputs:
1459  *	addr	Start address
1460  *	count	Number of bytes
1461  * Returns:
1462  *	Always 0.  Any errors are detected and printed by kdb_getarea.
1463  */
1464 static int kdb_mdr(unsigned long addr, unsigned int count)
1465 {
1466 	unsigned char c;
1467 	while (count--) {
1468 		if (kdb_getarea(c, addr))
1469 			return 0;
1470 		kdb_printf("%02x", c);
1471 		addr++;
1472 	}
1473 	kdb_printf("\n");
1474 	return 0;
1475 }
1476 
1477 /*
1478  * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1479  *	'md8' 'mdr' and 'mds' commands.
1480  *
1481  *	md|mds  [<addr arg> [<line count> [<radix>]]]
1482  *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1483  *		where W = is the width (1, 2, 4 or 8) and N is the count.
1484  *		for eg., md1c20 reads 20 bytes, 1 at a time.
1485  *	mdr  <addr arg>,<byte count>
1486  */
1487 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1488 			int symbolic, int nosect, int bytesperword,
1489 			int num, int repeat, int phys)
1490 {
1491 	/* print just one line of data */
1492 	kdb_symtab_t symtab;
1493 	char cbuf[32];
1494 	char *c = cbuf;
1495 	int i;
1496 	int j;
1497 	unsigned long word;
1498 
1499 	memset(cbuf, '\0', sizeof(cbuf));
1500 	if (phys)
1501 		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1502 	else
1503 		kdb_printf(kdb_machreg_fmt0 " ", addr);
1504 
1505 	for (i = 0; i < num && repeat--; i++) {
1506 		if (phys) {
1507 			if (kdb_getphysword(&word, addr, bytesperword))
1508 				break;
1509 		} else if (kdb_getword(&word, addr, bytesperword))
1510 			break;
1511 		kdb_printf(fmtstr, word);
1512 		if (symbolic)
1513 			kdbnearsym(word, &symtab);
1514 		else
1515 			memset(&symtab, 0, sizeof(symtab));
1516 		if (symtab.sym_name) {
1517 			kdb_symbol_print(word, &symtab, 0);
1518 			if (!nosect) {
1519 				kdb_printf("\n");
1520 				kdb_printf("                       %s %s "
1521 					   kdb_machreg_fmt " "
1522 					   kdb_machreg_fmt " "
1523 					   kdb_machreg_fmt, symtab.mod_name,
1524 					   symtab.sec_name, symtab.sec_start,
1525 					   symtab.sym_start, symtab.sym_end);
1526 			}
1527 			addr += bytesperword;
1528 		} else {
1529 			union {
1530 				u64 word;
1531 				unsigned char c[8];
1532 			} wc;
1533 			unsigned char *cp;
1534 #ifdef	__BIG_ENDIAN
1535 			cp = wc.c + 8 - bytesperword;
1536 #else
1537 			cp = wc.c;
1538 #endif
1539 			wc.word = word;
1540 #define printable_char(c) \
1541 	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1542 			for (j = 0; j < bytesperword; j++)
1543 				*c++ = printable_char(*cp++);
1544 			addr += bytesperword;
1545 #undef printable_char
1546 		}
1547 	}
1548 	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1549 		   " ", cbuf);
1550 }
1551 
1552 static int kdb_md(int argc, const char **argv)
1553 {
1554 	static unsigned long last_addr;
1555 	static int last_radix, last_bytesperword, last_repeat;
1556 	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1557 	int nosect = 0;
1558 	char fmtchar, fmtstr[64];
1559 	unsigned long addr;
1560 	unsigned long word;
1561 	long offset = 0;
1562 	int symbolic = 0;
1563 	int valid = 0;
1564 	int phys = 0;
1565 	int raw = 0;
1566 
1567 	kdbgetintenv("MDCOUNT", &mdcount);
1568 	kdbgetintenv("RADIX", &radix);
1569 	kdbgetintenv("BYTESPERWORD", &bytesperword);
1570 
1571 	/* Assume 'md <addr>' and start with environment values */
1572 	repeat = mdcount * 16 / bytesperword;
1573 
1574 	if (strcmp(argv[0], "mdr") == 0) {
1575 		if (argc == 2 || (argc == 0 && last_addr != 0))
1576 			valid = raw = 1;
1577 		else
1578 			return KDB_ARGCOUNT;
1579 	} else if (isdigit(argv[0][2])) {
1580 		bytesperword = (int)(argv[0][2] - '0');
1581 		if (bytesperword == 0) {
1582 			bytesperword = last_bytesperword;
1583 			if (bytesperword == 0)
1584 				bytesperword = 4;
1585 		}
1586 		last_bytesperword = bytesperword;
1587 		repeat = mdcount * 16 / bytesperword;
1588 		if (!argv[0][3])
1589 			valid = 1;
1590 		else if (argv[0][3] == 'c' && argv[0][4]) {
1591 			char *p;
1592 			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593 			mdcount = ((repeat * bytesperword) + 15) / 16;
1594 			valid = !*p;
1595 		}
1596 		last_repeat = repeat;
1597 	} else if (strcmp(argv[0], "md") == 0)
1598 		valid = 1;
1599 	else if (strcmp(argv[0], "mds") == 0)
1600 		valid = 1;
1601 	else if (strcmp(argv[0], "mdp") == 0) {
1602 		phys = valid = 1;
1603 	}
1604 	if (!valid)
1605 		return KDB_NOTFOUND;
1606 
1607 	if (argc == 0) {
1608 		if (last_addr == 0)
1609 			return KDB_ARGCOUNT;
1610 		addr = last_addr;
1611 		radix = last_radix;
1612 		bytesperword = last_bytesperword;
1613 		repeat = last_repeat;
1614 		if (raw)
1615 			mdcount = repeat;
1616 		else
1617 			mdcount = ((repeat * bytesperword) + 15) / 16;
1618 	}
1619 
1620 	if (argc) {
1621 		unsigned long val;
1622 		int diag, nextarg = 1;
1623 		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1624 				     &offset, NULL);
1625 		if (diag)
1626 			return diag;
1627 		if (argc > nextarg+2)
1628 			return KDB_ARGCOUNT;
1629 
1630 		if (argc >= nextarg) {
1631 			diag = kdbgetularg(argv[nextarg], &val);
1632 			if (!diag) {
1633 				mdcount = (int) val;
1634 				if (raw)
1635 					repeat = mdcount;
1636 				else
1637 					repeat = mdcount * 16 / bytesperword;
1638 			}
1639 		}
1640 		if (argc >= nextarg+1) {
1641 			diag = kdbgetularg(argv[nextarg+1], &val);
1642 			if (!diag)
1643 				radix = (int) val;
1644 		}
1645 	}
1646 
1647 	if (strcmp(argv[0], "mdr") == 0) {
1648 		int ret;
1649 		last_addr = addr;
1650 		ret = kdb_mdr(addr, mdcount);
1651 		last_addr += mdcount;
1652 		last_repeat = mdcount;
1653 		last_bytesperword = bytesperword; // to make REPEAT happy
1654 		return ret;
1655 	}
1656 
1657 	switch (radix) {
1658 	case 10:
1659 		fmtchar = 'd';
1660 		break;
1661 	case 16:
1662 		fmtchar = 'x';
1663 		break;
1664 	case 8:
1665 		fmtchar = 'o';
1666 		break;
1667 	default:
1668 		return KDB_BADRADIX;
1669 	}
1670 
1671 	last_radix = radix;
1672 
1673 	if (bytesperword > KDB_WORD_SIZE)
1674 		return KDB_BADWIDTH;
1675 
1676 	switch (bytesperword) {
1677 	case 8:
1678 		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1679 		break;
1680 	case 4:
1681 		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1682 		break;
1683 	case 2:
1684 		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1685 		break;
1686 	case 1:
1687 		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1688 		break;
1689 	default:
1690 		return KDB_BADWIDTH;
1691 	}
1692 
1693 	last_repeat = repeat;
1694 	last_bytesperword = bytesperword;
1695 
1696 	if (strcmp(argv[0], "mds") == 0) {
1697 		symbolic = 1;
1698 		/* Do not save these changes as last_*, they are temporary mds
1699 		 * overrides.
1700 		 */
1701 		bytesperword = KDB_WORD_SIZE;
1702 		repeat = mdcount;
1703 		kdbgetintenv("NOSECT", &nosect);
1704 	}
1705 
1706 	/* Round address down modulo BYTESPERWORD */
1707 
1708 	addr &= ~(bytesperword-1);
1709 
1710 	while (repeat > 0) {
1711 		unsigned long a;
1712 		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1713 
1714 		if (KDB_FLAG(CMD_INTERRUPT))
1715 			return 0;
1716 		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1717 			if (phys) {
1718 				if (kdb_getphysword(&word, a, bytesperword)
1719 						|| word)
1720 					break;
1721 			} else if (kdb_getword(&word, a, bytesperword) || word)
1722 				break;
1723 		}
1724 		n = min(num, repeat);
1725 		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1726 			    num, repeat, phys);
1727 		addr += bytesperword * n;
1728 		repeat -= n;
1729 		z = (z + num - 1) / num;
1730 		if (z > 2) {
1731 			int s = num * (z-2);
1732 			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1733 				   " zero suppressed\n",
1734 				addr, addr + bytesperword * s - 1);
1735 			addr += bytesperword * s;
1736 			repeat -= s;
1737 		}
1738 	}
1739 	last_addr = addr;
1740 
1741 	return 0;
1742 }
1743 
1744 /*
1745  * kdb_mm - This function implements the 'mm' command.
1746  *	mm address-expression new-value
1747  * Remarks:
1748  *	mm works on machine words, mmW works on bytes.
1749  */
1750 static int kdb_mm(int argc, const char **argv)
1751 {
1752 	int diag;
1753 	unsigned long addr;
1754 	long offset = 0;
1755 	unsigned long contents;
1756 	int nextarg;
1757 	int width;
1758 
1759 	if (argv[0][2] && !isdigit(argv[0][2]))
1760 		return KDB_NOTFOUND;
1761 
1762 	if (argc < 2)
1763 		return KDB_ARGCOUNT;
1764 
1765 	nextarg = 1;
1766 	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1767 	if (diag)
1768 		return diag;
1769 
1770 	if (nextarg > argc)
1771 		return KDB_ARGCOUNT;
1772 	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1773 	if (diag)
1774 		return diag;
1775 
1776 	if (nextarg != argc + 1)
1777 		return KDB_ARGCOUNT;
1778 
1779 	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1780 	diag = kdb_putword(addr, contents, width);
1781 	if (diag)
1782 		return diag;
1783 
1784 	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1785 
1786 	return 0;
1787 }
1788 
1789 /*
1790  * kdb_go - This function implements the 'go' command.
1791  *	go [address-expression]
1792  */
1793 static int kdb_go(int argc, const char **argv)
1794 {
1795 	unsigned long addr;
1796 	int diag;
1797 	int nextarg;
1798 	long offset;
1799 
1800 	if (raw_smp_processor_id() != kdb_initial_cpu) {
1801 		kdb_printf("go must execute on the entry cpu, "
1802 			   "please use \"cpu %d\" and then execute go\n",
1803 			   kdb_initial_cpu);
1804 		return KDB_BADCPUNUM;
1805 	}
1806 	if (argc == 1) {
1807 		nextarg = 1;
1808 		diag = kdbgetaddrarg(argc, argv, &nextarg,
1809 				     &addr, &offset, NULL);
1810 		if (diag)
1811 			return diag;
1812 	} else if (argc) {
1813 		return KDB_ARGCOUNT;
1814 	}
1815 
1816 	diag = KDB_CMD_GO;
1817 	if (KDB_FLAG(CATASTROPHIC)) {
1818 		kdb_printf("Catastrophic error detected\n");
1819 		kdb_printf("kdb_continue_catastrophic=%d, ",
1820 			kdb_continue_catastrophic);
1821 		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1822 			kdb_printf("type go a second time if you really want "
1823 				   "to continue\n");
1824 			return 0;
1825 		}
1826 		if (kdb_continue_catastrophic == 2) {
1827 			kdb_printf("forcing reboot\n");
1828 			kdb_reboot(0, NULL);
1829 		}
1830 		kdb_printf("attempting to continue\n");
1831 	}
1832 	return diag;
1833 }
1834 
1835 /*
1836  * kdb_rd - This function implements the 'rd' command.
1837  */
1838 static int kdb_rd(int argc, const char **argv)
1839 {
1840 	int len = kdb_check_regs();
1841 #if DBG_MAX_REG_NUM > 0
1842 	int i;
1843 	char *rname;
1844 	int rsize;
1845 	u64 reg64;
1846 	u32 reg32;
1847 	u16 reg16;
1848 	u8 reg8;
1849 
1850 	if (len)
1851 		return len;
1852 
1853 	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1854 		rsize = dbg_reg_def[i].size * 2;
1855 		if (rsize > 16)
1856 			rsize = 2;
1857 		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1858 			len = 0;
1859 			kdb_printf("\n");
1860 		}
1861 		if (len)
1862 			len += kdb_printf("  ");
1863 		switch(dbg_reg_def[i].size * 8) {
1864 		case 8:
1865 			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1866 			if (!rname)
1867 				break;
1868 			len += kdb_printf("%s: %02x", rname, reg8);
1869 			break;
1870 		case 16:
1871 			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1872 			if (!rname)
1873 				break;
1874 			len += kdb_printf("%s: %04x", rname, reg16);
1875 			break;
1876 		case 32:
1877 			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1878 			if (!rname)
1879 				break;
1880 			len += kdb_printf("%s: %08x", rname, reg32);
1881 			break;
1882 		case 64:
1883 			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1884 			if (!rname)
1885 				break;
1886 			len += kdb_printf("%s: %016llx", rname, reg64);
1887 			break;
1888 		default:
1889 			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1890 		}
1891 	}
1892 	kdb_printf("\n");
1893 #else
1894 	if (len)
1895 		return len;
1896 
1897 	kdb_dumpregs(kdb_current_regs);
1898 #endif
1899 	return 0;
1900 }
1901 
1902 /*
1903  * kdb_rm - This function implements the 'rm' (register modify)  command.
1904  *	rm register-name new-contents
1905  * Remarks:
1906  *	Allows register modification with the same restrictions as gdb
1907  */
1908 static int kdb_rm(int argc, const char **argv)
1909 {
1910 #if DBG_MAX_REG_NUM > 0
1911 	int diag;
1912 	const char *rname;
1913 	int i;
1914 	u64 reg64;
1915 	u32 reg32;
1916 	u16 reg16;
1917 	u8 reg8;
1918 
1919 	if (argc != 2)
1920 		return KDB_ARGCOUNT;
1921 	/*
1922 	 * Allow presence or absence of leading '%' symbol.
1923 	 */
1924 	rname = argv[1];
1925 	if (*rname == '%')
1926 		rname++;
1927 
1928 	diag = kdbgetu64arg(argv[2], &reg64);
1929 	if (diag)
1930 		return diag;
1931 
1932 	diag = kdb_check_regs();
1933 	if (diag)
1934 		return diag;
1935 
1936 	diag = KDB_BADREG;
1937 	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1938 		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1939 			diag = 0;
1940 			break;
1941 		}
1942 	}
1943 	if (!diag) {
1944 		switch(dbg_reg_def[i].size * 8) {
1945 		case 8:
1946 			reg8 = reg64;
1947 			dbg_set_reg(i, &reg8, kdb_current_regs);
1948 			break;
1949 		case 16:
1950 			reg16 = reg64;
1951 			dbg_set_reg(i, &reg16, kdb_current_regs);
1952 			break;
1953 		case 32:
1954 			reg32 = reg64;
1955 			dbg_set_reg(i, &reg32, kdb_current_regs);
1956 			break;
1957 		case 64:
1958 			dbg_set_reg(i, &reg64, kdb_current_regs);
1959 			break;
1960 		}
1961 	}
1962 	return diag;
1963 #else
1964 	kdb_printf("ERROR: Register set currently not implemented\n");
1965     return 0;
1966 #endif
1967 }
1968 
1969 #if defined(CONFIG_MAGIC_SYSRQ)
1970 /*
1971  * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1972  *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1973  *		sr <magic-sysrq-code>
1974  */
1975 static int kdb_sr(int argc, const char **argv)
1976 {
1977 	bool check_mask =
1978 	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1979 
1980 	if (argc != 1)
1981 		return KDB_ARGCOUNT;
1982 
1983 	kdb_trap_printk++;
1984 	__handle_sysrq(*argv[1], check_mask);
1985 	kdb_trap_printk--;
1986 
1987 	return 0;
1988 }
1989 #endif	/* CONFIG_MAGIC_SYSRQ */
1990 
1991 /*
1992  * kdb_ef - This function implements the 'regs' (display exception
1993  *	frame) command.  This command takes an address and expects to
1994  *	find an exception frame at that address, formats and prints
1995  *	it.
1996  *		regs address-expression
1997  * Remarks:
1998  *	Not done yet.
1999  */
2000 static int kdb_ef(int argc, const char **argv)
2001 {
2002 	int diag;
2003 	unsigned long addr;
2004 	long offset;
2005 	int nextarg;
2006 
2007 	if (argc != 1)
2008 		return KDB_ARGCOUNT;
2009 
2010 	nextarg = 1;
2011 	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2012 	if (diag)
2013 		return diag;
2014 	show_regs((struct pt_regs *)addr);
2015 	return 0;
2016 }
2017 
2018 #if defined(CONFIG_MODULES)
2019 /*
2020  * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2021  *	currently loaded kernel modules.
2022  *	Mostly taken from userland lsmod.
2023  */
2024 static int kdb_lsmod(int argc, const char **argv)
2025 {
2026 	struct module *mod;
2027 
2028 	if (argc != 0)
2029 		return KDB_ARGCOUNT;
2030 
2031 	kdb_printf("Module                  Size  modstruct     Used by\n");
2032 	list_for_each_entry(mod, kdb_modules, list) {
2033 		if (mod->state == MODULE_STATE_UNFORMED)
2034 			continue;
2035 
2036 		kdb_printf("%-20s%8u  0x%px ", mod->name,
2037 			   mod->core_layout.size, (void *)mod);
2038 #ifdef CONFIG_MODULE_UNLOAD
2039 		kdb_printf("%4d ", module_refcount(mod));
2040 #endif
2041 		if (mod->state == MODULE_STATE_GOING)
2042 			kdb_printf(" (Unloading)");
2043 		else if (mod->state == MODULE_STATE_COMING)
2044 			kdb_printf(" (Loading)");
2045 		else
2046 			kdb_printf(" (Live)");
2047 		kdb_printf(" 0x%px", mod->core_layout.base);
2048 
2049 #ifdef CONFIG_MODULE_UNLOAD
2050 		{
2051 			struct module_use *use;
2052 			kdb_printf(" [ ");
2053 			list_for_each_entry(use, &mod->source_list,
2054 					    source_list)
2055 				kdb_printf("%s ", use->target->name);
2056 			kdb_printf("]\n");
2057 		}
2058 #endif
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 #endif	/* CONFIG_MODULES */
2065 
2066 /*
2067  * kdb_env - This function implements the 'env' command.  Display the
2068  *	current environment variables.
2069  */
2070 
2071 static int kdb_env(int argc, const char **argv)
2072 {
2073 	int i;
2074 
2075 	for (i = 0; i < __nenv; i++) {
2076 		if (__env[i])
2077 			kdb_printf("%s\n", __env[i]);
2078 	}
2079 
2080 	if (KDB_DEBUG(MASK))
2081 		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2082 
2083 	return 0;
2084 }
2085 
2086 #ifdef CONFIG_PRINTK
2087 /*
2088  * kdb_dmesg - This function implements the 'dmesg' command to display
2089  *	the contents of the syslog buffer.
2090  *		dmesg [lines] [adjust]
2091  */
2092 static int kdb_dmesg(int argc, const char **argv)
2093 {
2094 	int diag;
2095 	int logging;
2096 	int lines = 0;
2097 	int adjust = 0;
2098 	int n = 0;
2099 	int skip = 0;
2100 	struct kmsg_dumper dumper = { .active = 1 };
2101 	size_t len;
2102 	char buf[201];
2103 
2104 	if (argc > 2)
2105 		return KDB_ARGCOUNT;
2106 	if (argc) {
2107 		char *cp;
2108 		lines = simple_strtol(argv[1], &cp, 0);
2109 		if (*cp)
2110 			lines = 0;
2111 		if (argc > 1) {
2112 			adjust = simple_strtoul(argv[2], &cp, 0);
2113 			if (*cp || adjust < 0)
2114 				adjust = 0;
2115 		}
2116 	}
2117 
2118 	/* disable LOGGING if set */
2119 	diag = kdbgetintenv("LOGGING", &logging);
2120 	if (!diag && logging) {
2121 		const char *setargs[] = { "set", "LOGGING", "0" };
2122 		kdb_set(2, setargs);
2123 	}
2124 
2125 	kmsg_dump_rewind_nolock(&dumper);
2126 	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2127 		n++;
2128 
2129 	if (lines < 0) {
2130 		if (adjust >= n)
2131 			kdb_printf("buffer only contains %d lines, nothing "
2132 				   "printed\n", n);
2133 		else if (adjust - lines >= n)
2134 			kdb_printf("buffer only contains %d lines, last %d "
2135 				   "lines printed\n", n, n - adjust);
2136 		skip = adjust;
2137 		lines = abs(lines);
2138 	} else if (lines > 0) {
2139 		skip = n - lines - adjust;
2140 		lines = abs(lines);
2141 		if (adjust >= n) {
2142 			kdb_printf("buffer only contains %d lines, "
2143 				   "nothing printed\n", n);
2144 			skip = n;
2145 		} else if (skip < 0) {
2146 			lines += skip;
2147 			skip = 0;
2148 			kdb_printf("buffer only contains %d lines, first "
2149 				   "%d lines printed\n", n, lines);
2150 		}
2151 	} else {
2152 		lines = n;
2153 	}
2154 
2155 	if (skip >= n || skip < 0)
2156 		return 0;
2157 
2158 	kmsg_dump_rewind_nolock(&dumper);
2159 	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2160 		if (skip) {
2161 			skip--;
2162 			continue;
2163 		}
2164 		if (!lines--)
2165 			break;
2166 		if (KDB_FLAG(CMD_INTERRUPT))
2167 			return 0;
2168 
2169 		kdb_printf("%.*s\n", (int)len - 1, buf);
2170 	}
2171 
2172 	return 0;
2173 }
2174 #endif /* CONFIG_PRINTK */
2175 
2176 /* Make sure we balance enable/disable calls, must disable first. */
2177 static atomic_t kdb_nmi_disabled;
2178 
2179 static int kdb_disable_nmi(int argc, const char *argv[])
2180 {
2181 	if (atomic_read(&kdb_nmi_disabled))
2182 		return 0;
2183 	atomic_set(&kdb_nmi_disabled, 1);
2184 	arch_kgdb_ops.enable_nmi(0);
2185 	return 0;
2186 }
2187 
2188 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2189 {
2190 	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2191 		return -EINVAL;
2192 	arch_kgdb_ops.enable_nmi(1);
2193 	return 0;
2194 }
2195 
2196 static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2197 	.set = kdb_param_enable_nmi,
2198 };
2199 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2200 
2201 /*
2202  * kdb_cpu - This function implements the 'cpu' command.
2203  *	cpu	[<cpunum>]
2204  * Returns:
2205  *	KDB_CMD_CPU for success, a kdb diagnostic if error
2206  */
2207 static void kdb_cpu_status(void)
2208 {
2209 	int i, start_cpu, first_print = 1;
2210 	char state, prev_state = '?';
2211 
2212 	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2213 	kdb_printf("Available cpus: ");
2214 	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2215 		if (!cpu_online(i)) {
2216 			state = 'F';	/* cpu is offline */
2217 		} else if (!kgdb_info[i].enter_kgdb) {
2218 			state = 'D';	/* cpu is online but unresponsive */
2219 		} else {
2220 			state = ' ';	/* cpu is responding to kdb */
2221 			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2222 				state = 'I';	/* idle task */
2223 		}
2224 		if (state != prev_state) {
2225 			if (prev_state != '?') {
2226 				if (!first_print)
2227 					kdb_printf(", ");
2228 				first_print = 0;
2229 				kdb_printf("%d", start_cpu);
2230 				if (start_cpu < i-1)
2231 					kdb_printf("-%d", i-1);
2232 				if (prev_state != ' ')
2233 					kdb_printf("(%c)", prev_state);
2234 			}
2235 			prev_state = state;
2236 			start_cpu = i;
2237 		}
2238 	}
2239 	/* print the trailing cpus, ignoring them if they are all offline */
2240 	if (prev_state != 'F') {
2241 		if (!first_print)
2242 			kdb_printf(", ");
2243 		kdb_printf("%d", start_cpu);
2244 		if (start_cpu < i-1)
2245 			kdb_printf("-%d", i-1);
2246 		if (prev_state != ' ')
2247 			kdb_printf("(%c)", prev_state);
2248 	}
2249 	kdb_printf("\n");
2250 }
2251 
2252 static int kdb_cpu(int argc, const char **argv)
2253 {
2254 	unsigned long cpunum;
2255 	int diag;
2256 
2257 	if (argc == 0) {
2258 		kdb_cpu_status();
2259 		return 0;
2260 	}
2261 
2262 	if (argc != 1)
2263 		return KDB_ARGCOUNT;
2264 
2265 	diag = kdbgetularg(argv[1], &cpunum);
2266 	if (diag)
2267 		return diag;
2268 
2269 	/*
2270 	 * Validate cpunum
2271 	 */
2272 	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2273 		return KDB_BADCPUNUM;
2274 
2275 	dbg_switch_cpu = cpunum;
2276 
2277 	/*
2278 	 * Switch to other cpu
2279 	 */
2280 	return KDB_CMD_CPU;
2281 }
2282 
2283 /* The user may not realize that ps/bta with no parameters does not print idle
2284  * or sleeping system daemon processes, so tell them how many were suppressed.
2285  */
2286 void kdb_ps_suppressed(void)
2287 {
2288 	int idle = 0, daemon = 0;
2289 	unsigned long mask_I = kdb_task_state_string("I"),
2290 		      mask_M = kdb_task_state_string("M");
2291 	unsigned long cpu;
2292 	const struct task_struct *p, *g;
2293 	for_each_online_cpu(cpu) {
2294 		p = kdb_curr_task(cpu);
2295 		if (kdb_task_state(p, mask_I))
2296 			++idle;
2297 	}
2298 	kdb_do_each_thread(g, p) {
2299 		if (kdb_task_state(p, mask_M))
2300 			++daemon;
2301 	} kdb_while_each_thread(g, p);
2302 	if (idle || daemon) {
2303 		if (idle)
2304 			kdb_printf("%d idle process%s (state I)%s\n",
2305 				   idle, idle == 1 ? "" : "es",
2306 				   daemon ? " and " : "");
2307 		if (daemon)
2308 			kdb_printf("%d sleeping system daemon (state M) "
2309 				   "process%s", daemon,
2310 				   daemon == 1 ? "" : "es");
2311 		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2312 	}
2313 }
2314 
2315 /*
2316  * kdb_ps - This function implements the 'ps' command which shows a
2317  *	list of the active processes.
2318  *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2319  */
2320 void kdb_ps1(const struct task_struct *p)
2321 {
2322 	int cpu;
2323 	unsigned long tmp;
2324 
2325 	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2326 		return;
2327 
2328 	cpu = kdb_process_cpu(p);
2329 	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2330 		   (void *)p, p->pid, p->parent->pid,
2331 		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2332 		   kdb_task_state_char(p),
2333 		   (void *)(&p->thread),
2334 		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2335 		   p->comm);
2336 	if (kdb_task_has_cpu(p)) {
2337 		if (!KDB_TSK(cpu)) {
2338 			kdb_printf("  Error: no saved data for this cpu\n");
2339 		} else {
2340 			if (KDB_TSK(cpu) != p)
2341 				kdb_printf("  Error: does not match running "
2342 				   "process table (0x%px)\n", KDB_TSK(cpu));
2343 		}
2344 	}
2345 }
2346 
2347 static int kdb_ps(int argc, const char **argv)
2348 {
2349 	struct task_struct *g, *p;
2350 	unsigned long mask, cpu;
2351 
2352 	if (argc == 0)
2353 		kdb_ps_suppressed();
2354 	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2355 		(int)(2*sizeof(void *))+2, "Task Addr",
2356 		(int)(2*sizeof(void *))+2, "Thread");
2357 	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2358 	/* Run the active tasks first */
2359 	for_each_online_cpu(cpu) {
2360 		if (KDB_FLAG(CMD_INTERRUPT))
2361 			return 0;
2362 		p = kdb_curr_task(cpu);
2363 		if (kdb_task_state(p, mask))
2364 			kdb_ps1(p);
2365 	}
2366 	kdb_printf("\n");
2367 	/* Now the real tasks */
2368 	kdb_do_each_thread(g, p) {
2369 		if (KDB_FLAG(CMD_INTERRUPT))
2370 			return 0;
2371 		if (kdb_task_state(p, mask))
2372 			kdb_ps1(p);
2373 	} kdb_while_each_thread(g, p);
2374 
2375 	return 0;
2376 }
2377 
2378 /*
2379  * kdb_pid - This function implements the 'pid' command which switches
2380  *	the currently active process.
2381  *		pid [<pid> | R]
2382  */
2383 static int kdb_pid(int argc, const char **argv)
2384 {
2385 	struct task_struct *p;
2386 	unsigned long val;
2387 	int diag;
2388 
2389 	if (argc > 1)
2390 		return KDB_ARGCOUNT;
2391 
2392 	if (argc) {
2393 		if (strcmp(argv[1], "R") == 0) {
2394 			p = KDB_TSK(kdb_initial_cpu);
2395 		} else {
2396 			diag = kdbgetularg(argv[1], &val);
2397 			if (diag)
2398 				return KDB_BADINT;
2399 
2400 			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2401 			if (!p) {
2402 				kdb_printf("No task with pid=%d\n", (pid_t)val);
2403 				return 0;
2404 			}
2405 		}
2406 		kdb_set_current_task(p);
2407 	}
2408 	kdb_printf("KDB current process is %s(pid=%d)\n",
2409 		   kdb_current_task->comm,
2410 		   kdb_current_task->pid);
2411 
2412 	return 0;
2413 }
2414 
2415 static int kdb_kgdb(int argc, const char **argv)
2416 {
2417 	return KDB_CMD_KGDB;
2418 }
2419 
2420 /*
2421  * kdb_help - This function implements the 'help' and '?' commands.
2422  */
2423 static int kdb_help(int argc, const char **argv)
2424 {
2425 	kdbtab_t *kt;
2426 	int i;
2427 
2428 	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2429 	kdb_printf("-----------------------------"
2430 		   "-----------------------------\n");
2431 	for_each_kdbcmd(kt, i) {
2432 		char *space = "";
2433 		if (KDB_FLAG(CMD_INTERRUPT))
2434 			return 0;
2435 		if (!kt->cmd_name)
2436 			continue;
2437 		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2438 			continue;
2439 		if (strlen(kt->cmd_usage) > 20)
2440 			space = "\n                                    ";
2441 		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2442 			   kt->cmd_usage, space, kt->cmd_help);
2443 	}
2444 	return 0;
2445 }
2446 
2447 /*
2448  * kdb_kill - This function implements the 'kill' commands.
2449  */
2450 static int kdb_kill(int argc, const char **argv)
2451 {
2452 	long sig, pid;
2453 	char *endp;
2454 	struct task_struct *p;
2455 
2456 	if (argc != 2)
2457 		return KDB_ARGCOUNT;
2458 
2459 	sig = simple_strtol(argv[1], &endp, 0);
2460 	if (*endp)
2461 		return KDB_BADINT;
2462 	if ((sig >= 0) || !valid_signal(-sig)) {
2463 		kdb_printf("Invalid signal parameter.<-signal>\n");
2464 		return 0;
2465 	}
2466 	sig = -sig;
2467 
2468 	pid = simple_strtol(argv[2], &endp, 0);
2469 	if (*endp)
2470 		return KDB_BADINT;
2471 	if (pid <= 0) {
2472 		kdb_printf("Process ID must be large than 0.\n");
2473 		return 0;
2474 	}
2475 
2476 	/* Find the process. */
2477 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2478 	if (!p) {
2479 		kdb_printf("The specified process isn't found.\n");
2480 		return 0;
2481 	}
2482 	p = p->group_leader;
2483 	kdb_send_sig(p, sig);
2484 	return 0;
2485 }
2486 
2487 /*
2488  * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2489  * I cannot call that code directly from kdb, it has an unconditional
2490  * cli()/sti() and calls routines that take locks which can stop the debugger.
2491  */
2492 static void kdb_sysinfo(struct sysinfo *val)
2493 {
2494 	u64 uptime = ktime_get_mono_fast_ns();
2495 
2496 	memset(val, 0, sizeof(*val));
2497 	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2498 	val->loads[0] = avenrun[0];
2499 	val->loads[1] = avenrun[1];
2500 	val->loads[2] = avenrun[2];
2501 	val->procs = nr_threads-1;
2502 	si_meminfo(val);
2503 
2504 	return;
2505 }
2506 
2507 /*
2508  * kdb_summary - This function implements the 'summary' command.
2509  */
2510 static int kdb_summary(int argc, const char **argv)
2511 {
2512 	time64_t now;
2513 	struct tm tm;
2514 	struct sysinfo val;
2515 
2516 	if (argc)
2517 		return KDB_ARGCOUNT;
2518 
2519 	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2520 	kdb_printf("release    %s\n", init_uts_ns.name.release);
2521 	kdb_printf("version    %s\n", init_uts_ns.name.version);
2522 	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2523 	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2524 	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2525 
2526 	now = __ktime_get_real_seconds();
2527 	time64_to_tm(now, 0, &tm);
2528 	kdb_printf("date       %04ld-%02d-%02d %02d:%02d:%02d "
2529 		   "tz_minuteswest %d\n",
2530 		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2531 		tm.tm_hour, tm.tm_min, tm.tm_sec,
2532 		sys_tz.tz_minuteswest);
2533 
2534 	kdb_sysinfo(&val);
2535 	kdb_printf("uptime     ");
2536 	if (val.uptime > (24*60*60)) {
2537 		int days = val.uptime / (24*60*60);
2538 		val.uptime %= (24*60*60);
2539 		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2540 	}
2541 	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2542 
2543 	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2544 		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2545 		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2546 		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2547 
2548 	/* Display in kilobytes */
2549 #define K(x) ((x) << (PAGE_SHIFT - 10))
2550 	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2551 		   "Buffers:        %8lu kB\n",
2552 		   K(val.totalram), K(val.freeram), K(val.bufferram));
2553 	return 0;
2554 }
2555 
2556 /*
2557  * kdb_per_cpu - This function implements the 'per_cpu' command.
2558  */
2559 static int kdb_per_cpu(int argc, const char **argv)
2560 {
2561 	char fmtstr[64];
2562 	int cpu, diag, nextarg = 1;
2563 	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2564 
2565 	if (argc < 1 || argc > 3)
2566 		return KDB_ARGCOUNT;
2567 
2568 	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2569 	if (diag)
2570 		return diag;
2571 
2572 	if (argc >= 2) {
2573 		diag = kdbgetularg(argv[2], &bytesperword);
2574 		if (diag)
2575 			return diag;
2576 	}
2577 	if (!bytesperword)
2578 		bytesperword = KDB_WORD_SIZE;
2579 	else if (bytesperword > KDB_WORD_SIZE)
2580 		return KDB_BADWIDTH;
2581 	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2582 	if (argc >= 3) {
2583 		diag = kdbgetularg(argv[3], &whichcpu);
2584 		if (diag)
2585 			return diag;
2586 		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2587 			kdb_printf("cpu %ld is not online\n", whichcpu);
2588 			return KDB_BADCPUNUM;
2589 		}
2590 	}
2591 
2592 	/* Most architectures use __per_cpu_offset[cpu], some use
2593 	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2594 	 */
2595 #ifdef	__per_cpu_offset
2596 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2597 #else
2598 #ifdef	CONFIG_SMP
2599 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2600 #else
2601 #define KDB_PCU(cpu) 0
2602 #endif
2603 #endif
2604 	for_each_online_cpu(cpu) {
2605 		if (KDB_FLAG(CMD_INTERRUPT))
2606 			return 0;
2607 
2608 		if (whichcpu != ~0UL && whichcpu != cpu)
2609 			continue;
2610 		addr = symaddr + KDB_PCU(cpu);
2611 		diag = kdb_getword(&val, addr, bytesperword);
2612 		if (diag) {
2613 			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2614 				   "read, diag=%d\n", cpu, addr, diag);
2615 			continue;
2616 		}
2617 		kdb_printf("%5d ", cpu);
2618 		kdb_md_line(fmtstr, addr,
2619 			bytesperword == KDB_WORD_SIZE,
2620 			1, bytesperword, 1, 1, 0);
2621 	}
2622 #undef KDB_PCU
2623 	return 0;
2624 }
2625 
2626 /*
2627  * display help for the use of cmd | grep pattern
2628  */
2629 static int kdb_grep_help(int argc, const char **argv)
2630 {
2631 	kdb_printf("Usage of  cmd args | grep pattern:\n");
2632 	kdb_printf("  Any command's output may be filtered through an ");
2633 	kdb_printf("emulated 'pipe'.\n");
2634 	kdb_printf("  'grep' is just a key word.\n");
2635 	kdb_printf("  The pattern may include a very limited set of "
2636 		   "metacharacters:\n");
2637 	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2638 	kdb_printf("  And if there are spaces in the pattern, you may "
2639 		   "quote it:\n");
2640 	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2641 		   " or \"^pat tern$\"\n");
2642 	return 0;
2643 }
2644 
2645 /*
2646  * kdb_register_flags - This function is used to register a kernel
2647  * 	debugger command.
2648  * Inputs:
2649  *	cmd	Command name
2650  *	func	Function to execute the command
2651  *	usage	A simple usage string showing arguments
2652  *	help	A simple help string describing command
2653  *	repeat	Does the command auto repeat on enter?
2654  * Returns:
2655  *	zero for success, one if a duplicate command.
2656  */
2657 #define kdb_command_extend 50	/* arbitrary */
2658 int kdb_register_flags(char *cmd,
2659 		       kdb_func_t func,
2660 		       char *usage,
2661 		       char *help,
2662 		       short minlen,
2663 		       kdb_cmdflags_t flags)
2664 {
2665 	int i;
2666 	kdbtab_t *kp;
2667 
2668 	/*
2669 	 *  Brute force method to determine duplicates
2670 	 */
2671 	for_each_kdbcmd(kp, i) {
2672 		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2673 			kdb_printf("Duplicate kdb command registered: "
2674 				"%s, func %px help %s\n", cmd, func, help);
2675 			return 1;
2676 		}
2677 	}
2678 
2679 	/*
2680 	 * Insert command into first available location in table
2681 	 */
2682 	for_each_kdbcmd(kp, i) {
2683 		if (kp->cmd_name == NULL)
2684 			break;
2685 	}
2686 
2687 	if (i >= kdb_max_commands) {
2688 		kdbtab_t *new = kmalloc_array(kdb_max_commands -
2689 						KDB_BASE_CMD_MAX +
2690 						kdb_command_extend,
2691 					      sizeof(*new),
2692 					      GFP_KDB);
2693 		if (!new) {
2694 			kdb_printf("Could not allocate new kdb_command "
2695 				   "table\n");
2696 			return 1;
2697 		}
2698 		if (kdb_commands) {
2699 			memcpy(new, kdb_commands,
2700 			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2701 			kfree(kdb_commands);
2702 		}
2703 		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2704 		       kdb_command_extend * sizeof(*new));
2705 		kdb_commands = new;
2706 		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2707 		kdb_max_commands += kdb_command_extend;
2708 	}
2709 
2710 	kp->cmd_name   = cmd;
2711 	kp->cmd_func   = func;
2712 	kp->cmd_usage  = usage;
2713 	kp->cmd_help   = help;
2714 	kp->cmd_minlen = minlen;
2715 	kp->cmd_flags  = flags;
2716 
2717 	return 0;
2718 }
2719 EXPORT_SYMBOL_GPL(kdb_register_flags);
2720 
2721 
2722 /*
2723  * kdb_register - Compatibility register function for commands that do
2724  *	not need to specify a repeat state.  Equivalent to
2725  *	kdb_register_flags with flags set to 0.
2726  * Inputs:
2727  *	cmd	Command name
2728  *	func	Function to execute the command
2729  *	usage	A simple usage string showing arguments
2730  *	help	A simple help string describing command
2731  * Returns:
2732  *	zero for success, one if a duplicate command.
2733  */
2734 int kdb_register(char *cmd,
2735 	     kdb_func_t func,
2736 	     char *usage,
2737 	     char *help,
2738 	     short minlen)
2739 {
2740 	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2741 }
2742 EXPORT_SYMBOL_GPL(kdb_register);
2743 
2744 /*
2745  * kdb_unregister - This function is used to unregister a kernel
2746  *	debugger command.  It is generally called when a module which
2747  *	implements kdb commands is unloaded.
2748  * Inputs:
2749  *	cmd	Command name
2750  * Returns:
2751  *	zero for success, one command not registered.
2752  */
2753 int kdb_unregister(char *cmd)
2754 {
2755 	int i;
2756 	kdbtab_t *kp;
2757 
2758 	/*
2759 	 *  find the command.
2760 	 */
2761 	for_each_kdbcmd(kp, i) {
2762 		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2763 			kp->cmd_name = NULL;
2764 			return 0;
2765 		}
2766 	}
2767 
2768 	/* Couldn't find it.  */
2769 	return 1;
2770 }
2771 EXPORT_SYMBOL_GPL(kdb_unregister);
2772 
2773 /* Initialize the kdb command table. */
2774 static void __init kdb_inittab(void)
2775 {
2776 	int i;
2777 	kdbtab_t *kp;
2778 
2779 	for_each_kdbcmd(kp, i)
2780 		kp->cmd_name = NULL;
2781 
2782 	kdb_register_flags("md", kdb_md, "<vaddr>",
2783 	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2784 	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2785 	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2786 	  "Display Raw Memory", 0,
2787 	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2788 	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2789 	  "Display Physical Memory", 0,
2790 	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2791 	kdb_register_flags("mds", kdb_md, "<vaddr>",
2792 	  "Display Memory Symbolically", 0,
2793 	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2794 	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2795 	  "Modify Memory Contents", 0,
2796 	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2797 	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2798 	  "Continue Execution", 1,
2799 	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2800 	kdb_register_flags("rd", kdb_rd, "",
2801 	  "Display Registers", 0,
2802 	  KDB_ENABLE_REG_READ);
2803 	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2804 	  "Modify Registers", 0,
2805 	  KDB_ENABLE_REG_WRITE);
2806 	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2807 	  "Display exception frame", 0,
2808 	  KDB_ENABLE_MEM_READ);
2809 	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2810 	  "Stack traceback", 1,
2811 	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2812 	kdb_register_flags("btp", kdb_bt, "<pid>",
2813 	  "Display stack for process <pid>", 0,
2814 	  KDB_ENABLE_INSPECT);
2815 	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2816 	  "Backtrace all processes matching state flag", 0,
2817 	  KDB_ENABLE_INSPECT);
2818 	kdb_register_flags("btc", kdb_bt, "",
2819 	  "Backtrace current process on each cpu", 0,
2820 	  KDB_ENABLE_INSPECT);
2821 	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2822 	  "Backtrace process given its struct task address", 0,
2823 	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2824 	kdb_register_flags("env", kdb_env, "",
2825 	  "Show environment variables", 0,
2826 	  KDB_ENABLE_ALWAYS_SAFE);
2827 	kdb_register_flags("set", kdb_set, "",
2828 	  "Set environment variables", 0,
2829 	  KDB_ENABLE_ALWAYS_SAFE);
2830 	kdb_register_flags("help", kdb_help, "",
2831 	  "Display Help Message", 1,
2832 	  KDB_ENABLE_ALWAYS_SAFE);
2833 	kdb_register_flags("?", kdb_help, "",
2834 	  "Display Help Message", 0,
2835 	  KDB_ENABLE_ALWAYS_SAFE);
2836 	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2837 	  "Switch to new cpu", 0,
2838 	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2839 	kdb_register_flags("kgdb", kdb_kgdb, "",
2840 	  "Enter kgdb mode", 0, 0);
2841 	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2842 	  "Display active task list", 0,
2843 	  KDB_ENABLE_INSPECT);
2844 	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2845 	  "Switch to another task", 0,
2846 	  KDB_ENABLE_INSPECT);
2847 	kdb_register_flags("reboot", kdb_reboot, "",
2848 	  "Reboot the machine immediately", 0,
2849 	  KDB_ENABLE_REBOOT);
2850 #if defined(CONFIG_MODULES)
2851 	kdb_register_flags("lsmod", kdb_lsmod, "",
2852 	  "List loaded kernel modules", 0,
2853 	  KDB_ENABLE_INSPECT);
2854 #endif
2855 #if defined(CONFIG_MAGIC_SYSRQ)
2856 	kdb_register_flags("sr", kdb_sr, "<key>",
2857 	  "Magic SysRq key", 0,
2858 	  KDB_ENABLE_ALWAYS_SAFE);
2859 #endif
2860 #if defined(CONFIG_PRINTK)
2861 	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2862 	  "Display syslog buffer", 0,
2863 	  KDB_ENABLE_ALWAYS_SAFE);
2864 #endif
2865 	if (arch_kgdb_ops.enable_nmi) {
2866 		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2867 		  "Disable NMI entry to KDB", 0,
2868 		  KDB_ENABLE_ALWAYS_SAFE);
2869 	}
2870 	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2871 	  "Define a set of commands, down to endefcmd", 0,
2872 	  KDB_ENABLE_ALWAYS_SAFE);
2873 	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2874 	  "Send a signal to a process", 0,
2875 	  KDB_ENABLE_SIGNAL);
2876 	kdb_register_flags("summary", kdb_summary, "",
2877 	  "Summarize the system", 4,
2878 	  KDB_ENABLE_ALWAYS_SAFE);
2879 	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2880 	  "Display per_cpu variables", 3,
2881 	  KDB_ENABLE_MEM_READ);
2882 	kdb_register_flags("grephelp", kdb_grep_help, "",
2883 	  "Display help on | grep", 0,
2884 	  KDB_ENABLE_ALWAYS_SAFE);
2885 }
2886 
2887 /* Execute any commands defined in kdb_cmds.  */
2888 static void __init kdb_cmd_init(void)
2889 {
2890 	int i, diag;
2891 	for (i = 0; kdb_cmds[i]; ++i) {
2892 		diag = kdb_parse(kdb_cmds[i]);
2893 		if (diag)
2894 			kdb_printf("kdb command %s failed, kdb diag %d\n",
2895 				kdb_cmds[i], diag);
2896 	}
2897 	if (defcmd_in_progress) {
2898 		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2899 		kdb_parse("endefcmd");
2900 	}
2901 }
2902 
2903 /* Initialize kdb_printf, breakpoint tables and kdb state */
2904 void __init kdb_init(int lvl)
2905 {
2906 	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2907 	int i;
2908 
2909 	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2910 		return;
2911 	for (i = kdb_init_lvl; i < lvl; i++) {
2912 		switch (i) {
2913 		case KDB_NOT_INITIALIZED:
2914 			kdb_inittab();		/* Initialize Command Table */
2915 			kdb_initbptab();	/* Initialize Breakpoints */
2916 			break;
2917 		case KDB_INIT_EARLY:
2918 			kdb_cmd_init();		/* Build kdb_cmds tables */
2919 			break;
2920 		}
2921 	}
2922 	kdb_init_lvl = lvl;
2923 }
2924