1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/types.h> 16 #include <linux/string.h> 17 #include <linux/kernel.h> 18 #include <linux/kmsg_dump.h> 19 #include <linux/reboot.h> 20 #include <linux/sched.h> 21 #include <linux/sched/loadavg.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sysrq.h> 25 #include <linux/smp.h> 26 #include <linux/utsname.h> 27 #include <linux/vmalloc.h> 28 #include <linux/atomic.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/mm.h> 32 #include <linux/init.h> 33 #include <linux/kallsyms.h> 34 #include <linux/kgdb.h> 35 #include <linux/kdb.h> 36 #include <linux/notifier.h> 37 #include <linux/interrupt.h> 38 #include <linux/delay.h> 39 #include <linux/nmi.h> 40 #include <linux/time.h> 41 #include <linux/ptrace.h> 42 #include <linux/sysctl.h> 43 #include <linux/cpu.h> 44 #include <linux/kdebug.h> 45 #include <linux/proc_fs.h> 46 #include <linux/uaccess.h> 47 #include <linux/slab.h> 48 #include "kdb_private.h" 49 50 #undef MODULE_PARAM_PREFIX 51 #define MODULE_PARAM_PREFIX "kdb." 52 53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE; 54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600); 55 56 char kdb_grep_string[KDB_GREP_STRLEN]; 57 int kdb_grepping_flag; 58 EXPORT_SYMBOL(kdb_grepping_flag); 59 int kdb_grep_leading; 60 int kdb_grep_trailing; 61 62 /* 63 * Kernel debugger state flags 64 */ 65 unsigned int kdb_flags; 66 67 /* 68 * kdb_lock protects updates to kdb_initial_cpu. Used to 69 * single thread processors through the kernel debugger. 70 */ 71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 72 int kdb_nextline = 1; 73 int kdb_state; /* General KDB state */ 74 75 struct task_struct *kdb_current_task; 76 struct pt_regs *kdb_current_regs; 77 78 const char *kdb_diemsg; 79 static int kdb_go_count; 80 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 81 static unsigned int kdb_continue_catastrophic = 82 CONFIG_KDB_CONTINUE_CATASTROPHIC; 83 #else 84 static unsigned int kdb_continue_catastrophic; 85 #endif 86 87 /* kdb_commands describes the available commands. */ 88 static kdbtab_t *kdb_commands; 89 #define KDB_BASE_CMD_MAX 50 90 static int kdb_max_commands = KDB_BASE_CMD_MAX; 91 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX]; 92 #define for_each_kdbcmd(cmd, num) \ 93 for ((cmd) = kdb_base_commands, (num) = 0; \ 94 num < kdb_max_commands; \ 95 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++) 96 97 typedef struct _kdbmsg { 98 int km_diag; /* kdb diagnostic */ 99 char *km_msg; /* Corresponding message text */ 100 } kdbmsg_t; 101 102 #define KDBMSG(msgnum, text) \ 103 { KDB_##msgnum, text } 104 105 static kdbmsg_t kdbmsgs[] = { 106 KDBMSG(NOTFOUND, "Command Not Found"), 107 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 108 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 109 "8 is only allowed on 64 bit systems"), 110 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 111 KDBMSG(NOTENV, "Cannot find environment variable"), 112 KDBMSG(NOENVVALUE, "Environment variable should have value"), 113 KDBMSG(NOTIMP, "Command not implemented"), 114 KDBMSG(ENVFULL, "Environment full"), 115 KDBMSG(ENVBUFFULL, "Environment buffer full"), 116 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 117 #ifdef CONFIG_CPU_XSCALE 118 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 119 #else 120 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 121 #endif 122 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 123 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 124 KDBMSG(BADMODE, "Invalid IDMODE"), 125 KDBMSG(BADINT, "Illegal numeric value"), 126 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 127 KDBMSG(BADREG, "Invalid register name"), 128 KDBMSG(BADCPUNUM, "Invalid cpu number"), 129 KDBMSG(BADLENGTH, "Invalid length field"), 130 KDBMSG(NOBP, "No Breakpoint exists"), 131 KDBMSG(BADADDR, "Invalid address"), 132 KDBMSG(NOPERM, "Permission denied"), 133 }; 134 #undef KDBMSG 135 136 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs); 137 138 139 /* 140 * Initial environment. This is all kept static and local to 141 * this file. We don't want to rely on the memory allocation 142 * mechanisms in the kernel, so we use a very limited allocate-only 143 * heap for new and altered environment variables. The entire 144 * environment is limited to a fixed number of entries (add more 145 * to __env[] if required) and a fixed amount of heap (add more to 146 * KDB_ENVBUFSIZE if required). 147 */ 148 149 static char *__env[] = { 150 #if defined(CONFIG_SMP) 151 "PROMPT=[%d]kdb> ", 152 #else 153 "PROMPT=kdb> ", 154 #endif 155 "MOREPROMPT=more> ", 156 "RADIX=16", 157 "MDCOUNT=8", /* lines of md output */ 158 KDB_PLATFORM_ENV, 159 "DTABCOUNT=30", 160 "NOSECT=1", 161 (char *)0, 162 (char *)0, 163 (char *)0, 164 (char *)0, 165 (char *)0, 166 (char *)0, 167 (char *)0, 168 (char *)0, 169 (char *)0, 170 (char *)0, 171 (char *)0, 172 (char *)0, 173 (char *)0, 174 (char *)0, 175 (char *)0, 176 (char *)0, 177 (char *)0, 178 (char *)0, 179 (char *)0, 180 (char *)0, 181 (char *)0, 182 (char *)0, 183 (char *)0, 184 (char *)0, 185 }; 186 187 static const int __nenv = ARRAY_SIZE(__env); 188 189 struct task_struct *kdb_curr_task(int cpu) 190 { 191 struct task_struct *p = curr_task(cpu); 192 #ifdef _TIF_MCA_INIT 193 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 194 p = krp->p; 195 #endif 196 return p; 197 } 198 199 /* 200 * Check whether the flags of the current command and the permissions 201 * of the kdb console has allow a command to be run. 202 */ 203 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions, 204 bool no_args) 205 { 206 /* permissions comes from userspace so needs massaging slightly */ 207 permissions &= KDB_ENABLE_MASK; 208 permissions |= KDB_ENABLE_ALWAYS_SAFE; 209 210 /* some commands change group when launched with no arguments */ 211 if (no_args) 212 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT; 213 214 flags |= KDB_ENABLE_ALL; 215 216 return permissions & flags; 217 } 218 219 /* 220 * kdbgetenv - This function will return the character string value of 221 * an environment variable. 222 * Parameters: 223 * match A character string representing an environment variable. 224 * Returns: 225 * NULL No environment variable matches 'match' 226 * char* Pointer to string value of environment variable. 227 */ 228 char *kdbgetenv(const char *match) 229 { 230 char **ep = __env; 231 int matchlen = strlen(match); 232 int i; 233 234 for (i = 0; i < __nenv; i++) { 235 char *e = *ep++; 236 237 if (!e) 238 continue; 239 240 if ((strncmp(match, e, matchlen) == 0) 241 && ((e[matchlen] == '\0') 242 || (e[matchlen] == '='))) { 243 char *cp = strchr(e, '='); 244 return cp ? ++cp : ""; 245 } 246 } 247 return NULL; 248 } 249 250 /* 251 * kdballocenv - This function is used to allocate bytes for 252 * environment entries. 253 * Parameters: 254 * match A character string representing a numeric value 255 * Outputs: 256 * *value the unsigned long representation of the env variable 'match' 257 * Returns: 258 * Zero on success, a kdb diagnostic on failure. 259 * Remarks: 260 * We use a static environment buffer (envbuffer) to hold the values 261 * of dynamically generated environment variables (see kdb_set). Buffer 262 * space once allocated is never free'd, so over time, the amount of space 263 * (currently 512 bytes) will be exhausted if env variables are changed 264 * frequently. 265 */ 266 static char *kdballocenv(size_t bytes) 267 { 268 #define KDB_ENVBUFSIZE 512 269 static char envbuffer[KDB_ENVBUFSIZE]; 270 static int envbufsize; 271 char *ep = NULL; 272 273 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 274 ep = &envbuffer[envbufsize]; 275 envbufsize += bytes; 276 } 277 return ep; 278 } 279 280 /* 281 * kdbgetulenv - This function will return the value of an unsigned 282 * long-valued environment variable. 283 * Parameters: 284 * match A character string representing a numeric value 285 * Outputs: 286 * *value the unsigned long represntation of the env variable 'match' 287 * Returns: 288 * Zero on success, a kdb diagnostic on failure. 289 */ 290 static int kdbgetulenv(const char *match, unsigned long *value) 291 { 292 char *ep; 293 294 ep = kdbgetenv(match); 295 if (!ep) 296 return KDB_NOTENV; 297 if (strlen(ep) == 0) 298 return KDB_NOENVVALUE; 299 300 *value = simple_strtoul(ep, NULL, 0); 301 302 return 0; 303 } 304 305 /* 306 * kdbgetintenv - This function will return the value of an 307 * integer-valued environment variable. 308 * Parameters: 309 * match A character string representing an integer-valued env variable 310 * Outputs: 311 * *value the integer representation of the environment variable 'match' 312 * Returns: 313 * Zero on success, a kdb diagnostic on failure. 314 */ 315 int kdbgetintenv(const char *match, int *value) 316 { 317 unsigned long val; 318 int diag; 319 320 diag = kdbgetulenv(match, &val); 321 if (!diag) 322 *value = (int) val; 323 return diag; 324 } 325 326 /* 327 * kdbgetularg - This function will convert a numeric string into an 328 * unsigned long value. 329 * Parameters: 330 * arg A character string representing a numeric value 331 * Outputs: 332 * *value the unsigned long represntation of arg. 333 * Returns: 334 * Zero on success, a kdb diagnostic on failure. 335 */ 336 int kdbgetularg(const char *arg, unsigned long *value) 337 { 338 char *endp; 339 unsigned long val; 340 341 val = simple_strtoul(arg, &endp, 0); 342 343 if (endp == arg) { 344 /* 345 * Also try base 16, for us folks too lazy to type the 346 * leading 0x... 347 */ 348 val = simple_strtoul(arg, &endp, 16); 349 if (endp == arg) 350 return KDB_BADINT; 351 } 352 353 *value = val; 354 355 return 0; 356 } 357 358 int kdbgetu64arg(const char *arg, u64 *value) 359 { 360 char *endp; 361 u64 val; 362 363 val = simple_strtoull(arg, &endp, 0); 364 365 if (endp == arg) { 366 367 val = simple_strtoull(arg, &endp, 16); 368 if (endp == arg) 369 return KDB_BADINT; 370 } 371 372 *value = val; 373 374 return 0; 375 } 376 377 /* 378 * kdb_set - This function implements the 'set' command. Alter an 379 * existing environment variable or create a new one. 380 */ 381 int kdb_set(int argc, const char **argv) 382 { 383 int i; 384 char *ep; 385 size_t varlen, vallen; 386 387 /* 388 * we can be invoked two ways: 389 * set var=value argv[1]="var", argv[2]="value" 390 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 391 * - if the latter, shift 'em down. 392 */ 393 if (argc == 3) { 394 argv[2] = argv[3]; 395 argc--; 396 } 397 398 if (argc != 2) 399 return KDB_ARGCOUNT; 400 401 /* 402 * Censor sensitive variables 403 */ 404 if (strcmp(argv[1], "PROMPT") == 0 && 405 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false)) 406 return KDB_NOPERM; 407 408 /* 409 * Check for internal variables 410 */ 411 if (strcmp(argv[1], "KDBDEBUG") == 0) { 412 unsigned int debugflags; 413 char *cp; 414 415 debugflags = simple_strtoul(argv[2], &cp, 0); 416 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 417 kdb_printf("kdb: illegal debug flags '%s'\n", 418 argv[2]); 419 return 0; 420 } 421 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK)) 422 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 423 424 return 0; 425 } 426 427 /* 428 * Tokenizer squashed the '=' sign. argv[1] is variable 429 * name, argv[2] = value. 430 */ 431 varlen = strlen(argv[1]); 432 vallen = strlen(argv[2]); 433 ep = kdballocenv(varlen + vallen + 2); 434 if (ep == (char *)0) 435 return KDB_ENVBUFFULL; 436 437 sprintf(ep, "%s=%s", argv[1], argv[2]); 438 439 ep[varlen+vallen+1] = '\0'; 440 441 for (i = 0; i < __nenv; i++) { 442 if (__env[i] 443 && ((strncmp(__env[i], argv[1], varlen) == 0) 444 && ((__env[i][varlen] == '\0') 445 || (__env[i][varlen] == '=')))) { 446 __env[i] = ep; 447 return 0; 448 } 449 } 450 451 /* 452 * Wasn't existing variable. Fit into slot. 453 */ 454 for (i = 0; i < __nenv-1; i++) { 455 if (__env[i] == (char *)0) { 456 __env[i] = ep; 457 return 0; 458 } 459 } 460 461 return KDB_ENVFULL; 462 } 463 464 static int kdb_check_regs(void) 465 { 466 if (!kdb_current_regs) { 467 kdb_printf("No current kdb registers." 468 " You may need to select another task\n"); 469 return KDB_BADREG; 470 } 471 return 0; 472 } 473 474 /* 475 * kdbgetaddrarg - This function is responsible for parsing an 476 * address-expression and returning the value of the expression, 477 * symbol name, and offset to the caller. 478 * 479 * The argument may consist of a numeric value (decimal or 480 * hexidecimal), a symbol name, a register name (preceded by the 481 * percent sign), an environment variable with a numeric value 482 * (preceded by a dollar sign) or a simple arithmetic expression 483 * consisting of a symbol name, +/-, and a numeric constant value 484 * (offset). 485 * Parameters: 486 * argc - count of arguments in argv 487 * argv - argument vector 488 * *nextarg - index to next unparsed argument in argv[] 489 * regs - Register state at time of KDB entry 490 * Outputs: 491 * *value - receives the value of the address-expression 492 * *offset - receives the offset specified, if any 493 * *name - receives the symbol name, if any 494 * *nextarg - index to next unparsed argument in argv[] 495 * Returns: 496 * zero is returned on success, a kdb diagnostic code is 497 * returned on error. 498 */ 499 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 500 unsigned long *value, long *offset, 501 char **name) 502 { 503 unsigned long addr; 504 unsigned long off = 0; 505 int positive; 506 int diag; 507 int found = 0; 508 char *symname; 509 char symbol = '\0'; 510 char *cp; 511 kdb_symtab_t symtab; 512 513 /* 514 * If the enable flags prohibit both arbitrary memory access 515 * and flow control then there are no reasonable grounds to 516 * provide symbol lookup. 517 */ 518 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL, 519 kdb_cmd_enabled, false)) 520 return KDB_NOPERM; 521 522 /* 523 * Process arguments which follow the following syntax: 524 * 525 * symbol | numeric-address [+/- numeric-offset] 526 * %register 527 * $environment-variable 528 */ 529 530 if (*nextarg > argc) 531 return KDB_ARGCOUNT; 532 533 symname = (char *)argv[*nextarg]; 534 535 /* 536 * If there is no whitespace between the symbol 537 * or address and the '+' or '-' symbols, we 538 * remember the character and replace it with a 539 * null so the symbol/value can be properly parsed 540 */ 541 cp = strpbrk(symname, "+-"); 542 if (cp != NULL) { 543 symbol = *cp; 544 *cp++ = '\0'; 545 } 546 547 if (symname[0] == '$') { 548 diag = kdbgetulenv(&symname[1], &addr); 549 if (diag) 550 return diag; 551 } else if (symname[0] == '%') { 552 diag = kdb_check_regs(); 553 if (diag) 554 return diag; 555 /* Implement register values with % at a later time as it is 556 * arch optional. 557 */ 558 return KDB_NOTIMP; 559 } else { 560 found = kdbgetsymval(symname, &symtab); 561 if (found) { 562 addr = symtab.sym_start; 563 } else { 564 diag = kdbgetularg(argv[*nextarg], &addr); 565 if (diag) 566 return diag; 567 } 568 } 569 570 if (!found) 571 found = kdbnearsym(addr, &symtab); 572 573 (*nextarg)++; 574 575 if (name) 576 *name = symname; 577 if (value) 578 *value = addr; 579 if (offset && name && *name) 580 *offset = addr - symtab.sym_start; 581 582 if ((*nextarg > argc) 583 && (symbol == '\0')) 584 return 0; 585 586 /* 587 * check for +/- and offset 588 */ 589 590 if (symbol == '\0') { 591 if ((argv[*nextarg][0] != '+') 592 && (argv[*nextarg][0] != '-')) { 593 /* 594 * Not our argument. Return. 595 */ 596 return 0; 597 } else { 598 positive = (argv[*nextarg][0] == '+'); 599 (*nextarg)++; 600 } 601 } else 602 positive = (symbol == '+'); 603 604 /* 605 * Now there must be an offset! 606 */ 607 if ((*nextarg > argc) 608 && (symbol == '\0')) { 609 return KDB_INVADDRFMT; 610 } 611 612 if (!symbol) { 613 cp = (char *)argv[*nextarg]; 614 (*nextarg)++; 615 } 616 617 diag = kdbgetularg(cp, &off); 618 if (diag) 619 return diag; 620 621 if (!positive) 622 off = -off; 623 624 if (offset) 625 *offset += off; 626 627 if (value) 628 *value += off; 629 630 return 0; 631 } 632 633 static void kdb_cmderror(int diag) 634 { 635 int i; 636 637 if (diag >= 0) { 638 kdb_printf("no error detected (diagnostic is %d)\n", diag); 639 return; 640 } 641 642 for (i = 0; i < __nkdb_err; i++) { 643 if (kdbmsgs[i].km_diag == diag) { 644 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 645 return; 646 } 647 } 648 649 kdb_printf("Unknown diag %d\n", -diag); 650 } 651 652 /* 653 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 654 * command which defines one command as a set of other commands, 655 * terminated by endefcmd. kdb_defcmd processes the initial 656 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 657 * the following commands until 'endefcmd'. 658 * Inputs: 659 * argc argument count 660 * argv argument vector 661 * Returns: 662 * zero for success, a kdb diagnostic if error 663 */ 664 struct defcmd_set { 665 int count; 666 bool usable; 667 char *name; 668 char *usage; 669 char *help; 670 char **command; 671 }; 672 static struct defcmd_set *defcmd_set; 673 static int defcmd_set_count; 674 static bool defcmd_in_progress; 675 676 /* Forward references */ 677 static int kdb_exec_defcmd(int argc, const char **argv); 678 679 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 680 { 681 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; 682 char **save_command = s->command; 683 if (strcmp(argv0, "endefcmd") == 0) { 684 defcmd_in_progress = false; 685 if (!s->count) 686 s->usable = false; 687 if (s->usable) 688 /* macros are always safe because when executed each 689 * internal command re-enters kdb_parse() and is 690 * safety checked individually. 691 */ 692 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage, 693 s->help, 0, 694 KDB_ENABLE_ALWAYS_SAFE); 695 return 0; 696 } 697 if (!s->usable) 698 return KDB_NOTIMP; 699 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB); 700 if (!s->command) { 701 kdb_printf("Could not allocate new kdb_defcmd table for %s\n", 702 cmdstr); 703 s->usable = false; 704 return KDB_NOTIMP; 705 } 706 memcpy(s->command, save_command, s->count * sizeof(*(s->command))); 707 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); 708 kfree(save_command); 709 return 0; 710 } 711 712 static int kdb_defcmd(int argc, const char **argv) 713 { 714 struct defcmd_set *save_defcmd_set = defcmd_set, *s; 715 if (defcmd_in_progress) { 716 kdb_printf("kdb: nested defcmd detected, assuming missing " 717 "endefcmd\n"); 718 kdb_defcmd2("endefcmd", "endefcmd"); 719 } 720 if (argc == 0) { 721 int i; 722 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { 723 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, 724 s->usage, s->help); 725 for (i = 0; i < s->count; ++i) 726 kdb_printf("%s", s->command[i]); 727 kdb_printf("endefcmd\n"); 728 } 729 return 0; 730 } 731 if (argc != 3) 732 return KDB_ARGCOUNT; 733 if (in_dbg_master()) { 734 kdb_printf("Command only available during kdb_init()\n"); 735 return KDB_NOTIMP; 736 } 737 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set), 738 GFP_KDB); 739 if (!defcmd_set) 740 goto fail_defcmd; 741 memcpy(defcmd_set, save_defcmd_set, 742 defcmd_set_count * sizeof(*defcmd_set)); 743 s = defcmd_set + defcmd_set_count; 744 memset(s, 0, sizeof(*s)); 745 s->usable = true; 746 s->name = kdb_strdup(argv[1], GFP_KDB); 747 if (!s->name) 748 goto fail_name; 749 s->usage = kdb_strdup(argv[2], GFP_KDB); 750 if (!s->usage) 751 goto fail_usage; 752 s->help = kdb_strdup(argv[3], GFP_KDB); 753 if (!s->help) 754 goto fail_help; 755 if (s->usage[0] == '"') { 756 strcpy(s->usage, argv[2]+1); 757 s->usage[strlen(s->usage)-1] = '\0'; 758 } 759 if (s->help[0] == '"') { 760 strcpy(s->help, argv[3]+1); 761 s->help[strlen(s->help)-1] = '\0'; 762 } 763 ++defcmd_set_count; 764 defcmd_in_progress = true; 765 kfree(save_defcmd_set); 766 return 0; 767 fail_help: 768 kfree(s->usage); 769 fail_usage: 770 kfree(s->name); 771 fail_name: 772 kfree(defcmd_set); 773 fail_defcmd: 774 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]); 775 defcmd_set = save_defcmd_set; 776 return KDB_NOTIMP; 777 } 778 779 /* 780 * kdb_exec_defcmd - Execute the set of commands associated with this 781 * defcmd name. 782 * Inputs: 783 * argc argument count 784 * argv argument vector 785 * Returns: 786 * zero for success, a kdb diagnostic if error 787 */ 788 static int kdb_exec_defcmd(int argc, const char **argv) 789 { 790 int i, ret; 791 struct defcmd_set *s; 792 if (argc != 0) 793 return KDB_ARGCOUNT; 794 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { 795 if (strcmp(s->name, argv[0]) == 0) 796 break; 797 } 798 if (i == defcmd_set_count) { 799 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 800 argv[0]); 801 return KDB_NOTIMP; 802 } 803 for (i = 0; i < s->count; ++i) { 804 /* Recursive use of kdb_parse, do not use argv after 805 * this point */ 806 argv = NULL; 807 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); 808 ret = kdb_parse(s->command[i]); 809 if (ret) 810 return ret; 811 } 812 return 0; 813 } 814 815 /* Command history */ 816 #define KDB_CMD_HISTORY_COUNT 32 817 #define CMD_BUFLEN 200 /* kdb_printf: max printline 818 * size == 256 */ 819 static unsigned int cmd_head, cmd_tail; 820 static unsigned int cmdptr; 821 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 822 static char cmd_cur[CMD_BUFLEN]; 823 824 /* 825 * The "str" argument may point to something like | grep xyz 826 */ 827 static void parse_grep(const char *str) 828 { 829 int len; 830 char *cp = (char *)str, *cp2; 831 832 /* sanity check: we should have been called with the \ first */ 833 if (*cp != '|') 834 return; 835 cp++; 836 while (isspace(*cp)) 837 cp++; 838 if (!str_has_prefix(cp, "grep ")) { 839 kdb_printf("invalid 'pipe', see grephelp\n"); 840 return; 841 } 842 cp += 5; 843 while (isspace(*cp)) 844 cp++; 845 cp2 = strchr(cp, '\n'); 846 if (cp2) 847 *cp2 = '\0'; /* remove the trailing newline */ 848 len = strlen(cp); 849 if (len == 0) { 850 kdb_printf("invalid 'pipe', see grephelp\n"); 851 return; 852 } 853 /* now cp points to a nonzero length search string */ 854 if (*cp == '"') { 855 /* allow it be "x y z" by removing the "'s - there must 856 be two of them */ 857 cp++; 858 cp2 = strchr(cp, '"'); 859 if (!cp2) { 860 kdb_printf("invalid quoted string, see grephelp\n"); 861 return; 862 } 863 *cp2 = '\0'; /* end the string where the 2nd " was */ 864 } 865 kdb_grep_leading = 0; 866 if (*cp == '^') { 867 kdb_grep_leading = 1; 868 cp++; 869 } 870 len = strlen(cp); 871 kdb_grep_trailing = 0; 872 if (*(cp+len-1) == '$') { 873 kdb_grep_trailing = 1; 874 *(cp+len-1) = '\0'; 875 } 876 len = strlen(cp); 877 if (!len) 878 return; 879 if (len >= KDB_GREP_STRLEN) { 880 kdb_printf("search string too long\n"); 881 return; 882 } 883 strcpy(kdb_grep_string, cp); 884 kdb_grepping_flag++; 885 return; 886 } 887 888 /* 889 * kdb_parse - Parse the command line, search the command table for a 890 * matching command and invoke the command function. This 891 * function may be called recursively, if it is, the second call 892 * will overwrite argv and cbuf. It is the caller's 893 * responsibility to save their argv if they recursively call 894 * kdb_parse(). 895 * Parameters: 896 * cmdstr The input command line to be parsed. 897 * regs The registers at the time kdb was entered. 898 * Returns: 899 * Zero for success, a kdb diagnostic if failure. 900 * Remarks: 901 * Limited to 20 tokens. 902 * 903 * Real rudimentary tokenization. Basically only whitespace 904 * is considered a token delimeter (but special consideration 905 * is taken of the '=' sign as used by the 'set' command). 906 * 907 * The algorithm used to tokenize the input string relies on 908 * there being at least one whitespace (or otherwise useless) 909 * character between tokens as the character immediately following 910 * the token is altered in-place to a null-byte to terminate the 911 * token string. 912 */ 913 914 #define MAXARGC 20 915 916 int kdb_parse(const char *cmdstr) 917 { 918 static char *argv[MAXARGC]; 919 static int argc; 920 static char cbuf[CMD_BUFLEN+2]; 921 char *cp; 922 char *cpp, quoted; 923 kdbtab_t *tp; 924 int i, escaped, ignore_errors = 0, check_grep = 0; 925 926 /* 927 * First tokenize the command string. 928 */ 929 cp = (char *)cmdstr; 930 931 if (KDB_FLAG(CMD_INTERRUPT)) { 932 /* Previous command was interrupted, newline must not 933 * repeat the command */ 934 KDB_FLAG_CLEAR(CMD_INTERRUPT); 935 KDB_STATE_SET(PAGER); 936 argc = 0; /* no repeat */ 937 } 938 939 if (*cp != '\n' && *cp != '\0') { 940 argc = 0; 941 cpp = cbuf; 942 while (*cp) { 943 /* skip whitespace */ 944 while (isspace(*cp)) 945 cp++; 946 if ((*cp == '\0') || (*cp == '\n') || 947 (*cp == '#' && !defcmd_in_progress)) 948 break; 949 /* special case: check for | grep pattern */ 950 if (*cp == '|') { 951 check_grep++; 952 break; 953 } 954 if (cpp >= cbuf + CMD_BUFLEN) { 955 kdb_printf("kdb_parse: command buffer " 956 "overflow, command ignored\n%s\n", 957 cmdstr); 958 return KDB_NOTFOUND; 959 } 960 if (argc >= MAXARGC - 1) { 961 kdb_printf("kdb_parse: too many arguments, " 962 "command ignored\n%s\n", cmdstr); 963 return KDB_NOTFOUND; 964 } 965 argv[argc++] = cpp; 966 escaped = 0; 967 quoted = '\0'; 968 /* Copy to next unquoted and unescaped 969 * whitespace or '=' */ 970 while (*cp && *cp != '\n' && 971 (escaped || quoted || !isspace(*cp))) { 972 if (cpp >= cbuf + CMD_BUFLEN) 973 break; 974 if (escaped) { 975 escaped = 0; 976 *cpp++ = *cp++; 977 continue; 978 } 979 if (*cp == '\\') { 980 escaped = 1; 981 ++cp; 982 continue; 983 } 984 if (*cp == quoted) 985 quoted = '\0'; 986 else if (*cp == '\'' || *cp == '"') 987 quoted = *cp; 988 *cpp = *cp++; 989 if (*cpp == '=' && !quoted) 990 break; 991 ++cpp; 992 } 993 *cpp++ = '\0'; /* Squash a ws or '=' character */ 994 } 995 } 996 if (!argc) 997 return 0; 998 if (check_grep) 999 parse_grep(cp); 1000 if (defcmd_in_progress) { 1001 int result = kdb_defcmd2(cmdstr, argv[0]); 1002 if (!defcmd_in_progress) { 1003 argc = 0; /* avoid repeat on endefcmd */ 1004 *(argv[0]) = '\0'; 1005 } 1006 return result; 1007 } 1008 if (argv[0][0] == '-' && argv[0][1] && 1009 (argv[0][1] < '0' || argv[0][1] > '9')) { 1010 ignore_errors = 1; 1011 ++argv[0]; 1012 } 1013 1014 for_each_kdbcmd(tp, i) { 1015 if (tp->cmd_name) { 1016 /* 1017 * If this command is allowed to be abbreviated, 1018 * check to see if this is it. 1019 */ 1020 1021 if (tp->cmd_minlen 1022 && (strlen(argv[0]) <= tp->cmd_minlen)) { 1023 if (strncmp(argv[0], 1024 tp->cmd_name, 1025 tp->cmd_minlen) == 0) { 1026 break; 1027 } 1028 } 1029 1030 if (strcmp(argv[0], tp->cmd_name) == 0) 1031 break; 1032 } 1033 } 1034 1035 /* 1036 * If we don't find a command by this name, see if the first 1037 * few characters of this match any of the known commands. 1038 * e.g., md1c20 should match md. 1039 */ 1040 if (i == kdb_max_commands) { 1041 for_each_kdbcmd(tp, i) { 1042 if (tp->cmd_name) { 1043 if (strncmp(argv[0], 1044 tp->cmd_name, 1045 strlen(tp->cmd_name)) == 0) { 1046 break; 1047 } 1048 } 1049 } 1050 } 1051 1052 if (i < kdb_max_commands) { 1053 int result; 1054 1055 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1)) 1056 return KDB_NOPERM; 1057 1058 KDB_STATE_SET(CMD); 1059 result = (*tp->cmd_func)(argc-1, (const char **)argv); 1060 if (result && ignore_errors && result > KDB_CMD_GO) 1061 result = 0; 1062 KDB_STATE_CLEAR(CMD); 1063 1064 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS) 1065 return result; 1066 1067 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0; 1068 if (argv[argc]) 1069 *(argv[argc]) = '\0'; 1070 return result; 1071 } 1072 1073 /* 1074 * If the input with which we were presented does not 1075 * map to an existing command, attempt to parse it as an 1076 * address argument and display the result. Useful for 1077 * obtaining the address of a variable, or the nearest symbol 1078 * to an address contained in a register. 1079 */ 1080 { 1081 unsigned long value; 1082 char *name = NULL; 1083 long offset; 1084 int nextarg = 0; 1085 1086 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1087 &value, &offset, &name)) { 1088 return KDB_NOTFOUND; 1089 } 1090 1091 kdb_printf("%s = ", argv[0]); 1092 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1093 kdb_printf("\n"); 1094 return 0; 1095 } 1096 } 1097 1098 1099 static int handle_ctrl_cmd(char *cmd) 1100 { 1101 #define CTRL_P 16 1102 #define CTRL_N 14 1103 1104 /* initial situation */ 1105 if (cmd_head == cmd_tail) 1106 return 0; 1107 switch (*cmd) { 1108 case CTRL_P: 1109 if (cmdptr != cmd_tail) 1110 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) % 1111 KDB_CMD_HISTORY_COUNT; 1112 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1113 return 1; 1114 case CTRL_N: 1115 if (cmdptr != cmd_head) 1116 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1117 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1118 return 1; 1119 } 1120 return 0; 1121 } 1122 1123 /* 1124 * kdb_reboot - This function implements the 'reboot' command. Reboot 1125 * the system immediately, or loop for ever on failure. 1126 */ 1127 static int kdb_reboot(int argc, const char **argv) 1128 { 1129 emergency_restart(); 1130 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1131 while (1) 1132 cpu_relax(); 1133 /* NOTREACHED */ 1134 return 0; 1135 } 1136 1137 static void kdb_dumpregs(struct pt_regs *regs) 1138 { 1139 int old_lvl = console_loglevel; 1140 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 1141 kdb_trap_printk++; 1142 show_regs(regs); 1143 kdb_trap_printk--; 1144 kdb_printf("\n"); 1145 console_loglevel = old_lvl; 1146 } 1147 1148 static void kdb_set_current_task(struct task_struct *p) 1149 { 1150 kdb_current_task = p; 1151 1152 if (kdb_task_has_cpu(p)) { 1153 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1154 return; 1155 } 1156 kdb_current_regs = NULL; 1157 } 1158 1159 static void drop_newline(char *buf) 1160 { 1161 size_t len = strlen(buf); 1162 1163 if (len == 0) 1164 return; 1165 if (*(buf + len - 1) == '\n') 1166 *(buf + len - 1) = '\0'; 1167 } 1168 1169 /* 1170 * kdb_local - The main code for kdb. This routine is invoked on a 1171 * specific processor, it is not global. The main kdb() routine 1172 * ensures that only one processor at a time is in this routine. 1173 * This code is called with the real reason code on the first 1174 * entry to a kdb session, thereafter it is called with reason 1175 * SWITCH, even if the user goes back to the original cpu. 1176 * Inputs: 1177 * reason The reason KDB was invoked 1178 * error The hardware-defined error code 1179 * regs The exception frame at time of fault/breakpoint. 1180 * db_result Result code from the break or debug point. 1181 * Returns: 1182 * 0 KDB was invoked for an event which it wasn't responsible 1183 * 1 KDB handled the event for which it was invoked. 1184 * KDB_CMD_GO User typed 'go'. 1185 * KDB_CMD_CPU User switched to another cpu. 1186 * KDB_CMD_SS Single step. 1187 */ 1188 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1189 kdb_dbtrap_t db_result) 1190 { 1191 char *cmdbuf; 1192 int diag; 1193 struct task_struct *kdb_current = 1194 kdb_curr_task(raw_smp_processor_id()); 1195 1196 KDB_DEBUG_STATE("kdb_local 1", reason); 1197 kdb_go_count = 0; 1198 if (reason == KDB_REASON_DEBUG) { 1199 /* special case below */ 1200 } else { 1201 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ", 1202 kdb_current, kdb_current ? kdb_current->pid : 0); 1203 #if defined(CONFIG_SMP) 1204 kdb_printf("on processor %d ", raw_smp_processor_id()); 1205 #endif 1206 } 1207 1208 switch (reason) { 1209 case KDB_REASON_DEBUG: 1210 { 1211 /* 1212 * If re-entering kdb after a single step 1213 * command, don't print the message. 1214 */ 1215 switch (db_result) { 1216 case KDB_DB_BPT: 1217 kdb_printf("\nEntering kdb (0x%px, pid %d) ", 1218 kdb_current, kdb_current->pid); 1219 #if defined(CONFIG_SMP) 1220 kdb_printf("on processor %d ", raw_smp_processor_id()); 1221 #endif 1222 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1223 instruction_pointer(regs)); 1224 break; 1225 case KDB_DB_SS: 1226 break; 1227 case KDB_DB_SSBPT: 1228 KDB_DEBUG_STATE("kdb_local 4", reason); 1229 return 1; /* kdba_db_trap did the work */ 1230 default: 1231 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1232 db_result); 1233 break; 1234 } 1235 1236 } 1237 break; 1238 case KDB_REASON_ENTER: 1239 if (KDB_STATE(KEYBOARD)) 1240 kdb_printf("due to Keyboard Entry\n"); 1241 else 1242 kdb_printf("due to KDB_ENTER()\n"); 1243 break; 1244 case KDB_REASON_KEYBOARD: 1245 KDB_STATE_SET(KEYBOARD); 1246 kdb_printf("due to Keyboard Entry\n"); 1247 break; 1248 case KDB_REASON_ENTER_SLAVE: 1249 /* drop through, slaves only get released via cpu switch */ 1250 case KDB_REASON_SWITCH: 1251 kdb_printf("due to cpu switch\n"); 1252 break; 1253 case KDB_REASON_OOPS: 1254 kdb_printf("Oops: %s\n", kdb_diemsg); 1255 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1256 instruction_pointer(regs)); 1257 kdb_dumpregs(regs); 1258 break; 1259 case KDB_REASON_SYSTEM_NMI: 1260 kdb_printf("due to System NonMaskable Interrupt\n"); 1261 break; 1262 case KDB_REASON_NMI: 1263 kdb_printf("due to NonMaskable Interrupt @ " 1264 kdb_machreg_fmt "\n", 1265 instruction_pointer(regs)); 1266 break; 1267 case KDB_REASON_SSTEP: 1268 case KDB_REASON_BREAK: 1269 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1270 reason == KDB_REASON_BREAK ? 1271 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1272 /* 1273 * Determine if this breakpoint is one that we 1274 * are interested in. 1275 */ 1276 if (db_result != KDB_DB_BPT) { 1277 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1278 db_result); 1279 KDB_DEBUG_STATE("kdb_local 6", reason); 1280 return 0; /* Not for us, dismiss it */ 1281 } 1282 break; 1283 case KDB_REASON_RECURSE: 1284 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1285 instruction_pointer(regs)); 1286 break; 1287 default: 1288 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1289 KDB_DEBUG_STATE("kdb_local 8", reason); 1290 return 0; /* Not for us, dismiss it */ 1291 } 1292 1293 while (1) { 1294 /* 1295 * Initialize pager context. 1296 */ 1297 kdb_nextline = 1; 1298 KDB_STATE_CLEAR(SUPPRESS); 1299 kdb_grepping_flag = 0; 1300 /* ensure the old search does not leak into '/' commands */ 1301 kdb_grep_string[0] = '\0'; 1302 1303 cmdbuf = cmd_cur; 1304 *cmdbuf = '\0'; 1305 *(cmd_hist[cmd_head]) = '\0'; 1306 1307 do_full_getstr: 1308 /* PROMPT can only be set if we have MEM_READ permission. */ 1309 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1310 raw_smp_processor_id()); 1311 if (defcmd_in_progress) 1312 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); 1313 1314 /* 1315 * Fetch command from keyboard 1316 */ 1317 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1318 if (*cmdbuf != '\n') { 1319 if (*cmdbuf < 32) { 1320 if (cmdptr == cmd_head) { 1321 strscpy(cmd_hist[cmd_head], cmd_cur, 1322 CMD_BUFLEN); 1323 *(cmd_hist[cmd_head] + 1324 strlen(cmd_hist[cmd_head])-1) = '\0'; 1325 } 1326 if (!handle_ctrl_cmd(cmdbuf)) 1327 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1328 cmdbuf = cmd_cur; 1329 goto do_full_getstr; 1330 } else { 1331 strscpy(cmd_hist[cmd_head], cmd_cur, 1332 CMD_BUFLEN); 1333 } 1334 1335 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1336 if (cmd_head == cmd_tail) 1337 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1338 } 1339 1340 cmdptr = cmd_head; 1341 diag = kdb_parse(cmdbuf); 1342 if (diag == KDB_NOTFOUND) { 1343 drop_newline(cmdbuf); 1344 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1345 diag = 0; 1346 } 1347 if (diag == KDB_CMD_GO 1348 || diag == KDB_CMD_CPU 1349 || diag == KDB_CMD_SS 1350 || diag == KDB_CMD_KGDB) 1351 break; 1352 1353 if (diag) 1354 kdb_cmderror(diag); 1355 } 1356 KDB_DEBUG_STATE("kdb_local 9", diag); 1357 return diag; 1358 } 1359 1360 1361 /* 1362 * kdb_print_state - Print the state data for the current processor 1363 * for debugging. 1364 * Inputs: 1365 * text Identifies the debug point 1366 * value Any integer value to be printed, e.g. reason code. 1367 */ 1368 void kdb_print_state(const char *text, int value) 1369 { 1370 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1371 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1372 kdb_state); 1373 } 1374 1375 /* 1376 * kdb_main_loop - After initial setup and assignment of the 1377 * controlling cpu, all cpus are in this loop. One cpu is in 1378 * control and will issue the kdb prompt, the others will spin 1379 * until 'go' or cpu switch. 1380 * 1381 * To get a consistent view of the kernel stacks for all 1382 * processes, this routine is invoked from the main kdb code via 1383 * an architecture specific routine. kdba_main_loop is 1384 * responsible for making the kernel stacks consistent for all 1385 * processes, there should be no difference between a blocked 1386 * process and a running process as far as kdb is concerned. 1387 * Inputs: 1388 * reason The reason KDB was invoked 1389 * error The hardware-defined error code 1390 * reason2 kdb's current reason code. 1391 * Initially error but can change 1392 * according to kdb state. 1393 * db_result Result code from break or debug point. 1394 * regs The exception frame at time of fault/breakpoint. 1395 * should always be valid. 1396 * Returns: 1397 * 0 KDB was invoked for an event which it wasn't responsible 1398 * 1 KDB handled the event for which it was invoked. 1399 */ 1400 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1401 kdb_dbtrap_t db_result, struct pt_regs *regs) 1402 { 1403 int result = 1; 1404 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1405 while (1) { 1406 /* 1407 * All processors except the one that is in control 1408 * will spin here. 1409 */ 1410 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1411 while (KDB_STATE(HOLD_CPU)) { 1412 /* state KDB is turned off by kdb_cpu to see if the 1413 * other cpus are still live, each cpu in this loop 1414 * turns it back on. 1415 */ 1416 if (!KDB_STATE(KDB)) 1417 KDB_STATE_SET(KDB); 1418 } 1419 1420 KDB_STATE_CLEAR(SUPPRESS); 1421 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1422 if (KDB_STATE(LEAVING)) 1423 break; /* Another cpu said 'go' */ 1424 /* Still using kdb, this processor is in control */ 1425 result = kdb_local(reason2, error, regs, db_result); 1426 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1427 1428 if (result == KDB_CMD_CPU) 1429 break; 1430 1431 if (result == KDB_CMD_SS) { 1432 KDB_STATE_SET(DOING_SS); 1433 break; 1434 } 1435 1436 if (result == KDB_CMD_KGDB) { 1437 if (!KDB_STATE(DOING_KGDB)) 1438 kdb_printf("Entering please attach debugger " 1439 "or use $D#44+ or $3#33\n"); 1440 break; 1441 } 1442 if (result && result != 1 && result != KDB_CMD_GO) 1443 kdb_printf("\nUnexpected kdb_local return code %d\n", 1444 result); 1445 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1446 break; 1447 } 1448 if (KDB_STATE(DOING_SS)) 1449 KDB_STATE_CLEAR(SSBPT); 1450 1451 /* Clean up any keyboard devices before leaving */ 1452 kdb_kbd_cleanup_state(); 1453 1454 return result; 1455 } 1456 1457 /* 1458 * kdb_mdr - This function implements the guts of the 'mdr', memory 1459 * read command. 1460 * mdr <addr arg>,<byte count> 1461 * Inputs: 1462 * addr Start address 1463 * count Number of bytes 1464 * Returns: 1465 * Always 0. Any errors are detected and printed by kdb_getarea. 1466 */ 1467 static int kdb_mdr(unsigned long addr, unsigned int count) 1468 { 1469 unsigned char c; 1470 while (count--) { 1471 if (kdb_getarea(c, addr)) 1472 return 0; 1473 kdb_printf("%02x", c); 1474 addr++; 1475 } 1476 kdb_printf("\n"); 1477 return 0; 1478 } 1479 1480 /* 1481 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1482 * 'md8' 'mdr' and 'mds' commands. 1483 * 1484 * md|mds [<addr arg> [<line count> [<radix>]]] 1485 * mdWcN [<addr arg> [<line count> [<radix>]]] 1486 * where W = is the width (1, 2, 4 or 8) and N is the count. 1487 * for eg., md1c20 reads 20 bytes, 1 at a time. 1488 * mdr <addr arg>,<byte count> 1489 */ 1490 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1491 int symbolic, int nosect, int bytesperword, 1492 int num, int repeat, int phys) 1493 { 1494 /* print just one line of data */ 1495 kdb_symtab_t symtab; 1496 char cbuf[32]; 1497 char *c = cbuf; 1498 int i; 1499 int j; 1500 unsigned long word; 1501 1502 memset(cbuf, '\0', sizeof(cbuf)); 1503 if (phys) 1504 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1505 else 1506 kdb_printf(kdb_machreg_fmt0 " ", addr); 1507 1508 for (i = 0; i < num && repeat--; i++) { 1509 if (phys) { 1510 if (kdb_getphysword(&word, addr, bytesperword)) 1511 break; 1512 } else if (kdb_getword(&word, addr, bytesperword)) 1513 break; 1514 kdb_printf(fmtstr, word); 1515 if (symbolic) 1516 kdbnearsym(word, &symtab); 1517 else 1518 memset(&symtab, 0, sizeof(symtab)); 1519 if (symtab.sym_name) { 1520 kdb_symbol_print(word, &symtab, 0); 1521 if (!nosect) { 1522 kdb_printf("\n"); 1523 kdb_printf(" %s %s " 1524 kdb_machreg_fmt " " 1525 kdb_machreg_fmt " " 1526 kdb_machreg_fmt, symtab.mod_name, 1527 symtab.sec_name, symtab.sec_start, 1528 symtab.sym_start, symtab.sym_end); 1529 } 1530 addr += bytesperword; 1531 } else { 1532 union { 1533 u64 word; 1534 unsigned char c[8]; 1535 } wc; 1536 unsigned char *cp; 1537 #ifdef __BIG_ENDIAN 1538 cp = wc.c + 8 - bytesperword; 1539 #else 1540 cp = wc.c; 1541 #endif 1542 wc.word = word; 1543 #define printable_char(c) \ 1544 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1545 for (j = 0; j < bytesperword; j++) 1546 *c++ = printable_char(*cp++); 1547 addr += bytesperword; 1548 #undef printable_char 1549 } 1550 } 1551 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1552 " ", cbuf); 1553 } 1554 1555 static int kdb_md(int argc, const char **argv) 1556 { 1557 static unsigned long last_addr; 1558 static int last_radix, last_bytesperword, last_repeat; 1559 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1560 int nosect = 0; 1561 char fmtchar, fmtstr[64]; 1562 unsigned long addr; 1563 unsigned long word; 1564 long offset = 0; 1565 int symbolic = 0; 1566 int valid = 0; 1567 int phys = 0; 1568 int raw = 0; 1569 1570 kdbgetintenv("MDCOUNT", &mdcount); 1571 kdbgetintenv("RADIX", &radix); 1572 kdbgetintenv("BYTESPERWORD", &bytesperword); 1573 1574 /* Assume 'md <addr>' and start with environment values */ 1575 repeat = mdcount * 16 / bytesperword; 1576 1577 if (strcmp(argv[0], "mdr") == 0) { 1578 if (argc == 2 || (argc == 0 && last_addr != 0)) 1579 valid = raw = 1; 1580 else 1581 return KDB_ARGCOUNT; 1582 } else if (isdigit(argv[0][2])) { 1583 bytesperword = (int)(argv[0][2] - '0'); 1584 if (bytesperword == 0) { 1585 bytesperword = last_bytesperword; 1586 if (bytesperword == 0) 1587 bytesperword = 4; 1588 } 1589 last_bytesperword = bytesperword; 1590 repeat = mdcount * 16 / bytesperword; 1591 if (!argv[0][3]) 1592 valid = 1; 1593 else if (argv[0][3] == 'c' && argv[0][4]) { 1594 char *p; 1595 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1596 mdcount = ((repeat * bytesperword) + 15) / 16; 1597 valid = !*p; 1598 } 1599 last_repeat = repeat; 1600 } else if (strcmp(argv[0], "md") == 0) 1601 valid = 1; 1602 else if (strcmp(argv[0], "mds") == 0) 1603 valid = 1; 1604 else if (strcmp(argv[0], "mdp") == 0) { 1605 phys = valid = 1; 1606 } 1607 if (!valid) 1608 return KDB_NOTFOUND; 1609 1610 if (argc == 0) { 1611 if (last_addr == 0) 1612 return KDB_ARGCOUNT; 1613 addr = last_addr; 1614 radix = last_radix; 1615 bytesperword = last_bytesperword; 1616 repeat = last_repeat; 1617 if (raw) 1618 mdcount = repeat; 1619 else 1620 mdcount = ((repeat * bytesperword) + 15) / 16; 1621 } 1622 1623 if (argc) { 1624 unsigned long val; 1625 int diag, nextarg = 1; 1626 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1627 &offset, NULL); 1628 if (diag) 1629 return diag; 1630 if (argc > nextarg+2) 1631 return KDB_ARGCOUNT; 1632 1633 if (argc >= nextarg) { 1634 diag = kdbgetularg(argv[nextarg], &val); 1635 if (!diag) { 1636 mdcount = (int) val; 1637 if (raw) 1638 repeat = mdcount; 1639 else 1640 repeat = mdcount * 16 / bytesperword; 1641 } 1642 } 1643 if (argc >= nextarg+1) { 1644 diag = kdbgetularg(argv[nextarg+1], &val); 1645 if (!diag) 1646 radix = (int) val; 1647 } 1648 } 1649 1650 if (strcmp(argv[0], "mdr") == 0) { 1651 int ret; 1652 last_addr = addr; 1653 ret = kdb_mdr(addr, mdcount); 1654 last_addr += mdcount; 1655 last_repeat = mdcount; 1656 last_bytesperword = bytesperword; // to make REPEAT happy 1657 return ret; 1658 } 1659 1660 switch (radix) { 1661 case 10: 1662 fmtchar = 'd'; 1663 break; 1664 case 16: 1665 fmtchar = 'x'; 1666 break; 1667 case 8: 1668 fmtchar = 'o'; 1669 break; 1670 default: 1671 return KDB_BADRADIX; 1672 } 1673 1674 last_radix = radix; 1675 1676 if (bytesperword > KDB_WORD_SIZE) 1677 return KDB_BADWIDTH; 1678 1679 switch (bytesperword) { 1680 case 8: 1681 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1682 break; 1683 case 4: 1684 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1685 break; 1686 case 2: 1687 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1688 break; 1689 case 1: 1690 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1691 break; 1692 default: 1693 return KDB_BADWIDTH; 1694 } 1695 1696 last_repeat = repeat; 1697 last_bytesperword = bytesperword; 1698 1699 if (strcmp(argv[0], "mds") == 0) { 1700 symbolic = 1; 1701 /* Do not save these changes as last_*, they are temporary mds 1702 * overrides. 1703 */ 1704 bytesperword = KDB_WORD_SIZE; 1705 repeat = mdcount; 1706 kdbgetintenv("NOSECT", &nosect); 1707 } 1708 1709 /* Round address down modulo BYTESPERWORD */ 1710 1711 addr &= ~(bytesperword-1); 1712 1713 while (repeat > 0) { 1714 unsigned long a; 1715 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1716 1717 if (KDB_FLAG(CMD_INTERRUPT)) 1718 return 0; 1719 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1720 if (phys) { 1721 if (kdb_getphysword(&word, a, bytesperword) 1722 || word) 1723 break; 1724 } else if (kdb_getword(&word, a, bytesperword) || word) 1725 break; 1726 } 1727 n = min(num, repeat); 1728 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1729 num, repeat, phys); 1730 addr += bytesperword * n; 1731 repeat -= n; 1732 z = (z + num - 1) / num; 1733 if (z > 2) { 1734 int s = num * (z-2); 1735 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1736 " zero suppressed\n", 1737 addr, addr + bytesperword * s - 1); 1738 addr += bytesperword * s; 1739 repeat -= s; 1740 } 1741 } 1742 last_addr = addr; 1743 1744 return 0; 1745 } 1746 1747 /* 1748 * kdb_mm - This function implements the 'mm' command. 1749 * mm address-expression new-value 1750 * Remarks: 1751 * mm works on machine words, mmW works on bytes. 1752 */ 1753 static int kdb_mm(int argc, const char **argv) 1754 { 1755 int diag; 1756 unsigned long addr; 1757 long offset = 0; 1758 unsigned long contents; 1759 int nextarg; 1760 int width; 1761 1762 if (argv[0][2] && !isdigit(argv[0][2])) 1763 return KDB_NOTFOUND; 1764 1765 if (argc < 2) 1766 return KDB_ARGCOUNT; 1767 1768 nextarg = 1; 1769 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1770 if (diag) 1771 return diag; 1772 1773 if (nextarg > argc) 1774 return KDB_ARGCOUNT; 1775 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1776 if (diag) 1777 return diag; 1778 1779 if (nextarg != argc + 1) 1780 return KDB_ARGCOUNT; 1781 1782 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1783 diag = kdb_putword(addr, contents, width); 1784 if (diag) 1785 return diag; 1786 1787 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1788 1789 return 0; 1790 } 1791 1792 /* 1793 * kdb_go - This function implements the 'go' command. 1794 * go [address-expression] 1795 */ 1796 static int kdb_go(int argc, const char **argv) 1797 { 1798 unsigned long addr; 1799 int diag; 1800 int nextarg; 1801 long offset; 1802 1803 if (raw_smp_processor_id() != kdb_initial_cpu) { 1804 kdb_printf("go must execute on the entry cpu, " 1805 "please use \"cpu %d\" and then execute go\n", 1806 kdb_initial_cpu); 1807 return KDB_BADCPUNUM; 1808 } 1809 if (argc == 1) { 1810 nextarg = 1; 1811 diag = kdbgetaddrarg(argc, argv, &nextarg, 1812 &addr, &offset, NULL); 1813 if (diag) 1814 return diag; 1815 } else if (argc) { 1816 return KDB_ARGCOUNT; 1817 } 1818 1819 diag = KDB_CMD_GO; 1820 if (KDB_FLAG(CATASTROPHIC)) { 1821 kdb_printf("Catastrophic error detected\n"); 1822 kdb_printf("kdb_continue_catastrophic=%d, ", 1823 kdb_continue_catastrophic); 1824 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1825 kdb_printf("type go a second time if you really want " 1826 "to continue\n"); 1827 return 0; 1828 } 1829 if (kdb_continue_catastrophic == 2) { 1830 kdb_printf("forcing reboot\n"); 1831 kdb_reboot(0, NULL); 1832 } 1833 kdb_printf("attempting to continue\n"); 1834 } 1835 return diag; 1836 } 1837 1838 /* 1839 * kdb_rd - This function implements the 'rd' command. 1840 */ 1841 static int kdb_rd(int argc, const char **argv) 1842 { 1843 int len = kdb_check_regs(); 1844 #if DBG_MAX_REG_NUM > 0 1845 int i; 1846 char *rname; 1847 int rsize; 1848 u64 reg64; 1849 u32 reg32; 1850 u16 reg16; 1851 u8 reg8; 1852 1853 if (len) 1854 return len; 1855 1856 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1857 rsize = dbg_reg_def[i].size * 2; 1858 if (rsize > 16) 1859 rsize = 2; 1860 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1861 len = 0; 1862 kdb_printf("\n"); 1863 } 1864 if (len) 1865 len += kdb_printf(" "); 1866 switch(dbg_reg_def[i].size * 8) { 1867 case 8: 1868 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1869 if (!rname) 1870 break; 1871 len += kdb_printf("%s: %02x", rname, reg8); 1872 break; 1873 case 16: 1874 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1875 if (!rname) 1876 break; 1877 len += kdb_printf("%s: %04x", rname, reg16); 1878 break; 1879 case 32: 1880 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1881 if (!rname) 1882 break; 1883 len += kdb_printf("%s: %08x", rname, reg32); 1884 break; 1885 case 64: 1886 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1887 if (!rname) 1888 break; 1889 len += kdb_printf("%s: %016llx", rname, reg64); 1890 break; 1891 default: 1892 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1893 } 1894 } 1895 kdb_printf("\n"); 1896 #else 1897 if (len) 1898 return len; 1899 1900 kdb_dumpregs(kdb_current_regs); 1901 #endif 1902 return 0; 1903 } 1904 1905 /* 1906 * kdb_rm - This function implements the 'rm' (register modify) command. 1907 * rm register-name new-contents 1908 * Remarks: 1909 * Allows register modification with the same restrictions as gdb 1910 */ 1911 static int kdb_rm(int argc, const char **argv) 1912 { 1913 #if DBG_MAX_REG_NUM > 0 1914 int diag; 1915 const char *rname; 1916 int i; 1917 u64 reg64; 1918 u32 reg32; 1919 u16 reg16; 1920 u8 reg8; 1921 1922 if (argc != 2) 1923 return KDB_ARGCOUNT; 1924 /* 1925 * Allow presence or absence of leading '%' symbol. 1926 */ 1927 rname = argv[1]; 1928 if (*rname == '%') 1929 rname++; 1930 1931 diag = kdbgetu64arg(argv[2], ®64); 1932 if (diag) 1933 return diag; 1934 1935 diag = kdb_check_regs(); 1936 if (diag) 1937 return diag; 1938 1939 diag = KDB_BADREG; 1940 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1941 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1942 diag = 0; 1943 break; 1944 } 1945 } 1946 if (!diag) { 1947 switch(dbg_reg_def[i].size * 8) { 1948 case 8: 1949 reg8 = reg64; 1950 dbg_set_reg(i, ®8, kdb_current_regs); 1951 break; 1952 case 16: 1953 reg16 = reg64; 1954 dbg_set_reg(i, ®16, kdb_current_regs); 1955 break; 1956 case 32: 1957 reg32 = reg64; 1958 dbg_set_reg(i, ®32, kdb_current_regs); 1959 break; 1960 case 64: 1961 dbg_set_reg(i, ®64, kdb_current_regs); 1962 break; 1963 } 1964 } 1965 return diag; 1966 #else 1967 kdb_printf("ERROR: Register set currently not implemented\n"); 1968 return 0; 1969 #endif 1970 } 1971 1972 #if defined(CONFIG_MAGIC_SYSRQ) 1973 /* 1974 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 1975 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 1976 * sr <magic-sysrq-code> 1977 */ 1978 static int kdb_sr(int argc, const char **argv) 1979 { 1980 bool check_mask = 1981 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false); 1982 1983 if (argc != 1) 1984 return KDB_ARGCOUNT; 1985 1986 kdb_trap_printk++; 1987 __handle_sysrq(*argv[1], check_mask); 1988 kdb_trap_printk--; 1989 1990 return 0; 1991 } 1992 #endif /* CONFIG_MAGIC_SYSRQ */ 1993 1994 /* 1995 * kdb_ef - This function implements the 'regs' (display exception 1996 * frame) command. This command takes an address and expects to 1997 * find an exception frame at that address, formats and prints 1998 * it. 1999 * regs address-expression 2000 * Remarks: 2001 * Not done yet. 2002 */ 2003 static int kdb_ef(int argc, const char **argv) 2004 { 2005 int diag; 2006 unsigned long addr; 2007 long offset; 2008 int nextarg; 2009 2010 if (argc != 1) 2011 return KDB_ARGCOUNT; 2012 2013 nextarg = 1; 2014 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2015 if (diag) 2016 return diag; 2017 show_regs((struct pt_regs *)addr); 2018 return 0; 2019 } 2020 2021 #if defined(CONFIG_MODULES) 2022 /* 2023 * kdb_lsmod - This function implements the 'lsmod' command. Lists 2024 * currently loaded kernel modules. 2025 * Mostly taken from userland lsmod. 2026 */ 2027 static int kdb_lsmod(int argc, const char **argv) 2028 { 2029 struct module *mod; 2030 2031 if (argc != 0) 2032 return KDB_ARGCOUNT; 2033 2034 kdb_printf("Module Size modstruct Used by\n"); 2035 list_for_each_entry(mod, kdb_modules, list) { 2036 if (mod->state == MODULE_STATE_UNFORMED) 2037 continue; 2038 2039 kdb_printf("%-20s%8u 0x%px ", mod->name, 2040 mod->core_layout.size, (void *)mod); 2041 #ifdef CONFIG_MODULE_UNLOAD 2042 kdb_printf("%4d ", module_refcount(mod)); 2043 #endif 2044 if (mod->state == MODULE_STATE_GOING) 2045 kdb_printf(" (Unloading)"); 2046 else if (mod->state == MODULE_STATE_COMING) 2047 kdb_printf(" (Loading)"); 2048 else 2049 kdb_printf(" (Live)"); 2050 kdb_printf(" 0x%px", mod->core_layout.base); 2051 2052 #ifdef CONFIG_MODULE_UNLOAD 2053 { 2054 struct module_use *use; 2055 kdb_printf(" [ "); 2056 list_for_each_entry(use, &mod->source_list, 2057 source_list) 2058 kdb_printf("%s ", use->target->name); 2059 kdb_printf("]\n"); 2060 } 2061 #endif 2062 } 2063 2064 return 0; 2065 } 2066 2067 #endif /* CONFIG_MODULES */ 2068 2069 /* 2070 * kdb_env - This function implements the 'env' command. Display the 2071 * current environment variables. 2072 */ 2073 2074 static int kdb_env(int argc, const char **argv) 2075 { 2076 int i; 2077 2078 for (i = 0; i < __nenv; i++) { 2079 if (__env[i]) 2080 kdb_printf("%s\n", __env[i]); 2081 } 2082 2083 if (KDB_DEBUG(MASK)) 2084 kdb_printf("KDBDEBUG=0x%x\n", 2085 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT); 2086 2087 return 0; 2088 } 2089 2090 #ifdef CONFIG_PRINTK 2091 /* 2092 * kdb_dmesg - This function implements the 'dmesg' command to display 2093 * the contents of the syslog buffer. 2094 * dmesg [lines] [adjust] 2095 */ 2096 static int kdb_dmesg(int argc, const char **argv) 2097 { 2098 int diag; 2099 int logging; 2100 int lines = 0; 2101 int adjust = 0; 2102 int n = 0; 2103 int skip = 0; 2104 struct kmsg_dumper dumper = { .active = 1 }; 2105 size_t len; 2106 char buf[201]; 2107 2108 if (argc > 2) 2109 return KDB_ARGCOUNT; 2110 if (argc) { 2111 char *cp; 2112 lines = simple_strtol(argv[1], &cp, 0); 2113 if (*cp) 2114 lines = 0; 2115 if (argc > 1) { 2116 adjust = simple_strtoul(argv[2], &cp, 0); 2117 if (*cp || adjust < 0) 2118 adjust = 0; 2119 } 2120 } 2121 2122 /* disable LOGGING if set */ 2123 diag = kdbgetintenv("LOGGING", &logging); 2124 if (!diag && logging) { 2125 const char *setargs[] = { "set", "LOGGING", "0" }; 2126 kdb_set(2, setargs); 2127 } 2128 2129 kmsg_dump_rewind_nolock(&dumper); 2130 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL)) 2131 n++; 2132 2133 if (lines < 0) { 2134 if (adjust >= n) 2135 kdb_printf("buffer only contains %d lines, nothing " 2136 "printed\n", n); 2137 else if (adjust - lines >= n) 2138 kdb_printf("buffer only contains %d lines, last %d " 2139 "lines printed\n", n, n - adjust); 2140 skip = adjust; 2141 lines = abs(lines); 2142 } else if (lines > 0) { 2143 skip = n - lines - adjust; 2144 lines = abs(lines); 2145 if (adjust >= n) { 2146 kdb_printf("buffer only contains %d lines, " 2147 "nothing printed\n", n); 2148 skip = n; 2149 } else if (skip < 0) { 2150 lines += skip; 2151 skip = 0; 2152 kdb_printf("buffer only contains %d lines, first " 2153 "%d lines printed\n", n, lines); 2154 } 2155 } else { 2156 lines = n; 2157 } 2158 2159 if (skip >= n || skip < 0) 2160 return 0; 2161 2162 kmsg_dump_rewind_nolock(&dumper); 2163 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) { 2164 if (skip) { 2165 skip--; 2166 continue; 2167 } 2168 if (!lines--) 2169 break; 2170 if (KDB_FLAG(CMD_INTERRUPT)) 2171 return 0; 2172 2173 kdb_printf("%.*s\n", (int)len - 1, buf); 2174 } 2175 2176 return 0; 2177 } 2178 #endif /* CONFIG_PRINTK */ 2179 2180 /* Make sure we balance enable/disable calls, must disable first. */ 2181 static atomic_t kdb_nmi_disabled; 2182 2183 static int kdb_disable_nmi(int argc, const char *argv[]) 2184 { 2185 if (atomic_read(&kdb_nmi_disabled)) 2186 return 0; 2187 atomic_set(&kdb_nmi_disabled, 1); 2188 arch_kgdb_ops.enable_nmi(0); 2189 return 0; 2190 } 2191 2192 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2193 { 2194 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2195 return -EINVAL; 2196 arch_kgdb_ops.enable_nmi(1); 2197 return 0; 2198 } 2199 2200 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2201 .set = kdb_param_enable_nmi, 2202 }; 2203 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2204 2205 /* 2206 * kdb_cpu - This function implements the 'cpu' command. 2207 * cpu [<cpunum>] 2208 * Returns: 2209 * KDB_CMD_CPU for success, a kdb diagnostic if error 2210 */ 2211 static void kdb_cpu_status(void) 2212 { 2213 int i, start_cpu, first_print = 1; 2214 char state, prev_state = '?'; 2215 2216 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2217 kdb_printf("Available cpus: "); 2218 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2219 if (!cpu_online(i)) { 2220 state = 'F'; /* cpu is offline */ 2221 } else if (!kgdb_info[i].enter_kgdb) { 2222 state = 'D'; /* cpu is online but unresponsive */ 2223 } else { 2224 state = ' '; /* cpu is responding to kdb */ 2225 if (kdb_task_state_char(KDB_TSK(i)) == 'I') 2226 state = 'I'; /* idle task */ 2227 } 2228 if (state != prev_state) { 2229 if (prev_state != '?') { 2230 if (!first_print) 2231 kdb_printf(", "); 2232 first_print = 0; 2233 kdb_printf("%d", start_cpu); 2234 if (start_cpu < i-1) 2235 kdb_printf("-%d", i-1); 2236 if (prev_state != ' ') 2237 kdb_printf("(%c)", prev_state); 2238 } 2239 prev_state = state; 2240 start_cpu = i; 2241 } 2242 } 2243 /* print the trailing cpus, ignoring them if they are all offline */ 2244 if (prev_state != 'F') { 2245 if (!first_print) 2246 kdb_printf(", "); 2247 kdb_printf("%d", start_cpu); 2248 if (start_cpu < i-1) 2249 kdb_printf("-%d", i-1); 2250 if (prev_state != ' ') 2251 kdb_printf("(%c)", prev_state); 2252 } 2253 kdb_printf("\n"); 2254 } 2255 2256 static int kdb_cpu(int argc, const char **argv) 2257 { 2258 unsigned long cpunum; 2259 int diag; 2260 2261 if (argc == 0) { 2262 kdb_cpu_status(); 2263 return 0; 2264 } 2265 2266 if (argc != 1) 2267 return KDB_ARGCOUNT; 2268 2269 diag = kdbgetularg(argv[1], &cpunum); 2270 if (diag) 2271 return diag; 2272 2273 /* 2274 * Validate cpunum 2275 */ 2276 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb) 2277 return KDB_BADCPUNUM; 2278 2279 dbg_switch_cpu = cpunum; 2280 2281 /* 2282 * Switch to other cpu 2283 */ 2284 return KDB_CMD_CPU; 2285 } 2286 2287 /* The user may not realize that ps/bta with no parameters does not print idle 2288 * or sleeping system daemon processes, so tell them how many were suppressed. 2289 */ 2290 void kdb_ps_suppressed(void) 2291 { 2292 int idle = 0, daemon = 0; 2293 unsigned long mask_I = kdb_task_state_string("I"), 2294 mask_M = kdb_task_state_string("M"); 2295 unsigned long cpu; 2296 const struct task_struct *p, *g; 2297 for_each_online_cpu(cpu) { 2298 p = kdb_curr_task(cpu); 2299 if (kdb_task_state(p, mask_I)) 2300 ++idle; 2301 } 2302 for_each_process_thread(g, p) { 2303 if (kdb_task_state(p, mask_M)) 2304 ++daemon; 2305 } 2306 if (idle || daemon) { 2307 if (idle) 2308 kdb_printf("%d idle process%s (state I)%s\n", 2309 idle, idle == 1 ? "" : "es", 2310 daemon ? " and " : ""); 2311 if (daemon) 2312 kdb_printf("%d sleeping system daemon (state M) " 2313 "process%s", daemon, 2314 daemon == 1 ? "" : "es"); 2315 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2316 } 2317 } 2318 2319 /* 2320 * kdb_ps - This function implements the 'ps' command which shows a 2321 * list of the active processes. 2322 * ps [DRSTCZEUIMA] All processes, optionally filtered by state 2323 */ 2324 void kdb_ps1(const struct task_struct *p) 2325 { 2326 int cpu; 2327 unsigned long tmp; 2328 2329 if (!p || 2330 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long))) 2331 return; 2332 2333 cpu = kdb_process_cpu(p); 2334 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n", 2335 (void *)p, p->pid, p->parent->pid, 2336 kdb_task_has_cpu(p), kdb_process_cpu(p), 2337 kdb_task_state_char(p), 2338 (void *)(&p->thread), 2339 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2340 p->comm); 2341 if (kdb_task_has_cpu(p)) { 2342 if (!KDB_TSK(cpu)) { 2343 kdb_printf(" Error: no saved data for this cpu\n"); 2344 } else { 2345 if (KDB_TSK(cpu) != p) 2346 kdb_printf(" Error: does not match running " 2347 "process table (0x%px)\n", KDB_TSK(cpu)); 2348 } 2349 } 2350 } 2351 2352 static int kdb_ps(int argc, const char **argv) 2353 { 2354 struct task_struct *g, *p; 2355 unsigned long mask, cpu; 2356 2357 if (argc == 0) 2358 kdb_ps_suppressed(); 2359 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2360 (int)(2*sizeof(void *))+2, "Task Addr", 2361 (int)(2*sizeof(void *))+2, "Thread"); 2362 mask = kdb_task_state_string(argc ? argv[1] : NULL); 2363 /* Run the active tasks first */ 2364 for_each_online_cpu(cpu) { 2365 if (KDB_FLAG(CMD_INTERRUPT)) 2366 return 0; 2367 p = kdb_curr_task(cpu); 2368 if (kdb_task_state(p, mask)) 2369 kdb_ps1(p); 2370 } 2371 kdb_printf("\n"); 2372 /* Now the real tasks */ 2373 for_each_process_thread(g, p) { 2374 if (KDB_FLAG(CMD_INTERRUPT)) 2375 return 0; 2376 if (kdb_task_state(p, mask)) 2377 kdb_ps1(p); 2378 } 2379 2380 return 0; 2381 } 2382 2383 /* 2384 * kdb_pid - This function implements the 'pid' command which switches 2385 * the currently active process. 2386 * pid [<pid> | R] 2387 */ 2388 static int kdb_pid(int argc, const char **argv) 2389 { 2390 struct task_struct *p; 2391 unsigned long val; 2392 int diag; 2393 2394 if (argc > 1) 2395 return KDB_ARGCOUNT; 2396 2397 if (argc) { 2398 if (strcmp(argv[1], "R") == 0) { 2399 p = KDB_TSK(kdb_initial_cpu); 2400 } else { 2401 diag = kdbgetularg(argv[1], &val); 2402 if (diag) 2403 return KDB_BADINT; 2404 2405 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2406 if (!p) { 2407 kdb_printf("No task with pid=%d\n", (pid_t)val); 2408 return 0; 2409 } 2410 } 2411 kdb_set_current_task(p); 2412 } 2413 kdb_printf("KDB current process is %s(pid=%d)\n", 2414 kdb_current_task->comm, 2415 kdb_current_task->pid); 2416 2417 return 0; 2418 } 2419 2420 static int kdb_kgdb(int argc, const char **argv) 2421 { 2422 return KDB_CMD_KGDB; 2423 } 2424 2425 /* 2426 * kdb_help - This function implements the 'help' and '?' commands. 2427 */ 2428 static int kdb_help(int argc, const char **argv) 2429 { 2430 kdbtab_t *kt; 2431 int i; 2432 2433 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2434 kdb_printf("-----------------------------" 2435 "-----------------------------\n"); 2436 for_each_kdbcmd(kt, i) { 2437 char *space = ""; 2438 if (KDB_FLAG(CMD_INTERRUPT)) 2439 return 0; 2440 if (!kt->cmd_name) 2441 continue; 2442 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true)) 2443 continue; 2444 if (strlen(kt->cmd_usage) > 20) 2445 space = "\n "; 2446 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name, 2447 kt->cmd_usage, space, kt->cmd_help); 2448 } 2449 return 0; 2450 } 2451 2452 /* 2453 * kdb_kill - This function implements the 'kill' commands. 2454 */ 2455 static int kdb_kill(int argc, const char **argv) 2456 { 2457 long sig, pid; 2458 char *endp; 2459 struct task_struct *p; 2460 2461 if (argc != 2) 2462 return KDB_ARGCOUNT; 2463 2464 sig = simple_strtol(argv[1], &endp, 0); 2465 if (*endp) 2466 return KDB_BADINT; 2467 if ((sig >= 0) || !valid_signal(-sig)) { 2468 kdb_printf("Invalid signal parameter.<-signal>\n"); 2469 return 0; 2470 } 2471 sig = -sig; 2472 2473 pid = simple_strtol(argv[2], &endp, 0); 2474 if (*endp) 2475 return KDB_BADINT; 2476 if (pid <= 0) { 2477 kdb_printf("Process ID must be large than 0.\n"); 2478 return 0; 2479 } 2480 2481 /* Find the process. */ 2482 p = find_task_by_pid_ns(pid, &init_pid_ns); 2483 if (!p) { 2484 kdb_printf("The specified process isn't found.\n"); 2485 return 0; 2486 } 2487 p = p->group_leader; 2488 kdb_send_sig(p, sig); 2489 return 0; 2490 } 2491 2492 /* 2493 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2494 * I cannot call that code directly from kdb, it has an unconditional 2495 * cli()/sti() and calls routines that take locks which can stop the debugger. 2496 */ 2497 static void kdb_sysinfo(struct sysinfo *val) 2498 { 2499 u64 uptime = ktime_get_mono_fast_ns(); 2500 2501 memset(val, 0, sizeof(*val)); 2502 val->uptime = div_u64(uptime, NSEC_PER_SEC); 2503 val->loads[0] = avenrun[0]; 2504 val->loads[1] = avenrun[1]; 2505 val->loads[2] = avenrun[2]; 2506 val->procs = nr_threads-1; 2507 si_meminfo(val); 2508 2509 return; 2510 } 2511 2512 /* 2513 * kdb_summary - This function implements the 'summary' command. 2514 */ 2515 static int kdb_summary(int argc, const char **argv) 2516 { 2517 time64_t now; 2518 struct tm tm; 2519 struct sysinfo val; 2520 2521 if (argc) 2522 return KDB_ARGCOUNT; 2523 2524 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2525 kdb_printf("release %s\n", init_uts_ns.name.release); 2526 kdb_printf("version %s\n", init_uts_ns.name.version); 2527 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2528 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2529 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2530 2531 now = __ktime_get_real_seconds(); 2532 time64_to_tm(now, 0, &tm); 2533 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d " 2534 "tz_minuteswest %d\n", 2535 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, 2536 tm.tm_hour, tm.tm_min, tm.tm_sec, 2537 sys_tz.tz_minuteswest); 2538 2539 kdb_sysinfo(&val); 2540 kdb_printf("uptime "); 2541 if (val.uptime > (24*60*60)) { 2542 int days = val.uptime / (24*60*60); 2543 val.uptime %= (24*60*60); 2544 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2545 } 2546 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2547 2548 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2549 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2550 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2551 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2552 2553 /* Display in kilobytes */ 2554 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2555 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2556 "Buffers: %8lu kB\n", 2557 K(val.totalram), K(val.freeram), K(val.bufferram)); 2558 return 0; 2559 } 2560 2561 /* 2562 * kdb_per_cpu - This function implements the 'per_cpu' command. 2563 */ 2564 static int kdb_per_cpu(int argc, const char **argv) 2565 { 2566 char fmtstr[64]; 2567 int cpu, diag, nextarg = 1; 2568 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2569 2570 if (argc < 1 || argc > 3) 2571 return KDB_ARGCOUNT; 2572 2573 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2574 if (diag) 2575 return diag; 2576 2577 if (argc >= 2) { 2578 diag = kdbgetularg(argv[2], &bytesperword); 2579 if (diag) 2580 return diag; 2581 } 2582 if (!bytesperword) 2583 bytesperword = KDB_WORD_SIZE; 2584 else if (bytesperword > KDB_WORD_SIZE) 2585 return KDB_BADWIDTH; 2586 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2587 if (argc >= 3) { 2588 diag = kdbgetularg(argv[3], &whichcpu); 2589 if (diag) 2590 return diag; 2591 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) { 2592 kdb_printf("cpu %ld is not online\n", whichcpu); 2593 return KDB_BADCPUNUM; 2594 } 2595 } 2596 2597 /* Most architectures use __per_cpu_offset[cpu], some use 2598 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2599 */ 2600 #ifdef __per_cpu_offset 2601 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2602 #else 2603 #ifdef CONFIG_SMP 2604 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2605 #else 2606 #define KDB_PCU(cpu) 0 2607 #endif 2608 #endif 2609 for_each_online_cpu(cpu) { 2610 if (KDB_FLAG(CMD_INTERRUPT)) 2611 return 0; 2612 2613 if (whichcpu != ~0UL && whichcpu != cpu) 2614 continue; 2615 addr = symaddr + KDB_PCU(cpu); 2616 diag = kdb_getword(&val, addr, bytesperword); 2617 if (diag) { 2618 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2619 "read, diag=%d\n", cpu, addr, diag); 2620 continue; 2621 } 2622 kdb_printf("%5d ", cpu); 2623 kdb_md_line(fmtstr, addr, 2624 bytesperword == KDB_WORD_SIZE, 2625 1, bytesperword, 1, 1, 0); 2626 } 2627 #undef KDB_PCU 2628 return 0; 2629 } 2630 2631 /* 2632 * display help for the use of cmd | grep pattern 2633 */ 2634 static int kdb_grep_help(int argc, const char **argv) 2635 { 2636 kdb_printf("Usage of cmd args | grep pattern:\n"); 2637 kdb_printf(" Any command's output may be filtered through an "); 2638 kdb_printf("emulated 'pipe'.\n"); 2639 kdb_printf(" 'grep' is just a key word.\n"); 2640 kdb_printf(" The pattern may include a very limited set of " 2641 "metacharacters:\n"); 2642 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2643 kdb_printf(" And if there are spaces in the pattern, you may " 2644 "quote it:\n"); 2645 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2646 " or \"^pat tern$\"\n"); 2647 return 0; 2648 } 2649 2650 /* 2651 * kdb_register_flags - This function is used to register a kernel 2652 * debugger command. 2653 * Inputs: 2654 * cmd Command name 2655 * func Function to execute the command 2656 * usage A simple usage string showing arguments 2657 * help A simple help string describing command 2658 * repeat Does the command auto repeat on enter? 2659 * Returns: 2660 * zero for success, one if a duplicate command. 2661 */ 2662 #define kdb_command_extend 50 /* arbitrary */ 2663 int kdb_register_flags(char *cmd, 2664 kdb_func_t func, 2665 char *usage, 2666 char *help, 2667 short minlen, 2668 kdb_cmdflags_t flags) 2669 { 2670 int i; 2671 kdbtab_t *kp; 2672 2673 /* 2674 * Brute force method to determine duplicates 2675 */ 2676 for_each_kdbcmd(kp, i) { 2677 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2678 kdb_printf("Duplicate kdb command registered: " 2679 "%s, func %px help %s\n", cmd, func, help); 2680 return 1; 2681 } 2682 } 2683 2684 /* 2685 * Insert command into first available location in table 2686 */ 2687 for_each_kdbcmd(kp, i) { 2688 if (kp->cmd_name == NULL) 2689 break; 2690 } 2691 2692 if (i >= kdb_max_commands) { 2693 kdbtab_t *new = kmalloc_array(kdb_max_commands - 2694 KDB_BASE_CMD_MAX + 2695 kdb_command_extend, 2696 sizeof(*new), 2697 GFP_KDB); 2698 if (!new) { 2699 kdb_printf("Could not allocate new kdb_command " 2700 "table\n"); 2701 return 1; 2702 } 2703 if (kdb_commands) { 2704 memcpy(new, kdb_commands, 2705 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new)); 2706 kfree(kdb_commands); 2707 } 2708 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0, 2709 kdb_command_extend * sizeof(*new)); 2710 kdb_commands = new; 2711 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX; 2712 kdb_max_commands += kdb_command_extend; 2713 } 2714 2715 kp->cmd_name = cmd; 2716 kp->cmd_func = func; 2717 kp->cmd_usage = usage; 2718 kp->cmd_help = help; 2719 kp->cmd_minlen = minlen; 2720 kp->cmd_flags = flags; 2721 2722 return 0; 2723 } 2724 EXPORT_SYMBOL_GPL(kdb_register_flags); 2725 2726 2727 /* 2728 * kdb_register - Compatibility register function for commands that do 2729 * not need to specify a repeat state. Equivalent to 2730 * kdb_register_flags with flags set to 0. 2731 * Inputs: 2732 * cmd Command name 2733 * func Function to execute the command 2734 * usage A simple usage string showing arguments 2735 * help A simple help string describing command 2736 * Returns: 2737 * zero for success, one if a duplicate command. 2738 */ 2739 int kdb_register(char *cmd, 2740 kdb_func_t func, 2741 char *usage, 2742 char *help, 2743 short minlen) 2744 { 2745 return kdb_register_flags(cmd, func, usage, help, minlen, 0); 2746 } 2747 EXPORT_SYMBOL_GPL(kdb_register); 2748 2749 /* 2750 * kdb_unregister - This function is used to unregister a kernel 2751 * debugger command. It is generally called when a module which 2752 * implements kdb commands is unloaded. 2753 * Inputs: 2754 * cmd Command name 2755 * Returns: 2756 * zero for success, one command not registered. 2757 */ 2758 int kdb_unregister(char *cmd) 2759 { 2760 int i; 2761 kdbtab_t *kp; 2762 2763 /* 2764 * find the command. 2765 */ 2766 for_each_kdbcmd(kp, i) { 2767 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2768 kp->cmd_name = NULL; 2769 return 0; 2770 } 2771 } 2772 2773 /* Couldn't find it. */ 2774 return 1; 2775 } 2776 EXPORT_SYMBOL_GPL(kdb_unregister); 2777 2778 /* Initialize the kdb command table. */ 2779 static void __init kdb_inittab(void) 2780 { 2781 int i; 2782 kdbtab_t *kp; 2783 2784 for_each_kdbcmd(kp, i) 2785 kp->cmd_name = NULL; 2786 2787 kdb_register_flags("md", kdb_md, "<vaddr>", 2788 "Display Memory Contents, also mdWcN, e.g. md8c1", 1, 2789 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2790 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>", 2791 "Display Raw Memory", 0, 2792 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2793 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>", 2794 "Display Physical Memory", 0, 2795 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2796 kdb_register_flags("mds", kdb_md, "<vaddr>", 2797 "Display Memory Symbolically", 0, 2798 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2799 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>", 2800 "Modify Memory Contents", 0, 2801 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS); 2802 kdb_register_flags("go", kdb_go, "[<vaddr>]", 2803 "Continue Execution", 1, 2804 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS); 2805 kdb_register_flags("rd", kdb_rd, "", 2806 "Display Registers", 0, 2807 KDB_ENABLE_REG_READ); 2808 kdb_register_flags("rm", kdb_rm, "<reg> <contents>", 2809 "Modify Registers", 0, 2810 KDB_ENABLE_REG_WRITE); 2811 kdb_register_flags("ef", kdb_ef, "<vaddr>", 2812 "Display exception frame", 0, 2813 KDB_ENABLE_MEM_READ); 2814 kdb_register_flags("bt", kdb_bt, "[<vaddr>]", 2815 "Stack traceback", 1, 2816 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS); 2817 kdb_register_flags("btp", kdb_bt, "<pid>", 2818 "Display stack for process <pid>", 0, 2819 KDB_ENABLE_INSPECT); 2820 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]", 2821 "Backtrace all processes matching state flag", 0, 2822 KDB_ENABLE_INSPECT); 2823 kdb_register_flags("btc", kdb_bt, "", 2824 "Backtrace current process on each cpu", 0, 2825 KDB_ENABLE_INSPECT); 2826 kdb_register_flags("btt", kdb_bt, "<vaddr>", 2827 "Backtrace process given its struct task address", 0, 2828 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS); 2829 kdb_register_flags("env", kdb_env, "", 2830 "Show environment variables", 0, 2831 KDB_ENABLE_ALWAYS_SAFE); 2832 kdb_register_flags("set", kdb_set, "", 2833 "Set environment variables", 0, 2834 KDB_ENABLE_ALWAYS_SAFE); 2835 kdb_register_flags("help", kdb_help, "", 2836 "Display Help Message", 1, 2837 KDB_ENABLE_ALWAYS_SAFE); 2838 kdb_register_flags("?", kdb_help, "", 2839 "Display Help Message", 0, 2840 KDB_ENABLE_ALWAYS_SAFE); 2841 kdb_register_flags("cpu", kdb_cpu, "<cpunum>", 2842 "Switch to new cpu", 0, 2843 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS); 2844 kdb_register_flags("kgdb", kdb_kgdb, "", 2845 "Enter kgdb mode", 0, 0); 2846 kdb_register_flags("ps", kdb_ps, "[<flags>|A]", 2847 "Display active task list", 0, 2848 KDB_ENABLE_INSPECT); 2849 kdb_register_flags("pid", kdb_pid, "<pidnum>", 2850 "Switch to another task", 0, 2851 KDB_ENABLE_INSPECT); 2852 kdb_register_flags("reboot", kdb_reboot, "", 2853 "Reboot the machine immediately", 0, 2854 KDB_ENABLE_REBOOT); 2855 #if defined(CONFIG_MODULES) 2856 kdb_register_flags("lsmod", kdb_lsmod, "", 2857 "List loaded kernel modules", 0, 2858 KDB_ENABLE_INSPECT); 2859 #endif 2860 #if defined(CONFIG_MAGIC_SYSRQ) 2861 kdb_register_flags("sr", kdb_sr, "<key>", 2862 "Magic SysRq key", 0, 2863 KDB_ENABLE_ALWAYS_SAFE); 2864 #endif 2865 #if defined(CONFIG_PRINTK) 2866 kdb_register_flags("dmesg", kdb_dmesg, "[lines]", 2867 "Display syslog buffer", 0, 2868 KDB_ENABLE_ALWAYS_SAFE); 2869 #endif 2870 if (arch_kgdb_ops.enable_nmi) { 2871 kdb_register_flags("disable_nmi", kdb_disable_nmi, "", 2872 "Disable NMI entry to KDB", 0, 2873 KDB_ENABLE_ALWAYS_SAFE); 2874 } 2875 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"", 2876 "Define a set of commands, down to endefcmd", 0, 2877 KDB_ENABLE_ALWAYS_SAFE); 2878 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>", 2879 "Send a signal to a process", 0, 2880 KDB_ENABLE_SIGNAL); 2881 kdb_register_flags("summary", kdb_summary, "", 2882 "Summarize the system", 4, 2883 KDB_ENABLE_ALWAYS_SAFE); 2884 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]", 2885 "Display per_cpu variables", 3, 2886 KDB_ENABLE_MEM_READ); 2887 kdb_register_flags("grephelp", kdb_grep_help, "", 2888 "Display help on | grep", 0, 2889 KDB_ENABLE_ALWAYS_SAFE); 2890 } 2891 2892 /* Execute any commands defined in kdb_cmds. */ 2893 static void __init kdb_cmd_init(void) 2894 { 2895 int i, diag; 2896 for (i = 0; kdb_cmds[i]; ++i) { 2897 diag = kdb_parse(kdb_cmds[i]); 2898 if (diag) 2899 kdb_printf("kdb command %s failed, kdb diag %d\n", 2900 kdb_cmds[i], diag); 2901 } 2902 if (defcmd_in_progress) { 2903 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2904 kdb_parse("endefcmd"); 2905 } 2906 } 2907 2908 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2909 void __init kdb_init(int lvl) 2910 { 2911 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2912 int i; 2913 2914 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2915 return; 2916 for (i = kdb_init_lvl; i < lvl; i++) { 2917 switch (i) { 2918 case KDB_NOT_INITIALIZED: 2919 kdb_inittab(); /* Initialize Command Table */ 2920 kdb_initbptab(); /* Initialize Breakpoints */ 2921 break; 2922 case KDB_INIT_EARLY: 2923 kdb_cmd_init(); /* Build kdb_cmds tables */ 2924 break; 2925 } 2926 } 2927 kdb_init_lvl = lvl; 2928 } 2929