xref: /openbmc/linux/kernel/debug/kdb/kdb_main.c (revision a06c488d)
1 /*
2  * Kernel Debugger Architecture Independent Main Code
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
9  * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10  * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11  * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
12  */
13 
14 #include <linux/ctype.h>
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/kernel.h>
18 #include <linux/kmsg_dump.h>
19 #include <linux/reboot.h>
20 #include <linux/sched.h>
21 #include <linux/sysrq.h>
22 #include <linux/smp.h>
23 #include <linux/utsname.h>
24 #include <linux/vmalloc.h>
25 #include <linux/atomic.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/mm.h>
29 #include <linux/init.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kgdb.h>
32 #include <linux/kdb.h>
33 #include <linux/notifier.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/nmi.h>
37 #include <linux/time.h>
38 #include <linux/ptrace.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/kdebug.h>
42 #include <linux/proc_fs.h>
43 #include <linux/uaccess.h>
44 #include <linux/slab.h>
45 #include "kdb_private.h"
46 
47 #undef	MODULE_PARAM_PREFIX
48 #define	MODULE_PARAM_PREFIX "kdb."
49 
50 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
51 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
52 
53 char kdb_grep_string[KDB_GREP_STRLEN];
54 int kdb_grepping_flag;
55 EXPORT_SYMBOL(kdb_grepping_flag);
56 int kdb_grep_leading;
57 int kdb_grep_trailing;
58 
59 /*
60  * Kernel debugger state flags
61  */
62 int kdb_flags;
63 atomic_t kdb_event;
64 
65 /*
66  * kdb_lock protects updates to kdb_initial_cpu.  Used to
67  * single thread processors through the kernel debugger.
68  */
69 int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
70 int kdb_nextline = 1;
71 int kdb_state;			/* General KDB state */
72 
73 struct task_struct *kdb_current_task;
74 EXPORT_SYMBOL(kdb_current_task);
75 struct pt_regs *kdb_current_regs;
76 
77 const char *kdb_diemsg;
78 static int kdb_go_count;
79 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
80 static unsigned int kdb_continue_catastrophic =
81 	CONFIG_KDB_CONTINUE_CATASTROPHIC;
82 #else
83 static unsigned int kdb_continue_catastrophic;
84 #endif
85 
86 /* kdb_commands describes the available commands. */
87 static kdbtab_t *kdb_commands;
88 #define KDB_BASE_CMD_MAX 50
89 static int kdb_max_commands = KDB_BASE_CMD_MAX;
90 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
91 #define for_each_kdbcmd(cmd, num)					\
92 	for ((cmd) = kdb_base_commands, (num) = 0;			\
93 	     num < kdb_max_commands;					\
94 	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
95 
96 typedef struct _kdbmsg {
97 	int	km_diag;	/* kdb diagnostic */
98 	char	*km_msg;	/* Corresponding message text */
99 } kdbmsg_t;
100 
101 #define KDBMSG(msgnum, text) \
102 	{ KDB_##msgnum, text }
103 
104 static kdbmsg_t kdbmsgs[] = {
105 	KDBMSG(NOTFOUND, "Command Not Found"),
106 	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
107 	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
108 	       "8 is only allowed on 64 bit systems"),
109 	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
110 	KDBMSG(NOTENV, "Cannot find environment variable"),
111 	KDBMSG(NOENVVALUE, "Environment variable should have value"),
112 	KDBMSG(NOTIMP, "Command not implemented"),
113 	KDBMSG(ENVFULL, "Environment full"),
114 	KDBMSG(ENVBUFFULL, "Environment buffer full"),
115 	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
116 #ifdef CONFIG_CPU_XSCALE
117 	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
118 #else
119 	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
120 #endif
121 	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
122 	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
123 	KDBMSG(BADMODE, "Invalid IDMODE"),
124 	KDBMSG(BADINT, "Illegal numeric value"),
125 	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
126 	KDBMSG(BADREG, "Invalid register name"),
127 	KDBMSG(BADCPUNUM, "Invalid cpu number"),
128 	KDBMSG(BADLENGTH, "Invalid length field"),
129 	KDBMSG(NOBP, "No Breakpoint exists"),
130 	KDBMSG(BADADDR, "Invalid address"),
131 	KDBMSG(NOPERM, "Permission denied"),
132 };
133 #undef KDBMSG
134 
135 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
136 
137 
138 /*
139  * Initial environment.   This is all kept static and local to
140  * this file.   We don't want to rely on the memory allocation
141  * mechanisms in the kernel, so we use a very limited allocate-only
142  * heap for new and altered environment variables.  The entire
143  * environment is limited to a fixed number of entries (add more
144  * to __env[] if required) and a fixed amount of heap (add more to
145  * KDB_ENVBUFSIZE if required).
146  */
147 
148 static char *__env[] = {
149 #if defined(CONFIG_SMP)
150  "PROMPT=[%d]kdb> ",
151 #else
152  "PROMPT=kdb> ",
153 #endif
154  "MOREPROMPT=more> ",
155  "RADIX=16",
156  "MDCOUNT=8",			/* lines of md output */
157  KDB_PLATFORM_ENV,
158  "DTABCOUNT=30",
159  "NOSECT=1",
160  (char *)0,
161  (char *)0,
162  (char *)0,
163  (char *)0,
164  (char *)0,
165  (char *)0,
166  (char *)0,
167  (char *)0,
168  (char *)0,
169  (char *)0,
170  (char *)0,
171  (char *)0,
172  (char *)0,
173  (char *)0,
174  (char *)0,
175  (char *)0,
176  (char *)0,
177  (char *)0,
178  (char *)0,
179  (char *)0,
180  (char *)0,
181  (char *)0,
182  (char *)0,
183  (char *)0,
184 };
185 
186 static const int __nenv = ARRAY_SIZE(__env);
187 
188 struct task_struct *kdb_curr_task(int cpu)
189 {
190 	struct task_struct *p = curr_task(cpu);
191 #ifdef	_TIF_MCA_INIT
192 	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
193 		p = krp->p;
194 #endif
195 	return p;
196 }
197 
198 /*
199  * Check whether the flags of the current command and the permissions
200  * of the kdb console has allow a command to be run.
201  */
202 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
203 				   bool no_args)
204 {
205 	/* permissions comes from userspace so needs massaging slightly */
206 	permissions &= KDB_ENABLE_MASK;
207 	permissions |= KDB_ENABLE_ALWAYS_SAFE;
208 
209 	/* some commands change group when launched with no arguments */
210 	if (no_args)
211 		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
212 
213 	flags |= KDB_ENABLE_ALL;
214 
215 	return permissions & flags;
216 }
217 
218 /*
219  * kdbgetenv - This function will return the character string value of
220  *	an environment variable.
221  * Parameters:
222  *	match	A character string representing an environment variable.
223  * Returns:
224  *	NULL	No environment variable matches 'match'
225  *	char*	Pointer to string value of environment variable.
226  */
227 char *kdbgetenv(const char *match)
228 {
229 	char **ep = __env;
230 	int matchlen = strlen(match);
231 	int i;
232 
233 	for (i = 0; i < __nenv; i++) {
234 		char *e = *ep++;
235 
236 		if (!e)
237 			continue;
238 
239 		if ((strncmp(match, e, matchlen) == 0)
240 		 && ((e[matchlen] == '\0')
241 		   || (e[matchlen] == '='))) {
242 			char *cp = strchr(e, '=');
243 			return cp ? ++cp : "";
244 		}
245 	}
246 	return NULL;
247 }
248 
249 /*
250  * kdballocenv - This function is used to allocate bytes for
251  *	environment entries.
252  * Parameters:
253  *	match	A character string representing a numeric value
254  * Outputs:
255  *	*value  the unsigned long representation of the env variable 'match'
256  * Returns:
257  *	Zero on success, a kdb diagnostic on failure.
258  * Remarks:
259  *	We use a static environment buffer (envbuffer) to hold the values
260  *	of dynamically generated environment variables (see kdb_set).  Buffer
261  *	space once allocated is never free'd, so over time, the amount of space
262  *	(currently 512 bytes) will be exhausted if env variables are changed
263  *	frequently.
264  */
265 static char *kdballocenv(size_t bytes)
266 {
267 #define	KDB_ENVBUFSIZE	512
268 	static char envbuffer[KDB_ENVBUFSIZE];
269 	static int envbufsize;
270 	char *ep = NULL;
271 
272 	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
273 		ep = &envbuffer[envbufsize];
274 		envbufsize += bytes;
275 	}
276 	return ep;
277 }
278 
279 /*
280  * kdbgetulenv - This function will return the value of an unsigned
281  *	long-valued environment variable.
282  * Parameters:
283  *	match	A character string representing a numeric value
284  * Outputs:
285  *	*value  the unsigned long represntation of the env variable 'match'
286  * Returns:
287  *	Zero on success, a kdb diagnostic on failure.
288  */
289 static int kdbgetulenv(const char *match, unsigned long *value)
290 {
291 	char *ep;
292 
293 	ep = kdbgetenv(match);
294 	if (!ep)
295 		return KDB_NOTENV;
296 	if (strlen(ep) == 0)
297 		return KDB_NOENVVALUE;
298 
299 	*value = simple_strtoul(ep, NULL, 0);
300 
301 	return 0;
302 }
303 
304 /*
305  * kdbgetintenv - This function will return the value of an
306  *	integer-valued environment variable.
307  * Parameters:
308  *	match	A character string representing an integer-valued env variable
309  * Outputs:
310  *	*value  the integer representation of the environment variable 'match'
311  * Returns:
312  *	Zero on success, a kdb diagnostic on failure.
313  */
314 int kdbgetintenv(const char *match, int *value)
315 {
316 	unsigned long val;
317 	int diag;
318 
319 	diag = kdbgetulenv(match, &val);
320 	if (!diag)
321 		*value = (int) val;
322 	return diag;
323 }
324 
325 /*
326  * kdbgetularg - This function will convert a numeric string into an
327  *	unsigned long value.
328  * Parameters:
329  *	arg	A character string representing a numeric value
330  * Outputs:
331  *	*value  the unsigned long represntation of arg.
332  * Returns:
333  *	Zero on success, a kdb diagnostic on failure.
334  */
335 int kdbgetularg(const char *arg, unsigned long *value)
336 {
337 	char *endp;
338 	unsigned long val;
339 
340 	val = simple_strtoul(arg, &endp, 0);
341 
342 	if (endp == arg) {
343 		/*
344 		 * Also try base 16, for us folks too lazy to type the
345 		 * leading 0x...
346 		 */
347 		val = simple_strtoul(arg, &endp, 16);
348 		if (endp == arg)
349 			return KDB_BADINT;
350 	}
351 
352 	*value = val;
353 
354 	return 0;
355 }
356 
357 int kdbgetu64arg(const char *arg, u64 *value)
358 {
359 	char *endp;
360 	u64 val;
361 
362 	val = simple_strtoull(arg, &endp, 0);
363 
364 	if (endp == arg) {
365 
366 		val = simple_strtoull(arg, &endp, 16);
367 		if (endp == arg)
368 			return KDB_BADINT;
369 	}
370 
371 	*value = val;
372 
373 	return 0;
374 }
375 
376 /*
377  * kdb_set - This function implements the 'set' command.  Alter an
378  *	existing environment variable or create a new one.
379  */
380 int kdb_set(int argc, const char **argv)
381 {
382 	int i;
383 	char *ep;
384 	size_t varlen, vallen;
385 
386 	/*
387 	 * we can be invoked two ways:
388 	 *   set var=value    argv[1]="var", argv[2]="value"
389 	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
390 	 * - if the latter, shift 'em down.
391 	 */
392 	if (argc == 3) {
393 		argv[2] = argv[3];
394 		argc--;
395 	}
396 
397 	if (argc != 2)
398 		return KDB_ARGCOUNT;
399 
400 	/*
401 	 * Check for internal variables
402 	 */
403 	if (strcmp(argv[1], "KDBDEBUG") == 0) {
404 		unsigned int debugflags;
405 		char *cp;
406 
407 		debugflags = simple_strtoul(argv[2], &cp, 0);
408 		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
409 			kdb_printf("kdb: illegal debug flags '%s'\n",
410 				    argv[2]);
411 			return 0;
412 		}
413 		kdb_flags = (kdb_flags &
414 			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
415 			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
416 
417 		return 0;
418 	}
419 
420 	/*
421 	 * Tokenizer squashed the '=' sign.  argv[1] is variable
422 	 * name, argv[2] = value.
423 	 */
424 	varlen = strlen(argv[1]);
425 	vallen = strlen(argv[2]);
426 	ep = kdballocenv(varlen + vallen + 2);
427 	if (ep == (char *)0)
428 		return KDB_ENVBUFFULL;
429 
430 	sprintf(ep, "%s=%s", argv[1], argv[2]);
431 
432 	ep[varlen+vallen+1] = '\0';
433 
434 	for (i = 0; i < __nenv; i++) {
435 		if (__env[i]
436 		 && ((strncmp(__env[i], argv[1], varlen) == 0)
437 		   && ((__env[i][varlen] == '\0')
438 		    || (__env[i][varlen] == '=')))) {
439 			__env[i] = ep;
440 			return 0;
441 		}
442 	}
443 
444 	/*
445 	 * Wasn't existing variable.  Fit into slot.
446 	 */
447 	for (i = 0; i < __nenv-1; i++) {
448 		if (__env[i] == (char *)0) {
449 			__env[i] = ep;
450 			return 0;
451 		}
452 	}
453 
454 	return KDB_ENVFULL;
455 }
456 
457 static int kdb_check_regs(void)
458 {
459 	if (!kdb_current_regs) {
460 		kdb_printf("No current kdb registers."
461 			   "  You may need to select another task\n");
462 		return KDB_BADREG;
463 	}
464 	return 0;
465 }
466 
467 /*
468  * kdbgetaddrarg - This function is responsible for parsing an
469  *	address-expression and returning the value of the expression,
470  *	symbol name, and offset to the caller.
471  *
472  *	The argument may consist of a numeric value (decimal or
473  *	hexidecimal), a symbol name, a register name (preceded by the
474  *	percent sign), an environment variable with a numeric value
475  *	(preceded by a dollar sign) or a simple arithmetic expression
476  *	consisting of a symbol name, +/-, and a numeric constant value
477  *	(offset).
478  * Parameters:
479  *	argc	- count of arguments in argv
480  *	argv	- argument vector
481  *	*nextarg - index to next unparsed argument in argv[]
482  *	regs	- Register state at time of KDB entry
483  * Outputs:
484  *	*value	- receives the value of the address-expression
485  *	*offset - receives the offset specified, if any
486  *	*name   - receives the symbol name, if any
487  *	*nextarg - index to next unparsed argument in argv[]
488  * Returns:
489  *	zero is returned on success, a kdb diagnostic code is
490  *      returned on error.
491  */
492 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
493 		  unsigned long *value,  long *offset,
494 		  char **name)
495 {
496 	unsigned long addr;
497 	unsigned long off = 0;
498 	int positive;
499 	int diag;
500 	int found = 0;
501 	char *symname;
502 	char symbol = '\0';
503 	char *cp;
504 	kdb_symtab_t symtab;
505 
506 	/*
507 	 * If the enable flags prohibit both arbitrary memory access
508 	 * and flow control then there are no reasonable grounds to
509 	 * provide symbol lookup.
510 	 */
511 	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
512 			     kdb_cmd_enabled, false))
513 		return KDB_NOPERM;
514 
515 	/*
516 	 * Process arguments which follow the following syntax:
517 	 *
518 	 *  symbol | numeric-address [+/- numeric-offset]
519 	 *  %register
520 	 *  $environment-variable
521 	 */
522 
523 	if (*nextarg > argc)
524 		return KDB_ARGCOUNT;
525 
526 	symname = (char *)argv[*nextarg];
527 
528 	/*
529 	 * If there is no whitespace between the symbol
530 	 * or address and the '+' or '-' symbols, we
531 	 * remember the character and replace it with a
532 	 * null so the symbol/value can be properly parsed
533 	 */
534 	cp = strpbrk(symname, "+-");
535 	if (cp != NULL) {
536 		symbol = *cp;
537 		*cp++ = '\0';
538 	}
539 
540 	if (symname[0] == '$') {
541 		diag = kdbgetulenv(&symname[1], &addr);
542 		if (diag)
543 			return diag;
544 	} else if (symname[0] == '%') {
545 		diag = kdb_check_regs();
546 		if (diag)
547 			return diag;
548 		/* Implement register values with % at a later time as it is
549 		 * arch optional.
550 		 */
551 		return KDB_NOTIMP;
552 	} else {
553 		found = kdbgetsymval(symname, &symtab);
554 		if (found) {
555 			addr = symtab.sym_start;
556 		} else {
557 			diag = kdbgetularg(argv[*nextarg], &addr);
558 			if (diag)
559 				return diag;
560 		}
561 	}
562 
563 	if (!found)
564 		found = kdbnearsym(addr, &symtab);
565 
566 	(*nextarg)++;
567 
568 	if (name)
569 		*name = symname;
570 	if (value)
571 		*value = addr;
572 	if (offset && name && *name)
573 		*offset = addr - symtab.sym_start;
574 
575 	if ((*nextarg > argc)
576 	 && (symbol == '\0'))
577 		return 0;
578 
579 	/*
580 	 * check for +/- and offset
581 	 */
582 
583 	if (symbol == '\0') {
584 		if ((argv[*nextarg][0] != '+')
585 		 && (argv[*nextarg][0] != '-')) {
586 			/*
587 			 * Not our argument.  Return.
588 			 */
589 			return 0;
590 		} else {
591 			positive = (argv[*nextarg][0] == '+');
592 			(*nextarg)++;
593 		}
594 	} else
595 		positive = (symbol == '+');
596 
597 	/*
598 	 * Now there must be an offset!
599 	 */
600 	if ((*nextarg > argc)
601 	 && (symbol == '\0')) {
602 		return KDB_INVADDRFMT;
603 	}
604 
605 	if (!symbol) {
606 		cp = (char *)argv[*nextarg];
607 		(*nextarg)++;
608 	}
609 
610 	diag = kdbgetularg(cp, &off);
611 	if (diag)
612 		return diag;
613 
614 	if (!positive)
615 		off = -off;
616 
617 	if (offset)
618 		*offset += off;
619 
620 	if (value)
621 		*value += off;
622 
623 	return 0;
624 }
625 
626 static void kdb_cmderror(int diag)
627 {
628 	int i;
629 
630 	if (diag >= 0) {
631 		kdb_printf("no error detected (diagnostic is %d)\n", diag);
632 		return;
633 	}
634 
635 	for (i = 0; i < __nkdb_err; i++) {
636 		if (kdbmsgs[i].km_diag == diag) {
637 			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
638 			return;
639 		}
640 	}
641 
642 	kdb_printf("Unknown diag %d\n", -diag);
643 }
644 
645 /*
646  * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
647  *	command which defines one command as a set of other commands,
648  *	terminated by endefcmd.  kdb_defcmd processes the initial
649  *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
650  *	the following commands until 'endefcmd'.
651  * Inputs:
652  *	argc	argument count
653  *	argv	argument vector
654  * Returns:
655  *	zero for success, a kdb diagnostic if error
656  */
657 struct defcmd_set {
658 	int count;
659 	int usable;
660 	char *name;
661 	char *usage;
662 	char *help;
663 	char **command;
664 };
665 static struct defcmd_set *defcmd_set;
666 static int defcmd_set_count;
667 static int defcmd_in_progress;
668 
669 /* Forward references */
670 static int kdb_exec_defcmd(int argc, const char **argv);
671 
672 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
673 {
674 	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
675 	char **save_command = s->command;
676 	if (strcmp(argv0, "endefcmd") == 0) {
677 		defcmd_in_progress = 0;
678 		if (!s->count)
679 			s->usable = 0;
680 		if (s->usable)
681 			/* macros are always safe because when executed each
682 			 * internal command re-enters kdb_parse() and is
683 			 * safety checked individually.
684 			 */
685 			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
686 					   s->help, 0,
687 					   KDB_ENABLE_ALWAYS_SAFE);
688 		return 0;
689 	}
690 	if (!s->usable)
691 		return KDB_NOTIMP;
692 	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
693 	if (!s->command) {
694 		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
695 			   cmdstr);
696 		s->usable = 0;
697 		return KDB_NOTIMP;
698 	}
699 	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
700 	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
701 	kfree(save_command);
702 	return 0;
703 }
704 
705 static int kdb_defcmd(int argc, const char **argv)
706 {
707 	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
708 	if (defcmd_in_progress) {
709 		kdb_printf("kdb: nested defcmd detected, assuming missing "
710 			   "endefcmd\n");
711 		kdb_defcmd2("endefcmd", "endefcmd");
712 	}
713 	if (argc == 0) {
714 		int i;
715 		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
716 			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
717 				   s->usage, s->help);
718 			for (i = 0; i < s->count; ++i)
719 				kdb_printf("%s", s->command[i]);
720 			kdb_printf("endefcmd\n");
721 		}
722 		return 0;
723 	}
724 	if (argc != 3)
725 		return KDB_ARGCOUNT;
726 	if (in_dbg_master()) {
727 		kdb_printf("Command only available during kdb_init()\n");
728 		return KDB_NOTIMP;
729 	}
730 	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
731 			     GFP_KDB);
732 	if (!defcmd_set)
733 		goto fail_defcmd;
734 	memcpy(defcmd_set, save_defcmd_set,
735 	       defcmd_set_count * sizeof(*defcmd_set));
736 	s = defcmd_set + defcmd_set_count;
737 	memset(s, 0, sizeof(*s));
738 	s->usable = 1;
739 	s->name = kdb_strdup(argv[1], GFP_KDB);
740 	if (!s->name)
741 		goto fail_name;
742 	s->usage = kdb_strdup(argv[2], GFP_KDB);
743 	if (!s->usage)
744 		goto fail_usage;
745 	s->help = kdb_strdup(argv[3], GFP_KDB);
746 	if (!s->help)
747 		goto fail_help;
748 	if (s->usage[0] == '"') {
749 		strcpy(s->usage, argv[2]+1);
750 		s->usage[strlen(s->usage)-1] = '\0';
751 	}
752 	if (s->help[0] == '"') {
753 		strcpy(s->help, argv[3]+1);
754 		s->help[strlen(s->help)-1] = '\0';
755 	}
756 	++defcmd_set_count;
757 	defcmd_in_progress = 1;
758 	kfree(save_defcmd_set);
759 	return 0;
760 fail_help:
761 	kfree(s->usage);
762 fail_usage:
763 	kfree(s->name);
764 fail_name:
765 	kfree(defcmd_set);
766 fail_defcmd:
767 	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
768 	defcmd_set = save_defcmd_set;
769 	return KDB_NOTIMP;
770 }
771 
772 /*
773  * kdb_exec_defcmd - Execute the set of commands associated with this
774  *	defcmd name.
775  * Inputs:
776  *	argc	argument count
777  *	argv	argument vector
778  * Returns:
779  *	zero for success, a kdb diagnostic if error
780  */
781 static int kdb_exec_defcmd(int argc, const char **argv)
782 {
783 	int i, ret;
784 	struct defcmd_set *s;
785 	if (argc != 0)
786 		return KDB_ARGCOUNT;
787 	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
788 		if (strcmp(s->name, argv[0]) == 0)
789 			break;
790 	}
791 	if (i == defcmd_set_count) {
792 		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
793 			   argv[0]);
794 		return KDB_NOTIMP;
795 	}
796 	for (i = 0; i < s->count; ++i) {
797 		/* Recursive use of kdb_parse, do not use argv after
798 		 * this point */
799 		argv = NULL;
800 		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
801 		ret = kdb_parse(s->command[i]);
802 		if (ret)
803 			return ret;
804 	}
805 	return 0;
806 }
807 
808 /* Command history */
809 #define KDB_CMD_HISTORY_COUNT	32
810 #define CMD_BUFLEN		200	/* kdb_printf: max printline
811 					 * size == 256 */
812 static unsigned int cmd_head, cmd_tail;
813 static unsigned int cmdptr;
814 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
815 static char cmd_cur[CMD_BUFLEN];
816 
817 /*
818  * The "str" argument may point to something like  | grep xyz
819  */
820 static void parse_grep(const char *str)
821 {
822 	int	len;
823 	char	*cp = (char *)str, *cp2;
824 
825 	/* sanity check: we should have been called with the \ first */
826 	if (*cp != '|')
827 		return;
828 	cp++;
829 	while (isspace(*cp))
830 		cp++;
831 	if (strncmp(cp, "grep ", 5)) {
832 		kdb_printf("invalid 'pipe', see grephelp\n");
833 		return;
834 	}
835 	cp += 5;
836 	while (isspace(*cp))
837 		cp++;
838 	cp2 = strchr(cp, '\n');
839 	if (cp2)
840 		*cp2 = '\0'; /* remove the trailing newline */
841 	len = strlen(cp);
842 	if (len == 0) {
843 		kdb_printf("invalid 'pipe', see grephelp\n");
844 		return;
845 	}
846 	/* now cp points to a nonzero length search string */
847 	if (*cp == '"') {
848 		/* allow it be "x y z" by removing the "'s - there must
849 		   be two of them */
850 		cp++;
851 		cp2 = strchr(cp, '"');
852 		if (!cp2) {
853 			kdb_printf("invalid quoted string, see grephelp\n");
854 			return;
855 		}
856 		*cp2 = '\0'; /* end the string where the 2nd " was */
857 	}
858 	kdb_grep_leading = 0;
859 	if (*cp == '^') {
860 		kdb_grep_leading = 1;
861 		cp++;
862 	}
863 	len = strlen(cp);
864 	kdb_grep_trailing = 0;
865 	if (*(cp+len-1) == '$') {
866 		kdb_grep_trailing = 1;
867 		*(cp+len-1) = '\0';
868 	}
869 	len = strlen(cp);
870 	if (!len)
871 		return;
872 	if (len >= KDB_GREP_STRLEN) {
873 		kdb_printf("search string too long\n");
874 		return;
875 	}
876 	strcpy(kdb_grep_string, cp);
877 	kdb_grepping_flag++;
878 	return;
879 }
880 
881 /*
882  * kdb_parse - Parse the command line, search the command table for a
883  *	matching command and invoke the command function.  This
884  *	function may be called recursively, if it is, the second call
885  *	will overwrite argv and cbuf.  It is the caller's
886  *	responsibility to save their argv if they recursively call
887  *	kdb_parse().
888  * Parameters:
889  *      cmdstr	The input command line to be parsed.
890  *	regs	The registers at the time kdb was entered.
891  * Returns:
892  *	Zero for success, a kdb diagnostic if failure.
893  * Remarks:
894  *	Limited to 20 tokens.
895  *
896  *	Real rudimentary tokenization. Basically only whitespace
897  *	is considered a token delimeter (but special consideration
898  *	is taken of the '=' sign as used by the 'set' command).
899  *
900  *	The algorithm used to tokenize the input string relies on
901  *	there being at least one whitespace (or otherwise useless)
902  *	character between tokens as the character immediately following
903  *	the token is altered in-place to a null-byte to terminate the
904  *	token string.
905  */
906 
907 #define MAXARGC	20
908 
909 int kdb_parse(const char *cmdstr)
910 {
911 	static char *argv[MAXARGC];
912 	static int argc;
913 	static char cbuf[CMD_BUFLEN+2];
914 	char *cp;
915 	char *cpp, quoted;
916 	kdbtab_t *tp;
917 	int i, escaped, ignore_errors = 0, check_grep = 0;
918 
919 	/*
920 	 * First tokenize the command string.
921 	 */
922 	cp = (char *)cmdstr;
923 
924 	if (KDB_FLAG(CMD_INTERRUPT)) {
925 		/* Previous command was interrupted, newline must not
926 		 * repeat the command */
927 		KDB_FLAG_CLEAR(CMD_INTERRUPT);
928 		KDB_STATE_SET(PAGER);
929 		argc = 0;	/* no repeat */
930 	}
931 
932 	if (*cp != '\n' && *cp != '\0') {
933 		argc = 0;
934 		cpp = cbuf;
935 		while (*cp) {
936 			/* skip whitespace */
937 			while (isspace(*cp))
938 				cp++;
939 			if ((*cp == '\0') || (*cp == '\n') ||
940 			    (*cp == '#' && !defcmd_in_progress))
941 				break;
942 			/* special case: check for | grep pattern */
943 			if (*cp == '|') {
944 				check_grep++;
945 				break;
946 			}
947 			if (cpp >= cbuf + CMD_BUFLEN) {
948 				kdb_printf("kdb_parse: command buffer "
949 					   "overflow, command ignored\n%s\n",
950 					   cmdstr);
951 				return KDB_NOTFOUND;
952 			}
953 			if (argc >= MAXARGC - 1) {
954 				kdb_printf("kdb_parse: too many arguments, "
955 					   "command ignored\n%s\n", cmdstr);
956 				return KDB_NOTFOUND;
957 			}
958 			argv[argc++] = cpp;
959 			escaped = 0;
960 			quoted = '\0';
961 			/* Copy to next unquoted and unescaped
962 			 * whitespace or '=' */
963 			while (*cp && *cp != '\n' &&
964 			       (escaped || quoted || !isspace(*cp))) {
965 				if (cpp >= cbuf + CMD_BUFLEN)
966 					break;
967 				if (escaped) {
968 					escaped = 0;
969 					*cpp++ = *cp++;
970 					continue;
971 				}
972 				if (*cp == '\\') {
973 					escaped = 1;
974 					++cp;
975 					continue;
976 				}
977 				if (*cp == quoted)
978 					quoted = '\0';
979 				else if (*cp == '\'' || *cp == '"')
980 					quoted = *cp;
981 				*cpp = *cp++;
982 				if (*cpp == '=' && !quoted)
983 					break;
984 				++cpp;
985 			}
986 			*cpp++ = '\0';	/* Squash a ws or '=' character */
987 		}
988 	}
989 	if (!argc)
990 		return 0;
991 	if (check_grep)
992 		parse_grep(cp);
993 	if (defcmd_in_progress) {
994 		int result = kdb_defcmd2(cmdstr, argv[0]);
995 		if (!defcmd_in_progress) {
996 			argc = 0;	/* avoid repeat on endefcmd */
997 			*(argv[0]) = '\0';
998 		}
999 		return result;
1000 	}
1001 	if (argv[0][0] == '-' && argv[0][1] &&
1002 	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1003 		ignore_errors = 1;
1004 		++argv[0];
1005 	}
1006 
1007 	for_each_kdbcmd(tp, i) {
1008 		if (tp->cmd_name) {
1009 			/*
1010 			 * If this command is allowed to be abbreviated,
1011 			 * check to see if this is it.
1012 			 */
1013 
1014 			if (tp->cmd_minlen
1015 			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1016 				if (strncmp(argv[0],
1017 					    tp->cmd_name,
1018 					    tp->cmd_minlen) == 0) {
1019 					break;
1020 				}
1021 			}
1022 
1023 			if (strcmp(argv[0], tp->cmd_name) == 0)
1024 				break;
1025 		}
1026 	}
1027 
1028 	/*
1029 	 * If we don't find a command by this name, see if the first
1030 	 * few characters of this match any of the known commands.
1031 	 * e.g., md1c20 should match md.
1032 	 */
1033 	if (i == kdb_max_commands) {
1034 		for_each_kdbcmd(tp, i) {
1035 			if (tp->cmd_name) {
1036 				if (strncmp(argv[0],
1037 					    tp->cmd_name,
1038 					    strlen(tp->cmd_name)) == 0) {
1039 					break;
1040 				}
1041 			}
1042 		}
1043 	}
1044 
1045 	if (i < kdb_max_commands) {
1046 		int result;
1047 
1048 		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1049 			return KDB_NOPERM;
1050 
1051 		KDB_STATE_SET(CMD);
1052 		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1053 		if (result && ignore_errors && result > KDB_CMD_GO)
1054 			result = 0;
1055 		KDB_STATE_CLEAR(CMD);
1056 
1057 		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1058 			return result;
1059 
1060 		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1061 		if (argv[argc])
1062 			*(argv[argc]) = '\0';
1063 		return result;
1064 	}
1065 
1066 	/*
1067 	 * If the input with which we were presented does not
1068 	 * map to an existing command, attempt to parse it as an
1069 	 * address argument and display the result.   Useful for
1070 	 * obtaining the address of a variable, or the nearest symbol
1071 	 * to an address contained in a register.
1072 	 */
1073 	{
1074 		unsigned long value;
1075 		char *name = NULL;
1076 		long offset;
1077 		int nextarg = 0;
1078 
1079 		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1080 				  &value, &offset, &name)) {
1081 			return KDB_NOTFOUND;
1082 		}
1083 
1084 		kdb_printf("%s = ", argv[0]);
1085 		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1086 		kdb_printf("\n");
1087 		return 0;
1088 	}
1089 }
1090 
1091 
1092 static int handle_ctrl_cmd(char *cmd)
1093 {
1094 #define CTRL_P	16
1095 #define CTRL_N	14
1096 
1097 	/* initial situation */
1098 	if (cmd_head == cmd_tail)
1099 		return 0;
1100 	switch (*cmd) {
1101 	case CTRL_P:
1102 		if (cmdptr != cmd_tail)
1103 			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1104 		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1105 		return 1;
1106 	case CTRL_N:
1107 		if (cmdptr != cmd_head)
1108 			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1109 		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1110 		return 1;
1111 	}
1112 	return 0;
1113 }
1114 
1115 /*
1116  * kdb_reboot - This function implements the 'reboot' command.  Reboot
1117  *	the system immediately, or loop for ever on failure.
1118  */
1119 static int kdb_reboot(int argc, const char **argv)
1120 {
1121 	emergency_restart();
1122 	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1123 	while (1)
1124 		cpu_relax();
1125 	/* NOTREACHED */
1126 	return 0;
1127 }
1128 
1129 static void kdb_dumpregs(struct pt_regs *regs)
1130 {
1131 	int old_lvl = console_loglevel;
1132 	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1133 	kdb_trap_printk++;
1134 	show_regs(regs);
1135 	kdb_trap_printk--;
1136 	kdb_printf("\n");
1137 	console_loglevel = old_lvl;
1138 }
1139 
1140 void kdb_set_current_task(struct task_struct *p)
1141 {
1142 	kdb_current_task = p;
1143 
1144 	if (kdb_task_has_cpu(p)) {
1145 		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1146 		return;
1147 	}
1148 	kdb_current_regs = NULL;
1149 }
1150 
1151 /*
1152  * kdb_local - The main code for kdb.  This routine is invoked on a
1153  *	specific processor, it is not global.  The main kdb() routine
1154  *	ensures that only one processor at a time is in this routine.
1155  *	This code is called with the real reason code on the first
1156  *	entry to a kdb session, thereafter it is called with reason
1157  *	SWITCH, even if the user goes back to the original cpu.
1158  * Inputs:
1159  *	reason		The reason KDB was invoked
1160  *	error		The hardware-defined error code
1161  *	regs		The exception frame at time of fault/breakpoint.
1162  *	db_result	Result code from the break or debug point.
1163  * Returns:
1164  *	0	KDB was invoked for an event which it wasn't responsible
1165  *	1	KDB handled the event for which it was invoked.
1166  *	KDB_CMD_GO	User typed 'go'.
1167  *	KDB_CMD_CPU	User switched to another cpu.
1168  *	KDB_CMD_SS	Single step.
1169  */
1170 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1171 		     kdb_dbtrap_t db_result)
1172 {
1173 	char *cmdbuf;
1174 	int diag;
1175 	struct task_struct *kdb_current =
1176 		kdb_curr_task(raw_smp_processor_id());
1177 
1178 	KDB_DEBUG_STATE("kdb_local 1", reason);
1179 	kdb_go_count = 0;
1180 	if (reason == KDB_REASON_DEBUG) {
1181 		/* special case below */
1182 	} else {
1183 		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1184 			   kdb_current, kdb_current ? kdb_current->pid : 0);
1185 #if defined(CONFIG_SMP)
1186 		kdb_printf("on processor %d ", raw_smp_processor_id());
1187 #endif
1188 	}
1189 
1190 	switch (reason) {
1191 	case KDB_REASON_DEBUG:
1192 	{
1193 		/*
1194 		 * If re-entering kdb after a single step
1195 		 * command, don't print the message.
1196 		 */
1197 		switch (db_result) {
1198 		case KDB_DB_BPT:
1199 			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1200 				   kdb_current, kdb_current->pid);
1201 #if defined(CONFIG_SMP)
1202 			kdb_printf("on processor %d ", raw_smp_processor_id());
1203 #endif
1204 			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1205 				   instruction_pointer(regs));
1206 			break;
1207 		case KDB_DB_SS:
1208 			break;
1209 		case KDB_DB_SSBPT:
1210 			KDB_DEBUG_STATE("kdb_local 4", reason);
1211 			return 1;	/* kdba_db_trap did the work */
1212 		default:
1213 			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1214 				   db_result);
1215 			break;
1216 		}
1217 
1218 	}
1219 		break;
1220 	case KDB_REASON_ENTER:
1221 		if (KDB_STATE(KEYBOARD))
1222 			kdb_printf("due to Keyboard Entry\n");
1223 		else
1224 			kdb_printf("due to KDB_ENTER()\n");
1225 		break;
1226 	case KDB_REASON_KEYBOARD:
1227 		KDB_STATE_SET(KEYBOARD);
1228 		kdb_printf("due to Keyboard Entry\n");
1229 		break;
1230 	case KDB_REASON_ENTER_SLAVE:
1231 		/* drop through, slaves only get released via cpu switch */
1232 	case KDB_REASON_SWITCH:
1233 		kdb_printf("due to cpu switch\n");
1234 		break;
1235 	case KDB_REASON_OOPS:
1236 		kdb_printf("Oops: %s\n", kdb_diemsg);
1237 		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1238 			   instruction_pointer(regs));
1239 		kdb_dumpregs(regs);
1240 		break;
1241 	case KDB_REASON_SYSTEM_NMI:
1242 		kdb_printf("due to System NonMaskable Interrupt\n");
1243 		break;
1244 	case KDB_REASON_NMI:
1245 		kdb_printf("due to NonMaskable Interrupt @ "
1246 			   kdb_machreg_fmt "\n",
1247 			   instruction_pointer(regs));
1248 		break;
1249 	case KDB_REASON_SSTEP:
1250 	case KDB_REASON_BREAK:
1251 		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1252 			   reason == KDB_REASON_BREAK ?
1253 			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1254 		/*
1255 		 * Determine if this breakpoint is one that we
1256 		 * are interested in.
1257 		 */
1258 		if (db_result != KDB_DB_BPT) {
1259 			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1260 				   db_result);
1261 			KDB_DEBUG_STATE("kdb_local 6", reason);
1262 			return 0;	/* Not for us, dismiss it */
1263 		}
1264 		break;
1265 	case KDB_REASON_RECURSE:
1266 		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1267 			   instruction_pointer(regs));
1268 		break;
1269 	default:
1270 		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1271 		KDB_DEBUG_STATE("kdb_local 8", reason);
1272 		return 0;	/* Not for us, dismiss it */
1273 	}
1274 
1275 	while (1) {
1276 		/*
1277 		 * Initialize pager context.
1278 		 */
1279 		kdb_nextline = 1;
1280 		KDB_STATE_CLEAR(SUPPRESS);
1281 		kdb_grepping_flag = 0;
1282 		/* ensure the old search does not leak into '/' commands */
1283 		kdb_grep_string[0] = '\0';
1284 
1285 		cmdbuf = cmd_cur;
1286 		*cmdbuf = '\0';
1287 		*(cmd_hist[cmd_head]) = '\0';
1288 
1289 do_full_getstr:
1290 #if defined(CONFIG_SMP)
1291 		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1292 			 raw_smp_processor_id());
1293 #else
1294 		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1295 #endif
1296 		if (defcmd_in_progress)
1297 			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1298 
1299 		/*
1300 		 * Fetch command from keyboard
1301 		 */
1302 		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1303 		if (*cmdbuf != '\n') {
1304 			if (*cmdbuf < 32) {
1305 				if (cmdptr == cmd_head) {
1306 					strncpy(cmd_hist[cmd_head], cmd_cur,
1307 						CMD_BUFLEN);
1308 					*(cmd_hist[cmd_head] +
1309 					  strlen(cmd_hist[cmd_head])-1) = '\0';
1310 				}
1311 				if (!handle_ctrl_cmd(cmdbuf))
1312 					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1313 				cmdbuf = cmd_cur;
1314 				goto do_full_getstr;
1315 			} else {
1316 				strncpy(cmd_hist[cmd_head], cmd_cur,
1317 					CMD_BUFLEN);
1318 			}
1319 
1320 			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1321 			if (cmd_head == cmd_tail)
1322 				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1323 		}
1324 
1325 		cmdptr = cmd_head;
1326 		diag = kdb_parse(cmdbuf);
1327 		if (diag == KDB_NOTFOUND) {
1328 			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1329 			diag = 0;
1330 		}
1331 		if (diag == KDB_CMD_GO
1332 		 || diag == KDB_CMD_CPU
1333 		 || diag == KDB_CMD_SS
1334 		 || diag == KDB_CMD_KGDB)
1335 			break;
1336 
1337 		if (diag)
1338 			kdb_cmderror(diag);
1339 	}
1340 	KDB_DEBUG_STATE("kdb_local 9", diag);
1341 	return diag;
1342 }
1343 
1344 
1345 /*
1346  * kdb_print_state - Print the state data for the current processor
1347  *	for debugging.
1348  * Inputs:
1349  *	text		Identifies the debug point
1350  *	value		Any integer value to be printed, e.g. reason code.
1351  */
1352 void kdb_print_state(const char *text, int value)
1353 {
1354 	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1355 		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1356 		   kdb_state);
1357 }
1358 
1359 /*
1360  * kdb_main_loop - After initial setup and assignment of the
1361  *	controlling cpu, all cpus are in this loop.  One cpu is in
1362  *	control and will issue the kdb prompt, the others will spin
1363  *	until 'go' or cpu switch.
1364  *
1365  *	To get a consistent view of the kernel stacks for all
1366  *	processes, this routine is invoked from the main kdb code via
1367  *	an architecture specific routine.  kdba_main_loop is
1368  *	responsible for making the kernel stacks consistent for all
1369  *	processes, there should be no difference between a blocked
1370  *	process and a running process as far as kdb is concerned.
1371  * Inputs:
1372  *	reason		The reason KDB was invoked
1373  *	error		The hardware-defined error code
1374  *	reason2		kdb's current reason code.
1375  *			Initially error but can change
1376  *			according to kdb state.
1377  *	db_result	Result code from break or debug point.
1378  *	regs		The exception frame at time of fault/breakpoint.
1379  *			should always be valid.
1380  * Returns:
1381  *	0	KDB was invoked for an event which it wasn't responsible
1382  *	1	KDB handled the event for which it was invoked.
1383  */
1384 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1385 	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1386 {
1387 	int result = 1;
1388 	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1389 	while (1) {
1390 		/*
1391 		 * All processors except the one that is in control
1392 		 * will spin here.
1393 		 */
1394 		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1395 		while (KDB_STATE(HOLD_CPU)) {
1396 			/* state KDB is turned off by kdb_cpu to see if the
1397 			 * other cpus are still live, each cpu in this loop
1398 			 * turns it back on.
1399 			 */
1400 			if (!KDB_STATE(KDB))
1401 				KDB_STATE_SET(KDB);
1402 		}
1403 
1404 		KDB_STATE_CLEAR(SUPPRESS);
1405 		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1406 		if (KDB_STATE(LEAVING))
1407 			break;	/* Another cpu said 'go' */
1408 		/* Still using kdb, this processor is in control */
1409 		result = kdb_local(reason2, error, regs, db_result);
1410 		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1411 
1412 		if (result == KDB_CMD_CPU)
1413 			break;
1414 
1415 		if (result == KDB_CMD_SS) {
1416 			KDB_STATE_SET(DOING_SS);
1417 			break;
1418 		}
1419 
1420 		if (result == KDB_CMD_KGDB) {
1421 			if (!KDB_STATE(DOING_KGDB))
1422 				kdb_printf("Entering please attach debugger "
1423 					   "or use $D#44+ or $3#33\n");
1424 			break;
1425 		}
1426 		if (result && result != 1 && result != KDB_CMD_GO)
1427 			kdb_printf("\nUnexpected kdb_local return code %d\n",
1428 				   result);
1429 		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1430 		break;
1431 	}
1432 	if (KDB_STATE(DOING_SS))
1433 		KDB_STATE_CLEAR(SSBPT);
1434 
1435 	/* Clean up any keyboard devices before leaving */
1436 	kdb_kbd_cleanup_state();
1437 
1438 	return result;
1439 }
1440 
1441 /*
1442  * kdb_mdr - This function implements the guts of the 'mdr', memory
1443  * read command.
1444  *	mdr  <addr arg>,<byte count>
1445  * Inputs:
1446  *	addr	Start address
1447  *	count	Number of bytes
1448  * Returns:
1449  *	Always 0.  Any errors are detected and printed by kdb_getarea.
1450  */
1451 static int kdb_mdr(unsigned long addr, unsigned int count)
1452 {
1453 	unsigned char c;
1454 	while (count--) {
1455 		if (kdb_getarea(c, addr))
1456 			return 0;
1457 		kdb_printf("%02x", c);
1458 		addr++;
1459 	}
1460 	kdb_printf("\n");
1461 	return 0;
1462 }
1463 
1464 /*
1465  * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1466  *	'md8' 'mdr' and 'mds' commands.
1467  *
1468  *	md|mds  [<addr arg> [<line count> [<radix>]]]
1469  *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1470  *		where W = is the width (1, 2, 4 or 8) and N is the count.
1471  *		for eg., md1c20 reads 20 bytes, 1 at a time.
1472  *	mdr  <addr arg>,<byte count>
1473  */
1474 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1475 			int symbolic, int nosect, int bytesperword,
1476 			int num, int repeat, int phys)
1477 {
1478 	/* print just one line of data */
1479 	kdb_symtab_t symtab;
1480 	char cbuf[32];
1481 	char *c = cbuf;
1482 	int i;
1483 	unsigned long word;
1484 
1485 	memset(cbuf, '\0', sizeof(cbuf));
1486 	if (phys)
1487 		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1488 	else
1489 		kdb_printf(kdb_machreg_fmt0 " ", addr);
1490 
1491 	for (i = 0; i < num && repeat--; i++) {
1492 		if (phys) {
1493 			if (kdb_getphysword(&word, addr, bytesperword))
1494 				break;
1495 		} else if (kdb_getword(&word, addr, bytesperword))
1496 			break;
1497 		kdb_printf(fmtstr, word);
1498 		if (symbolic)
1499 			kdbnearsym(word, &symtab);
1500 		else
1501 			memset(&symtab, 0, sizeof(symtab));
1502 		if (symtab.sym_name) {
1503 			kdb_symbol_print(word, &symtab, 0);
1504 			if (!nosect) {
1505 				kdb_printf("\n");
1506 				kdb_printf("                       %s %s "
1507 					   kdb_machreg_fmt " "
1508 					   kdb_machreg_fmt " "
1509 					   kdb_machreg_fmt, symtab.mod_name,
1510 					   symtab.sec_name, symtab.sec_start,
1511 					   symtab.sym_start, symtab.sym_end);
1512 			}
1513 			addr += bytesperword;
1514 		} else {
1515 			union {
1516 				u64 word;
1517 				unsigned char c[8];
1518 			} wc;
1519 			unsigned char *cp;
1520 #ifdef	__BIG_ENDIAN
1521 			cp = wc.c + 8 - bytesperword;
1522 #else
1523 			cp = wc.c;
1524 #endif
1525 			wc.word = word;
1526 #define printable_char(c) \
1527 	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1528 			switch (bytesperword) {
1529 			case 8:
1530 				*c++ = printable_char(*cp++);
1531 				*c++ = printable_char(*cp++);
1532 				*c++ = printable_char(*cp++);
1533 				*c++ = printable_char(*cp++);
1534 				addr += 4;
1535 			case 4:
1536 				*c++ = printable_char(*cp++);
1537 				*c++ = printable_char(*cp++);
1538 				addr += 2;
1539 			case 2:
1540 				*c++ = printable_char(*cp++);
1541 				addr++;
1542 			case 1:
1543 				*c++ = printable_char(*cp++);
1544 				addr++;
1545 				break;
1546 			}
1547 #undef printable_char
1548 		}
1549 	}
1550 	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1551 		   " ", cbuf);
1552 }
1553 
1554 static int kdb_md(int argc, const char **argv)
1555 {
1556 	static unsigned long last_addr;
1557 	static int last_radix, last_bytesperword, last_repeat;
1558 	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1559 	int nosect = 0;
1560 	char fmtchar, fmtstr[64];
1561 	unsigned long addr;
1562 	unsigned long word;
1563 	long offset = 0;
1564 	int symbolic = 0;
1565 	int valid = 0;
1566 	int phys = 0;
1567 
1568 	kdbgetintenv("MDCOUNT", &mdcount);
1569 	kdbgetintenv("RADIX", &radix);
1570 	kdbgetintenv("BYTESPERWORD", &bytesperword);
1571 
1572 	/* Assume 'md <addr>' and start with environment values */
1573 	repeat = mdcount * 16 / bytesperword;
1574 
1575 	if (strcmp(argv[0], "mdr") == 0) {
1576 		if (argc != 2)
1577 			return KDB_ARGCOUNT;
1578 		valid = 1;
1579 	} else if (isdigit(argv[0][2])) {
1580 		bytesperword = (int)(argv[0][2] - '0');
1581 		if (bytesperword == 0) {
1582 			bytesperword = last_bytesperword;
1583 			if (bytesperword == 0)
1584 				bytesperword = 4;
1585 		}
1586 		last_bytesperword = bytesperword;
1587 		repeat = mdcount * 16 / bytesperword;
1588 		if (!argv[0][3])
1589 			valid = 1;
1590 		else if (argv[0][3] == 'c' && argv[0][4]) {
1591 			char *p;
1592 			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1593 			mdcount = ((repeat * bytesperword) + 15) / 16;
1594 			valid = !*p;
1595 		}
1596 		last_repeat = repeat;
1597 	} else if (strcmp(argv[0], "md") == 0)
1598 		valid = 1;
1599 	else if (strcmp(argv[0], "mds") == 0)
1600 		valid = 1;
1601 	else if (strcmp(argv[0], "mdp") == 0) {
1602 		phys = valid = 1;
1603 	}
1604 	if (!valid)
1605 		return KDB_NOTFOUND;
1606 
1607 	if (argc == 0) {
1608 		if (last_addr == 0)
1609 			return KDB_ARGCOUNT;
1610 		addr = last_addr;
1611 		radix = last_radix;
1612 		bytesperword = last_bytesperword;
1613 		repeat = last_repeat;
1614 		mdcount = ((repeat * bytesperword) + 15) / 16;
1615 	}
1616 
1617 	if (argc) {
1618 		unsigned long val;
1619 		int diag, nextarg = 1;
1620 		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1621 				     &offset, NULL);
1622 		if (diag)
1623 			return diag;
1624 		if (argc > nextarg+2)
1625 			return KDB_ARGCOUNT;
1626 
1627 		if (argc >= nextarg) {
1628 			diag = kdbgetularg(argv[nextarg], &val);
1629 			if (!diag) {
1630 				mdcount = (int) val;
1631 				repeat = mdcount * 16 / bytesperword;
1632 			}
1633 		}
1634 		if (argc >= nextarg+1) {
1635 			diag = kdbgetularg(argv[nextarg+1], &val);
1636 			if (!diag)
1637 				radix = (int) val;
1638 		}
1639 	}
1640 
1641 	if (strcmp(argv[0], "mdr") == 0)
1642 		return kdb_mdr(addr, mdcount);
1643 
1644 	switch (radix) {
1645 	case 10:
1646 		fmtchar = 'd';
1647 		break;
1648 	case 16:
1649 		fmtchar = 'x';
1650 		break;
1651 	case 8:
1652 		fmtchar = 'o';
1653 		break;
1654 	default:
1655 		return KDB_BADRADIX;
1656 	}
1657 
1658 	last_radix = radix;
1659 
1660 	if (bytesperword > KDB_WORD_SIZE)
1661 		return KDB_BADWIDTH;
1662 
1663 	switch (bytesperword) {
1664 	case 8:
1665 		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1666 		break;
1667 	case 4:
1668 		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1669 		break;
1670 	case 2:
1671 		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1672 		break;
1673 	case 1:
1674 		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1675 		break;
1676 	default:
1677 		return KDB_BADWIDTH;
1678 	}
1679 
1680 	last_repeat = repeat;
1681 	last_bytesperword = bytesperword;
1682 
1683 	if (strcmp(argv[0], "mds") == 0) {
1684 		symbolic = 1;
1685 		/* Do not save these changes as last_*, they are temporary mds
1686 		 * overrides.
1687 		 */
1688 		bytesperword = KDB_WORD_SIZE;
1689 		repeat = mdcount;
1690 		kdbgetintenv("NOSECT", &nosect);
1691 	}
1692 
1693 	/* Round address down modulo BYTESPERWORD */
1694 
1695 	addr &= ~(bytesperword-1);
1696 
1697 	while (repeat > 0) {
1698 		unsigned long a;
1699 		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1700 
1701 		if (KDB_FLAG(CMD_INTERRUPT))
1702 			return 0;
1703 		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1704 			if (phys) {
1705 				if (kdb_getphysword(&word, a, bytesperword)
1706 						|| word)
1707 					break;
1708 			} else if (kdb_getword(&word, a, bytesperword) || word)
1709 				break;
1710 		}
1711 		n = min(num, repeat);
1712 		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1713 			    num, repeat, phys);
1714 		addr += bytesperword * n;
1715 		repeat -= n;
1716 		z = (z + num - 1) / num;
1717 		if (z > 2) {
1718 			int s = num * (z-2);
1719 			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1720 				   " zero suppressed\n",
1721 				addr, addr + bytesperword * s - 1);
1722 			addr += bytesperword * s;
1723 			repeat -= s;
1724 		}
1725 	}
1726 	last_addr = addr;
1727 
1728 	return 0;
1729 }
1730 
1731 /*
1732  * kdb_mm - This function implements the 'mm' command.
1733  *	mm address-expression new-value
1734  * Remarks:
1735  *	mm works on machine words, mmW works on bytes.
1736  */
1737 static int kdb_mm(int argc, const char **argv)
1738 {
1739 	int diag;
1740 	unsigned long addr;
1741 	long offset = 0;
1742 	unsigned long contents;
1743 	int nextarg;
1744 	int width;
1745 
1746 	if (argv[0][2] && !isdigit(argv[0][2]))
1747 		return KDB_NOTFOUND;
1748 
1749 	if (argc < 2)
1750 		return KDB_ARGCOUNT;
1751 
1752 	nextarg = 1;
1753 	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1754 	if (diag)
1755 		return diag;
1756 
1757 	if (nextarg > argc)
1758 		return KDB_ARGCOUNT;
1759 	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1760 	if (diag)
1761 		return diag;
1762 
1763 	if (nextarg != argc + 1)
1764 		return KDB_ARGCOUNT;
1765 
1766 	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1767 	diag = kdb_putword(addr, contents, width);
1768 	if (diag)
1769 		return diag;
1770 
1771 	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1772 
1773 	return 0;
1774 }
1775 
1776 /*
1777  * kdb_go - This function implements the 'go' command.
1778  *	go [address-expression]
1779  */
1780 static int kdb_go(int argc, const char **argv)
1781 {
1782 	unsigned long addr;
1783 	int diag;
1784 	int nextarg;
1785 	long offset;
1786 
1787 	if (raw_smp_processor_id() != kdb_initial_cpu) {
1788 		kdb_printf("go must execute on the entry cpu, "
1789 			   "please use \"cpu %d\" and then execute go\n",
1790 			   kdb_initial_cpu);
1791 		return KDB_BADCPUNUM;
1792 	}
1793 	if (argc == 1) {
1794 		nextarg = 1;
1795 		diag = kdbgetaddrarg(argc, argv, &nextarg,
1796 				     &addr, &offset, NULL);
1797 		if (diag)
1798 			return diag;
1799 	} else if (argc) {
1800 		return KDB_ARGCOUNT;
1801 	}
1802 
1803 	diag = KDB_CMD_GO;
1804 	if (KDB_FLAG(CATASTROPHIC)) {
1805 		kdb_printf("Catastrophic error detected\n");
1806 		kdb_printf("kdb_continue_catastrophic=%d, ",
1807 			kdb_continue_catastrophic);
1808 		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1809 			kdb_printf("type go a second time if you really want "
1810 				   "to continue\n");
1811 			return 0;
1812 		}
1813 		if (kdb_continue_catastrophic == 2) {
1814 			kdb_printf("forcing reboot\n");
1815 			kdb_reboot(0, NULL);
1816 		}
1817 		kdb_printf("attempting to continue\n");
1818 	}
1819 	return diag;
1820 }
1821 
1822 /*
1823  * kdb_rd - This function implements the 'rd' command.
1824  */
1825 static int kdb_rd(int argc, const char **argv)
1826 {
1827 	int len = kdb_check_regs();
1828 #if DBG_MAX_REG_NUM > 0
1829 	int i;
1830 	char *rname;
1831 	int rsize;
1832 	u64 reg64;
1833 	u32 reg32;
1834 	u16 reg16;
1835 	u8 reg8;
1836 
1837 	if (len)
1838 		return len;
1839 
1840 	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1841 		rsize = dbg_reg_def[i].size * 2;
1842 		if (rsize > 16)
1843 			rsize = 2;
1844 		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1845 			len = 0;
1846 			kdb_printf("\n");
1847 		}
1848 		if (len)
1849 			len += kdb_printf("  ");
1850 		switch(dbg_reg_def[i].size * 8) {
1851 		case 8:
1852 			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1853 			if (!rname)
1854 				break;
1855 			len += kdb_printf("%s: %02x", rname, reg8);
1856 			break;
1857 		case 16:
1858 			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1859 			if (!rname)
1860 				break;
1861 			len += kdb_printf("%s: %04x", rname, reg16);
1862 			break;
1863 		case 32:
1864 			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1865 			if (!rname)
1866 				break;
1867 			len += kdb_printf("%s: %08x", rname, reg32);
1868 			break;
1869 		case 64:
1870 			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1871 			if (!rname)
1872 				break;
1873 			len += kdb_printf("%s: %016llx", rname, reg64);
1874 			break;
1875 		default:
1876 			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1877 		}
1878 	}
1879 	kdb_printf("\n");
1880 #else
1881 	if (len)
1882 		return len;
1883 
1884 	kdb_dumpregs(kdb_current_regs);
1885 #endif
1886 	return 0;
1887 }
1888 
1889 /*
1890  * kdb_rm - This function implements the 'rm' (register modify)  command.
1891  *	rm register-name new-contents
1892  * Remarks:
1893  *	Allows register modification with the same restrictions as gdb
1894  */
1895 static int kdb_rm(int argc, const char **argv)
1896 {
1897 #if DBG_MAX_REG_NUM > 0
1898 	int diag;
1899 	const char *rname;
1900 	int i;
1901 	u64 reg64;
1902 	u32 reg32;
1903 	u16 reg16;
1904 	u8 reg8;
1905 
1906 	if (argc != 2)
1907 		return KDB_ARGCOUNT;
1908 	/*
1909 	 * Allow presence or absence of leading '%' symbol.
1910 	 */
1911 	rname = argv[1];
1912 	if (*rname == '%')
1913 		rname++;
1914 
1915 	diag = kdbgetu64arg(argv[2], &reg64);
1916 	if (diag)
1917 		return diag;
1918 
1919 	diag = kdb_check_regs();
1920 	if (diag)
1921 		return diag;
1922 
1923 	diag = KDB_BADREG;
1924 	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1925 		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1926 			diag = 0;
1927 			break;
1928 		}
1929 	}
1930 	if (!diag) {
1931 		switch(dbg_reg_def[i].size * 8) {
1932 		case 8:
1933 			reg8 = reg64;
1934 			dbg_set_reg(i, &reg8, kdb_current_regs);
1935 			break;
1936 		case 16:
1937 			reg16 = reg64;
1938 			dbg_set_reg(i, &reg16, kdb_current_regs);
1939 			break;
1940 		case 32:
1941 			reg32 = reg64;
1942 			dbg_set_reg(i, &reg32, kdb_current_regs);
1943 			break;
1944 		case 64:
1945 			dbg_set_reg(i, &reg64, kdb_current_regs);
1946 			break;
1947 		}
1948 	}
1949 	return diag;
1950 #else
1951 	kdb_printf("ERROR: Register set currently not implemented\n");
1952     return 0;
1953 #endif
1954 }
1955 
1956 #if defined(CONFIG_MAGIC_SYSRQ)
1957 /*
1958  * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1959  *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1960  *		sr <magic-sysrq-code>
1961  */
1962 static int kdb_sr(int argc, const char **argv)
1963 {
1964 	bool check_mask =
1965 	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1966 
1967 	if (argc != 1)
1968 		return KDB_ARGCOUNT;
1969 
1970 	kdb_trap_printk++;
1971 	__handle_sysrq(*argv[1], check_mask);
1972 	kdb_trap_printk--;
1973 
1974 	return 0;
1975 }
1976 #endif	/* CONFIG_MAGIC_SYSRQ */
1977 
1978 /*
1979  * kdb_ef - This function implements the 'regs' (display exception
1980  *	frame) command.  This command takes an address and expects to
1981  *	find an exception frame at that address, formats and prints
1982  *	it.
1983  *		regs address-expression
1984  * Remarks:
1985  *	Not done yet.
1986  */
1987 static int kdb_ef(int argc, const char **argv)
1988 {
1989 	int diag;
1990 	unsigned long addr;
1991 	long offset;
1992 	int nextarg;
1993 
1994 	if (argc != 1)
1995 		return KDB_ARGCOUNT;
1996 
1997 	nextarg = 1;
1998 	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1999 	if (diag)
2000 		return diag;
2001 	show_regs((struct pt_regs *)addr);
2002 	return 0;
2003 }
2004 
2005 #if defined(CONFIG_MODULES)
2006 /*
2007  * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2008  *	currently loaded kernel modules.
2009  *	Mostly taken from userland lsmod.
2010  */
2011 static int kdb_lsmod(int argc, const char **argv)
2012 {
2013 	struct module *mod;
2014 
2015 	if (argc != 0)
2016 		return KDB_ARGCOUNT;
2017 
2018 	kdb_printf("Module                  Size  modstruct     Used by\n");
2019 	list_for_each_entry(mod, kdb_modules, list) {
2020 		if (mod->state == MODULE_STATE_UNFORMED)
2021 			continue;
2022 
2023 		kdb_printf("%-20s%8u  0x%p ", mod->name,
2024 			   mod->core_layout.size, (void *)mod);
2025 #ifdef CONFIG_MODULE_UNLOAD
2026 		kdb_printf("%4d ", module_refcount(mod));
2027 #endif
2028 		if (mod->state == MODULE_STATE_GOING)
2029 			kdb_printf(" (Unloading)");
2030 		else if (mod->state == MODULE_STATE_COMING)
2031 			kdb_printf(" (Loading)");
2032 		else
2033 			kdb_printf(" (Live)");
2034 		kdb_printf(" 0x%p", mod->core_layout.base);
2035 
2036 #ifdef CONFIG_MODULE_UNLOAD
2037 		{
2038 			struct module_use *use;
2039 			kdb_printf(" [ ");
2040 			list_for_each_entry(use, &mod->source_list,
2041 					    source_list)
2042 				kdb_printf("%s ", use->target->name);
2043 			kdb_printf("]\n");
2044 		}
2045 #endif
2046 	}
2047 
2048 	return 0;
2049 }
2050 
2051 #endif	/* CONFIG_MODULES */
2052 
2053 /*
2054  * kdb_env - This function implements the 'env' command.  Display the
2055  *	current environment variables.
2056  */
2057 
2058 static int kdb_env(int argc, const char **argv)
2059 {
2060 	int i;
2061 
2062 	for (i = 0; i < __nenv; i++) {
2063 		if (__env[i])
2064 			kdb_printf("%s\n", __env[i]);
2065 	}
2066 
2067 	if (KDB_DEBUG(MASK))
2068 		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2069 
2070 	return 0;
2071 }
2072 
2073 #ifdef CONFIG_PRINTK
2074 /*
2075  * kdb_dmesg - This function implements the 'dmesg' command to display
2076  *	the contents of the syslog buffer.
2077  *		dmesg [lines] [adjust]
2078  */
2079 static int kdb_dmesg(int argc, const char **argv)
2080 {
2081 	int diag;
2082 	int logging;
2083 	int lines = 0;
2084 	int adjust = 0;
2085 	int n = 0;
2086 	int skip = 0;
2087 	struct kmsg_dumper dumper = { .active = 1 };
2088 	size_t len;
2089 	char buf[201];
2090 
2091 	if (argc > 2)
2092 		return KDB_ARGCOUNT;
2093 	if (argc) {
2094 		char *cp;
2095 		lines = simple_strtol(argv[1], &cp, 0);
2096 		if (*cp)
2097 			lines = 0;
2098 		if (argc > 1) {
2099 			adjust = simple_strtoul(argv[2], &cp, 0);
2100 			if (*cp || adjust < 0)
2101 				adjust = 0;
2102 		}
2103 	}
2104 
2105 	/* disable LOGGING if set */
2106 	diag = kdbgetintenv("LOGGING", &logging);
2107 	if (!diag && logging) {
2108 		const char *setargs[] = { "set", "LOGGING", "0" };
2109 		kdb_set(2, setargs);
2110 	}
2111 
2112 	kmsg_dump_rewind_nolock(&dumper);
2113 	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2114 		n++;
2115 
2116 	if (lines < 0) {
2117 		if (adjust >= n)
2118 			kdb_printf("buffer only contains %d lines, nothing "
2119 				   "printed\n", n);
2120 		else if (adjust - lines >= n)
2121 			kdb_printf("buffer only contains %d lines, last %d "
2122 				   "lines printed\n", n, n - adjust);
2123 		skip = adjust;
2124 		lines = abs(lines);
2125 	} else if (lines > 0) {
2126 		skip = n - lines - adjust;
2127 		lines = abs(lines);
2128 		if (adjust >= n) {
2129 			kdb_printf("buffer only contains %d lines, "
2130 				   "nothing printed\n", n);
2131 			skip = n;
2132 		} else if (skip < 0) {
2133 			lines += skip;
2134 			skip = 0;
2135 			kdb_printf("buffer only contains %d lines, first "
2136 				   "%d lines printed\n", n, lines);
2137 		}
2138 	} else {
2139 		lines = n;
2140 	}
2141 
2142 	if (skip >= n || skip < 0)
2143 		return 0;
2144 
2145 	kmsg_dump_rewind_nolock(&dumper);
2146 	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2147 		if (skip) {
2148 			skip--;
2149 			continue;
2150 		}
2151 		if (!lines--)
2152 			break;
2153 		if (KDB_FLAG(CMD_INTERRUPT))
2154 			return 0;
2155 
2156 		kdb_printf("%.*s\n", (int)len - 1, buf);
2157 	}
2158 
2159 	return 0;
2160 }
2161 #endif /* CONFIG_PRINTK */
2162 
2163 /* Make sure we balance enable/disable calls, must disable first. */
2164 static atomic_t kdb_nmi_disabled;
2165 
2166 static int kdb_disable_nmi(int argc, const char *argv[])
2167 {
2168 	if (atomic_read(&kdb_nmi_disabled))
2169 		return 0;
2170 	atomic_set(&kdb_nmi_disabled, 1);
2171 	arch_kgdb_ops.enable_nmi(0);
2172 	return 0;
2173 }
2174 
2175 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2176 {
2177 	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2178 		return -EINVAL;
2179 	arch_kgdb_ops.enable_nmi(1);
2180 	return 0;
2181 }
2182 
2183 static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2184 	.set = kdb_param_enable_nmi,
2185 };
2186 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2187 
2188 /*
2189  * kdb_cpu - This function implements the 'cpu' command.
2190  *	cpu	[<cpunum>]
2191  * Returns:
2192  *	KDB_CMD_CPU for success, a kdb diagnostic if error
2193  */
2194 static void kdb_cpu_status(void)
2195 {
2196 	int i, start_cpu, first_print = 1;
2197 	char state, prev_state = '?';
2198 
2199 	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2200 	kdb_printf("Available cpus: ");
2201 	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2202 		if (!cpu_online(i)) {
2203 			state = 'F';	/* cpu is offline */
2204 		} else if (!kgdb_info[i].enter_kgdb) {
2205 			state = 'D';	/* cpu is online but unresponsive */
2206 		} else {
2207 			state = ' ';	/* cpu is responding to kdb */
2208 			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2209 				state = 'I';	/* idle task */
2210 		}
2211 		if (state != prev_state) {
2212 			if (prev_state != '?') {
2213 				if (!first_print)
2214 					kdb_printf(", ");
2215 				first_print = 0;
2216 				kdb_printf("%d", start_cpu);
2217 				if (start_cpu < i-1)
2218 					kdb_printf("-%d", i-1);
2219 				if (prev_state != ' ')
2220 					kdb_printf("(%c)", prev_state);
2221 			}
2222 			prev_state = state;
2223 			start_cpu = i;
2224 		}
2225 	}
2226 	/* print the trailing cpus, ignoring them if they are all offline */
2227 	if (prev_state != 'F') {
2228 		if (!first_print)
2229 			kdb_printf(", ");
2230 		kdb_printf("%d", start_cpu);
2231 		if (start_cpu < i-1)
2232 			kdb_printf("-%d", i-1);
2233 		if (prev_state != ' ')
2234 			kdb_printf("(%c)", prev_state);
2235 	}
2236 	kdb_printf("\n");
2237 }
2238 
2239 static int kdb_cpu(int argc, const char **argv)
2240 {
2241 	unsigned long cpunum;
2242 	int diag;
2243 
2244 	if (argc == 0) {
2245 		kdb_cpu_status();
2246 		return 0;
2247 	}
2248 
2249 	if (argc != 1)
2250 		return KDB_ARGCOUNT;
2251 
2252 	diag = kdbgetularg(argv[1], &cpunum);
2253 	if (diag)
2254 		return diag;
2255 
2256 	/*
2257 	 * Validate cpunum
2258 	 */
2259 	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2260 		return KDB_BADCPUNUM;
2261 
2262 	dbg_switch_cpu = cpunum;
2263 
2264 	/*
2265 	 * Switch to other cpu
2266 	 */
2267 	return KDB_CMD_CPU;
2268 }
2269 
2270 /* The user may not realize that ps/bta with no parameters does not print idle
2271  * or sleeping system daemon processes, so tell them how many were suppressed.
2272  */
2273 void kdb_ps_suppressed(void)
2274 {
2275 	int idle = 0, daemon = 0;
2276 	unsigned long mask_I = kdb_task_state_string("I"),
2277 		      mask_M = kdb_task_state_string("M");
2278 	unsigned long cpu;
2279 	const struct task_struct *p, *g;
2280 	for_each_online_cpu(cpu) {
2281 		p = kdb_curr_task(cpu);
2282 		if (kdb_task_state(p, mask_I))
2283 			++idle;
2284 	}
2285 	kdb_do_each_thread(g, p) {
2286 		if (kdb_task_state(p, mask_M))
2287 			++daemon;
2288 	} kdb_while_each_thread(g, p);
2289 	if (idle || daemon) {
2290 		if (idle)
2291 			kdb_printf("%d idle process%s (state I)%s\n",
2292 				   idle, idle == 1 ? "" : "es",
2293 				   daemon ? " and " : "");
2294 		if (daemon)
2295 			kdb_printf("%d sleeping system daemon (state M) "
2296 				   "process%s", daemon,
2297 				   daemon == 1 ? "" : "es");
2298 		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2299 	}
2300 }
2301 
2302 /*
2303  * kdb_ps - This function implements the 'ps' command which shows a
2304  *	list of the active processes.
2305  *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2306  */
2307 void kdb_ps1(const struct task_struct *p)
2308 {
2309 	int cpu;
2310 	unsigned long tmp;
2311 
2312 	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2313 		return;
2314 
2315 	cpu = kdb_process_cpu(p);
2316 	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2317 		   (void *)p, p->pid, p->parent->pid,
2318 		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2319 		   kdb_task_state_char(p),
2320 		   (void *)(&p->thread),
2321 		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2322 		   p->comm);
2323 	if (kdb_task_has_cpu(p)) {
2324 		if (!KDB_TSK(cpu)) {
2325 			kdb_printf("  Error: no saved data for this cpu\n");
2326 		} else {
2327 			if (KDB_TSK(cpu) != p)
2328 				kdb_printf("  Error: does not match running "
2329 				   "process table (0x%p)\n", KDB_TSK(cpu));
2330 		}
2331 	}
2332 }
2333 
2334 static int kdb_ps(int argc, const char **argv)
2335 {
2336 	struct task_struct *g, *p;
2337 	unsigned long mask, cpu;
2338 
2339 	if (argc == 0)
2340 		kdb_ps_suppressed();
2341 	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2342 		(int)(2*sizeof(void *))+2, "Task Addr",
2343 		(int)(2*sizeof(void *))+2, "Thread");
2344 	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2345 	/* Run the active tasks first */
2346 	for_each_online_cpu(cpu) {
2347 		if (KDB_FLAG(CMD_INTERRUPT))
2348 			return 0;
2349 		p = kdb_curr_task(cpu);
2350 		if (kdb_task_state(p, mask))
2351 			kdb_ps1(p);
2352 	}
2353 	kdb_printf("\n");
2354 	/* Now the real tasks */
2355 	kdb_do_each_thread(g, p) {
2356 		if (KDB_FLAG(CMD_INTERRUPT))
2357 			return 0;
2358 		if (kdb_task_state(p, mask))
2359 			kdb_ps1(p);
2360 	} kdb_while_each_thread(g, p);
2361 
2362 	return 0;
2363 }
2364 
2365 /*
2366  * kdb_pid - This function implements the 'pid' command which switches
2367  *	the currently active process.
2368  *		pid [<pid> | R]
2369  */
2370 static int kdb_pid(int argc, const char **argv)
2371 {
2372 	struct task_struct *p;
2373 	unsigned long val;
2374 	int diag;
2375 
2376 	if (argc > 1)
2377 		return KDB_ARGCOUNT;
2378 
2379 	if (argc) {
2380 		if (strcmp(argv[1], "R") == 0) {
2381 			p = KDB_TSK(kdb_initial_cpu);
2382 		} else {
2383 			diag = kdbgetularg(argv[1], &val);
2384 			if (diag)
2385 				return KDB_BADINT;
2386 
2387 			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2388 			if (!p) {
2389 				kdb_printf("No task with pid=%d\n", (pid_t)val);
2390 				return 0;
2391 			}
2392 		}
2393 		kdb_set_current_task(p);
2394 	}
2395 	kdb_printf("KDB current process is %s(pid=%d)\n",
2396 		   kdb_current_task->comm,
2397 		   kdb_current_task->pid);
2398 
2399 	return 0;
2400 }
2401 
2402 static int kdb_kgdb(int argc, const char **argv)
2403 {
2404 	return KDB_CMD_KGDB;
2405 }
2406 
2407 /*
2408  * kdb_help - This function implements the 'help' and '?' commands.
2409  */
2410 static int kdb_help(int argc, const char **argv)
2411 {
2412 	kdbtab_t *kt;
2413 	int i;
2414 
2415 	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2416 	kdb_printf("-----------------------------"
2417 		   "-----------------------------\n");
2418 	for_each_kdbcmd(kt, i) {
2419 		char *space = "";
2420 		if (KDB_FLAG(CMD_INTERRUPT))
2421 			return 0;
2422 		if (!kt->cmd_name)
2423 			continue;
2424 		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2425 			continue;
2426 		if (strlen(kt->cmd_usage) > 20)
2427 			space = "\n                                    ";
2428 		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2429 			   kt->cmd_usage, space, kt->cmd_help);
2430 	}
2431 	return 0;
2432 }
2433 
2434 /*
2435  * kdb_kill - This function implements the 'kill' commands.
2436  */
2437 static int kdb_kill(int argc, const char **argv)
2438 {
2439 	long sig, pid;
2440 	char *endp;
2441 	struct task_struct *p;
2442 	struct siginfo info;
2443 
2444 	if (argc != 2)
2445 		return KDB_ARGCOUNT;
2446 
2447 	sig = simple_strtol(argv[1], &endp, 0);
2448 	if (*endp)
2449 		return KDB_BADINT;
2450 	if (sig >= 0) {
2451 		kdb_printf("Invalid signal parameter.<-signal>\n");
2452 		return 0;
2453 	}
2454 	sig = -sig;
2455 
2456 	pid = simple_strtol(argv[2], &endp, 0);
2457 	if (*endp)
2458 		return KDB_BADINT;
2459 	if (pid <= 0) {
2460 		kdb_printf("Process ID must be large than 0.\n");
2461 		return 0;
2462 	}
2463 
2464 	/* Find the process. */
2465 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2466 	if (!p) {
2467 		kdb_printf("The specified process isn't found.\n");
2468 		return 0;
2469 	}
2470 	p = p->group_leader;
2471 	info.si_signo = sig;
2472 	info.si_errno = 0;
2473 	info.si_code = SI_USER;
2474 	info.si_pid = pid;  /* same capabilities as process being signalled */
2475 	info.si_uid = 0;    /* kdb has root authority */
2476 	kdb_send_sig_info(p, &info);
2477 	return 0;
2478 }
2479 
2480 struct kdb_tm {
2481 	int tm_sec;	/* seconds */
2482 	int tm_min;	/* minutes */
2483 	int tm_hour;	/* hours */
2484 	int tm_mday;	/* day of the month */
2485 	int tm_mon;	/* month */
2486 	int tm_year;	/* year */
2487 };
2488 
2489 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2490 {
2491 	/* This will work from 1970-2099, 2100 is not a leap year */
2492 	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2493 				 31, 30, 31, 30, 31 };
2494 	memset(tm, 0, sizeof(*tm));
2495 	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2496 	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2497 		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2498 	tm->tm_min =  tm->tm_sec / 60 % 60;
2499 	tm->tm_hour = tm->tm_sec / 60 / 60;
2500 	tm->tm_sec =  tm->tm_sec % 60;
2501 	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2502 	tm->tm_mday %= (4*365+1);
2503 	mon_day[1] = 29;
2504 	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2505 		tm->tm_mday -= mon_day[tm->tm_mon];
2506 		if (++tm->tm_mon == 12) {
2507 			tm->tm_mon = 0;
2508 			++tm->tm_year;
2509 			mon_day[1] = 28;
2510 		}
2511 	}
2512 	++tm->tm_mday;
2513 }
2514 
2515 /*
2516  * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2517  * I cannot call that code directly from kdb, it has an unconditional
2518  * cli()/sti() and calls routines that take locks which can stop the debugger.
2519  */
2520 static void kdb_sysinfo(struct sysinfo *val)
2521 {
2522 	struct timespec uptime;
2523 	ktime_get_ts(&uptime);
2524 	memset(val, 0, sizeof(*val));
2525 	val->uptime = uptime.tv_sec;
2526 	val->loads[0] = avenrun[0];
2527 	val->loads[1] = avenrun[1];
2528 	val->loads[2] = avenrun[2];
2529 	val->procs = nr_threads-1;
2530 	si_meminfo(val);
2531 
2532 	return;
2533 }
2534 
2535 /*
2536  * kdb_summary - This function implements the 'summary' command.
2537  */
2538 static int kdb_summary(int argc, const char **argv)
2539 {
2540 	struct timespec now;
2541 	struct kdb_tm tm;
2542 	struct sysinfo val;
2543 
2544 	if (argc)
2545 		return KDB_ARGCOUNT;
2546 
2547 	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2548 	kdb_printf("release    %s\n", init_uts_ns.name.release);
2549 	kdb_printf("version    %s\n", init_uts_ns.name.version);
2550 	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2551 	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2552 	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2553 	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2554 
2555 	now = __current_kernel_time();
2556 	kdb_gmtime(&now, &tm);
2557 	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2558 		   "tz_minuteswest %d\n",
2559 		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2560 		tm.tm_hour, tm.tm_min, tm.tm_sec,
2561 		sys_tz.tz_minuteswest);
2562 
2563 	kdb_sysinfo(&val);
2564 	kdb_printf("uptime     ");
2565 	if (val.uptime > (24*60*60)) {
2566 		int days = val.uptime / (24*60*60);
2567 		val.uptime %= (24*60*60);
2568 		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2569 	}
2570 	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2571 
2572 	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2573 
2574 #define LOAD_INT(x) ((x) >> FSHIFT)
2575 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2576 	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2577 		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2578 		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2579 		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2580 #undef LOAD_INT
2581 #undef LOAD_FRAC
2582 	/* Display in kilobytes */
2583 #define K(x) ((x) << (PAGE_SHIFT - 10))
2584 	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2585 		   "Buffers:        %8lu kB\n",
2586 		   K(val.totalram), K(val.freeram), K(val.bufferram));
2587 	return 0;
2588 }
2589 
2590 /*
2591  * kdb_per_cpu - This function implements the 'per_cpu' command.
2592  */
2593 static int kdb_per_cpu(int argc, const char **argv)
2594 {
2595 	char fmtstr[64];
2596 	int cpu, diag, nextarg = 1;
2597 	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2598 
2599 	if (argc < 1 || argc > 3)
2600 		return KDB_ARGCOUNT;
2601 
2602 	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2603 	if (diag)
2604 		return diag;
2605 
2606 	if (argc >= 2) {
2607 		diag = kdbgetularg(argv[2], &bytesperword);
2608 		if (diag)
2609 			return diag;
2610 	}
2611 	if (!bytesperword)
2612 		bytesperword = KDB_WORD_SIZE;
2613 	else if (bytesperword > KDB_WORD_SIZE)
2614 		return KDB_BADWIDTH;
2615 	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2616 	if (argc >= 3) {
2617 		diag = kdbgetularg(argv[3], &whichcpu);
2618 		if (diag)
2619 			return diag;
2620 		if (!cpu_online(whichcpu)) {
2621 			kdb_printf("cpu %ld is not online\n", whichcpu);
2622 			return KDB_BADCPUNUM;
2623 		}
2624 	}
2625 
2626 	/* Most architectures use __per_cpu_offset[cpu], some use
2627 	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2628 	 */
2629 #ifdef	__per_cpu_offset
2630 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2631 #else
2632 #ifdef	CONFIG_SMP
2633 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2634 #else
2635 #define KDB_PCU(cpu) 0
2636 #endif
2637 #endif
2638 	for_each_online_cpu(cpu) {
2639 		if (KDB_FLAG(CMD_INTERRUPT))
2640 			return 0;
2641 
2642 		if (whichcpu != ~0UL && whichcpu != cpu)
2643 			continue;
2644 		addr = symaddr + KDB_PCU(cpu);
2645 		diag = kdb_getword(&val, addr, bytesperword);
2646 		if (diag) {
2647 			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2648 				   "read, diag=%d\n", cpu, addr, diag);
2649 			continue;
2650 		}
2651 		kdb_printf("%5d ", cpu);
2652 		kdb_md_line(fmtstr, addr,
2653 			bytesperword == KDB_WORD_SIZE,
2654 			1, bytesperword, 1, 1, 0);
2655 	}
2656 #undef KDB_PCU
2657 	return 0;
2658 }
2659 
2660 /*
2661  * display help for the use of cmd | grep pattern
2662  */
2663 static int kdb_grep_help(int argc, const char **argv)
2664 {
2665 	kdb_printf("Usage of  cmd args | grep pattern:\n");
2666 	kdb_printf("  Any command's output may be filtered through an ");
2667 	kdb_printf("emulated 'pipe'.\n");
2668 	kdb_printf("  'grep' is just a key word.\n");
2669 	kdb_printf("  The pattern may include a very limited set of "
2670 		   "metacharacters:\n");
2671 	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2672 	kdb_printf("  And if there are spaces in the pattern, you may "
2673 		   "quote it:\n");
2674 	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2675 		   " or \"^pat tern$\"\n");
2676 	return 0;
2677 }
2678 
2679 /*
2680  * kdb_register_flags - This function is used to register a kernel
2681  * 	debugger command.
2682  * Inputs:
2683  *	cmd	Command name
2684  *	func	Function to execute the command
2685  *	usage	A simple usage string showing arguments
2686  *	help	A simple help string describing command
2687  *	repeat	Does the command auto repeat on enter?
2688  * Returns:
2689  *	zero for success, one if a duplicate command.
2690  */
2691 #define kdb_command_extend 50	/* arbitrary */
2692 int kdb_register_flags(char *cmd,
2693 		       kdb_func_t func,
2694 		       char *usage,
2695 		       char *help,
2696 		       short minlen,
2697 		       kdb_cmdflags_t flags)
2698 {
2699 	int i;
2700 	kdbtab_t *kp;
2701 
2702 	/*
2703 	 *  Brute force method to determine duplicates
2704 	 */
2705 	for_each_kdbcmd(kp, i) {
2706 		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2707 			kdb_printf("Duplicate kdb command registered: "
2708 				"%s, func %p help %s\n", cmd, func, help);
2709 			return 1;
2710 		}
2711 	}
2712 
2713 	/*
2714 	 * Insert command into first available location in table
2715 	 */
2716 	for_each_kdbcmd(kp, i) {
2717 		if (kp->cmd_name == NULL)
2718 			break;
2719 	}
2720 
2721 	if (i >= kdb_max_commands) {
2722 		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2723 			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2724 		if (!new) {
2725 			kdb_printf("Could not allocate new kdb_command "
2726 				   "table\n");
2727 			return 1;
2728 		}
2729 		if (kdb_commands) {
2730 			memcpy(new, kdb_commands,
2731 			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2732 			kfree(kdb_commands);
2733 		}
2734 		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2735 		       kdb_command_extend * sizeof(*new));
2736 		kdb_commands = new;
2737 		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2738 		kdb_max_commands += kdb_command_extend;
2739 	}
2740 
2741 	kp->cmd_name   = cmd;
2742 	kp->cmd_func   = func;
2743 	kp->cmd_usage  = usage;
2744 	kp->cmd_help   = help;
2745 	kp->cmd_minlen = minlen;
2746 	kp->cmd_flags  = flags;
2747 
2748 	return 0;
2749 }
2750 EXPORT_SYMBOL_GPL(kdb_register_flags);
2751 
2752 
2753 /*
2754  * kdb_register - Compatibility register function for commands that do
2755  *	not need to specify a repeat state.  Equivalent to
2756  *	kdb_register_flags with flags set to 0.
2757  * Inputs:
2758  *	cmd	Command name
2759  *	func	Function to execute the command
2760  *	usage	A simple usage string showing arguments
2761  *	help	A simple help string describing command
2762  * Returns:
2763  *	zero for success, one if a duplicate command.
2764  */
2765 int kdb_register(char *cmd,
2766 	     kdb_func_t func,
2767 	     char *usage,
2768 	     char *help,
2769 	     short minlen)
2770 {
2771 	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2772 }
2773 EXPORT_SYMBOL_GPL(kdb_register);
2774 
2775 /*
2776  * kdb_unregister - This function is used to unregister a kernel
2777  *	debugger command.  It is generally called when a module which
2778  *	implements kdb commands is unloaded.
2779  * Inputs:
2780  *	cmd	Command name
2781  * Returns:
2782  *	zero for success, one command not registered.
2783  */
2784 int kdb_unregister(char *cmd)
2785 {
2786 	int i;
2787 	kdbtab_t *kp;
2788 
2789 	/*
2790 	 *  find the command.
2791 	 */
2792 	for_each_kdbcmd(kp, i) {
2793 		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2794 			kp->cmd_name = NULL;
2795 			return 0;
2796 		}
2797 	}
2798 
2799 	/* Couldn't find it.  */
2800 	return 1;
2801 }
2802 EXPORT_SYMBOL_GPL(kdb_unregister);
2803 
2804 /* Initialize the kdb command table. */
2805 static void __init kdb_inittab(void)
2806 {
2807 	int i;
2808 	kdbtab_t *kp;
2809 
2810 	for_each_kdbcmd(kp, i)
2811 		kp->cmd_name = NULL;
2812 
2813 	kdb_register_flags("md", kdb_md, "<vaddr>",
2814 	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2815 	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2816 	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2817 	  "Display Raw Memory", 0,
2818 	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2819 	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2820 	  "Display Physical Memory", 0,
2821 	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2822 	kdb_register_flags("mds", kdb_md, "<vaddr>",
2823 	  "Display Memory Symbolically", 0,
2824 	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2825 	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2826 	  "Modify Memory Contents", 0,
2827 	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2828 	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2829 	  "Continue Execution", 1,
2830 	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2831 	kdb_register_flags("rd", kdb_rd, "",
2832 	  "Display Registers", 0,
2833 	  KDB_ENABLE_REG_READ);
2834 	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2835 	  "Modify Registers", 0,
2836 	  KDB_ENABLE_REG_WRITE);
2837 	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2838 	  "Display exception frame", 0,
2839 	  KDB_ENABLE_MEM_READ);
2840 	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2841 	  "Stack traceback", 1,
2842 	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2843 	kdb_register_flags("btp", kdb_bt, "<pid>",
2844 	  "Display stack for process <pid>", 0,
2845 	  KDB_ENABLE_INSPECT);
2846 	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2847 	  "Backtrace all processes matching state flag", 0,
2848 	  KDB_ENABLE_INSPECT);
2849 	kdb_register_flags("btc", kdb_bt, "",
2850 	  "Backtrace current process on each cpu", 0,
2851 	  KDB_ENABLE_INSPECT);
2852 	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2853 	  "Backtrace process given its struct task address", 0,
2854 	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2855 	kdb_register_flags("env", kdb_env, "",
2856 	  "Show environment variables", 0,
2857 	  KDB_ENABLE_ALWAYS_SAFE);
2858 	kdb_register_flags("set", kdb_set, "",
2859 	  "Set environment variables", 0,
2860 	  KDB_ENABLE_ALWAYS_SAFE);
2861 	kdb_register_flags("help", kdb_help, "",
2862 	  "Display Help Message", 1,
2863 	  KDB_ENABLE_ALWAYS_SAFE);
2864 	kdb_register_flags("?", kdb_help, "",
2865 	  "Display Help Message", 0,
2866 	  KDB_ENABLE_ALWAYS_SAFE);
2867 	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2868 	  "Switch to new cpu", 0,
2869 	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2870 	kdb_register_flags("kgdb", kdb_kgdb, "",
2871 	  "Enter kgdb mode", 0, 0);
2872 	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2873 	  "Display active task list", 0,
2874 	  KDB_ENABLE_INSPECT);
2875 	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2876 	  "Switch to another task", 0,
2877 	  KDB_ENABLE_INSPECT);
2878 	kdb_register_flags("reboot", kdb_reboot, "",
2879 	  "Reboot the machine immediately", 0,
2880 	  KDB_ENABLE_REBOOT);
2881 #if defined(CONFIG_MODULES)
2882 	kdb_register_flags("lsmod", kdb_lsmod, "",
2883 	  "List loaded kernel modules", 0,
2884 	  KDB_ENABLE_INSPECT);
2885 #endif
2886 #if defined(CONFIG_MAGIC_SYSRQ)
2887 	kdb_register_flags("sr", kdb_sr, "<key>",
2888 	  "Magic SysRq key", 0,
2889 	  KDB_ENABLE_ALWAYS_SAFE);
2890 #endif
2891 #if defined(CONFIG_PRINTK)
2892 	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2893 	  "Display syslog buffer", 0,
2894 	  KDB_ENABLE_ALWAYS_SAFE);
2895 #endif
2896 	if (arch_kgdb_ops.enable_nmi) {
2897 		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2898 		  "Disable NMI entry to KDB", 0,
2899 		  KDB_ENABLE_ALWAYS_SAFE);
2900 	}
2901 	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2902 	  "Define a set of commands, down to endefcmd", 0,
2903 	  KDB_ENABLE_ALWAYS_SAFE);
2904 	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2905 	  "Send a signal to a process", 0,
2906 	  KDB_ENABLE_SIGNAL);
2907 	kdb_register_flags("summary", kdb_summary, "",
2908 	  "Summarize the system", 4,
2909 	  KDB_ENABLE_ALWAYS_SAFE);
2910 	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2911 	  "Display per_cpu variables", 3,
2912 	  KDB_ENABLE_MEM_READ);
2913 	kdb_register_flags("grephelp", kdb_grep_help, "",
2914 	  "Display help on | grep", 0,
2915 	  KDB_ENABLE_ALWAYS_SAFE);
2916 }
2917 
2918 /* Execute any commands defined in kdb_cmds.  */
2919 static void __init kdb_cmd_init(void)
2920 {
2921 	int i, diag;
2922 	for (i = 0; kdb_cmds[i]; ++i) {
2923 		diag = kdb_parse(kdb_cmds[i]);
2924 		if (diag)
2925 			kdb_printf("kdb command %s failed, kdb diag %d\n",
2926 				kdb_cmds[i], diag);
2927 	}
2928 	if (defcmd_in_progress) {
2929 		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2930 		kdb_parse("endefcmd");
2931 	}
2932 }
2933 
2934 /* Initialize kdb_printf, breakpoint tables and kdb state */
2935 void __init kdb_init(int lvl)
2936 {
2937 	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2938 	int i;
2939 
2940 	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2941 		return;
2942 	for (i = kdb_init_lvl; i < lvl; i++) {
2943 		switch (i) {
2944 		case KDB_NOT_INITIALIZED:
2945 			kdb_inittab();		/* Initialize Command Table */
2946 			kdb_initbptab();	/* Initialize Breakpoints */
2947 			break;
2948 		case KDB_INIT_EARLY:
2949 			kdb_cmd_init();		/* Build kdb_cmds tables */
2950 			break;
2951 		}
2952 	}
2953 	kdb_init_lvl = lvl;
2954 }
2955