1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/kernel.h> 17 #include <linux/kmsg_dump.h> 18 #include <linux/reboot.h> 19 #include <linux/sched.h> 20 #include <linux/sysrq.h> 21 #include <linux/smp.h> 22 #include <linux/utsname.h> 23 #include <linux/vmalloc.h> 24 #include <linux/atomic.h> 25 #include <linux/module.h> 26 #include <linux/mm.h> 27 #include <linux/init.h> 28 #include <linux/kallsyms.h> 29 #include <linux/kgdb.h> 30 #include <linux/kdb.h> 31 #include <linux/notifier.h> 32 #include <linux/interrupt.h> 33 #include <linux/delay.h> 34 #include <linux/nmi.h> 35 #include <linux/time.h> 36 #include <linux/ptrace.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/kdebug.h> 40 #include <linux/proc_fs.h> 41 #include <linux/uaccess.h> 42 #include <linux/slab.h> 43 #include "kdb_private.h" 44 45 #define GREP_LEN 256 46 char kdb_grep_string[GREP_LEN]; 47 int kdb_grepping_flag; 48 EXPORT_SYMBOL(kdb_grepping_flag); 49 int kdb_grep_leading; 50 int kdb_grep_trailing; 51 52 /* 53 * Kernel debugger state flags 54 */ 55 int kdb_flags; 56 atomic_t kdb_event; 57 58 /* 59 * kdb_lock protects updates to kdb_initial_cpu. Used to 60 * single thread processors through the kernel debugger. 61 */ 62 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 63 int kdb_nextline = 1; 64 int kdb_state; /* General KDB state */ 65 66 struct task_struct *kdb_current_task; 67 EXPORT_SYMBOL(kdb_current_task); 68 struct pt_regs *kdb_current_regs; 69 70 const char *kdb_diemsg; 71 static int kdb_go_count; 72 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 73 static unsigned int kdb_continue_catastrophic = 74 CONFIG_KDB_CONTINUE_CATASTROPHIC; 75 #else 76 static unsigned int kdb_continue_catastrophic; 77 #endif 78 79 /* kdb_commands describes the available commands. */ 80 static kdbtab_t *kdb_commands; 81 #define KDB_BASE_CMD_MAX 50 82 static int kdb_max_commands = KDB_BASE_CMD_MAX; 83 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX]; 84 #define for_each_kdbcmd(cmd, num) \ 85 for ((cmd) = kdb_base_commands, (num) = 0; \ 86 num < kdb_max_commands; \ 87 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++) 88 89 typedef struct _kdbmsg { 90 int km_diag; /* kdb diagnostic */ 91 char *km_msg; /* Corresponding message text */ 92 } kdbmsg_t; 93 94 #define KDBMSG(msgnum, text) \ 95 { KDB_##msgnum, text } 96 97 static kdbmsg_t kdbmsgs[] = { 98 KDBMSG(NOTFOUND, "Command Not Found"), 99 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 100 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 101 "8 is only allowed on 64 bit systems"), 102 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 103 KDBMSG(NOTENV, "Cannot find environment variable"), 104 KDBMSG(NOENVVALUE, "Environment variable should have value"), 105 KDBMSG(NOTIMP, "Command not implemented"), 106 KDBMSG(ENVFULL, "Environment full"), 107 KDBMSG(ENVBUFFULL, "Environment buffer full"), 108 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 109 #ifdef CONFIG_CPU_XSCALE 110 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 111 #else 112 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 113 #endif 114 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 115 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 116 KDBMSG(BADMODE, "Invalid IDMODE"), 117 KDBMSG(BADINT, "Illegal numeric value"), 118 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 119 KDBMSG(BADREG, "Invalid register name"), 120 KDBMSG(BADCPUNUM, "Invalid cpu number"), 121 KDBMSG(BADLENGTH, "Invalid length field"), 122 KDBMSG(NOBP, "No Breakpoint exists"), 123 KDBMSG(BADADDR, "Invalid address"), 124 }; 125 #undef KDBMSG 126 127 static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t); 128 129 130 /* 131 * Initial environment. This is all kept static and local to 132 * this file. We don't want to rely on the memory allocation 133 * mechanisms in the kernel, so we use a very limited allocate-only 134 * heap for new and altered environment variables. The entire 135 * environment is limited to a fixed number of entries (add more 136 * to __env[] if required) and a fixed amount of heap (add more to 137 * KDB_ENVBUFSIZE if required). 138 */ 139 140 static char *__env[] = { 141 #if defined(CONFIG_SMP) 142 "PROMPT=[%d]kdb> ", 143 #else 144 "PROMPT=kdb> ", 145 #endif 146 "MOREPROMPT=more> ", 147 "RADIX=16", 148 "MDCOUNT=8", /* lines of md output */ 149 KDB_PLATFORM_ENV, 150 "DTABCOUNT=30", 151 "NOSECT=1", 152 (char *)0, 153 (char *)0, 154 (char *)0, 155 (char *)0, 156 (char *)0, 157 (char *)0, 158 (char *)0, 159 (char *)0, 160 (char *)0, 161 (char *)0, 162 (char *)0, 163 (char *)0, 164 (char *)0, 165 (char *)0, 166 (char *)0, 167 (char *)0, 168 (char *)0, 169 (char *)0, 170 (char *)0, 171 (char *)0, 172 (char *)0, 173 (char *)0, 174 (char *)0, 175 (char *)0, 176 }; 177 178 static const int __nenv = (sizeof(__env) / sizeof(char *)); 179 180 struct task_struct *kdb_curr_task(int cpu) 181 { 182 struct task_struct *p = curr_task(cpu); 183 #ifdef _TIF_MCA_INIT 184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 185 p = krp->p; 186 #endif 187 return p; 188 } 189 190 /* 191 * kdbgetenv - This function will return the character string value of 192 * an environment variable. 193 * Parameters: 194 * match A character string representing an environment variable. 195 * Returns: 196 * NULL No environment variable matches 'match' 197 * char* Pointer to string value of environment variable. 198 */ 199 char *kdbgetenv(const char *match) 200 { 201 char **ep = __env; 202 int matchlen = strlen(match); 203 int i; 204 205 for (i = 0; i < __nenv; i++) { 206 char *e = *ep++; 207 208 if (!e) 209 continue; 210 211 if ((strncmp(match, e, matchlen) == 0) 212 && ((e[matchlen] == '\0') 213 || (e[matchlen] == '='))) { 214 char *cp = strchr(e, '='); 215 return cp ? ++cp : ""; 216 } 217 } 218 return NULL; 219 } 220 221 /* 222 * kdballocenv - This function is used to allocate bytes for 223 * environment entries. 224 * Parameters: 225 * match A character string representing a numeric value 226 * Outputs: 227 * *value the unsigned long representation of the env variable 'match' 228 * Returns: 229 * Zero on success, a kdb diagnostic on failure. 230 * Remarks: 231 * We use a static environment buffer (envbuffer) to hold the values 232 * of dynamically generated environment variables (see kdb_set). Buffer 233 * space once allocated is never free'd, so over time, the amount of space 234 * (currently 512 bytes) will be exhausted if env variables are changed 235 * frequently. 236 */ 237 static char *kdballocenv(size_t bytes) 238 { 239 #define KDB_ENVBUFSIZE 512 240 static char envbuffer[KDB_ENVBUFSIZE]; 241 static int envbufsize; 242 char *ep = NULL; 243 244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 245 ep = &envbuffer[envbufsize]; 246 envbufsize += bytes; 247 } 248 return ep; 249 } 250 251 /* 252 * kdbgetulenv - This function will return the value of an unsigned 253 * long-valued environment variable. 254 * Parameters: 255 * match A character string representing a numeric value 256 * Outputs: 257 * *value the unsigned long represntation of the env variable 'match' 258 * Returns: 259 * Zero on success, a kdb diagnostic on failure. 260 */ 261 static int kdbgetulenv(const char *match, unsigned long *value) 262 { 263 char *ep; 264 265 ep = kdbgetenv(match); 266 if (!ep) 267 return KDB_NOTENV; 268 if (strlen(ep) == 0) 269 return KDB_NOENVVALUE; 270 271 *value = simple_strtoul(ep, NULL, 0); 272 273 return 0; 274 } 275 276 /* 277 * kdbgetintenv - This function will return the value of an 278 * integer-valued environment variable. 279 * Parameters: 280 * match A character string representing an integer-valued env variable 281 * Outputs: 282 * *value the integer representation of the environment variable 'match' 283 * Returns: 284 * Zero on success, a kdb diagnostic on failure. 285 */ 286 int kdbgetintenv(const char *match, int *value) 287 { 288 unsigned long val; 289 int diag; 290 291 diag = kdbgetulenv(match, &val); 292 if (!diag) 293 *value = (int) val; 294 return diag; 295 } 296 297 /* 298 * kdbgetularg - This function will convert a numeric string into an 299 * unsigned long value. 300 * Parameters: 301 * arg A character string representing a numeric value 302 * Outputs: 303 * *value the unsigned long represntation of arg. 304 * Returns: 305 * Zero on success, a kdb diagnostic on failure. 306 */ 307 int kdbgetularg(const char *arg, unsigned long *value) 308 { 309 char *endp; 310 unsigned long val; 311 312 val = simple_strtoul(arg, &endp, 0); 313 314 if (endp == arg) { 315 /* 316 * Also try base 16, for us folks too lazy to type the 317 * leading 0x... 318 */ 319 val = simple_strtoul(arg, &endp, 16); 320 if (endp == arg) 321 return KDB_BADINT; 322 } 323 324 *value = val; 325 326 return 0; 327 } 328 329 int kdbgetu64arg(const char *arg, u64 *value) 330 { 331 char *endp; 332 u64 val; 333 334 val = simple_strtoull(arg, &endp, 0); 335 336 if (endp == arg) { 337 338 val = simple_strtoull(arg, &endp, 16); 339 if (endp == arg) 340 return KDB_BADINT; 341 } 342 343 *value = val; 344 345 return 0; 346 } 347 348 /* 349 * kdb_set - This function implements the 'set' command. Alter an 350 * existing environment variable or create a new one. 351 */ 352 int kdb_set(int argc, const char **argv) 353 { 354 int i; 355 char *ep; 356 size_t varlen, vallen; 357 358 /* 359 * we can be invoked two ways: 360 * set var=value argv[1]="var", argv[2]="value" 361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 362 * - if the latter, shift 'em down. 363 */ 364 if (argc == 3) { 365 argv[2] = argv[3]; 366 argc--; 367 } 368 369 if (argc != 2) 370 return KDB_ARGCOUNT; 371 372 /* 373 * Check for internal variables 374 */ 375 if (strcmp(argv[1], "KDBDEBUG") == 0) { 376 unsigned int debugflags; 377 char *cp; 378 379 debugflags = simple_strtoul(argv[2], &cp, 0); 380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 381 kdb_printf("kdb: illegal debug flags '%s'\n", 382 argv[2]); 383 return 0; 384 } 385 kdb_flags = (kdb_flags & 386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT)) 387 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 388 389 return 0; 390 } 391 392 /* 393 * Tokenizer squashed the '=' sign. argv[1] is variable 394 * name, argv[2] = value. 395 */ 396 varlen = strlen(argv[1]); 397 vallen = strlen(argv[2]); 398 ep = kdballocenv(varlen + vallen + 2); 399 if (ep == (char *)0) 400 return KDB_ENVBUFFULL; 401 402 sprintf(ep, "%s=%s", argv[1], argv[2]); 403 404 ep[varlen+vallen+1] = '\0'; 405 406 for (i = 0; i < __nenv; i++) { 407 if (__env[i] 408 && ((strncmp(__env[i], argv[1], varlen) == 0) 409 && ((__env[i][varlen] == '\0') 410 || (__env[i][varlen] == '=')))) { 411 __env[i] = ep; 412 return 0; 413 } 414 } 415 416 /* 417 * Wasn't existing variable. Fit into slot. 418 */ 419 for (i = 0; i < __nenv-1; i++) { 420 if (__env[i] == (char *)0) { 421 __env[i] = ep; 422 return 0; 423 } 424 } 425 426 return KDB_ENVFULL; 427 } 428 429 static int kdb_check_regs(void) 430 { 431 if (!kdb_current_regs) { 432 kdb_printf("No current kdb registers." 433 " You may need to select another task\n"); 434 return KDB_BADREG; 435 } 436 return 0; 437 } 438 439 /* 440 * kdbgetaddrarg - This function is responsible for parsing an 441 * address-expression and returning the value of the expression, 442 * symbol name, and offset to the caller. 443 * 444 * The argument may consist of a numeric value (decimal or 445 * hexidecimal), a symbol name, a register name (preceded by the 446 * percent sign), an environment variable with a numeric value 447 * (preceded by a dollar sign) or a simple arithmetic expression 448 * consisting of a symbol name, +/-, and a numeric constant value 449 * (offset). 450 * Parameters: 451 * argc - count of arguments in argv 452 * argv - argument vector 453 * *nextarg - index to next unparsed argument in argv[] 454 * regs - Register state at time of KDB entry 455 * Outputs: 456 * *value - receives the value of the address-expression 457 * *offset - receives the offset specified, if any 458 * *name - receives the symbol name, if any 459 * *nextarg - index to next unparsed argument in argv[] 460 * Returns: 461 * zero is returned on success, a kdb diagnostic code is 462 * returned on error. 463 */ 464 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 465 unsigned long *value, long *offset, 466 char **name) 467 { 468 unsigned long addr; 469 unsigned long off = 0; 470 int positive; 471 int diag; 472 int found = 0; 473 char *symname; 474 char symbol = '\0'; 475 char *cp; 476 kdb_symtab_t symtab; 477 478 /* 479 * Process arguments which follow the following syntax: 480 * 481 * symbol | numeric-address [+/- numeric-offset] 482 * %register 483 * $environment-variable 484 */ 485 486 if (*nextarg > argc) 487 return KDB_ARGCOUNT; 488 489 symname = (char *)argv[*nextarg]; 490 491 /* 492 * If there is no whitespace between the symbol 493 * or address and the '+' or '-' symbols, we 494 * remember the character and replace it with a 495 * null so the symbol/value can be properly parsed 496 */ 497 cp = strpbrk(symname, "+-"); 498 if (cp != NULL) { 499 symbol = *cp; 500 *cp++ = '\0'; 501 } 502 503 if (symname[0] == '$') { 504 diag = kdbgetulenv(&symname[1], &addr); 505 if (diag) 506 return diag; 507 } else if (symname[0] == '%') { 508 diag = kdb_check_regs(); 509 if (diag) 510 return diag; 511 /* Implement register values with % at a later time as it is 512 * arch optional. 513 */ 514 return KDB_NOTIMP; 515 } else { 516 found = kdbgetsymval(symname, &symtab); 517 if (found) { 518 addr = symtab.sym_start; 519 } else { 520 diag = kdbgetularg(argv[*nextarg], &addr); 521 if (diag) 522 return diag; 523 } 524 } 525 526 if (!found) 527 found = kdbnearsym(addr, &symtab); 528 529 (*nextarg)++; 530 531 if (name) 532 *name = symname; 533 if (value) 534 *value = addr; 535 if (offset && name && *name) 536 *offset = addr - symtab.sym_start; 537 538 if ((*nextarg > argc) 539 && (symbol == '\0')) 540 return 0; 541 542 /* 543 * check for +/- and offset 544 */ 545 546 if (symbol == '\0') { 547 if ((argv[*nextarg][0] != '+') 548 && (argv[*nextarg][0] != '-')) { 549 /* 550 * Not our argument. Return. 551 */ 552 return 0; 553 } else { 554 positive = (argv[*nextarg][0] == '+'); 555 (*nextarg)++; 556 } 557 } else 558 positive = (symbol == '+'); 559 560 /* 561 * Now there must be an offset! 562 */ 563 if ((*nextarg > argc) 564 && (symbol == '\0')) { 565 return KDB_INVADDRFMT; 566 } 567 568 if (!symbol) { 569 cp = (char *)argv[*nextarg]; 570 (*nextarg)++; 571 } 572 573 diag = kdbgetularg(cp, &off); 574 if (diag) 575 return diag; 576 577 if (!positive) 578 off = -off; 579 580 if (offset) 581 *offset += off; 582 583 if (value) 584 *value += off; 585 586 return 0; 587 } 588 589 static void kdb_cmderror(int diag) 590 { 591 int i; 592 593 if (diag >= 0) { 594 kdb_printf("no error detected (diagnostic is %d)\n", diag); 595 return; 596 } 597 598 for (i = 0; i < __nkdb_err; i++) { 599 if (kdbmsgs[i].km_diag == diag) { 600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 601 return; 602 } 603 } 604 605 kdb_printf("Unknown diag %d\n", -diag); 606 } 607 608 /* 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 610 * command which defines one command as a set of other commands, 611 * terminated by endefcmd. kdb_defcmd processes the initial 612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 613 * the following commands until 'endefcmd'. 614 * Inputs: 615 * argc argument count 616 * argv argument vector 617 * Returns: 618 * zero for success, a kdb diagnostic if error 619 */ 620 struct defcmd_set { 621 int count; 622 int usable; 623 char *name; 624 char *usage; 625 char *help; 626 char **command; 627 }; 628 static struct defcmd_set *defcmd_set; 629 static int defcmd_set_count; 630 static int defcmd_in_progress; 631 632 /* Forward references */ 633 static int kdb_exec_defcmd(int argc, const char **argv); 634 635 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 636 { 637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; 638 char **save_command = s->command; 639 if (strcmp(argv0, "endefcmd") == 0) { 640 defcmd_in_progress = 0; 641 if (!s->count) 642 s->usable = 0; 643 if (s->usable) 644 kdb_register(s->name, kdb_exec_defcmd, 645 s->usage, s->help, 0); 646 return 0; 647 } 648 if (!s->usable) 649 return KDB_NOTIMP; 650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB); 651 if (!s->command) { 652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n", 653 cmdstr); 654 s->usable = 0; 655 return KDB_NOTIMP; 656 } 657 memcpy(s->command, save_command, s->count * sizeof(*(s->command))); 658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); 659 kfree(save_command); 660 return 0; 661 } 662 663 static int kdb_defcmd(int argc, const char **argv) 664 { 665 struct defcmd_set *save_defcmd_set = defcmd_set, *s; 666 if (defcmd_in_progress) { 667 kdb_printf("kdb: nested defcmd detected, assuming missing " 668 "endefcmd\n"); 669 kdb_defcmd2("endefcmd", "endefcmd"); 670 } 671 if (argc == 0) { 672 int i; 673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { 674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, 675 s->usage, s->help); 676 for (i = 0; i < s->count; ++i) 677 kdb_printf("%s", s->command[i]); 678 kdb_printf("endefcmd\n"); 679 } 680 return 0; 681 } 682 if (argc != 3) 683 return KDB_ARGCOUNT; 684 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set), 685 GFP_KDB); 686 if (!defcmd_set) { 687 kdb_printf("Could not allocate new defcmd_set entry for %s\n", 688 argv[1]); 689 defcmd_set = save_defcmd_set; 690 return KDB_NOTIMP; 691 } 692 memcpy(defcmd_set, save_defcmd_set, 693 defcmd_set_count * sizeof(*defcmd_set)); 694 kfree(save_defcmd_set); 695 s = defcmd_set + defcmd_set_count; 696 memset(s, 0, sizeof(*s)); 697 s->usable = 1; 698 s->name = kdb_strdup(argv[1], GFP_KDB); 699 s->usage = kdb_strdup(argv[2], GFP_KDB); 700 s->help = kdb_strdup(argv[3], GFP_KDB); 701 if (s->usage[0] == '"') { 702 strcpy(s->usage, s->usage+1); 703 s->usage[strlen(s->usage)-1] = '\0'; 704 } 705 if (s->help[0] == '"') { 706 strcpy(s->help, s->help+1); 707 s->help[strlen(s->help)-1] = '\0'; 708 } 709 ++defcmd_set_count; 710 defcmd_in_progress = 1; 711 return 0; 712 } 713 714 /* 715 * kdb_exec_defcmd - Execute the set of commands associated with this 716 * defcmd name. 717 * Inputs: 718 * argc argument count 719 * argv argument vector 720 * Returns: 721 * zero for success, a kdb diagnostic if error 722 */ 723 static int kdb_exec_defcmd(int argc, const char **argv) 724 { 725 int i, ret; 726 struct defcmd_set *s; 727 if (argc != 0) 728 return KDB_ARGCOUNT; 729 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { 730 if (strcmp(s->name, argv[0]) == 0) 731 break; 732 } 733 if (i == defcmd_set_count) { 734 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 735 argv[0]); 736 return KDB_NOTIMP; 737 } 738 for (i = 0; i < s->count; ++i) { 739 /* Recursive use of kdb_parse, do not use argv after 740 * this point */ 741 argv = NULL; 742 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); 743 ret = kdb_parse(s->command[i]); 744 if (ret) 745 return ret; 746 } 747 return 0; 748 } 749 750 /* Command history */ 751 #define KDB_CMD_HISTORY_COUNT 32 752 #define CMD_BUFLEN 200 /* kdb_printf: max printline 753 * size == 256 */ 754 static unsigned int cmd_head, cmd_tail; 755 static unsigned int cmdptr; 756 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 757 static char cmd_cur[CMD_BUFLEN]; 758 759 /* 760 * The "str" argument may point to something like | grep xyz 761 */ 762 static void parse_grep(const char *str) 763 { 764 int len; 765 char *cp = (char *)str, *cp2; 766 767 /* sanity check: we should have been called with the \ first */ 768 if (*cp != '|') 769 return; 770 cp++; 771 while (isspace(*cp)) 772 cp++; 773 if (strncmp(cp, "grep ", 5)) { 774 kdb_printf("invalid 'pipe', see grephelp\n"); 775 return; 776 } 777 cp += 5; 778 while (isspace(*cp)) 779 cp++; 780 cp2 = strchr(cp, '\n'); 781 if (cp2) 782 *cp2 = '\0'; /* remove the trailing newline */ 783 len = strlen(cp); 784 if (len == 0) { 785 kdb_printf("invalid 'pipe', see grephelp\n"); 786 return; 787 } 788 /* now cp points to a nonzero length search string */ 789 if (*cp == '"') { 790 /* allow it be "x y z" by removing the "'s - there must 791 be two of them */ 792 cp++; 793 cp2 = strchr(cp, '"'); 794 if (!cp2) { 795 kdb_printf("invalid quoted string, see grephelp\n"); 796 return; 797 } 798 *cp2 = '\0'; /* end the string where the 2nd " was */ 799 } 800 kdb_grep_leading = 0; 801 if (*cp == '^') { 802 kdb_grep_leading = 1; 803 cp++; 804 } 805 len = strlen(cp); 806 kdb_grep_trailing = 0; 807 if (*(cp+len-1) == '$') { 808 kdb_grep_trailing = 1; 809 *(cp+len-1) = '\0'; 810 } 811 len = strlen(cp); 812 if (!len) 813 return; 814 if (len >= GREP_LEN) { 815 kdb_printf("search string too long\n"); 816 return; 817 } 818 strcpy(kdb_grep_string, cp); 819 kdb_grepping_flag++; 820 return; 821 } 822 823 /* 824 * kdb_parse - Parse the command line, search the command table for a 825 * matching command and invoke the command function. This 826 * function may be called recursively, if it is, the second call 827 * will overwrite argv and cbuf. It is the caller's 828 * responsibility to save their argv if they recursively call 829 * kdb_parse(). 830 * Parameters: 831 * cmdstr The input command line to be parsed. 832 * regs The registers at the time kdb was entered. 833 * Returns: 834 * Zero for success, a kdb diagnostic if failure. 835 * Remarks: 836 * Limited to 20 tokens. 837 * 838 * Real rudimentary tokenization. Basically only whitespace 839 * is considered a token delimeter (but special consideration 840 * is taken of the '=' sign as used by the 'set' command). 841 * 842 * The algorithm used to tokenize the input string relies on 843 * there being at least one whitespace (or otherwise useless) 844 * character between tokens as the character immediately following 845 * the token is altered in-place to a null-byte to terminate the 846 * token string. 847 */ 848 849 #define MAXARGC 20 850 851 int kdb_parse(const char *cmdstr) 852 { 853 static char *argv[MAXARGC]; 854 static int argc; 855 static char cbuf[CMD_BUFLEN+2]; 856 char *cp; 857 char *cpp, quoted; 858 kdbtab_t *tp; 859 int i, escaped, ignore_errors = 0, check_grep; 860 861 /* 862 * First tokenize the command string. 863 */ 864 cp = (char *)cmdstr; 865 kdb_grepping_flag = check_grep = 0; 866 867 if (KDB_FLAG(CMD_INTERRUPT)) { 868 /* Previous command was interrupted, newline must not 869 * repeat the command */ 870 KDB_FLAG_CLEAR(CMD_INTERRUPT); 871 KDB_STATE_SET(PAGER); 872 argc = 0; /* no repeat */ 873 } 874 875 if (*cp != '\n' && *cp != '\0') { 876 argc = 0; 877 cpp = cbuf; 878 while (*cp) { 879 /* skip whitespace */ 880 while (isspace(*cp)) 881 cp++; 882 if ((*cp == '\0') || (*cp == '\n') || 883 (*cp == '#' && !defcmd_in_progress)) 884 break; 885 /* special case: check for | grep pattern */ 886 if (*cp == '|') { 887 check_grep++; 888 break; 889 } 890 if (cpp >= cbuf + CMD_BUFLEN) { 891 kdb_printf("kdb_parse: command buffer " 892 "overflow, command ignored\n%s\n", 893 cmdstr); 894 return KDB_NOTFOUND; 895 } 896 if (argc >= MAXARGC - 1) { 897 kdb_printf("kdb_parse: too many arguments, " 898 "command ignored\n%s\n", cmdstr); 899 return KDB_NOTFOUND; 900 } 901 argv[argc++] = cpp; 902 escaped = 0; 903 quoted = '\0'; 904 /* Copy to next unquoted and unescaped 905 * whitespace or '=' */ 906 while (*cp && *cp != '\n' && 907 (escaped || quoted || !isspace(*cp))) { 908 if (cpp >= cbuf + CMD_BUFLEN) 909 break; 910 if (escaped) { 911 escaped = 0; 912 *cpp++ = *cp++; 913 continue; 914 } 915 if (*cp == '\\') { 916 escaped = 1; 917 ++cp; 918 continue; 919 } 920 if (*cp == quoted) 921 quoted = '\0'; 922 else if (*cp == '\'' || *cp == '"') 923 quoted = *cp; 924 *cpp = *cp++; 925 if (*cpp == '=' && !quoted) 926 break; 927 ++cpp; 928 } 929 *cpp++ = '\0'; /* Squash a ws or '=' character */ 930 } 931 } 932 if (!argc) 933 return 0; 934 if (check_grep) 935 parse_grep(cp); 936 if (defcmd_in_progress) { 937 int result = kdb_defcmd2(cmdstr, argv[0]); 938 if (!defcmd_in_progress) { 939 argc = 0; /* avoid repeat on endefcmd */ 940 *(argv[0]) = '\0'; 941 } 942 return result; 943 } 944 if (argv[0][0] == '-' && argv[0][1] && 945 (argv[0][1] < '0' || argv[0][1] > '9')) { 946 ignore_errors = 1; 947 ++argv[0]; 948 } 949 950 for_each_kdbcmd(tp, i) { 951 if (tp->cmd_name) { 952 /* 953 * If this command is allowed to be abbreviated, 954 * check to see if this is it. 955 */ 956 957 if (tp->cmd_minlen 958 && (strlen(argv[0]) <= tp->cmd_minlen)) { 959 if (strncmp(argv[0], 960 tp->cmd_name, 961 tp->cmd_minlen) == 0) { 962 break; 963 } 964 } 965 966 if (strcmp(argv[0], tp->cmd_name) == 0) 967 break; 968 } 969 } 970 971 /* 972 * If we don't find a command by this name, see if the first 973 * few characters of this match any of the known commands. 974 * e.g., md1c20 should match md. 975 */ 976 if (i == kdb_max_commands) { 977 for_each_kdbcmd(tp, i) { 978 if (tp->cmd_name) { 979 if (strncmp(argv[0], 980 tp->cmd_name, 981 strlen(tp->cmd_name)) == 0) { 982 break; 983 } 984 } 985 } 986 } 987 988 if (i < kdb_max_commands) { 989 int result; 990 KDB_STATE_SET(CMD); 991 result = (*tp->cmd_func)(argc-1, (const char **)argv); 992 if (result && ignore_errors && result > KDB_CMD_GO) 993 result = 0; 994 KDB_STATE_CLEAR(CMD); 995 switch (tp->cmd_repeat) { 996 case KDB_REPEAT_NONE: 997 argc = 0; 998 if (argv[0]) 999 *(argv[0]) = '\0'; 1000 break; 1001 case KDB_REPEAT_NO_ARGS: 1002 argc = 1; 1003 if (argv[1]) 1004 *(argv[1]) = '\0'; 1005 break; 1006 case KDB_REPEAT_WITH_ARGS: 1007 break; 1008 } 1009 return result; 1010 } 1011 1012 /* 1013 * If the input with which we were presented does not 1014 * map to an existing command, attempt to parse it as an 1015 * address argument and display the result. Useful for 1016 * obtaining the address of a variable, or the nearest symbol 1017 * to an address contained in a register. 1018 */ 1019 { 1020 unsigned long value; 1021 char *name = NULL; 1022 long offset; 1023 int nextarg = 0; 1024 1025 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1026 &value, &offset, &name)) { 1027 return KDB_NOTFOUND; 1028 } 1029 1030 kdb_printf("%s = ", argv[0]); 1031 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1032 kdb_printf("\n"); 1033 return 0; 1034 } 1035 } 1036 1037 1038 static int handle_ctrl_cmd(char *cmd) 1039 { 1040 #define CTRL_P 16 1041 #define CTRL_N 14 1042 1043 /* initial situation */ 1044 if (cmd_head == cmd_tail) 1045 return 0; 1046 switch (*cmd) { 1047 case CTRL_P: 1048 if (cmdptr != cmd_tail) 1049 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT; 1050 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1051 return 1; 1052 case CTRL_N: 1053 if (cmdptr != cmd_head) 1054 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1055 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1056 return 1; 1057 } 1058 return 0; 1059 } 1060 1061 /* 1062 * kdb_reboot - This function implements the 'reboot' command. Reboot 1063 * the system immediately, or loop for ever on failure. 1064 */ 1065 static int kdb_reboot(int argc, const char **argv) 1066 { 1067 emergency_restart(); 1068 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1069 while (1) 1070 cpu_relax(); 1071 /* NOTREACHED */ 1072 return 0; 1073 } 1074 1075 static void kdb_dumpregs(struct pt_regs *regs) 1076 { 1077 int old_lvl = console_loglevel; 1078 console_loglevel = 15; 1079 kdb_trap_printk++; 1080 show_regs(regs); 1081 kdb_trap_printk--; 1082 kdb_printf("\n"); 1083 console_loglevel = old_lvl; 1084 } 1085 1086 void kdb_set_current_task(struct task_struct *p) 1087 { 1088 kdb_current_task = p; 1089 1090 if (kdb_task_has_cpu(p)) { 1091 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1092 return; 1093 } 1094 kdb_current_regs = NULL; 1095 } 1096 1097 /* 1098 * kdb_local - The main code for kdb. This routine is invoked on a 1099 * specific processor, it is not global. The main kdb() routine 1100 * ensures that only one processor at a time is in this routine. 1101 * This code is called with the real reason code on the first 1102 * entry to a kdb session, thereafter it is called with reason 1103 * SWITCH, even if the user goes back to the original cpu. 1104 * Inputs: 1105 * reason The reason KDB was invoked 1106 * error The hardware-defined error code 1107 * regs The exception frame at time of fault/breakpoint. 1108 * db_result Result code from the break or debug point. 1109 * Returns: 1110 * 0 KDB was invoked for an event which it wasn't responsible 1111 * 1 KDB handled the event for which it was invoked. 1112 * KDB_CMD_GO User typed 'go'. 1113 * KDB_CMD_CPU User switched to another cpu. 1114 * KDB_CMD_SS Single step. 1115 * KDB_CMD_SSB Single step until branch. 1116 */ 1117 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1118 kdb_dbtrap_t db_result) 1119 { 1120 char *cmdbuf; 1121 int diag; 1122 struct task_struct *kdb_current = 1123 kdb_curr_task(raw_smp_processor_id()); 1124 1125 KDB_DEBUG_STATE("kdb_local 1", reason); 1126 kdb_go_count = 0; 1127 if (reason == KDB_REASON_DEBUG) { 1128 /* special case below */ 1129 } else { 1130 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ", 1131 kdb_current, kdb_current ? kdb_current->pid : 0); 1132 #if defined(CONFIG_SMP) 1133 kdb_printf("on processor %d ", raw_smp_processor_id()); 1134 #endif 1135 } 1136 1137 switch (reason) { 1138 case KDB_REASON_DEBUG: 1139 { 1140 /* 1141 * If re-entering kdb after a single step 1142 * command, don't print the message. 1143 */ 1144 switch (db_result) { 1145 case KDB_DB_BPT: 1146 kdb_printf("\nEntering kdb (0x%p, pid %d) ", 1147 kdb_current, kdb_current->pid); 1148 #if defined(CONFIG_SMP) 1149 kdb_printf("on processor %d ", raw_smp_processor_id()); 1150 #endif 1151 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1152 instruction_pointer(regs)); 1153 break; 1154 case KDB_DB_SSB: 1155 /* 1156 * In the midst of ssb command. Just return. 1157 */ 1158 KDB_DEBUG_STATE("kdb_local 3", reason); 1159 return KDB_CMD_SSB; /* Continue with SSB command */ 1160 1161 break; 1162 case KDB_DB_SS: 1163 break; 1164 case KDB_DB_SSBPT: 1165 KDB_DEBUG_STATE("kdb_local 4", reason); 1166 return 1; /* kdba_db_trap did the work */ 1167 default: 1168 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1169 db_result); 1170 break; 1171 } 1172 1173 } 1174 break; 1175 case KDB_REASON_ENTER: 1176 if (KDB_STATE(KEYBOARD)) 1177 kdb_printf("due to Keyboard Entry\n"); 1178 else 1179 kdb_printf("due to KDB_ENTER()\n"); 1180 break; 1181 case KDB_REASON_KEYBOARD: 1182 KDB_STATE_SET(KEYBOARD); 1183 kdb_printf("due to Keyboard Entry\n"); 1184 break; 1185 case KDB_REASON_ENTER_SLAVE: 1186 /* drop through, slaves only get released via cpu switch */ 1187 case KDB_REASON_SWITCH: 1188 kdb_printf("due to cpu switch\n"); 1189 break; 1190 case KDB_REASON_OOPS: 1191 kdb_printf("Oops: %s\n", kdb_diemsg); 1192 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1193 instruction_pointer(regs)); 1194 kdb_dumpregs(regs); 1195 break; 1196 case KDB_REASON_NMI: 1197 kdb_printf("due to NonMaskable Interrupt @ " 1198 kdb_machreg_fmt "\n", 1199 instruction_pointer(regs)); 1200 kdb_dumpregs(regs); 1201 break; 1202 case KDB_REASON_SSTEP: 1203 case KDB_REASON_BREAK: 1204 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1205 reason == KDB_REASON_BREAK ? 1206 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1207 /* 1208 * Determine if this breakpoint is one that we 1209 * are interested in. 1210 */ 1211 if (db_result != KDB_DB_BPT) { 1212 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1213 db_result); 1214 KDB_DEBUG_STATE("kdb_local 6", reason); 1215 return 0; /* Not for us, dismiss it */ 1216 } 1217 break; 1218 case KDB_REASON_RECURSE: 1219 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1220 instruction_pointer(regs)); 1221 break; 1222 default: 1223 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1224 KDB_DEBUG_STATE("kdb_local 8", reason); 1225 return 0; /* Not for us, dismiss it */ 1226 } 1227 1228 while (1) { 1229 /* 1230 * Initialize pager context. 1231 */ 1232 kdb_nextline = 1; 1233 KDB_STATE_CLEAR(SUPPRESS); 1234 1235 cmdbuf = cmd_cur; 1236 *cmdbuf = '\0'; 1237 *(cmd_hist[cmd_head]) = '\0'; 1238 1239 do_full_getstr: 1240 #if defined(CONFIG_SMP) 1241 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1242 raw_smp_processor_id()); 1243 #else 1244 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT")); 1245 #endif 1246 if (defcmd_in_progress) 1247 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); 1248 1249 /* 1250 * Fetch command from keyboard 1251 */ 1252 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1253 if (*cmdbuf != '\n') { 1254 if (*cmdbuf < 32) { 1255 if (cmdptr == cmd_head) { 1256 strncpy(cmd_hist[cmd_head], cmd_cur, 1257 CMD_BUFLEN); 1258 *(cmd_hist[cmd_head] + 1259 strlen(cmd_hist[cmd_head])-1) = '\0'; 1260 } 1261 if (!handle_ctrl_cmd(cmdbuf)) 1262 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1263 cmdbuf = cmd_cur; 1264 goto do_full_getstr; 1265 } else { 1266 strncpy(cmd_hist[cmd_head], cmd_cur, 1267 CMD_BUFLEN); 1268 } 1269 1270 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1271 if (cmd_head == cmd_tail) 1272 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1273 } 1274 1275 cmdptr = cmd_head; 1276 diag = kdb_parse(cmdbuf); 1277 if (diag == KDB_NOTFOUND) { 1278 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1279 diag = 0; 1280 } 1281 if (diag == KDB_CMD_GO 1282 || diag == KDB_CMD_CPU 1283 || diag == KDB_CMD_SS 1284 || diag == KDB_CMD_SSB 1285 || diag == KDB_CMD_KGDB) 1286 break; 1287 1288 if (diag) 1289 kdb_cmderror(diag); 1290 } 1291 KDB_DEBUG_STATE("kdb_local 9", diag); 1292 return diag; 1293 } 1294 1295 1296 /* 1297 * kdb_print_state - Print the state data for the current processor 1298 * for debugging. 1299 * Inputs: 1300 * text Identifies the debug point 1301 * value Any integer value to be printed, e.g. reason code. 1302 */ 1303 void kdb_print_state(const char *text, int value) 1304 { 1305 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1306 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1307 kdb_state); 1308 } 1309 1310 /* 1311 * kdb_main_loop - After initial setup and assignment of the 1312 * controlling cpu, all cpus are in this loop. One cpu is in 1313 * control and will issue the kdb prompt, the others will spin 1314 * until 'go' or cpu switch. 1315 * 1316 * To get a consistent view of the kernel stacks for all 1317 * processes, this routine is invoked from the main kdb code via 1318 * an architecture specific routine. kdba_main_loop is 1319 * responsible for making the kernel stacks consistent for all 1320 * processes, there should be no difference between a blocked 1321 * process and a running process as far as kdb is concerned. 1322 * Inputs: 1323 * reason The reason KDB was invoked 1324 * error The hardware-defined error code 1325 * reason2 kdb's current reason code. 1326 * Initially error but can change 1327 * according to kdb state. 1328 * db_result Result code from break or debug point. 1329 * regs The exception frame at time of fault/breakpoint. 1330 * should always be valid. 1331 * Returns: 1332 * 0 KDB was invoked for an event which it wasn't responsible 1333 * 1 KDB handled the event for which it was invoked. 1334 */ 1335 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1336 kdb_dbtrap_t db_result, struct pt_regs *regs) 1337 { 1338 int result = 1; 1339 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1340 while (1) { 1341 /* 1342 * All processors except the one that is in control 1343 * will spin here. 1344 */ 1345 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1346 while (KDB_STATE(HOLD_CPU)) { 1347 /* state KDB is turned off by kdb_cpu to see if the 1348 * other cpus are still live, each cpu in this loop 1349 * turns it back on. 1350 */ 1351 if (!KDB_STATE(KDB)) 1352 KDB_STATE_SET(KDB); 1353 } 1354 1355 KDB_STATE_CLEAR(SUPPRESS); 1356 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1357 if (KDB_STATE(LEAVING)) 1358 break; /* Another cpu said 'go' */ 1359 /* Still using kdb, this processor is in control */ 1360 result = kdb_local(reason2, error, regs, db_result); 1361 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1362 1363 if (result == KDB_CMD_CPU) 1364 break; 1365 1366 if (result == KDB_CMD_SS) { 1367 KDB_STATE_SET(DOING_SS); 1368 break; 1369 } 1370 1371 if (result == KDB_CMD_SSB) { 1372 KDB_STATE_SET(DOING_SS); 1373 KDB_STATE_SET(DOING_SSB); 1374 break; 1375 } 1376 1377 if (result == KDB_CMD_KGDB) { 1378 if (!KDB_STATE(DOING_KGDB)) 1379 kdb_printf("Entering please attach debugger " 1380 "or use $D#44+ or $3#33\n"); 1381 break; 1382 } 1383 if (result && result != 1 && result != KDB_CMD_GO) 1384 kdb_printf("\nUnexpected kdb_local return code %d\n", 1385 result); 1386 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1387 break; 1388 } 1389 if (KDB_STATE(DOING_SS)) 1390 KDB_STATE_CLEAR(SSBPT); 1391 1392 /* Clean up any keyboard devices before leaving */ 1393 kdb_kbd_cleanup_state(); 1394 1395 return result; 1396 } 1397 1398 /* 1399 * kdb_mdr - This function implements the guts of the 'mdr', memory 1400 * read command. 1401 * mdr <addr arg>,<byte count> 1402 * Inputs: 1403 * addr Start address 1404 * count Number of bytes 1405 * Returns: 1406 * Always 0. Any errors are detected and printed by kdb_getarea. 1407 */ 1408 static int kdb_mdr(unsigned long addr, unsigned int count) 1409 { 1410 unsigned char c; 1411 while (count--) { 1412 if (kdb_getarea(c, addr)) 1413 return 0; 1414 kdb_printf("%02x", c); 1415 addr++; 1416 } 1417 kdb_printf("\n"); 1418 return 0; 1419 } 1420 1421 /* 1422 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1423 * 'md8' 'mdr' and 'mds' commands. 1424 * 1425 * md|mds [<addr arg> [<line count> [<radix>]]] 1426 * mdWcN [<addr arg> [<line count> [<radix>]]] 1427 * where W = is the width (1, 2, 4 or 8) and N is the count. 1428 * for eg., md1c20 reads 20 bytes, 1 at a time. 1429 * mdr <addr arg>,<byte count> 1430 */ 1431 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1432 int symbolic, int nosect, int bytesperword, 1433 int num, int repeat, int phys) 1434 { 1435 /* print just one line of data */ 1436 kdb_symtab_t symtab; 1437 char cbuf[32]; 1438 char *c = cbuf; 1439 int i; 1440 unsigned long word; 1441 1442 memset(cbuf, '\0', sizeof(cbuf)); 1443 if (phys) 1444 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1445 else 1446 kdb_printf(kdb_machreg_fmt0 " ", addr); 1447 1448 for (i = 0; i < num && repeat--; i++) { 1449 if (phys) { 1450 if (kdb_getphysword(&word, addr, bytesperword)) 1451 break; 1452 } else if (kdb_getword(&word, addr, bytesperword)) 1453 break; 1454 kdb_printf(fmtstr, word); 1455 if (symbolic) 1456 kdbnearsym(word, &symtab); 1457 else 1458 memset(&symtab, 0, sizeof(symtab)); 1459 if (symtab.sym_name) { 1460 kdb_symbol_print(word, &symtab, 0); 1461 if (!nosect) { 1462 kdb_printf("\n"); 1463 kdb_printf(" %s %s " 1464 kdb_machreg_fmt " " 1465 kdb_machreg_fmt " " 1466 kdb_machreg_fmt, symtab.mod_name, 1467 symtab.sec_name, symtab.sec_start, 1468 symtab.sym_start, symtab.sym_end); 1469 } 1470 addr += bytesperword; 1471 } else { 1472 union { 1473 u64 word; 1474 unsigned char c[8]; 1475 } wc; 1476 unsigned char *cp; 1477 #ifdef __BIG_ENDIAN 1478 cp = wc.c + 8 - bytesperword; 1479 #else 1480 cp = wc.c; 1481 #endif 1482 wc.word = word; 1483 #define printable_char(c) \ 1484 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1485 switch (bytesperword) { 1486 case 8: 1487 *c++ = printable_char(*cp++); 1488 *c++ = printable_char(*cp++); 1489 *c++ = printable_char(*cp++); 1490 *c++ = printable_char(*cp++); 1491 addr += 4; 1492 case 4: 1493 *c++ = printable_char(*cp++); 1494 *c++ = printable_char(*cp++); 1495 addr += 2; 1496 case 2: 1497 *c++ = printable_char(*cp++); 1498 addr++; 1499 case 1: 1500 *c++ = printable_char(*cp++); 1501 addr++; 1502 break; 1503 } 1504 #undef printable_char 1505 } 1506 } 1507 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1508 " ", cbuf); 1509 } 1510 1511 static int kdb_md(int argc, const char **argv) 1512 { 1513 static unsigned long last_addr; 1514 static int last_radix, last_bytesperword, last_repeat; 1515 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1516 int nosect = 0; 1517 char fmtchar, fmtstr[64]; 1518 unsigned long addr; 1519 unsigned long word; 1520 long offset = 0; 1521 int symbolic = 0; 1522 int valid = 0; 1523 int phys = 0; 1524 1525 kdbgetintenv("MDCOUNT", &mdcount); 1526 kdbgetintenv("RADIX", &radix); 1527 kdbgetintenv("BYTESPERWORD", &bytesperword); 1528 1529 /* Assume 'md <addr>' and start with environment values */ 1530 repeat = mdcount * 16 / bytesperword; 1531 1532 if (strcmp(argv[0], "mdr") == 0) { 1533 if (argc != 2) 1534 return KDB_ARGCOUNT; 1535 valid = 1; 1536 } else if (isdigit(argv[0][2])) { 1537 bytesperword = (int)(argv[0][2] - '0'); 1538 if (bytesperword == 0) { 1539 bytesperword = last_bytesperword; 1540 if (bytesperword == 0) 1541 bytesperword = 4; 1542 } 1543 last_bytesperword = bytesperword; 1544 repeat = mdcount * 16 / bytesperword; 1545 if (!argv[0][3]) 1546 valid = 1; 1547 else if (argv[0][3] == 'c' && argv[0][4]) { 1548 char *p; 1549 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1550 mdcount = ((repeat * bytesperword) + 15) / 16; 1551 valid = !*p; 1552 } 1553 last_repeat = repeat; 1554 } else if (strcmp(argv[0], "md") == 0) 1555 valid = 1; 1556 else if (strcmp(argv[0], "mds") == 0) 1557 valid = 1; 1558 else if (strcmp(argv[0], "mdp") == 0) { 1559 phys = valid = 1; 1560 } 1561 if (!valid) 1562 return KDB_NOTFOUND; 1563 1564 if (argc == 0) { 1565 if (last_addr == 0) 1566 return KDB_ARGCOUNT; 1567 addr = last_addr; 1568 radix = last_radix; 1569 bytesperword = last_bytesperword; 1570 repeat = last_repeat; 1571 mdcount = ((repeat * bytesperword) + 15) / 16; 1572 } 1573 1574 if (argc) { 1575 unsigned long val; 1576 int diag, nextarg = 1; 1577 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1578 &offset, NULL); 1579 if (diag) 1580 return diag; 1581 if (argc > nextarg+2) 1582 return KDB_ARGCOUNT; 1583 1584 if (argc >= nextarg) { 1585 diag = kdbgetularg(argv[nextarg], &val); 1586 if (!diag) { 1587 mdcount = (int) val; 1588 repeat = mdcount * 16 / bytesperword; 1589 } 1590 } 1591 if (argc >= nextarg+1) { 1592 diag = kdbgetularg(argv[nextarg+1], &val); 1593 if (!diag) 1594 radix = (int) val; 1595 } 1596 } 1597 1598 if (strcmp(argv[0], "mdr") == 0) 1599 return kdb_mdr(addr, mdcount); 1600 1601 switch (radix) { 1602 case 10: 1603 fmtchar = 'd'; 1604 break; 1605 case 16: 1606 fmtchar = 'x'; 1607 break; 1608 case 8: 1609 fmtchar = 'o'; 1610 break; 1611 default: 1612 return KDB_BADRADIX; 1613 } 1614 1615 last_radix = radix; 1616 1617 if (bytesperword > KDB_WORD_SIZE) 1618 return KDB_BADWIDTH; 1619 1620 switch (bytesperword) { 1621 case 8: 1622 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1623 break; 1624 case 4: 1625 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1626 break; 1627 case 2: 1628 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1629 break; 1630 case 1: 1631 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1632 break; 1633 default: 1634 return KDB_BADWIDTH; 1635 } 1636 1637 last_repeat = repeat; 1638 last_bytesperword = bytesperword; 1639 1640 if (strcmp(argv[0], "mds") == 0) { 1641 symbolic = 1; 1642 /* Do not save these changes as last_*, they are temporary mds 1643 * overrides. 1644 */ 1645 bytesperword = KDB_WORD_SIZE; 1646 repeat = mdcount; 1647 kdbgetintenv("NOSECT", &nosect); 1648 } 1649 1650 /* Round address down modulo BYTESPERWORD */ 1651 1652 addr &= ~(bytesperword-1); 1653 1654 while (repeat > 0) { 1655 unsigned long a; 1656 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1657 1658 if (KDB_FLAG(CMD_INTERRUPT)) 1659 return 0; 1660 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1661 if (phys) { 1662 if (kdb_getphysword(&word, a, bytesperword) 1663 || word) 1664 break; 1665 } else if (kdb_getword(&word, a, bytesperword) || word) 1666 break; 1667 } 1668 n = min(num, repeat); 1669 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1670 num, repeat, phys); 1671 addr += bytesperword * n; 1672 repeat -= n; 1673 z = (z + num - 1) / num; 1674 if (z > 2) { 1675 int s = num * (z-2); 1676 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1677 " zero suppressed\n", 1678 addr, addr + bytesperword * s - 1); 1679 addr += bytesperword * s; 1680 repeat -= s; 1681 } 1682 } 1683 last_addr = addr; 1684 1685 return 0; 1686 } 1687 1688 /* 1689 * kdb_mm - This function implements the 'mm' command. 1690 * mm address-expression new-value 1691 * Remarks: 1692 * mm works on machine words, mmW works on bytes. 1693 */ 1694 static int kdb_mm(int argc, const char **argv) 1695 { 1696 int diag; 1697 unsigned long addr; 1698 long offset = 0; 1699 unsigned long contents; 1700 int nextarg; 1701 int width; 1702 1703 if (argv[0][2] && !isdigit(argv[0][2])) 1704 return KDB_NOTFOUND; 1705 1706 if (argc < 2) 1707 return KDB_ARGCOUNT; 1708 1709 nextarg = 1; 1710 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1711 if (diag) 1712 return diag; 1713 1714 if (nextarg > argc) 1715 return KDB_ARGCOUNT; 1716 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1717 if (diag) 1718 return diag; 1719 1720 if (nextarg != argc + 1) 1721 return KDB_ARGCOUNT; 1722 1723 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1724 diag = kdb_putword(addr, contents, width); 1725 if (diag) 1726 return diag; 1727 1728 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1729 1730 return 0; 1731 } 1732 1733 /* 1734 * kdb_go - This function implements the 'go' command. 1735 * go [address-expression] 1736 */ 1737 static int kdb_go(int argc, const char **argv) 1738 { 1739 unsigned long addr; 1740 int diag; 1741 int nextarg; 1742 long offset; 1743 1744 if (raw_smp_processor_id() != kdb_initial_cpu) { 1745 kdb_printf("go must execute on the entry cpu, " 1746 "please use \"cpu %d\" and then execute go\n", 1747 kdb_initial_cpu); 1748 return KDB_BADCPUNUM; 1749 } 1750 if (argc == 1) { 1751 nextarg = 1; 1752 diag = kdbgetaddrarg(argc, argv, &nextarg, 1753 &addr, &offset, NULL); 1754 if (diag) 1755 return diag; 1756 } else if (argc) { 1757 return KDB_ARGCOUNT; 1758 } 1759 1760 diag = KDB_CMD_GO; 1761 if (KDB_FLAG(CATASTROPHIC)) { 1762 kdb_printf("Catastrophic error detected\n"); 1763 kdb_printf("kdb_continue_catastrophic=%d, ", 1764 kdb_continue_catastrophic); 1765 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1766 kdb_printf("type go a second time if you really want " 1767 "to continue\n"); 1768 return 0; 1769 } 1770 if (kdb_continue_catastrophic == 2) { 1771 kdb_printf("forcing reboot\n"); 1772 kdb_reboot(0, NULL); 1773 } 1774 kdb_printf("attempting to continue\n"); 1775 } 1776 return diag; 1777 } 1778 1779 /* 1780 * kdb_rd - This function implements the 'rd' command. 1781 */ 1782 static int kdb_rd(int argc, const char **argv) 1783 { 1784 int len = kdb_check_regs(); 1785 #if DBG_MAX_REG_NUM > 0 1786 int i; 1787 char *rname; 1788 int rsize; 1789 u64 reg64; 1790 u32 reg32; 1791 u16 reg16; 1792 u8 reg8; 1793 1794 if (len) 1795 return len; 1796 1797 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1798 rsize = dbg_reg_def[i].size * 2; 1799 if (rsize > 16) 1800 rsize = 2; 1801 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1802 len = 0; 1803 kdb_printf("\n"); 1804 } 1805 if (len) 1806 len += kdb_printf(" "); 1807 switch(dbg_reg_def[i].size * 8) { 1808 case 8: 1809 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1810 if (!rname) 1811 break; 1812 len += kdb_printf("%s: %02x", rname, reg8); 1813 break; 1814 case 16: 1815 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1816 if (!rname) 1817 break; 1818 len += kdb_printf("%s: %04x", rname, reg16); 1819 break; 1820 case 32: 1821 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1822 if (!rname) 1823 break; 1824 len += kdb_printf("%s: %08x", rname, reg32); 1825 break; 1826 case 64: 1827 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1828 if (!rname) 1829 break; 1830 len += kdb_printf("%s: %016llx", rname, reg64); 1831 break; 1832 default: 1833 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1834 } 1835 } 1836 kdb_printf("\n"); 1837 #else 1838 if (len) 1839 return len; 1840 1841 kdb_dumpregs(kdb_current_regs); 1842 #endif 1843 return 0; 1844 } 1845 1846 /* 1847 * kdb_rm - This function implements the 'rm' (register modify) command. 1848 * rm register-name new-contents 1849 * Remarks: 1850 * Allows register modification with the same restrictions as gdb 1851 */ 1852 static int kdb_rm(int argc, const char **argv) 1853 { 1854 #if DBG_MAX_REG_NUM > 0 1855 int diag; 1856 const char *rname; 1857 int i; 1858 u64 reg64; 1859 u32 reg32; 1860 u16 reg16; 1861 u8 reg8; 1862 1863 if (argc != 2) 1864 return KDB_ARGCOUNT; 1865 /* 1866 * Allow presence or absence of leading '%' symbol. 1867 */ 1868 rname = argv[1]; 1869 if (*rname == '%') 1870 rname++; 1871 1872 diag = kdbgetu64arg(argv[2], ®64); 1873 if (diag) 1874 return diag; 1875 1876 diag = kdb_check_regs(); 1877 if (diag) 1878 return diag; 1879 1880 diag = KDB_BADREG; 1881 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1882 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1883 diag = 0; 1884 break; 1885 } 1886 } 1887 if (!diag) { 1888 switch(dbg_reg_def[i].size * 8) { 1889 case 8: 1890 reg8 = reg64; 1891 dbg_set_reg(i, ®8, kdb_current_regs); 1892 break; 1893 case 16: 1894 reg16 = reg64; 1895 dbg_set_reg(i, ®16, kdb_current_regs); 1896 break; 1897 case 32: 1898 reg32 = reg64; 1899 dbg_set_reg(i, ®32, kdb_current_regs); 1900 break; 1901 case 64: 1902 dbg_set_reg(i, ®64, kdb_current_regs); 1903 break; 1904 } 1905 } 1906 return diag; 1907 #else 1908 kdb_printf("ERROR: Register set currently not implemented\n"); 1909 return 0; 1910 #endif 1911 } 1912 1913 #if defined(CONFIG_MAGIC_SYSRQ) 1914 /* 1915 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 1916 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 1917 * sr <magic-sysrq-code> 1918 */ 1919 static int kdb_sr(int argc, const char **argv) 1920 { 1921 if (argc != 1) 1922 return KDB_ARGCOUNT; 1923 kdb_trap_printk++; 1924 __handle_sysrq(*argv[1], false); 1925 kdb_trap_printk--; 1926 1927 return 0; 1928 } 1929 #endif /* CONFIG_MAGIC_SYSRQ */ 1930 1931 /* 1932 * kdb_ef - This function implements the 'regs' (display exception 1933 * frame) command. This command takes an address and expects to 1934 * find an exception frame at that address, formats and prints 1935 * it. 1936 * regs address-expression 1937 * Remarks: 1938 * Not done yet. 1939 */ 1940 static int kdb_ef(int argc, const char **argv) 1941 { 1942 int diag; 1943 unsigned long addr; 1944 long offset; 1945 int nextarg; 1946 1947 if (argc != 1) 1948 return KDB_ARGCOUNT; 1949 1950 nextarg = 1; 1951 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1952 if (diag) 1953 return diag; 1954 show_regs((struct pt_regs *)addr); 1955 return 0; 1956 } 1957 1958 #if defined(CONFIG_MODULES) 1959 /* 1960 * kdb_lsmod - This function implements the 'lsmod' command. Lists 1961 * currently loaded kernel modules. 1962 * Mostly taken from userland lsmod. 1963 */ 1964 static int kdb_lsmod(int argc, const char **argv) 1965 { 1966 struct module *mod; 1967 1968 if (argc != 0) 1969 return KDB_ARGCOUNT; 1970 1971 kdb_printf("Module Size modstruct Used by\n"); 1972 list_for_each_entry(mod, kdb_modules, list) { 1973 if (mod->state == MODULE_STATE_UNFORMED) 1974 continue; 1975 1976 kdb_printf("%-20s%8u 0x%p ", mod->name, 1977 mod->core_size, (void *)mod); 1978 #ifdef CONFIG_MODULE_UNLOAD 1979 kdb_printf("%4ld ", module_refcount(mod)); 1980 #endif 1981 if (mod->state == MODULE_STATE_GOING) 1982 kdb_printf(" (Unloading)"); 1983 else if (mod->state == MODULE_STATE_COMING) 1984 kdb_printf(" (Loading)"); 1985 else 1986 kdb_printf(" (Live)"); 1987 kdb_printf(" 0x%p", mod->module_core); 1988 1989 #ifdef CONFIG_MODULE_UNLOAD 1990 { 1991 struct module_use *use; 1992 kdb_printf(" [ "); 1993 list_for_each_entry(use, &mod->source_list, 1994 source_list) 1995 kdb_printf("%s ", use->target->name); 1996 kdb_printf("]\n"); 1997 } 1998 #endif 1999 } 2000 2001 return 0; 2002 } 2003 2004 #endif /* CONFIG_MODULES */ 2005 2006 /* 2007 * kdb_env - This function implements the 'env' command. Display the 2008 * current environment variables. 2009 */ 2010 2011 static int kdb_env(int argc, const char **argv) 2012 { 2013 int i; 2014 2015 for (i = 0; i < __nenv; i++) { 2016 if (__env[i]) 2017 kdb_printf("%s\n", __env[i]); 2018 } 2019 2020 if (KDB_DEBUG(MASK)) 2021 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags); 2022 2023 return 0; 2024 } 2025 2026 #ifdef CONFIG_PRINTK 2027 /* 2028 * kdb_dmesg - This function implements the 'dmesg' command to display 2029 * the contents of the syslog buffer. 2030 * dmesg [lines] [adjust] 2031 */ 2032 static int kdb_dmesg(int argc, const char **argv) 2033 { 2034 int diag; 2035 int logging; 2036 int lines = 0; 2037 int adjust = 0; 2038 int n = 0; 2039 int skip = 0; 2040 struct kmsg_dumper dumper = { .active = 1 }; 2041 size_t len; 2042 char buf[201]; 2043 2044 if (argc > 2) 2045 return KDB_ARGCOUNT; 2046 if (argc) { 2047 char *cp; 2048 lines = simple_strtol(argv[1], &cp, 0); 2049 if (*cp) 2050 lines = 0; 2051 if (argc > 1) { 2052 adjust = simple_strtoul(argv[2], &cp, 0); 2053 if (*cp || adjust < 0) 2054 adjust = 0; 2055 } 2056 } 2057 2058 /* disable LOGGING if set */ 2059 diag = kdbgetintenv("LOGGING", &logging); 2060 if (!diag && logging) { 2061 const char *setargs[] = { "set", "LOGGING", "0" }; 2062 kdb_set(2, setargs); 2063 } 2064 2065 kmsg_dump_rewind_nolock(&dumper); 2066 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL)) 2067 n++; 2068 2069 if (lines < 0) { 2070 if (adjust >= n) 2071 kdb_printf("buffer only contains %d lines, nothing " 2072 "printed\n", n); 2073 else if (adjust - lines >= n) 2074 kdb_printf("buffer only contains %d lines, last %d " 2075 "lines printed\n", n, n - adjust); 2076 skip = adjust; 2077 lines = abs(lines); 2078 } else if (lines > 0) { 2079 skip = n - lines - adjust; 2080 lines = abs(lines); 2081 if (adjust >= n) { 2082 kdb_printf("buffer only contains %d lines, " 2083 "nothing printed\n", n); 2084 skip = n; 2085 } else if (skip < 0) { 2086 lines += skip; 2087 skip = 0; 2088 kdb_printf("buffer only contains %d lines, first " 2089 "%d lines printed\n", n, lines); 2090 } 2091 } else { 2092 lines = n; 2093 } 2094 2095 if (skip >= n || skip < 0) 2096 return 0; 2097 2098 kmsg_dump_rewind_nolock(&dumper); 2099 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) { 2100 if (skip) { 2101 skip--; 2102 continue; 2103 } 2104 if (!lines--) 2105 break; 2106 if (KDB_FLAG(CMD_INTERRUPT)) 2107 return 0; 2108 2109 kdb_printf("%.*s\n", (int)len - 1, buf); 2110 } 2111 2112 return 0; 2113 } 2114 #endif /* CONFIG_PRINTK */ 2115 2116 /* Make sure we balance enable/disable calls, must disable first. */ 2117 static atomic_t kdb_nmi_disabled; 2118 2119 static int kdb_disable_nmi(int argc, const char *argv[]) 2120 { 2121 if (atomic_read(&kdb_nmi_disabled)) 2122 return 0; 2123 atomic_set(&kdb_nmi_disabled, 1); 2124 arch_kgdb_ops.enable_nmi(0); 2125 return 0; 2126 } 2127 2128 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2129 { 2130 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2131 return -EINVAL; 2132 arch_kgdb_ops.enable_nmi(1); 2133 return 0; 2134 } 2135 2136 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2137 .set = kdb_param_enable_nmi, 2138 }; 2139 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2140 2141 /* 2142 * kdb_cpu - This function implements the 'cpu' command. 2143 * cpu [<cpunum>] 2144 * Returns: 2145 * KDB_CMD_CPU for success, a kdb diagnostic if error 2146 */ 2147 static void kdb_cpu_status(void) 2148 { 2149 int i, start_cpu, first_print = 1; 2150 char state, prev_state = '?'; 2151 2152 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2153 kdb_printf("Available cpus: "); 2154 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2155 if (!cpu_online(i)) { 2156 state = 'F'; /* cpu is offline */ 2157 } else { 2158 state = ' '; /* cpu is responding to kdb */ 2159 if (kdb_task_state_char(KDB_TSK(i)) == 'I') 2160 state = 'I'; /* idle task */ 2161 } 2162 if (state != prev_state) { 2163 if (prev_state != '?') { 2164 if (!first_print) 2165 kdb_printf(", "); 2166 first_print = 0; 2167 kdb_printf("%d", start_cpu); 2168 if (start_cpu < i-1) 2169 kdb_printf("-%d", i-1); 2170 if (prev_state != ' ') 2171 kdb_printf("(%c)", prev_state); 2172 } 2173 prev_state = state; 2174 start_cpu = i; 2175 } 2176 } 2177 /* print the trailing cpus, ignoring them if they are all offline */ 2178 if (prev_state != 'F') { 2179 if (!first_print) 2180 kdb_printf(", "); 2181 kdb_printf("%d", start_cpu); 2182 if (start_cpu < i-1) 2183 kdb_printf("-%d", i-1); 2184 if (prev_state != ' ') 2185 kdb_printf("(%c)", prev_state); 2186 } 2187 kdb_printf("\n"); 2188 } 2189 2190 static int kdb_cpu(int argc, const char **argv) 2191 { 2192 unsigned long cpunum; 2193 int diag; 2194 2195 if (argc == 0) { 2196 kdb_cpu_status(); 2197 return 0; 2198 } 2199 2200 if (argc != 1) 2201 return KDB_ARGCOUNT; 2202 2203 diag = kdbgetularg(argv[1], &cpunum); 2204 if (diag) 2205 return diag; 2206 2207 /* 2208 * Validate cpunum 2209 */ 2210 if ((cpunum > NR_CPUS) || !cpu_online(cpunum)) 2211 return KDB_BADCPUNUM; 2212 2213 dbg_switch_cpu = cpunum; 2214 2215 /* 2216 * Switch to other cpu 2217 */ 2218 return KDB_CMD_CPU; 2219 } 2220 2221 /* The user may not realize that ps/bta with no parameters does not print idle 2222 * or sleeping system daemon processes, so tell them how many were suppressed. 2223 */ 2224 void kdb_ps_suppressed(void) 2225 { 2226 int idle = 0, daemon = 0; 2227 unsigned long mask_I = kdb_task_state_string("I"), 2228 mask_M = kdb_task_state_string("M"); 2229 unsigned long cpu; 2230 const struct task_struct *p, *g; 2231 for_each_online_cpu(cpu) { 2232 p = kdb_curr_task(cpu); 2233 if (kdb_task_state(p, mask_I)) 2234 ++idle; 2235 } 2236 kdb_do_each_thread(g, p) { 2237 if (kdb_task_state(p, mask_M)) 2238 ++daemon; 2239 } kdb_while_each_thread(g, p); 2240 if (idle || daemon) { 2241 if (idle) 2242 kdb_printf("%d idle process%s (state I)%s\n", 2243 idle, idle == 1 ? "" : "es", 2244 daemon ? " and " : ""); 2245 if (daemon) 2246 kdb_printf("%d sleeping system daemon (state M) " 2247 "process%s", daemon, 2248 daemon == 1 ? "" : "es"); 2249 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2250 } 2251 } 2252 2253 /* 2254 * kdb_ps - This function implements the 'ps' command which shows a 2255 * list of the active processes. 2256 * ps [DRSTCZEUIMA] All processes, optionally filtered by state 2257 */ 2258 void kdb_ps1(const struct task_struct *p) 2259 { 2260 int cpu; 2261 unsigned long tmp; 2262 2263 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) 2264 return; 2265 2266 cpu = kdb_process_cpu(p); 2267 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n", 2268 (void *)p, p->pid, p->parent->pid, 2269 kdb_task_has_cpu(p), kdb_process_cpu(p), 2270 kdb_task_state_char(p), 2271 (void *)(&p->thread), 2272 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2273 p->comm); 2274 if (kdb_task_has_cpu(p)) { 2275 if (!KDB_TSK(cpu)) { 2276 kdb_printf(" Error: no saved data for this cpu\n"); 2277 } else { 2278 if (KDB_TSK(cpu) != p) 2279 kdb_printf(" Error: does not match running " 2280 "process table (0x%p)\n", KDB_TSK(cpu)); 2281 } 2282 } 2283 } 2284 2285 static int kdb_ps(int argc, const char **argv) 2286 { 2287 struct task_struct *g, *p; 2288 unsigned long mask, cpu; 2289 2290 if (argc == 0) 2291 kdb_ps_suppressed(); 2292 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2293 (int)(2*sizeof(void *))+2, "Task Addr", 2294 (int)(2*sizeof(void *))+2, "Thread"); 2295 mask = kdb_task_state_string(argc ? argv[1] : NULL); 2296 /* Run the active tasks first */ 2297 for_each_online_cpu(cpu) { 2298 if (KDB_FLAG(CMD_INTERRUPT)) 2299 return 0; 2300 p = kdb_curr_task(cpu); 2301 if (kdb_task_state(p, mask)) 2302 kdb_ps1(p); 2303 } 2304 kdb_printf("\n"); 2305 /* Now the real tasks */ 2306 kdb_do_each_thread(g, p) { 2307 if (KDB_FLAG(CMD_INTERRUPT)) 2308 return 0; 2309 if (kdb_task_state(p, mask)) 2310 kdb_ps1(p); 2311 } kdb_while_each_thread(g, p); 2312 2313 return 0; 2314 } 2315 2316 /* 2317 * kdb_pid - This function implements the 'pid' command which switches 2318 * the currently active process. 2319 * pid [<pid> | R] 2320 */ 2321 static int kdb_pid(int argc, const char **argv) 2322 { 2323 struct task_struct *p; 2324 unsigned long val; 2325 int diag; 2326 2327 if (argc > 1) 2328 return KDB_ARGCOUNT; 2329 2330 if (argc) { 2331 if (strcmp(argv[1], "R") == 0) { 2332 p = KDB_TSK(kdb_initial_cpu); 2333 } else { 2334 diag = kdbgetularg(argv[1], &val); 2335 if (diag) 2336 return KDB_BADINT; 2337 2338 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2339 if (!p) { 2340 kdb_printf("No task with pid=%d\n", (pid_t)val); 2341 return 0; 2342 } 2343 } 2344 kdb_set_current_task(p); 2345 } 2346 kdb_printf("KDB current process is %s(pid=%d)\n", 2347 kdb_current_task->comm, 2348 kdb_current_task->pid); 2349 2350 return 0; 2351 } 2352 2353 /* 2354 * kdb_ll - This function implements the 'll' command which follows a 2355 * linked list and executes an arbitrary command for each 2356 * element. 2357 */ 2358 static int kdb_ll(int argc, const char **argv) 2359 { 2360 int diag = 0; 2361 unsigned long addr; 2362 long offset = 0; 2363 unsigned long va; 2364 unsigned long linkoffset; 2365 int nextarg; 2366 const char *command; 2367 2368 if (argc != 3) 2369 return KDB_ARGCOUNT; 2370 2371 nextarg = 1; 2372 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2373 if (diag) 2374 return diag; 2375 2376 diag = kdbgetularg(argv[2], &linkoffset); 2377 if (diag) 2378 return diag; 2379 2380 /* 2381 * Using the starting address as 2382 * the first element in the list, and assuming that 2383 * the list ends with a null pointer. 2384 */ 2385 2386 va = addr; 2387 command = kdb_strdup(argv[3], GFP_KDB); 2388 if (!command) { 2389 kdb_printf("%s: cannot duplicate command\n", __func__); 2390 return 0; 2391 } 2392 /* Recursive use of kdb_parse, do not use argv after this point */ 2393 argv = NULL; 2394 2395 while (va) { 2396 char buf[80]; 2397 2398 if (KDB_FLAG(CMD_INTERRUPT)) 2399 goto out; 2400 2401 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va); 2402 diag = kdb_parse(buf); 2403 if (diag) 2404 goto out; 2405 2406 addr = va + linkoffset; 2407 if (kdb_getword(&va, addr, sizeof(va))) 2408 goto out; 2409 } 2410 2411 out: 2412 kfree(command); 2413 return diag; 2414 } 2415 2416 static int kdb_kgdb(int argc, const char **argv) 2417 { 2418 return KDB_CMD_KGDB; 2419 } 2420 2421 /* 2422 * kdb_help - This function implements the 'help' and '?' commands. 2423 */ 2424 static int kdb_help(int argc, const char **argv) 2425 { 2426 kdbtab_t *kt; 2427 int i; 2428 2429 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2430 kdb_printf("-----------------------------" 2431 "-----------------------------\n"); 2432 for_each_kdbcmd(kt, i) { 2433 if (kt->cmd_name) 2434 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name, 2435 kt->cmd_usage, kt->cmd_help); 2436 if (KDB_FLAG(CMD_INTERRUPT)) 2437 return 0; 2438 } 2439 return 0; 2440 } 2441 2442 /* 2443 * kdb_kill - This function implements the 'kill' commands. 2444 */ 2445 static int kdb_kill(int argc, const char **argv) 2446 { 2447 long sig, pid; 2448 char *endp; 2449 struct task_struct *p; 2450 struct siginfo info; 2451 2452 if (argc != 2) 2453 return KDB_ARGCOUNT; 2454 2455 sig = simple_strtol(argv[1], &endp, 0); 2456 if (*endp) 2457 return KDB_BADINT; 2458 if (sig >= 0) { 2459 kdb_printf("Invalid signal parameter.<-signal>\n"); 2460 return 0; 2461 } 2462 sig = -sig; 2463 2464 pid = simple_strtol(argv[2], &endp, 0); 2465 if (*endp) 2466 return KDB_BADINT; 2467 if (pid <= 0) { 2468 kdb_printf("Process ID must be large than 0.\n"); 2469 return 0; 2470 } 2471 2472 /* Find the process. */ 2473 p = find_task_by_pid_ns(pid, &init_pid_ns); 2474 if (!p) { 2475 kdb_printf("The specified process isn't found.\n"); 2476 return 0; 2477 } 2478 p = p->group_leader; 2479 info.si_signo = sig; 2480 info.si_errno = 0; 2481 info.si_code = SI_USER; 2482 info.si_pid = pid; /* same capabilities as process being signalled */ 2483 info.si_uid = 0; /* kdb has root authority */ 2484 kdb_send_sig_info(p, &info); 2485 return 0; 2486 } 2487 2488 struct kdb_tm { 2489 int tm_sec; /* seconds */ 2490 int tm_min; /* minutes */ 2491 int tm_hour; /* hours */ 2492 int tm_mday; /* day of the month */ 2493 int tm_mon; /* month */ 2494 int tm_year; /* year */ 2495 }; 2496 2497 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm) 2498 { 2499 /* This will work from 1970-2099, 2100 is not a leap year */ 2500 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31, 2501 31, 30, 31, 30, 31 }; 2502 memset(tm, 0, sizeof(*tm)); 2503 tm->tm_sec = tv->tv_sec % (24 * 60 * 60); 2504 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) + 2505 (2 * 365 + 1); /* shift base from 1970 to 1968 */ 2506 tm->tm_min = tm->tm_sec / 60 % 60; 2507 tm->tm_hour = tm->tm_sec / 60 / 60; 2508 tm->tm_sec = tm->tm_sec % 60; 2509 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1)); 2510 tm->tm_mday %= (4*365+1); 2511 mon_day[1] = 29; 2512 while (tm->tm_mday >= mon_day[tm->tm_mon]) { 2513 tm->tm_mday -= mon_day[tm->tm_mon]; 2514 if (++tm->tm_mon == 12) { 2515 tm->tm_mon = 0; 2516 ++tm->tm_year; 2517 mon_day[1] = 28; 2518 } 2519 } 2520 ++tm->tm_mday; 2521 } 2522 2523 /* 2524 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2525 * I cannot call that code directly from kdb, it has an unconditional 2526 * cli()/sti() and calls routines that take locks which can stop the debugger. 2527 */ 2528 static void kdb_sysinfo(struct sysinfo *val) 2529 { 2530 struct timespec uptime; 2531 do_posix_clock_monotonic_gettime(&uptime); 2532 memset(val, 0, sizeof(*val)); 2533 val->uptime = uptime.tv_sec; 2534 val->loads[0] = avenrun[0]; 2535 val->loads[1] = avenrun[1]; 2536 val->loads[2] = avenrun[2]; 2537 val->procs = nr_threads-1; 2538 si_meminfo(val); 2539 2540 return; 2541 } 2542 2543 /* 2544 * kdb_summary - This function implements the 'summary' command. 2545 */ 2546 static int kdb_summary(int argc, const char **argv) 2547 { 2548 struct timespec now; 2549 struct kdb_tm tm; 2550 struct sysinfo val; 2551 2552 if (argc) 2553 return KDB_ARGCOUNT; 2554 2555 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2556 kdb_printf("release %s\n", init_uts_ns.name.release); 2557 kdb_printf("version %s\n", init_uts_ns.name.version); 2558 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2559 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2560 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2561 kdb_printf("ccversion %s\n", __stringify(CCVERSION)); 2562 2563 now = __current_kernel_time(); 2564 kdb_gmtime(&now, &tm); 2565 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d " 2566 "tz_minuteswest %d\n", 2567 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, 2568 tm.tm_hour, tm.tm_min, tm.tm_sec, 2569 sys_tz.tz_minuteswest); 2570 2571 kdb_sysinfo(&val); 2572 kdb_printf("uptime "); 2573 if (val.uptime > (24*60*60)) { 2574 int days = val.uptime / (24*60*60); 2575 val.uptime %= (24*60*60); 2576 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2577 } 2578 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2579 2580 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */ 2581 2582 #define LOAD_INT(x) ((x) >> FSHIFT) 2583 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) 2584 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2585 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2586 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2587 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2588 #undef LOAD_INT 2589 #undef LOAD_FRAC 2590 /* Display in kilobytes */ 2591 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2592 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2593 "Buffers: %8lu kB\n", 2594 val.totalram, val.freeram, val.bufferram); 2595 return 0; 2596 } 2597 2598 /* 2599 * kdb_per_cpu - This function implements the 'per_cpu' command. 2600 */ 2601 static int kdb_per_cpu(int argc, const char **argv) 2602 { 2603 char fmtstr[64]; 2604 int cpu, diag, nextarg = 1; 2605 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2606 2607 if (argc < 1 || argc > 3) 2608 return KDB_ARGCOUNT; 2609 2610 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2611 if (diag) 2612 return diag; 2613 2614 if (argc >= 2) { 2615 diag = kdbgetularg(argv[2], &bytesperword); 2616 if (diag) 2617 return diag; 2618 } 2619 if (!bytesperword) 2620 bytesperword = KDB_WORD_SIZE; 2621 else if (bytesperword > KDB_WORD_SIZE) 2622 return KDB_BADWIDTH; 2623 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2624 if (argc >= 3) { 2625 diag = kdbgetularg(argv[3], &whichcpu); 2626 if (diag) 2627 return diag; 2628 if (!cpu_online(whichcpu)) { 2629 kdb_printf("cpu %ld is not online\n", whichcpu); 2630 return KDB_BADCPUNUM; 2631 } 2632 } 2633 2634 /* Most architectures use __per_cpu_offset[cpu], some use 2635 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2636 */ 2637 #ifdef __per_cpu_offset 2638 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2639 #else 2640 #ifdef CONFIG_SMP 2641 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2642 #else 2643 #define KDB_PCU(cpu) 0 2644 #endif 2645 #endif 2646 for_each_online_cpu(cpu) { 2647 if (KDB_FLAG(CMD_INTERRUPT)) 2648 return 0; 2649 2650 if (whichcpu != ~0UL && whichcpu != cpu) 2651 continue; 2652 addr = symaddr + KDB_PCU(cpu); 2653 diag = kdb_getword(&val, addr, bytesperword); 2654 if (diag) { 2655 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2656 "read, diag=%d\n", cpu, addr, diag); 2657 continue; 2658 } 2659 kdb_printf("%5d ", cpu); 2660 kdb_md_line(fmtstr, addr, 2661 bytesperword == KDB_WORD_SIZE, 2662 1, bytesperword, 1, 1, 0); 2663 } 2664 #undef KDB_PCU 2665 return 0; 2666 } 2667 2668 /* 2669 * display help for the use of cmd | grep pattern 2670 */ 2671 static int kdb_grep_help(int argc, const char **argv) 2672 { 2673 kdb_printf("Usage of cmd args | grep pattern:\n"); 2674 kdb_printf(" Any command's output may be filtered through an "); 2675 kdb_printf("emulated 'pipe'.\n"); 2676 kdb_printf(" 'grep' is just a key word.\n"); 2677 kdb_printf(" The pattern may include a very limited set of " 2678 "metacharacters:\n"); 2679 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2680 kdb_printf(" And if there are spaces in the pattern, you may " 2681 "quote it:\n"); 2682 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2683 " or \"^pat tern$\"\n"); 2684 return 0; 2685 } 2686 2687 /* 2688 * kdb_register_repeat - This function is used to register a kernel 2689 * debugger command. 2690 * Inputs: 2691 * cmd Command name 2692 * func Function to execute the command 2693 * usage A simple usage string showing arguments 2694 * help A simple help string describing command 2695 * repeat Does the command auto repeat on enter? 2696 * Returns: 2697 * zero for success, one if a duplicate command. 2698 */ 2699 #define kdb_command_extend 50 /* arbitrary */ 2700 int kdb_register_repeat(char *cmd, 2701 kdb_func_t func, 2702 char *usage, 2703 char *help, 2704 short minlen, 2705 kdb_repeat_t repeat) 2706 { 2707 int i; 2708 kdbtab_t *kp; 2709 2710 /* 2711 * Brute force method to determine duplicates 2712 */ 2713 for_each_kdbcmd(kp, i) { 2714 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2715 kdb_printf("Duplicate kdb command registered: " 2716 "%s, func %p help %s\n", cmd, func, help); 2717 return 1; 2718 } 2719 } 2720 2721 /* 2722 * Insert command into first available location in table 2723 */ 2724 for_each_kdbcmd(kp, i) { 2725 if (kp->cmd_name == NULL) 2726 break; 2727 } 2728 2729 if (i >= kdb_max_commands) { 2730 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX + 2731 kdb_command_extend) * sizeof(*new), GFP_KDB); 2732 if (!new) { 2733 kdb_printf("Could not allocate new kdb_command " 2734 "table\n"); 2735 return 1; 2736 } 2737 if (kdb_commands) { 2738 memcpy(new, kdb_commands, 2739 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new)); 2740 kfree(kdb_commands); 2741 } 2742 memset(new + kdb_max_commands, 0, 2743 kdb_command_extend * sizeof(*new)); 2744 kdb_commands = new; 2745 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX; 2746 kdb_max_commands += kdb_command_extend; 2747 } 2748 2749 kp->cmd_name = cmd; 2750 kp->cmd_func = func; 2751 kp->cmd_usage = usage; 2752 kp->cmd_help = help; 2753 kp->cmd_flags = 0; 2754 kp->cmd_minlen = minlen; 2755 kp->cmd_repeat = repeat; 2756 2757 return 0; 2758 } 2759 EXPORT_SYMBOL_GPL(kdb_register_repeat); 2760 2761 2762 /* 2763 * kdb_register - Compatibility register function for commands that do 2764 * not need to specify a repeat state. Equivalent to 2765 * kdb_register_repeat with KDB_REPEAT_NONE. 2766 * Inputs: 2767 * cmd Command name 2768 * func Function to execute the command 2769 * usage A simple usage string showing arguments 2770 * help A simple help string describing command 2771 * Returns: 2772 * zero for success, one if a duplicate command. 2773 */ 2774 int kdb_register(char *cmd, 2775 kdb_func_t func, 2776 char *usage, 2777 char *help, 2778 short minlen) 2779 { 2780 return kdb_register_repeat(cmd, func, usage, help, minlen, 2781 KDB_REPEAT_NONE); 2782 } 2783 EXPORT_SYMBOL_GPL(kdb_register); 2784 2785 /* 2786 * kdb_unregister - This function is used to unregister a kernel 2787 * debugger command. It is generally called when a module which 2788 * implements kdb commands is unloaded. 2789 * Inputs: 2790 * cmd Command name 2791 * Returns: 2792 * zero for success, one command not registered. 2793 */ 2794 int kdb_unregister(char *cmd) 2795 { 2796 int i; 2797 kdbtab_t *kp; 2798 2799 /* 2800 * find the command. 2801 */ 2802 for_each_kdbcmd(kp, i) { 2803 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2804 kp->cmd_name = NULL; 2805 return 0; 2806 } 2807 } 2808 2809 /* Couldn't find it. */ 2810 return 1; 2811 } 2812 EXPORT_SYMBOL_GPL(kdb_unregister); 2813 2814 /* Initialize the kdb command table. */ 2815 static void __init kdb_inittab(void) 2816 { 2817 int i; 2818 kdbtab_t *kp; 2819 2820 for_each_kdbcmd(kp, i) 2821 kp->cmd_name = NULL; 2822 2823 kdb_register_repeat("md", kdb_md, "<vaddr>", 2824 "Display Memory Contents, also mdWcN, e.g. md8c1", 1, 2825 KDB_REPEAT_NO_ARGS); 2826 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>", 2827 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS); 2828 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>", 2829 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS); 2830 kdb_register_repeat("mds", kdb_md, "<vaddr>", 2831 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS); 2832 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>", 2833 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS); 2834 kdb_register_repeat("go", kdb_go, "[<vaddr>]", 2835 "Continue Execution", 1, KDB_REPEAT_NONE); 2836 kdb_register_repeat("rd", kdb_rd, "", 2837 "Display Registers", 0, KDB_REPEAT_NONE); 2838 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>", 2839 "Modify Registers", 0, KDB_REPEAT_NONE); 2840 kdb_register_repeat("ef", kdb_ef, "<vaddr>", 2841 "Display exception frame", 0, KDB_REPEAT_NONE); 2842 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]", 2843 "Stack traceback", 1, KDB_REPEAT_NONE); 2844 kdb_register_repeat("btp", kdb_bt, "<pid>", 2845 "Display stack for process <pid>", 0, KDB_REPEAT_NONE); 2846 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]", 2847 "Display stack all processes", 0, KDB_REPEAT_NONE); 2848 kdb_register_repeat("btc", kdb_bt, "", 2849 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE); 2850 kdb_register_repeat("btt", kdb_bt, "<vaddr>", 2851 "Backtrace process given its struct task address", 0, 2852 KDB_REPEAT_NONE); 2853 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>", 2854 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE); 2855 kdb_register_repeat("env", kdb_env, "", 2856 "Show environment variables", 0, KDB_REPEAT_NONE); 2857 kdb_register_repeat("set", kdb_set, "", 2858 "Set environment variables", 0, KDB_REPEAT_NONE); 2859 kdb_register_repeat("help", kdb_help, "", 2860 "Display Help Message", 1, KDB_REPEAT_NONE); 2861 kdb_register_repeat("?", kdb_help, "", 2862 "Display Help Message", 0, KDB_REPEAT_NONE); 2863 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>", 2864 "Switch to new cpu", 0, KDB_REPEAT_NONE); 2865 kdb_register_repeat("kgdb", kdb_kgdb, "", 2866 "Enter kgdb mode", 0, KDB_REPEAT_NONE); 2867 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]", 2868 "Display active task list", 0, KDB_REPEAT_NONE); 2869 kdb_register_repeat("pid", kdb_pid, "<pidnum>", 2870 "Switch to another task", 0, KDB_REPEAT_NONE); 2871 kdb_register_repeat("reboot", kdb_reboot, "", 2872 "Reboot the machine immediately", 0, KDB_REPEAT_NONE); 2873 #if defined(CONFIG_MODULES) 2874 kdb_register_repeat("lsmod", kdb_lsmod, "", 2875 "List loaded kernel modules", 0, KDB_REPEAT_NONE); 2876 #endif 2877 #if defined(CONFIG_MAGIC_SYSRQ) 2878 kdb_register_repeat("sr", kdb_sr, "<key>", 2879 "Magic SysRq key", 0, KDB_REPEAT_NONE); 2880 #endif 2881 #if defined(CONFIG_PRINTK) 2882 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]", 2883 "Display syslog buffer", 0, KDB_REPEAT_NONE); 2884 #endif 2885 if (arch_kgdb_ops.enable_nmi) { 2886 kdb_register_repeat("disable_nmi", kdb_disable_nmi, "", 2887 "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE); 2888 } 2889 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"", 2890 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE); 2891 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>", 2892 "Send a signal to a process", 0, KDB_REPEAT_NONE); 2893 kdb_register_repeat("summary", kdb_summary, "", 2894 "Summarize the system", 4, KDB_REPEAT_NONE); 2895 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]", 2896 "Display per_cpu variables", 3, KDB_REPEAT_NONE); 2897 kdb_register_repeat("grephelp", kdb_grep_help, "", 2898 "Display help on | grep", 0, KDB_REPEAT_NONE); 2899 } 2900 2901 /* Execute any commands defined in kdb_cmds. */ 2902 static void __init kdb_cmd_init(void) 2903 { 2904 int i, diag; 2905 for (i = 0; kdb_cmds[i]; ++i) { 2906 diag = kdb_parse(kdb_cmds[i]); 2907 if (diag) 2908 kdb_printf("kdb command %s failed, kdb diag %d\n", 2909 kdb_cmds[i], diag); 2910 } 2911 if (defcmd_in_progress) { 2912 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2913 kdb_parse("endefcmd"); 2914 } 2915 } 2916 2917 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2918 void __init kdb_init(int lvl) 2919 { 2920 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2921 int i; 2922 2923 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2924 return; 2925 for (i = kdb_init_lvl; i < lvl; i++) { 2926 switch (i) { 2927 case KDB_NOT_INITIALIZED: 2928 kdb_inittab(); /* Initialize Command Table */ 2929 kdb_initbptab(); /* Initialize Breakpoints */ 2930 break; 2931 case KDB_INIT_EARLY: 2932 kdb_cmd_init(); /* Build kdb_cmds tables */ 2933 break; 2934 } 2935 } 2936 kdb_init_lvl = lvl; 2937 } 2938