xref: /openbmc/linux/kernel/debug/kdb/kdb_main.c (revision 4bb9d46d)
1 /*
2  * Kernel Debugger Architecture Independent Main Code
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
9  * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10  * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11  * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
12  */
13 
14 #include <linux/ctype.h>
15 #include <linux/types.h>
16 #include <linux/string.h>
17 #include <linux/kernel.h>
18 #include <linux/kmsg_dump.h>
19 #include <linux/reboot.h>
20 #include <linux/sched.h>
21 #include <linux/sched/loadavg.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sysrq.h>
25 #include <linux/smp.h>
26 #include <linux/utsname.h>
27 #include <linux/vmalloc.h>
28 #include <linux/atomic.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mm.h>
32 #include <linux/init.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kgdb.h>
35 #include <linux/kdb.h>
36 #include <linux/notifier.h>
37 #include <linux/interrupt.h>
38 #include <linux/delay.h>
39 #include <linux/nmi.h>
40 #include <linux/time.h>
41 #include <linux/ptrace.h>
42 #include <linux/sysctl.h>
43 #include <linux/cpu.h>
44 #include <linux/kdebug.h>
45 #include <linux/proc_fs.h>
46 #include <linux/uaccess.h>
47 #include <linux/slab.h>
48 #include "kdb_private.h"
49 
50 #undef	MODULE_PARAM_PREFIX
51 #define	MODULE_PARAM_PREFIX "kdb."
52 
53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55 
56 char kdb_grep_string[KDB_GREP_STRLEN];
57 int kdb_grepping_flag;
58 EXPORT_SYMBOL(kdb_grepping_flag);
59 int kdb_grep_leading;
60 int kdb_grep_trailing;
61 
62 /*
63  * Kernel debugger state flags
64  */
65 int kdb_flags;
66 
67 /*
68  * kdb_lock protects updates to kdb_initial_cpu.  Used to
69  * single thread processors through the kernel debugger.
70  */
71 int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
72 int kdb_nextline = 1;
73 int kdb_state;			/* General KDB state */
74 
75 struct task_struct *kdb_current_task;
76 struct pt_regs *kdb_current_regs;
77 
78 const char *kdb_diemsg;
79 static int kdb_go_count;
80 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81 static unsigned int kdb_continue_catastrophic =
82 	CONFIG_KDB_CONTINUE_CATASTROPHIC;
83 #else
84 static unsigned int kdb_continue_catastrophic;
85 #endif
86 
87 /* kdb_commands describes the available commands. */
88 static kdbtab_t *kdb_commands;
89 #define KDB_BASE_CMD_MAX 50
90 static int kdb_max_commands = KDB_BASE_CMD_MAX;
91 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
92 #define for_each_kdbcmd(cmd, num)					\
93 	for ((cmd) = kdb_base_commands, (num) = 0;			\
94 	     num < kdb_max_commands;					\
95 	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
96 
97 typedef struct _kdbmsg {
98 	int	km_diag;	/* kdb diagnostic */
99 	char	*km_msg;	/* Corresponding message text */
100 } kdbmsg_t;
101 
102 #define KDBMSG(msgnum, text) \
103 	{ KDB_##msgnum, text }
104 
105 static kdbmsg_t kdbmsgs[] = {
106 	KDBMSG(NOTFOUND, "Command Not Found"),
107 	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
108 	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
109 	       "8 is only allowed on 64 bit systems"),
110 	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
111 	KDBMSG(NOTENV, "Cannot find environment variable"),
112 	KDBMSG(NOENVVALUE, "Environment variable should have value"),
113 	KDBMSG(NOTIMP, "Command not implemented"),
114 	KDBMSG(ENVFULL, "Environment full"),
115 	KDBMSG(ENVBUFFULL, "Environment buffer full"),
116 	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
117 #ifdef CONFIG_CPU_XSCALE
118 	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
119 #else
120 	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
121 #endif
122 	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
123 	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
124 	KDBMSG(BADMODE, "Invalid IDMODE"),
125 	KDBMSG(BADINT, "Illegal numeric value"),
126 	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
127 	KDBMSG(BADREG, "Invalid register name"),
128 	KDBMSG(BADCPUNUM, "Invalid cpu number"),
129 	KDBMSG(BADLENGTH, "Invalid length field"),
130 	KDBMSG(NOBP, "No Breakpoint exists"),
131 	KDBMSG(BADADDR, "Invalid address"),
132 	KDBMSG(NOPERM, "Permission denied"),
133 };
134 #undef KDBMSG
135 
136 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
137 
138 
139 /*
140  * Initial environment.   This is all kept static and local to
141  * this file.   We don't want to rely on the memory allocation
142  * mechanisms in the kernel, so we use a very limited allocate-only
143  * heap for new and altered environment variables.  The entire
144  * environment is limited to a fixed number of entries (add more
145  * to __env[] if required) and a fixed amount of heap (add more to
146  * KDB_ENVBUFSIZE if required).
147  */
148 
149 static char *__env[] = {
150 #if defined(CONFIG_SMP)
151  "PROMPT=[%d]kdb> ",
152 #else
153  "PROMPT=kdb> ",
154 #endif
155  "MOREPROMPT=more> ",
156  "RADIX=16",
157  "MDCOUNT=8",			/* lines of md output */
158  KDB_PLATFORM_ENV,
159  "DTABCOUNT=30",
160  "NOSECT=1",
161  (char *)0,
162  (char *)0,
163  (char *)0,
164  (char *)0,
165  (char *)0,
166  (char *)0,
167  (char *)0,
168  (char *)0,
169  (char *)0,
170  (char *)0,
171  (char *)0,
172  (char *)0,
173  (char *)0,
174  (char *)0,
175  (char *)0,
176  (char *)0,
177  (char *)0,
178  (char *)0,
179  (char *)0,
180  (char *)0,
181  (char *)0,
182  (char *)0,
183  (char *)0,
184  (char *)0,
185 };
186 
187 static const int __nenv = ARRAY_SIZE(__env);
188 
189 struct task_struct *kdb_curr_task(int cpu)
190 {
191 	struct task_struct *p = curr_task(cpu);
192 #ifdef	_TIF_MCA_INIT
193 	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
194 		p = krp->p;
195 #endif
196 	return p;
197 }
198 
199 /*
200  * Check whether the flags of the current command and the permissions
201  * of the kdb console has allow a command to be run.
202  */
203 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
204 				   bool no_args)
205 {
206 	/* permissions comes from userspace so needs massaging slightly */
207 	permissions &= KDB_ENABLE_MASK;
208 	permissions |= KDB_ENABLE_ALWAYS_SAFE;
209 
210 	/* some commands change group when launched with no arguments */
211 	if (no_args)
212 		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
213 
214 	flags |= KDB_ENABLE_ALL;
215 
216 	return permissions & flags;
217 }
218 
219 /*
220  * kdbgetenv - This function will return the character string value of
221  *	an environment variable.
222  * Parameters:
223  *	match	A character string representing an environment variable.
224  * Returns:
225  *	NULL	No environment variable matches 'match'
226  *	char*	Pointer to string value of environment variable.
227  */
228 char *kdbgetenv(const char *match)
229 {
230 	char **ep = __env;
231 	int matchlen = strlen(match);
232 	int i;
233 
234 	for (i = 0; i < __nenv; i++) {
235 		char *e = *ep++;
236 
237 		if (!e)
238 			continue;
239 
240 		if ((strncmp(match, e, matchlen) == 0)
241 		 && ((e[matchlen] == '\0')
242 		   || (e[matchlen] == '='))) {
243 			char *cp = strchr(e, '=');
244 			return cp ? ++cp : "";
245 		}
246 	}
247 	return NULL;
248 }
249 
250 /*
251  * kdballocenv - This function is used to allocate bytes for
252  *	environment entries.
253  * Parameters:
254  *	match	A character string representing a numeric value
255  * Outputs:
256  *	*value  the unsigned long representation of the env variable 'match'
257  * Returns:
258  *	Zero on success, a kdb diagnostic on failure.
259  * Remarks:
260  *	We use a static environment buffer (envbuffer) to hold the values
261  *	of dynamically generated environment variables (see kdb_set).  Buffer
262  *	space once allocated is never free'd, so over time, the amount of space
263  *	(currently 512 bytes) will be exhausted if env variables are changed
264  *	frequently.
265  */
266 static char *kdballocenv(size_t bytes)
267 {
268 #define	KDB_ENVBUFSIZE	512
269 	static char envbuffer[KDB_ENVBUFSIZE];
270 	static int envbufsize;
271 	char *ep = NULL;
272 
273 	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
274 		ep = &envbuffer[envbufsize];
275 		envbufsize += bytes;
276 	}
277 	return ep;
278 }
279 
280 /*
281  * kdbgetulenv - This function will return the value of an unsigned
282  *	long-valued environment variable.
283  * Parameters:
284  *	match	A character string representing a numeric value
285  * Outputs:
286  *	*value  the unsigned long represntation of the env variable 'match'
287  * Returns:
288  *	Zero on success, a kdb diagnostic on failure.
289  */
290 static int kdbgetulenv(const char *match, unsigned long *value)
291 {
292 	char *ep;
293 
294 	ep = kdbgetenv(match);
295 	if (!ep)
296 		return KDB_NOTENV;
297 	if (strlen(ep) == 0)
298 		return KDB_NOENVVALUE;
299 
300 	*value = simple_strtoul(ep, NULL, 0);
301 
302 	return 0;
303 }
304 
305 /*
306  * kdbgetintenv - This function will return the value of an
307  *	integer-valued environment variable.
308  * Parameters:
309  *	match	A character string representing an integer-valued env variable
310  * Outputs:
311  *	*value  the integer representation of the environment variable 'match'
312  * Returns:
313  *	Zero on success, a kdb diagnostic on failure.
314  */
315 int kdbgetintenv(const char *match, int *value)
316 {
317 	unsigned long val;
318 	int diag;
319 
320 	diag = kdbgetulenv(match, &val);
321 	if (!diag)
322 		*value = (int) val;
323 	return diag;
324 }
325 
326 /*
327  * kdbgetularg - This function will convert a numeric string into an
328  *	unsigned long value.
329  * Parameters:
330  *	arg	A character string representing a numeric value
331  * Outputs:
332  *	*value  the unsigned long represntation of arg.
333  * Returns:
334  *	Zero on success, a kdb diagnostic on failure.
335  */
336 int kdbgetularg(const char *arg, unsigned long *value)
337 {
338 	char *endp;
339 	unsigned long val;
340 
341 	val = simple_strtoul(arg, &endp, 0);
342 
343 	if (endp == arg) {
344 		/*
345 		 * Also try base 16, for us folks too lazy to type the
346 		 * leading 0x...
347 		 */
348 		val = simple_strtoul(arg, &endp, 16);
349 		if (endp == arg)
350 			return KDB_BADINT;
351 	}
352 
353 	*value = val;
354 
355 	return 0;
356 }
357 
358 int kdbgetu64arg(const char *arg, u64 *value)
359 {
360 	char *endp;
361 	u64 val;
362 
363 	val = simple_strtoull(arg, &endp, 0);
364 
365 	if (endp == arg) {
366 
367 		val = simple_strtoull(arg, &endp, 16);
368 		if (endp == arg)
369 			return KDB_BADINT;
370 	}
371 
372 	*value = val;
373 
374 	return 0;
375 }
376 
377 /*
378  * kdb_set - This function implements the 'set' command.  Alter an
379  *	existing environment variable or create a new one.
380  */
381 int kdb_set(int argc, const char **argv)
382 {
383 	int i;
384 	char *ep;
385 	size_t varlen, vallen;
386 
387 	/*
388 	 * we can be invoked two ways:
389 	 *   set var=value    argv[1]="var", argv[2]="value"
390 	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
391 	 * - if the latter, shift 'em down.
392 	 */
393 	if (argc == 3) {
394 		argv[2] = argv[3];
395 		argc--;
396 	}
397 
398 	if (argc != 2)
399 		return KDB_ARGCOUNT;
400 
401 	/*
402 	 * Censor sensitive variables
403 	 */
404 	if (strcmp(argv[1], "PROMPT") == 0 &&
405 	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
406 		return KDB_NOPERM;
407 
408 	/*
409 	 * Check for internal variables
410 	 */
411 	if (strcmp(argv[1], "KDBDEBUG") == 0) {
412 		unsigned int debugflags;
413 		char *cp;
414 
415 		debugflags = simple_strtoul(argv[2], &cp, 0);
416 		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
417 			kdb_printf("kdb: illegal debug flags '%s'\n",
418 				    argv[2]);
419 			return 0;
420 		}
421 		kdb_flags = (kdb_flags &
422 			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
423 			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
424 
425 		return 0;
426 	}
427 
428 	/*
429 	 * Tokenizer squashed the '=' sign.  argv[1] is variable
430 	 * name, argv[2] = value.
431 	 */
432 	varlen = strlen(argv[1]);
433 	vallen = strlen(argv[2]);
434 	ep = kdballocenv(varlen + vallen + 2);
435 	if (ep == (char *)0)
436 		return KDB_ENVBUFFULL;
437 
438 	sprintf(ep, "%s=%s", argv[1], argv[2]);
439 
440 	ep[varlen+vallen+1] = '\0';
441 
442 	for (i = 0; i < __nenv; i++) {
443 		if (__env[i]
444 		 && ((strncmp(__env[i], argv[1], varlen) == 0)
445 		   && ((__env[i][varlen] == '\0')
446 		    || (__env[i][varlen] == '=')))) {
447 			__env[i] = ep;
448 			return 0;
449 		}
450 	}
451 
452 	/*
453 	 * Wasn't existing variable.  Fit into slot.
454 	 */
455 	for (i = 0; i < __nenv-1; i++) {
456 		if (__env[i] == (char *)0) {
457 			__env[i] = ep;
458 			return 0;
459 		}
460 	}
461 
462 	return KDB_ENVFULL;
463 }
464 
465 static int kdb_check_regs(void)
466 {
467 	if (!kdb_current_regs) {
468 		kdb_printf("No current kdb registers."
469 			   "  You may need to select another task\n");
470 		return KDB_BADREG;
471 	}
472 	return 0;
473 }
474 
475 /*
476  * kdbgetaddrarg - This function is responsible for parsing an
477  *	address-expression and returning the value of the expression,
478  *	symbol name, and offset to the caller.
479  *
480  *	The argument may consist of a numeric value (decimal or
481  *	hexidecimal), a symbol name, a register name (preceded by the
482  *	percent sign), an environment variable with a numeric value
483  *	(preceded by a dollar sign) or a simple arithmetic expression
484  *	consisting of a symbol name, +/-, and a numeric constant value
485  *	(offset).
486  * Parameters:
487  *	argc	- count of arguments in argv
488  *	argv	- argument vector
489  *	*nextarg - index to next unparsed argument in argv[]
490  *	regs	- Register state at time of KDB entry
491  * Outputs:
492  *	*value	- receives the value of the address-expression
493  *	*offset - receives the offset specified, if any
494  *	*name   - receives the symbol name, if any
495  *	*nextarg - index to next unparsed argument in argv[]
496  * Returns:
497  *	zero is returned on success, a kdb diagnostic code is
498  *      returned on error.
499  */
500 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
501 		  unsigned long *value,  long *offset,
502 		  char **name)
503 {
504 	unsigned long addr;
505 	unsigned long off = 0;
506 	int positive;
507 	int diag;
508 	int found = 0;
509 	char *symname;
510 	char symbol = '\0';
511 	char *cp;
512 	kdb_symtab_t symtab;
513 
514 	/*
515 	 * If the enable flags prohibit both arbitrary memory access
516 	 * and flow control then there are no reasonable grounds to
517 	 * provide symbol lookup.
518 	 */
519 	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
520 			     kdb_cmd_enabled, false))
521 		return KDB_NOPERM;
522 
523 	/*
524 	 * Process arguments which follow the following syntax:
525 	 *
526 	 *  symbol | numeric-address [+/- numeric-offset]
527 	 *  %register
528 	 *  $environment-variable
529 	 */
530 
531 	if (*nextarg > argc)
532 		return KDB_ARGCOUNT;
533 
534 	symname = (char *)argv[*nextarg];
535 
536 	/*
537 	 * If there is no whitespace between the symbol
538 	 * or address and the '+' or '-' symbols, we
539 	 * remember the character and replace it with a
540 	 * null so the symbol/value can be properly parsed
541 	 */
542 	cp = strpbrk(symname, "+-");
543 	if (cp != NULL) {
544 		symbol = *cp;
545 		*cp++ = '\0';
546 	}
547 
548 	if (symname[0] == '$') {
549 		diag = kdbgetulenv(&symname[1], &addr);
550 		if (diag)
551 			return diag;
552 	} else if (symname[0] == '%') {
553 		diag = kdb_check_regs();
554 		if (diag)
555 			return diag;
556 		/* Implement register values with % at a later time as it is
557 		 * arch optional.
558 		 */
559 		return KDB_NOTIMP;
560 	} else {
561 		found = kdbgetsymval(symname, &symtab);
562 		if (found) {
563 			addr = symtab.sym_start;
564 		} else {
565 			diag = kdbgetularg(argv[*nextarg], &addr);
566 			if (diag)
567 				return diag;
568 		}
569 	}
570 
571 	if (!found)
572 		found = kdbnearsym(addr, &symtab);
573 
574 	(*nextarg)++;
575 
576 	if (name)
577 		*name = symname;
578 	if (value)
579 		*value = addr;
580 	if (offset && name && *name)
581 		*offset = addr - symtab.sym_start;
582 
583 	if ((*nextarg > argc)
584 	 && (symbol == '\0'))
585 		return 0;
586 
587 	/*
588 	 * check for +/- and offset
589 	 */
590 
591 	if (symbol == '\0') {
592 		if ((argv[*nextarg][0] != '+')
593 		 && (argv[*nextarg][0] != '-')) {
594 			/*
595 			 * Not our argument.  Return.
596 			 */
597 			return 0;
598 		} else {
599 			positive = (argv[*nextarg][0] == '+');
600 			(*nextarg)++;
601 		}
602 	} else
603 		positive = (symbol == '+');
604 
605 	/*
606 	 * Now there must be an offset!
607 	 */
608 	if ((*nextarg > argc)
609 	 && (symbol == '\0')) {
610 		return KDB_INVADDRFMT;
611 	}
612 
613 	if (!symbol) {
614 		cp = (char *)argv[*nextarg];
615 		(*nextarg)++;
616 	}
617 
618 	diag = kdbgetularg(cp, &off);
619 	if (diag)
620 		return diag;
621 
622 	if (!positive)
623 		off = -off;
624 
625 	if (offset)
626 		*offset += off;
627 
628 	if (value)
629 		*value += off;
630 
631 	return 0;
632 }
633 
634 static void kdb_cmderror(int diag)
635 {
636 	int i;
637 
638 	if (diag >= 0) {
639 		kdb_printf("no error detected (diagnostic is %d)\n", diag);
640 		return;
641 	}
642 
643 	for (i = 0; i < __nkdb_err; i++) {
644 		if (kdbmsgs[i].km_diag == diag) {
645 			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
646 			return;
647 		}
648 	}
649 
650 	kdb_printf("Unknown diag %d\n", -diag);
651 }
652 
653 /*
654  * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
655  *	command which defines one command as a set of other commands,
656  *	terminated by endefcmd.  kdb_defcmd processes the initial
657  *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
658  *	the following commands until 'endefcmd'.
659  * Inputs:
660  *	argc	argument count
661  *	argv	argument vector
662  * Returns:
663  *	zero for success, a kdb diagnostic if error
664  */
665 struct defcmd_set {
666 	int count;
667 	bool usable;
668 	char *name;
669 	char *usage;
670 	char *help;
671 	char **command;
672 };
673 static struct defcmd_set *defcmd_set;
674 static int defcmd_set_count;
675 static bool defcmd_in_progress;
676 
677 /* Forward references */
678 static int kdb_exec_defcmd(int argc, const char **argv);
679 
680 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
681 {
682 	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
683 	char **save_command = s->command;
684 	if (strcmp(argv0, "endefcmd") == 0) {
685 		defcmd_in_progress = false;
686 		if (!s->count)
687 			s->usable = false;
688 		if (s->usable)
689 			/* macros are always safe because when executed each
690 			 * internal command re-enters kdb_parse() and is
691 			 * safety checked individually.
692 			 */
693 			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
694 					   s->help, 0,
695 					   KDB_ENABLE_ALWAYS_SAFE);
696 		return 0;
697 	}
698 	if (!s->usable)
699 		return KDB_NOTIMP;
700 	s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
701 	if (!s->command) {
702 		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
703 			   cmdstr);
704 		s->usable = false;
705 		return KDB_NOTIMP;
706 	}
707 	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
708 	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
709 	kfree(save_command);
710 	return 0;
711 }
712 
713 static int kdb_defcmd(int argc, const char **argv)
714 {
715 	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
716 	if (defcmd_in_progress) {
717 		kdb_printf("kdb: nested defcmd detected, assuming missing "
718 			   "endefcmd\n");
719 		kdb_defcmd2("endefcmd", "endefcmd");
720 	}
721 	if (argc == 0) {
722 		int i;
723 		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
724 			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
725 				   s->usage, s->help);
726 			for (i = 0; i < s->count; ++i)
727 				kdb_printf("%s", s->command[i]);
728 			kdb_printf("endefcmd\n");
729 		}
730 		return 0;
731 	}
732 	if (argc != 3)
733 		return KDB_ARGCOUNT;
734 	if (in_dbg_master()) {
735 		kdb_printf("Command only available during kdb_init()\n");
736 		return KDB_NOTIMP;
737 	}
738 	defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
739 				   GFP_KDB);
740 	if (!defcmd_set)
741 		goto fail_defcmd;
742 	memcpy(defcmd_set, save_defcmd_set,
743 	       defcmd_set_count * sizeof(*defcmd_set));
744 	s = defcmd_set + defcmd_set_count;
745 	memset(s, 0, sizeof(*s));
746 	s->usable = true;
747 	s->name = kdb_strdup(argv[1], GFP_KDB);
748 	if (!s->name)
749 		goto fail_name;
750 	s->usage = kdb_strdup(argv[2], GFP_KDB);
751 	if (!s->usage)
752 		goto fail_usage;
753 	s->help = kdb_strdup(argv[3], GFP_KDB);
754 	if (!s->help)
755 		goto fail_help;
756 	if (s->usage[0] == '"') {
757 		strcpy(s->usage, argv[2]+1);
758 		s->usage[strlen(s->usage)-1] = '\0';
759 	}
760 	if (s->help[0] == '"') {
761 		strcpy(s->help, argv[3]+1);
762 		s->help[strlen(s->help)-1] = '\0';
763 	}
764 	++defcmd_set_count;
765 	defcmd_in_progress = true;
766 	kfree(save_defcmd_set);
767 	return 0;
768 fail_help:
769 	kfree(s->usage);
770 fail_usage:
771 	kfree(s->name);
772 fail_name:
773 	kfree(defcmd_set);
774 fail_defcmd:
775 	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
776 	defcmd_set = save_defcmd_set;
777 	return KDB_NOTIMP;
778 }
779 
780 /*
781  * kdb_exec_defcmd - Execute the set of commands associated with this
782  *	defcmd name.
783  * Inputs:
784  *	argc	argument count
785  *	argv	argument vector
786  * Returns:
787  *	zero for success, a kdb diagnostic if error
788  */
789 static int kdb_exec_defcmd(int argc, const char **argv)
790 {
791 	int i, ret;
792 	struct defcmd_set *s;
793 	if (argc != 0)
794 		return KDB_ARGCOUNT;
795 	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
796 		if (strcmp(s->name, argv[0]) == 0)
797 			break;
798 	}
799 	if (i == defcmd_set_count) {
800 		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
801 			   argv[0]);
802 		return KDB_NOTIMP;
803 	}
804 	for (i = 0; i < s->count; ++i) {
805 		/* Recursive use of kdb_parse, do not use argv after
806 		 * this point */
807 		argv = NULL;
808 		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
809 		ret = kdb_parse(s->command[i]);
810 		if (ret)
811 			return ret;
812 	}
813 	return 0;
814 }
815 
816 /* Command history */
817 #define KDB_CMD_HISTORY_COUNT	32
818 #define CMD_BUFLEN		200	/* kdb_printf: max printline
819 					 * size == 256 */
820 static unsigned int cmd_head, cmd_tail;
821 static unsigned int cmdptr;
822 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
823 static char cmd_cur[CMD_BUFLEN];
824 
825 /*
826  * The "str" argument may point to something like  | grep xyz
827  */
828 static void parse_grep(const char *str)
829 {
830 	int	len;
831 	char	*cp = (char *)str, *cp2;
832 
833 	/* sanity check: we should have been called with the \ first */
834 	if (*cp != '|')
835 		return;
836 	cp++;
837 	while (isspace(*cp))
838 		cp++;
839 	if (!str_has_prefix(cp, "grep ")) {
840 		kdb_printf("invalid 'pipe', see grephelp\n");
841 		return;
842 	}
843 	cp += 5;
844 	while (isspace(*cp))
845 		cp++;
846 	cp2 = strchr(cp, '\n');
847 	if (cp2)
848 		*cp2 = '\0'; /* remove the trailing newline */
849 	len = strlen(cp);
850 	if (len == 0) {
851 		kdb_printf("invalid 'pipe', see grephelp\n");
852 		return;
853 	}
854 	/* now cp points to a nonzero length search string */
855 	if (*cp == '"') {
856 		/* allow it be "x y z" by removing the "'s - there must
857 		   be two of them */
858 		cp++;
859 		cp2 = strchr(cp, '"');
860 		if (!cp2) {
861 			kdb_printf("invalid quoted string, see grephelp\n");
862 			return;
863 		}
864 		*cp2 = '\0'; /* end the string where the 2nd " was */
865 	}
866 	kdb_grep_leading = 0;
867 	if (*cp == '^') {
868 		kdb_grep_leading = 1;
869 		cp++;
870 	}
871 	len = strlen(cp);
872 	kdb_grep_trailing = 0;
873 	if (*(cp+len-1) == '$') {
874 		kdb_grep_trailing = 1;
875 		*(cp+len-1) = '\0';
876 	}
877 	len = strlen(cp);
878 	if (!len)
879 		return;
880 	if (len >= KDB_GREP_STRLEN) {
881 		kdb_printf("search string too long\n");
882 		return;
883 	}
884 	strcpy(kdb_grep_string, cp);
885 	kdb_grepping_flag++;
886 	return;
887 }
888 
889 /*
890  * kdb_parse - Parse the command line, search the command table for a
891  *	matching command and invoke the command function.  This
892  *	function may be called recursively, if it is, the second call
893  *	will overwrite argv and cbuf.  It is the caller's
894  *	responsibility to save their argv if they recursively call
895  *	kdb_parse().
896  * Parameters:
897  *      cmdstr	The input command line to be parsed.
898  *	regs	The registers at the time kdb was entered.
899  * Returns:
900  *	Zero for success, a kdb diagnostic if failure.
901  * Remarks:
902  *	Limited to 20 tokens.
903  *
904  *	Real rudimentary tokenization. Basically only whitespace
905  *	is considered a token delimeter (but special consideration
906  *	is taken of the '=' sign as used by the 'set' command).
907  *
908  *	The algorithm used to tokenize the input string relies on
909  *	there being at least one whitespace (or otherwise useless)
910  *	character between tokens as the character immediately following
911  *	the token is altered in-place to a null-byte to terminate the
912  *	token string.
913  */
914 
915 #define MAXARGC	20
916 
917 int kdb_parse(const char *cmdstr)
918 {
919 	static char *argv[MAXARGC];
920 	static int argc;
921 	static char cbuf[CMD_BUFLEN+2];
922 	char *cp;
923 	char *cpp, quoted;
924 	kdbtab_t *tp;
925 	int i, escaped, ignore_errors = 0, check_grep = 0;
926 
927 	/*
928 	 * First tokenize the command string.
929 	 */
930 	cp = (char *)cmdstr;
931 
932 	if (KDB_FLAG(CMD_INTERRUPT)) {
933 		/* Previous command was interrupted, newline must not
934 		 * repeat the command */
935 		KDB_FLAG_CLEAR(CMD_INTERRUPT);
936 		KDB_STATE_SET(PAGER);
937 		argc = 0;	/* no repeat */
938 	}
939 
940 	if (*cp != '\n' && *cp != '\0') {
941 		argc = 0;
942 		cpp = cbuf;
943 		while (*cp) {
944 			/* skip whitespace */
945 			while (isspace(*cp))
946 				cp++;
947 			if ((*cp == '\0') || (*cp == '\n') ||
948 			    (*cp == '#' && !defcmd_in_progress))
949 				break;
950 			/* special case: check for | grep pattern */
951 			if (*cp == '|') {
952 				check_grep++;
953 				break;
954 			}
955 			if (cpp >= cbuf + CMD_BUFLEN) {
956 				kdb_printf("kdb_parse: command buffer "
957 					   "overflow, command ignored\n%s\n",
958 					   cmdstr);
959 				return KDB_NOTFOUND;
960 			}
961 			if (argc >= MAXARGC - 1) {
962 				kdb_printf("kdb_parse: too many arguments, "
963 					   "command ignored\n%s\n", cmdstr);
964 				return KDB_NOTFOUND;
965 			}
966 			argv[argc++] = cpp;
967 			escaped = 0;
968 			quoted = '\0';
969 			/* Copy to next unquoted and unescaped
970 			 * whitespace or '=' */
971 			while (*cp && *cp != '\n' &&
972 			       (escaped || quoted || !isspace(*cp))) {
973 				if (cpp >= cbuf + CMD_BUFLEN)
974 					break;
975 				if (escaped) {
976 					escaped = 0;
977 					*cpp++ = *cp++;
978 					continue;
979 				}
980 				if (*cp == '\\') {
981 					escaped = 1;
982 					++cp;
983 					continue;
984 				}
985 				if (*cp == quoted)
986 					quoted = '\0';
987 				else if (*cp == '\'' || *cp == '"')
988 					quoted = *cp;
989 				*cpp = *cp++;
990 				if (*cpp == '=' && !quoted)
991 					break;
992 				++cpp;
993 			}
994 			*cpp++ = '\0';	/* Squash a ws or '=' character */
995 		}
996 	}
997 	if (!argc)
998 		return 0;
999 	if (check_grep)
1000 		parse_grep(cp);
1001 	if (defcmd_in_progress) {
1002 		int result = kdb_defcmd2(cmdstr, argv[0]);
1003 		if (!defcmd_in_progress) {
1004 			argc = 0;	/* avoid repeat on endefcmd */
1005 			*(argv[0]) = '\0';
1006 		}
1007 		return result;
1008 	}
1009 	if (argv[0][0] == '-' && argv[0][1] &&
1010 	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1011 		ignore_errors = 1;
1012 		++argv[0];
1013 	}
1014 
1015 	for_each_kdbcmd(tp, i) {
1016 		if (tp->cmd_name) {
1017 			/*
1018 			 * If this command is allowed to be abbreviated,
1019 			 * check to see if this is it.
1020 			 */
1021 
1022 			if (tp->cmd_minlen
1023 			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1024 				if (strncmp(argv[0],
1025 					    tp->cmd_name,
1026 					    tp->cmd_minlen) == 0) {
1027 					break;
1028 				}
1029 			}
1030 
1031 			if (strcmp(argv[0], tp->cmd_name) == 0)
1032 				break;
1033 		}
1034 	}
1035 
1036 	/*
1037 	 * If we don't find a command by this name, see if the first
1038 	 * few characters of this match any of the known commands.
1039 	 * e.g., md1c20 should match md.
1040 	 */
1041 	if (i == kdb_max_commands) {
1042 		for_each_kdbcmd(tp, i) {
1043 			if (tp->cmd_name) {
1044 				if (strncmp(argv[0],
1045 					    tp->cmd_name,
1046 					    strlen(tp->cmd_name)) == 0) {
1047 					break;
1048 				}
1049 			}
1050 		}
1051 	}
1052 
1053 	if (i < kdb_max_commands) {
1054 		int result;
1055 
1056 		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1057 			return KDB_NOPERM;
1058 
1059 		KDB_STATE_SET(CMD);
1060 		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1061 		if (result && ignore_errors && result > KDB_CMD_GO)
1062 			result = 0;
1063 		KDB_STATE_CLEAR(CMD);
1064 
1065 		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1066 			return result;
1067 
1068 		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1069 		if (argv[argc])
1070 			*(argv[argc]) = '\0';
1071 		return result;
1072 	}
1073 
1074 	/*
1075 	 * If the input with which we were presented does not
1076 	 * map to an existing command, attempt to parse it as an
1077 	 * address argument and display the result.   Useful for
1078 	 * obtaining the address of a variable, or the nearest symbol
1079 	 * to an address contained in a register.
1080 	 */
1081 	{
1082 		unsigned long value;
1083 		char *name = NULL;
1084 		long offset;
1085 		int nextarg = 0;
1086 
1087 		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1088 				  &value, &offset, &name)) {
1089 			return KDB_NOTFOUND;
1090 		}
1091 
1092 		kdb_printf("%s = ", argv[0]);
1093 		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1094 		kdb_printf("\n");
1095 		return 0;
1096 	}
1097 }
1098 
1099 
1100 static int handle_ctrl_cmd(char *cmd)
1101 {
1102 #define CTRL_P	16
1103 #define CTRL_N	14
1104 
1105 	/* initial situation */
1106 	if (cmd_head == cmd_tail)
1107 		return 0;
1108 	switch (*cmd) {
1109 	case CTRL_P:
1110 		if (cmdptr != cmd_tail)
1111 			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1112 		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1113 		return 1;
1114 	case CTRL_N:
1115 		if (cmdptr != cmd_head)
1116 			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1117 		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118 		return 1;
1119 	}
1120 	return 0;
1121 }
1122 
1123 /*
1124  * kdb_reboot - This function implements the 'reboot' command.  Reboot
1125  *	the system immediately, or loop for ever on failure.
1126  */
1127 static int kdb_reboot(int argc, const char **argv)
1128 {
1129 	emergency_restart();
1130 	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131 	while (1)
1132 		cpu_relax();
1133 	/* NOTREACHED */
1134 	return 0;
1135 }
1136 
1137 static void kdb_dumpregs(struct pt_regs *regs)
1138 {
1139 	int old_lvl = console_loglevel;
1140 	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1141 	kdb_trap_printk++;
1142 	show_regs(regs);
1143 	kdb_trap_printk--;
1144 	kdb_printf("\n");
1145 	console_loglevel = old_lvl;
1146 }
1147 
1148 static void kdb_set_current_task(struct task_struct *p)
1149 {
1150 	kdb_current_task = p;
1151 
1152 	if (kdb_task_has_cpu(p)) {
1153 		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1154 		return;
1155 	}
1156 	kdb_current_regs = NULL;
1157 }
1158 
1159 static void drop_newline(char *buf)
1160 {
1161 	size_t len = strlen(buf);
1162 
1163 	if (len == 0)
1164 		return;
1165 	if (*(buf + len - 1) == '\n')
1166 		*(buf + len - 1) = '\0';
1167 }
1168 
1169 /*
1170  * kdb_local - The main code for kdb.  This routine is invoked on a
1171  *	specific processor, it is not global.  The main kdb() routine
1172  *	ensures that only one processor at a time is in this routine.
1173  *	This code is called with the real reason code on the first
1174  *	entry to a kdb session, thereafter it is called with reason
1175  *	SWITCH, even if the user goes back to the original cpu.
1176  * Inputs:
1177  *	reason		The reason KDB was invoked
1178  *	error		The hardware-defined error code
1179  *	regs		The exception frame at time of fault/breakpoint.
1180  *	db_result	Result code from the break or debug point.
1181  * Returns:
1182  *	0	KDB was invoked for an event which it wasn't responsible
1183  *	1	KDB handled the event for which it was invoked.
1184  *	KDB_CMD_GO	User typed 'go'.
1185  *	KDB_CMD_CPU	User switched to another cpu.
1186  *	KDB_CMD_SS	Single step.
1187  */
1188 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1189 		     kdb_dbtrap_t db_result)
1190 {
1191 	char *cmdbuf;
1192 	int diag;
1193 	struct task_struct *kdb_current =
1194 		kdb_curr_task(raw_smp_processor_id());
1195 
1196 	KDB_DEBUG_STATE("kdb_local 1", reason);
1197 	kdb_go_count = 0;
1198 	if (reason == KDB_REASON_DEBUG) {
1199 		/* special case below */
1200 	} else {
1201 		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1202 			   kdb_current, kdb_current ? kdb_current->pid : 0);
1203 #if defined(CONFIG_SMP)
1204 		kdb_printf("on processor %d ", raw_smp_processor_id());
1205 #endif
1206 	}
1207 
1208 	switch (reason) {
1209 	case KDB_REASON_DEBUG:
1210 	{
1211 		/*
1212 		 * If re-entering kdb after a single step
1213 		 * command, don't print the message.
1214 		 */
1215 		switch (db_result) {
1216 		case KDB_DB_BPT:
1217 			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1218 				   kdb_current, kdb_current->pid);
1219 #if defined(CONFIG_SMP)
1220 			kdb_printf("on processor %d ", raw_smp_processor_id());
1221 #endif
1222 			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1223 				   instruction_pointer(regs));
1224 			break;
1225 		case KDB_DB_SS:
1226 			break;
1227 		case KDB_DB_SSBPT:
1228 			KDB_DEBUG_STATE("kdb_local 4", reason);
1229 			return 1;	/* kdba_db_trap did the work */
1230 		default:
1231 			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1232 				   db_result);
1233 			break;
1234 		}
1235 
1236 	}
1237 		break;
1238 	case KDB_REASON_ENTER:
1239 		if (KDB_STATE(KEYBOARD))
1240 			kdb_printf("due to Keyboard Entry\n");
1241 		else
1242 			kdb_printf("due to KDB_ENTER()\n");
1243 		break;
1244 	case KDB_REASON_KEYBOARD:
1245 		KDB_STATE_SET(KEYBOARD);
1246 		kdb_printf("due to Keyboard Entry\n");
1247 		break;
1248 	case KDB_REASON_ENTER_SLAVE:
1249 		/* drop through, slaves only get released via cpu switch */
1250 	case KDB_REASON_SWITCH:
1251 		kdb_printf("due to cpu switch\n");
1252 		break;
1253 	case KDB_REASON_OOPS:
1254 		kdb_printf("Oops: %s\n", kdb_diemsg);
1255 		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1256 			   instruction_pointer(regs));
1257 		kdb_dumpregs(regs);
1258 		break;
1259 	case KDB_REASON_SYSTEM_NMI:
1260 		kdb_printf("due to System NonMaskable Interrupt\n");
1261 		break;
1262 	case KDB_REASON_NMI:
1263 		kdb_printf("due to NonMaskable Interrupt @ "
1264 			   kdb_machreg_fmt "\n",
1265 			   instruction_pointer(regs));
1266 		break;
1267 	case KDB_REASON_SSTEP:
1268 	case KDB_REASON_BREAK:
1269 		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1270 			   reason == KDB_REASON_BREAK ?
1271 			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1272 		/*
1273 		 * Determine if this breakpoint is one that we
1274 		 * are interested in.
1275 		 */
1276 		if (db_result != KDB_DB_BPT) {
1277 			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1278 				   db_result);
1279 			KDB_DEBUG_STATE("kdb_local 6", reason);
1280 			return 0;	/* Not for us, dismiss it */
1281 		}
1282 		break;
1283 	case KDB_REASON_RECURSE:
1284 		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1285 			   instruction_pointer(regs));
1286 		break;
1287 	default:
1288 		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1289 		KDB_DEBUG_STATE("kdb_local 8", reason);
1290 		return 0;	/* Not for us, dismiss it */
1291 	}
1292 
1293 	while (1) {
1294 		/*
1295 		 * Initialize pager context.
1296 		 */
1297 		kdb_nextline = 1;
1298 		KDB_STATE_CLEAR(SUPPRESS);
1299 		kdb_grepping_flag = 0;
1300 		/* ensure the old search does not leak into '/' commands */
1301 		kdb_grep_string[0] = '\0';
1302 
1303 		cmdbuf = cmd_cur;
1304 		*cmdbuf = '\0';
1305 		*(cmd_hist[cmd_head]) = '\0';
1306 
1307 do_full_getstr:
1308 		/* PROMPT can only be set if we have MEM_READ permission. */
1309 		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1310 			 raw_smp_processor_id());
1311 		if (defcmd_in_progress)
1312 			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1313 
1314 		/*
1315 		 * Fetch command from keyboard
1316 		 */
1317 		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1318 		if (*cmdbuf != '\n') {
1319 			if (*cmdbuf < 32) {
1320 				if (cmdptr == cmd_head) {
1321 					strscpy(cmd_hist[cmd_head], cmd_cur,
1322 						CMD_BUFLEN);
1323 					*(cmd_hist[cmd_head] +
1324 					  strlen(cmd_hist[cmd_head])-1) = '\0';
1325 				}
1326 				if (!handle_ctrl_cmd(cmdbuf))
1327 					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1328 				cmdbuf = cmd_cur;
1329 				goto do_full_getstr;
1330 			} else {
1331 				strscpy(cmd_hist[cmd_head], cmd_cur,
1332 					CMD_BUFLEN);
1333 			}
1334 
1335 			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1336 			if (cmd_head == cmd_tail)
1337 				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1338 		}
1339 
1340 		cmdptr = cmd_head;
1341 		diag = kdb_parse(cmdbuf);
1342 		if (diag == KDB_NOTFOUND) {
1343 			drop_newline(cmdbuf);
1344 			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1345 			diag = 0;
1346 		}
1347 		if (diag == KDB_CMD_GO
1348 		 || diag == KDB_CMD_CPU
1349 		 || diag == KDB_CMD_SS
1350 		 || diag == KDB_CMD_KGDB)
1351 			break;
1352 
1353 		if (diag)
1354 			kdb_cmderror(diag);
1355 	}
1356 	KDB_DEBUG_STATE("kdb_local 9", diag);
1357 	return diag;
1358 }
1359 
1360 
1361 /*
1362  * kdb_print_state - Print the state data for the current processor
1363  *	for debugging.
1364  * Inputs:
1365  *	text		Identifies the debug point
1366  *	value		Any integer value to be printed, e.g. reason code.
1367  */
1368 void kdb_print_state(const char *text, int value)
1369 {
1370 	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1371 		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1372 		   kdb_state);
1373 }
1374 
1375 /*
1376  * kdb_main_loop - After initial setup and assignment of the
1377  *	controlling cpu, all cpus are in this loop.  One cpu is in
1378  *	control and will issue the kdb prompt, the others will spin
1379  *	until 'go' or cpu switch.
1380  *
1381  *	To get a consistent view of the kernel stacks for all
1382  *	processes, this routine is invoked from the main kdb code via
1383  *	an architecture specific routine.  kdba_main_loop is
1384  *	responsible for making the kernel stacks consistent for all
1385  *	processes, there should be no difference between a blocked
1386  *	process and a running process as far as kdb is concerned.
1387  * Inputs:
1388  *	reason		The reason KDB was invoked
1389  *	error		The hardware-defined error code
1390  *	reason2		kdb's current reason code.
1391  *			Initially error but can change
1392  *			according to kdb state.
1393  *	db_result	Result code from break or debug point.
1394  *	regs		The exception frame at time of fault/breakpoint.
1395  *			should always be valid.
1396  * Returns:
1397  *	0	KDB was invoked for an event which it wasn't responsible
1398  *	1	KDB handled the event for which it was invoked.
1399  */
1400 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1401 	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1402 {
1403 	int result = 1;
1404 	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1405 	while (1) {
1406 		/*
1407 		 * All processors except the one that is in control
1408 		 * will spin here.
1409 		 */
1410 		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1411 		while (KDB_STATE(HOLD_CPU)) {
1412 			/* state KDB is turned off by kdb_cpu to see if the
1413 			 * other cpus are still live, each cpu in this loop
1414 			 * turns it back on.
1415 			 */
1416 			if (!KDB_STATE(KDB))
1417 				KDB_STATE_SET(KDB);
1418 		}
1419 
1420 		KDB_STATE_CLEAR(SUPPRESS);
1421 		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1422 		if (KDB_STATE(LEAVING))
1423 			break;	/* Another cpu said 'go' */
1424 		/* Still using kdb, this processor is in control */
1425 		result = kdb_local(reason2, error, regs, db_result);
1426 		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1427 
1428 		if (result == KDB_CMD_CPU)
1429 			break;
1430 
1431 		if (result == KDB_CMD_SS) {
1432 			KDB_STATE_SET(DOING_SS);
1433 			break;
1434 		}
1435 
1436 		if (result == KDB_CMD_KGDB) {
1437 			if (!KDB_STATE(DOING_KGDB))
1438 				kdb_printf("Entering please attach debugger "
1439 					   "or use $D#44+ or $3#33\n");
1440 			break;
1441 		}
1442 		if (result && result != 1 && result != KDB_CMD_GO)
1443 			kdb_printf("\nUnexpected kdb_local return code %d\n",
1444 				   result);
1445 		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1446 		break;
1447 	}
1448 	if (KDB_STATE(DOING_SS))
1449 		KDB_STATE_CLEAR(SSBPT);
1450 
1451 	/* Clean up any keyboard devices before leaving */
1452 	kdb_kbd_cleanup_state();
1453 
1454 	return result;
1455 }
1456 
1457 /*
1458  * kdb_mdr - This function implements the guts of the 'mdr', memory
1459  * read command.
1460  *	mdr  <addr arg>,<byte count>
1461  * Inputs:
1462  *	addr	Start address
1463  *	count	Number of bytes
1464  * Returns:
1465  *	Always 0.  Any errors are detected and printed by kdb_getarea.
1466  */
1467 static int kdb_mdr(unsigned long addr, unsigned int count)
1468 {
1469 	unsigned char c;
1470 	while (count--) {
1471 		if (kdb_getarea(c, addr))
1472 			return 0;
1473 		kdb_printf("%02x", c);
1474 		addr++;
1475 	}
1476 	kdb_printf("\n");
1477 	return 0;
1478 }
1479 
1480 /*
1481  * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1482  *	'md8' 'mdr' and 'mds' commands.
1483  *
1484  *	md|mds  [<addr arg> [<line count> [<radix>]]]
1485  *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1486  *		where W = is the width (1, 2, 4 or 8) and N is the count.
1487  *		for eg., md1c20 reads 20 bytes, 1 at a time.
1488  *	mdr  <addr arg>,<byte count>
1489  */
1490 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1491 			int symbolic, int nosect, int bytesperword,
1492 			int num, int repeat, int phys)
1493 {
1494 	/* print just one line of data */
1495 	kdb_symtab_t symtab;
1496 	char cbuf[32];
1497 	char *c = cbuf;
1498 	int i;
1499 	int j;
1500 	unsigned long word;
1501 
1502 	memset(cbuf, '\0', sizeof(cbuf));
1503 	if (phys)
1504 		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1505 	else
1506 		kdb_printf(kdb_machreg_fmt0 " ", addr);
1507 
1508 	for (i = 0; i < num && repeat--; i++) {
1509 		if (phys) {
1510 			if (kdb_getphysword(&word, addr, bytesperword))
1511 				break;
1512 		} else if (kdb_getword(&word, addr, bytesperword))
1513 			break;
1514 		kdb_printf(fmtstr, word);
1515 		if (symbolic)
1516 			kdbnearsym(word, &symtab);
1517 		else
1518 			memset(&symtab, 0, sizeof(symtab));
1519 		if (symtab.sym_name) {
1520 			kdb_symbol_print(word, &symtab, 0);
1521 			if (!nosect) {
1522 				kdb_printf("\n");
1523 				kdb_printf("                       %s %s "
1524 					   kdb_machreg_fmt " "
1525 					   kdb_machreg_fmt " "
1526 					   kdb_machreg_fmt, symtab.mod_name,
1527 					   symtab.sec_name, symtab.sec_start,
1528 					   symtab.sym_start, symtab.sym_end);
1529 			}
1530 			addr += bytesperword;
1531 		} else {
1532 			union {
1533 				u64 word;
1534 				unsigned char c[8];
1535 			} wc;
1536 			unsigned char *cp;
1537 #ifdef	__BIG_ENDIAN
1538 			cp = wc.c + 8 - bytesperword;
1539 #else
1540 			cp = wc.c;
1541 #endif
1542 			wc.word = word;
1543 #define printable_char(c) \
1544 	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1545 			for (j = 0; j < bytesperword; j++)
1546 				*c++ = printable_char(*cp++);
1547 			addr += bytesperword;
1548 #undef printable_char
1549 		}
1550 	}
1551 	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1552 		   " ", cbuf);
1553 }
1554 
1555 static int kdb_md(int argc, const char **argv)
1556 {
1557 	static unsigned long last_addr;
1558 	static int last_radix, last_bytesperword, last_repeat;
1559 	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1560 	int nosect = 0;
1561 	char fmtchar, fmtstr[64];
1562 	unsigned long addr;
1563 	unsigned long word;
1564 	long offset = 0;
1565 	int symbolic = 0;
1566 	int valid = 0;
1567 	int phys = 0;
1568 	int raw = 0;
1569 
1570 	kdbgetintenv("MDCOUNT", &mdcount);
1571 	kdbgetintenv("RADIX", &radix);
1572 	kdbgetintenv("BYTESPERWORD", &bytesperword);
1573 
1574 	/* Assume 'md <addr>' and start with environment values */
1575 	repeat = mdcount * 16 / bytesperword;
1576 
1577 	if (strcmp(argv[0], "mdr") == 0) {
1578 		if (argc == 2 || (argc == 0 && last_addr != 0))
1579 			valid = raw = 1;
1580 		else
1581 			return KDB_ARGCOUNT;
1582 	} else if (isdigit(argv[0][2])) {
1583 		bytesperword = (int)(argv[0][2] - '0');
1584 		if (bytesperword == 0) {
1585 			bytesperword = last_bytesperword;
1586 			if (bytesperword == 0)
1587 				bytesperword = 4;
1588 		}
1589 		last_bytesperword = bytesperword;
1590 		repeat = mdcount * 16 / bytesperword;
1591 		if (!argv[0][3])
1592 			valid = 1;
1593 		else if (argv[0][3] == 'c' && argv[0][4]) {
1594 			char *p;
1595 			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1596 			mdcount = ((repeat * bytesperword) + 15) / 16;
1597 			valid = !*p;
1598 		}
1599 		last_repeat = repeat;
1600 	} else if (strcmp(argv[0], "md") == 0)
1601 		valid = 1;
1602 	else if (strcmp(argv[0], "mds") == 0)
1603 		valid = 1;
1604 	else if (strcmp(argv[0], "mdp") == 0) {
1605 		phys = valid = 1;
1606 	}
1607 	if (!valid)
1608 		return KDB_NOTFOUND;
1609 
1610 	if (argc == 0) {
1611 		if (last_addr == 0)
1612 			return KDB_ARGCOUNT;
1613 		addr = last_addr;
1614 		radix = last_radix;
1615 		bytesperword = last_bytesperword;
1616 		repeat = last_repeat;
1617 		if (raw)
1618 			mdcount = repeat;
1619 		else
1620 			mdcount = ((repeat * bytesperword) + 15) / 16;
1621 	}
1622 
1623 	if (argc) {
1624 		unsigned long val;
1625 		int diag, nextarg = 1;
1626 		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1627 				     &offset, NULL);
1628 		if (diag)
1629 			return diag;
1630 		if (argc > nextarg+2)
1631 			return KDB_ARGCOUNT;
1632 
1633 		if (argc >= nextarg) {
1634 			diag = kdbgetularg(argv[nextarg], &val);
1635 			if (!diag) {
1636 				mdcount = (int) val;
1637 				if (raw)
1638 					repeat = mdcount;
1639 				else
1640 					repeat = mdcount * 16 / bytesperword;
1641 			}
1642 		}
1643 		if (argc >= nextarg+1) {
1644 			diag = kdbgetularg(argv[nextarg+1], &val);
1645 			if (!diag)
1646 				radix = (int) val;
1647 		}
1648 	}
1649 
1650 	if (strcmp(argv[0], "mdr") == 0) {
1651 		int ret;
1652 		last_addr = addr;
1653 		ret = kdb_mdr(addr, mdcount);
1654 		last_addr += mdcount;
1655 		last_repeat = mdcount;
1656 		last_bytesperword = bytesperword; // to make REPEAT happy
1657 		return ret;
1658 	}
1659 
1660 	switch (radix) {
1661 	case 10:
1662 		fmtchar = 'd';
1663 		break;
1664 	case 16:
1665 		fmtchar = 'x';
1666 		break;
1667 	case 8:
1668 		fmtchar = 'o';
1669 		break;
1670 	default:
1671 		return KDB_BADRADIX;
1672 	}
1673 
1674 	last_radix = radix;
1675 
1676 	if (bytesperword > KDB_WORD_SIZE)
1677 		return KDB_BADWIDTH;
1678 
1679 	switch (bytesperword) {
1680 	case 8:
1681 		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1682 		break;
1683 	case 4:
1684 		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1685 		break;
1686 	case 2:
1687 		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1688 		break;
1689 	case 1:
1690 		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1691 		break;
1692 	default:
1693 		return KDB_BADWIDTH;
1694 	}
1695 
1696 	last_repeat = repeat;
1697 	last_bytesperword = bytesperword;
1698 
1699 	if (strcmp(argv[0], "mds") == 0) {
1700 		symbolic = 1;
1701 		/* Do not save these changes as last_*, they are temporary mds
1702 		 * overrides.
1703 		 */
1704 		bytesperword = KDB_WORD_SIZE;
1705 		repeat = mdcount;
1706 		kdbgetintenv("NOSECT", &nosect);
1707 	}
1708 
1709 	/* Round address down modulo BYTESPERWORD */
1710 
1711 	addr &= ~(bytesperword-1);
1712 
1713 	while (repeat > 0) {
1714 		unsigned long a;
1715 		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1716 
1717 		if (KDB_FLAG(CMD_INTERRUPT))
1718 			return 0;
1719 		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1720 			if (phys) {
1721 				if (kdb_getphysword(&word, a, bytesperword)
1722 						|| word)
1723 					break;
1724 			} else if (kdb_getword(&word, a, bytesperword) || word)
1725 				break;
1726 		}
1727 		n = min(num, repeat);
1728 		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1729 			    num, repeat, phys);
1730 		addr += bytesperword * n;
1731 		repeat -= n;
1732 		z = (z + num - 1) / num;
1733 		if (z > 2) {
1734 			int s = num * (z-2);
1735 			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1736 				   " zero suppressed\n",
1737 				addr, addr + bytesperword * s - 1);
1738 			addr += bytesperword * s;
1739 			repeat -= s;
1740 		}
1741 	}
1742 	last_addr = addr;
1743 
1744 	return 0;
1745 }
1746 
1747 /*
1748  * kdb_mm - This function implements the 'mm' command.
1749  *	mm address-expression new-value
1750  * Remarks:
1751  *	mm works on machine words, mmW works on bytes.
1752  */
1753 static int kdb_mm(int argc, const char **argv)
1754 {
1755 	int diag;
1756 	unsigned long addr;
1757 	long offset = 0;
1758 	unsigned long contents;
1759 	int nextarg;
1760 	int width;
1761 
1762 	if (argv[0][2] && !isdigit(argv[0][2]))
1763 		return KDB_NOTFOUND;
1764 
1765 	if (argc < 2)
1766 		return KDB_ARGCOUNT;
1767 
1768 	nextarg = 1;
1769 	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1770 	if (diag)
1771 		return diag;
1772 
1773 	if (nextarg > argc)
1774 		return KDB_ARGCOUNT;
1775 	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1776 	if (diag)
1777 		return diag;
1778 
1779 	if (nextarg != argc + 1)
1780 		return KDB_ARGCOUNT;
1781 
1782 	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1783 	diag = kdb_putword(addr, contents, width);
1784 	if (diag)
1785 		return diag;
1786 
1787 	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1788 
1789 	return 0;
1790 }
1791 
1792 /*
1793  * kdb_go - This function implements the 'go' command.
1794  *	go [address-expression]
1795  */
1796 static int kdb_go(int argc, const char **argv)
1797 {
1798 	unsigned long addr;
1799 	int diag;
1800 	int nextarg;
1801 	long offset;
1802 
1803 	if (raw_smp_processor_id() != kdb_initial_cpu) {
1804 		kdb_printf("go must execute on the entry cpu, "
1805 			   "please use \"cpu %d\" and then execute go\n",
1806 			   kdb_initial_cpu);
1807 		return KDB_BADCPUNUM;
1808 	}
1809 	if (argc == 1) {
1810 		nextarg = 1;
1811 		diag = kdbgetaddrarg(argc, argv, &nextarg,
1812 				     &addr, &offset, NULL);
1813 		if (diag)
1814 			return diag;
1815 	} else if (argc) {
1816 		return KDB_ARGCOUNT;
1817 	}
1818 
1819 	diag = KDB_CMD_GO;
1820 	if (KDB_FLAG(CATASTROPHIC)) {
1821 		kdb_printf("Catastrophic error detected\n");
1822 		kdb_printf("kdb_continue_catastrophic=%d, ",
1823 			kdb_continue_catastrophic);
1824 		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1825 			kdb_printf("type go a second time if you really want "
1826 				   "to continue\n");
1827 			return 0;
1828 		}
1829 		if (kdb_continue_catastrophic == 2) {
1830 			kdb_printf("forcing reboot\n");
1831 			kdb_reboot(0, NULL);
1832 		}
1833 		kdb_printf("attempting to continue\n");
1834 	}
1835 	return diag;
1836 }
1837 
1838 /*
1839  * kdb_rd - This function implements the 'rd' command.
1840  */
1841 static int kdb_rd(int argc, const char **argv)
1842 {
1843 	int len = kdb_check_regs();
1844 #if DBG_MAX_REG_NUM > 0
1845 	int i;
1846 	char *rname;
1847 	int rsize;
1848 	u64 reg64;
1849 	u32 reg32;
1850 	u16 reg16;
1851 	u8 reg8;
1852 
1853 	if (len)
1854 		return len;
1855 
1856 	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1857 		rsize = dbg_reg_def[i].size * 2;
1858 		if (rsize > 16)
1859 			rsize = 2;
1860 		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1861 			len = 0;
1862 			kdb_printf("\n");
1863 		}
1864 		if (len)
1865 			len += kdb_printf("  ");
1866 		switch(dbg_reg_def[i].size * 8) {
1867 		case 8:
1868 			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1869 			if (!rname)
1870 				break;
1871 			len += kdb_printf("%s: %02x", rname, reg8);
1872 			break;
1873 		case 16:
1874 			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1875 			if (!rname)
1876 				break;
1877 			len += kdb_printf("%s: %04x", rname, reg16);
1878 			break;
1879 		case 32:
1880 			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1881 			if (!rname)
1882 				break;
1883 			len += kdb_printf("%s: %08x", rname, reg32);
1884 			break;
1885 		case 64:
1886 			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1887 			if (!rname)
1888 				break;
1889 			len += kdb_printf("%s: %016llx", rname, reg64);
1890 			break;
1891 		default:
1892 			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1893 		}
1894 	}
1895 	kdb_printf("\n");
1896 #else
1897 	if (len)
1898 		return len;
1899 
1900 	kdb_dumpregs(kdb_current_regs);
1901 #endif
1902 	return 0;
1903 }
1904 
1905 /*
1906  * kdb_rm - This function implements the 'rm' (register modify)  command.
1907  *	rm register-name new-contents
1908  * Remarks:
1909  *	Allows register modification with the same restrictions as gdb
1910  */
1911 static int kdb_rm(int argc, const char **argv)
1912 {
1913 #if DBG_MAX_REG_NUM > 0
1914 	int diag;
1915 	const char *rname;
1916 	int i;
1917 	u64 reg64;
1918 	u32 reg32;
1919 	u16 reg16;
1920 	u8 reg8;
1921 
1922 	if (argc != 2)
1923 		return KDB_ARGCOUNT;
1924 	/*
1925 	 * Allow presence or absence of leading '%' symbol.
1926 	 */
1927 	rname = argv[1];
1928 	if (*rname == '%')
1929 		rname++;
1930 
1931 	diag = kdbgetu64arg(argv[2], &reg64);
1932 	if (diag)
1933 		return diag;
1934 
1935 	diag = kdb_check_regs();
1936 	if (diag)
1937 		return diag;
1938 
1939 	diag = KDB_BADREG;
1940 	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1941 		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1942 			diag = 0;
1943 			break;
1944 		}
1945 	}
1946 	if (!diag) {
1947 		switch(dbg_reg_def[i].size * 8) {
1948 		case 8:
1949 			reg8 = reg64;
1950 			dbg_set_reg(i, &reg8, kdb_current_regs);
1951 			break;
1952 		case 16:
1953 			reg16 = reg64;
1954 			dbg_set_reg(i, &reg16, kdb_current_regs);
1955 			break;
1956 		case 32:
1957 			reg32 = reg64;
1958 			dbg_set_reg(i, &reg32, kdb_current_regs);
1959 			break;
1960 		case 64:
1961 			dbg_set_reg(i, &reg64, kdb_current_regs);
1962 			break;
1963 		}
1964 	}
1965 	return diag;
1966 #else
1967 	kdb_printf("ERROR: Register set currently not implemented\n");
1968     return 0;
1969 #endif
1970 }
1971 
1972 #if defined(CONFIG_MAGIC_SYSRQ)
1973 /*
1974  * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1975  *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1976  *		sr <magic-sysrq-code>
1977  */
1978 static int kdb_sr(int argc, const char **argv)
1979 {
1980 	bool check_mask =
1981 	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1982 
1983 	if (argc != 1)
1984 		return KDB_ARGCOUNT;
1985 
1986 	kdb_trap_printk++;
1987 	__handle_sysrq(*argv[1], check_mask);
1988 	kdb_trap_printk--;
1989 
1990 	return 0;
1991 }
1992 #endif	/* CONFIG_MAGIC_SYSRQ */
1993 
1994 /*
1995  * kdb_ef - This function implements the 'regs' (display exception
1996  *	frame) command.  This command takes an address and expects to
1997  *	find an exception frame at that address, formats and prints
1998  *	it.
1999  *		regs address-expression
2000  * Remarks:
2001  *	Not done yet.
2002  */
2003 static int kdb_ef(int argc, const char **argv)
2004 {
2005 	int diag;
2006 	unsigned long addr;
2007 	long offset;
2008 	int nextarg;
2009 
2010 	if (argc != 1)
2011 		return KDB_ARGCOUNT;
2012 
2013 	nextarg = 1;
2014 	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2015 	if (diag)
2016 		return diag;
2017 	show_regs((struct pt_regs *)addr);
2018 	return 0;
2019 }
2020 
2021 #if defined(CONFIG_MODULES)
2022 /*
2023  * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2024  *	currently loaded kernel modules.
2025  *	Mostly taken from userland lsmod.
2026  */
2027 static int kdb_lsmod(int argc, const char **argv)
2028 {
2029 	struct module *mod;
2030 
2031 	if (argc != 0)
2032 		return KDB_ARGCOUNT;
2033 
2034 	kdb_printf("Module                  Size  modstruct     Used by\n");
2035 	list_for_each_entry(mod, kdb_modules, list) {
2036 		if (mod->state == MODULE_STATE_UNFORMED)
2037 			continue;
2038 
2039 		kdb_printf("%-20s%8u  0x%px ", mod->name,
2040 			   mod->core_layout.size, (void *)mod);
2041 #ifdef CONFIG_MODULE_UNLOAD
2042 		kdb_printf("%4d ", module_refcount(mod));
2043 #endif
2044 		if (mod->state == MODULE_STATE_GOING)
2045 			kdb_printf(" (Unloading)");
2046 		else if (mod->state == MODULE_STATE_COMING)
2047 			kdb_printf(" (Loading)");
2048 		else
2049 			kdb_printf(" (Live)");
2050 		kdb_printf(" 0x%px", mod->core_layout.base);
2051 
2052 #ifdef CONFIG_MODULE_UNLOAD
2053 		{
2054 			struct module_use *use;
2055 			kdb_printf(" [ ");
2056 			list_for_each_entry(use, &mod->source_list,
2057 					    source_list)
2058 				kdb_printf("%s ", use->target->name);
2059 			kdb_printf("]\n");
2060 		}
2061 #endif
2062 	}
2063 
2064 	return 0;
2065 }
2066 
2067 #endif	/* CONFIG_MODULES */
2068 
2069 /*
2070  * kdb_env - This function implements the 'env' command.  Display the
2071  *	current environment variables.
2072  */
2073 
2074 static int kdb_env(int argc, const char **argv)
2075 {
2076 	int i;
2077 
2078 	for (i = 0; i < __nenv; i++) {
2079 		if (__env[i])
2080 			kdb_printf("%s\n", __env[i]);
2081 	}
2082 
2083 	if (KDB_DEBUG(MASK))
2084 		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2085 
2086 	return 0;
2087 }
2088 
2089 #ifdef CONFIG_PRINTK
2090 /*
2091  * kdb_dmesg - This function implements the 'dmesg' command to display
2092  *	the contents of the syslog buffer.
2093  *		dmesg [lines] [adjust]
2094  */
2095 static int kdb_dmesg(int argc, const char **argv)
2096 {
2097 	int diag;
2098 	int logging;
2099 	int lines = 0;
2100 	int adjust = 0;
2101 	int n = 0;
2102 	int skip = 0;
2103 	struct kmsg_dumper dumper = { .active = 1 };
2104 	size_t len;
2105 	char buf[201];
2106 
2107 	if (argc > 2)
2108 		return KDB_ARGCOUNT;
2109 	if (argc) {
2110 		char *cp;
2111 		lines = simple_strtol(argv[1], &cp, 0);
2112 		if (*cp)
2113 			lines = 0;
2114 		if (argc > 1) {
2115 			adjust = simple_strtoul(argv[2], &cp, 0);
2116 			if (*cp || adjust < 0)
2117 				adjust = 0;
2118 		}
2119 	}
2120 
2121 	/* disable LOGGING if set */
2122 	diag = kdbgetintenv("LOGGING", &logging);
2123 	if (!diag && logging) {
2124 		const char *setargs[] = { "set", "LOGGING", "0" };
2125 		kdb_set(2, setargs);
2126 	}
2127 
2128 	kmsg_dump_rewind_nolock(&dumper);
2129 	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2130 		n++;
2131 
2132 	if (lines < 0) {
2133 		if (adjust >= n)
2134 			kdb_printf("buffer only contains %d lines, nothing "
2135 				   "printed\n", n);
2136 		else if (adjust - lines >= n)
2137 			kdb_printf("buffer only contains %d lines, last %d "
2138 				   "lines printed\n", n, n - adjust);
2139 		skip = adjust;
2140 		lines = abs(lines);
2141 	} else if (lines > 0) {
2142 		skip = n - lines - adjust;
2143 		lines = abs(lines);
2144 		if (adjust >= n) {
2145 			kdb_printf("buffer only contains %d lines, "
2146 				   "nothing printed\n", n);
2147 			skip = n;
2148 		} else if (skip < 0) {
2149 			lines += skip;
2150 			skip = 0;
2151 			kdb_printf("buffer only contains %d lines, first "
2152 				   "%d lines printed\n", n, lines);
2153 		}
2154 	} else {
2155 		lines = n;
2156 	}
2157 
2158 	if (skip >= n || skip < 0)
2159 		return 0;
2160 
2161 	kmsg_dump_rewind_nolock(&dumper);
2162 	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2163 		if (skip) {
2164 			skip--;
2165 			continue;
2166 		}
2167 		if (!lines--)
2168 			break;
2169 		if (KDB_FLAG(CMD_INTERRUPT))
2170 			return 0;
2171 
2172 		kdb_printf("%.*s\n", (int)len - 1, buf);
2173 	}
2174 
2175 	return 0;
2176 }
2177 #endif /* CONFIG_PRINTK */
2178 
2179 /* Make sure we balance enable/disable calls, must disable first. */
2180 static atomic_t kdb_nmi_disabled;
2181 
2182 static int kdb_disable_nmi(int argc, const char *argv[])
2183 {
2184 	if (atomic_read(&kdb_nmi_disabled))
2185 		return 0;
2186 	atomic_set(&kdb_nmi_disabled, 1);
2187 	arch_kgdb_ops.enable_nmi(0);
2188 	return 0;
2189 }
2190 
2191 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2192 {
2193 	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2194 		return -EINVAL;
2195 	arch_kgdb_ops.enable_nmi(1);
2196 	return 0;
2197 }
2198 
2199 static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2200 	.set = kdb_param_enable_nmi,
2201 };
2202 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2203 
2204 /*
2205  * kdb_cpu - This function implements the 'cpu' command.
2206  *	cpu	[<cpunum>]
2207  * Returns:
2208  *	KDB_CMD_CPU for success, a kdb diagnostic if error
2209  */
2210 static void kdb_cpu_status(void)
2211 {
2212 	int i, start_cpu, first_print = 1;
2213 	char state, prev_state = '?';
2214 
2215 	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2216 	kdb_printf("Available cpus: ");
2217 	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2218 		if (!cpu_online(i)) {
2219 			state = 'F';	/* cpu is offline */
2220 		} else if (!kgdb_info[i].enter_kgdb) {
2221 			state = 'D';	/* cpu is online but unresponsive */
2222 		} else {
2223 			state = ' ';	/* cpu is responding to kdb */
2224 			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2225 				state = 'I';	/* idle task */
2226 		}
2227 		if (state != prev_state) {
2228 			if (prev_state != '?') {
2229 				if (!first_print)
2230 					kdb_printf(", ");
2231 				first_print = 0;
2232 				kdb_printf("%d", start_cpu);
2233 				if (start_cpu < i-1)
2234 					kdb_printf("-%d", i-1);
2235 				if (prev_state != ' ')
2236 					kdb_printf("(%c)", prev_state);
2237 			}
2238 			prev_state = state;
2239 			start_cpu = i;
2240 		}
2241 	}
2242 	/* print the trailing cpus, ignoring them if they are all offline */
2243 	if (prev_state != 'F') {
2244 		if (!first_print)
2245 			kdb_printf(", ");
2246 		kdb_printf("%d", start_cpu);
2247 		if (start_cpu < i-1)
2248 			kdb_printf("-%d", i-1);
2249 		if (prev_state != ' ')
2250 			kdb_printf("(%c)", prev_state);
2251 	}
2252 	kdb_printf("\n");
2253 }
2254 
2255 static int kdb_cpu(int argc, const char **argv)
2256 {
2257 	unsigned long cpunum;
2258 	int diag;
2259 
2260 	if (argc == 0) {
2261 		kdb_cpu_status();
2262 		return 0;
2263 	}
2264 
2265 	if (argc != 1)
2266 		return KDB_ARGCOUNT;
2267 
2268 	diag = kdbgetularg(argv[1], &cpunum);
2269 	if (diag)
2270 		return diag;
2271 
2272 	/*
2273 	 * Validate cpunum
2274 	 */
2275 	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2276 		return KDB_BADCPUNUM;
2277 
2278 	dbg_switch_cpu = cpunum;
2279 
2280 	/*
2281 	 * Switch to other cpu
2282 	 */
2283 	return KDB_CMD_CPU;
2284 }
2285 
2286 /* The user may not realize that ps/bta with no parameters does not print idle
2287  * or sleeping system daemon processes, so tell them how many were suppressed.
2288  */
2289 void kdb_ps_suppressed(void)
2290 {
2291 	int idle = 0, daemon = 0;
2292 	unsigned long mask_I = kdb_task_state_string("I"),
2293 		      mask_M = kdb_task_state_string("M");
2294 	unsigned long cpu;
2295 	const struct task_struct *p, *g;
2296 	for_each_online_cpu(cpu) {
2297 		p = kdb_curr_task(cpu);
2298 		if (kdb_task_state(p, mask_I))
2299 			++idle;
2300 	}
2301 	kdb_do_each_thread(g, p) {
2302 		if (kdb_task_state(p, mask_M))
2303 			++daemon;
2304 	} kdb_while_each_thread(g, p);
2305 	if (idle || daemon) {
2306 		if (idle)
2307 			kdb_printf("%d idle process%s (state I)%s\n",
2308 				   idle, idle == 1 ? "" : "es",
2309 				   daemon ? " and " : "");
2310 		if (daemon)
2311 			kdb_printf("%d sleeping system daemon (state M) "
2312 				   "process%s", daemon,
2313 				   daemon == 1 ? "" : "es");
2314 		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2315 	}
2316 }
2317 
2318 /*
2319  * kdb_ps - This function implements the 'ps' command which shows a
2320  *	list of the active processes.
2321  *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2322  */
2323 void kdb_ps1(const struct task_struct *p)
2324 {
2325 	int cpu;
2326 	unsigned long tmp;
2327 
2328 	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2329 		return;
2330 
2331 	cpu = kdb_process_cpu(p);
2332 	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2333 		   (void *)p, p->pid, p->parent->pid,
2334 		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2335 		   kdb_task_state_char(p),
2336 		   (void *)(&p->thread),
2337 		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2338 		   p->comm);
2339 	if (kdb_task_has_cpu(p)) {
2340 		if (!KDB_TSK(cpu)) {
2341 			kdb_printf("  Error: no saved data for this cpu\n");
2342 		} else {
2343 			if (KDB_TSK(cpu) != p)
2344 				kdb_printf("  Error: does not match running "
2345 				   "process table (0x%px)\n", KDB_TSK(cpu));
2346 		}
2347 	}
2348 }
2349 
2350 static int kdb_ps(int argc, const char **argv)
2351 {
2352 	struct task_struct *g, *p;
2353 	unsigned long mask, cpu;
2354 
2355 	if (argc == 0)
2356 		kdb_ps_suppressed();
2357 	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2358 		(int)(2*sizeof(void *))+2, "Task Addr",
2359 		(int)(2*sizeof(void *))+2, "Thread");
2360 	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2361 	/* Run the active tasks first */
2362 	for_each_online_cpu(cpu) {
2363 		if (KDB_FLAG(CMD_INTERRUPT))
2364 			return 0;
2365 		p = kdb_curr_task(cpu);
2366 		if (kdb_task_state(p, mask))
2367 			kdb_ps1(p);
2368 	}
2369 	kdb_printf("\n");
2370 	/* Now the real tasks */
2371 	kdb_do_each_thread(g, p) {
2372 		if (KDB_FLAG(CMD_INTERRUPT))
2373 			return 0;
2374 		if (kdb_task_state(p, mask))
2375 			kdb_ps1(p);
2376 	} kdb_while_each_thread(g, p);
2377 
2378 	return 0;
2379 }
2380 
2381 /*
2382  * kdb_pid - This function implements the 'pid' command which switches
2383  *	the currently active process.
2384  *		pid [<pid> | R]
2385  */
2386 static int kdb_pid(int argc, const char **argv)
2387 {
2388 	struct task_struct *p;
2389 	unsigned long val;
2390 	int diag;
2391 
2392 	if (argc > 1)
2393 		return KDB_ARGCOUNT;
2394 
2395 	if (argc) {
2396 		if (strcmp(argv[1], "R") == 0) {
2397 			p = KDB_TSK(kdb_initial_cpu);
2398 		} else {
2399 			diag = kdbgetularg(argv[1], &val);
2400 			if (diag)
2401 				return KDB_BADINT;
2402 
2403 			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2404 			if (!p) {
2405 				kdb_printf("No task with pid=%d\n", (pid_t)val);
2406 				return 0;
2407 			}
2408 		}
2409 		kdb_set_current_task(p);
2410 	}
2411 	kdb_printf("KDB current process is %s(pid=%d)\n",
2412 		   kdb_current_task->comm,
2413 		   kdb_current_task->pid);
2414 
2415 	return 0;
2416 }
2417 
2418 static int kdb_kgdb(int argc, const char **argv)
2419 {
2420 	return KDB_CMD_KGDB;
2421 }
2422 
2423 /*
2424  * kdb_help - This function implements the 'help' and '?' commands.
2425  */
2426 static int kdb_help(int argc, const char **argv)
2427 {
2428 	kdbtab_t *kt;
2429 	int i;
2430 
2431 	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2432 	kdb_printf("-----------------------------"
2433 		   "-----------------------------\n");
2434 	for_each_kdbcmd(kt, i) {
2435 		char *space = "";
2436 		if (KDB_FLAG(CMD_INTERRUPT))
2437 			return 0;
2438 		if (!kt->cmd_name)
2439 			continue;
2440 		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2441 			continue;
2442 		if (strlen(kt->cmd_usage) > 20)
2443 			space = "\n                                    ";
2444 		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2445 			   kt->cmd_usage, space, kt->cmd_help);
2446 	}
2447 	return 0;
2448 }
2449 
2450 /*
2451  * kdb_kill - This function implements the 'kill' commands.
2452  */
2453 static int kdb_kill(int argc, const char **argv)
2454 {
2455 	long sig, pid;
2456 	char *endp;
2457 	struct task_struct *p;
2458 
2459 	if (argc != 2)
2460 		return KDB_ARGCOUNT;
2461 
2462 	sig = simple_strtol(argv[1], &endp, 0);
2463 	if (*endp)
2464 		return KDB_BADINT;
2465 	if ((sig >= 0) || !valid_signal(-sig)) {
2466 		kdb_printf("Invalid signal parameter.<-signal>\n");
2467 		return 0;
2468 	}
2469 	sig = -sig;
2470 
2471 	pid = simple_strtol(argv[2], &endp, 0);
2472 	if (*endp)
2473 		return KDB_BADINT;
2474 	if (pid <= 0) {
2475 		kdb_printf("Process ID must be large than 0.\n");
2476 		return 0;
2477 	}
2478 
2479 	/* Find the process. */
2480 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2481 	if (!p) {
2482 		kdb_printf("The specified process isn't found.\n");
2483 		return 0;
2484 	}
2485 	p = p->group_leader;
2486 	kdb_send_sig(p, sig);
2487 	return 0;
2488 }
2489 
2490 /*
2491  * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2492  * I cannot call that code directly from kdb, it has an unconditional
2493  * cli()/sti() and calls routines that take locks which can stop the debugger.
2494  */
2495 static void kdb_sysinfo(struct sysinfo *val)
2496 {
2497 	u64 uptime = ktime_get_mono_fast_ns();
2498 
2499 	memset(val, 0, sizeof(*val));
2500 	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2501 	val->loads[0] = avenrun[0];
2502 	val->loads[1] = avenrun[1];
2503 	val->loads[2] = avenrun[2];
2504 	val->procs = nr_threads-1;
2505 	si_meminfo(val);
2506 
2507 	return;
2508 }
2509 
2510 /*
2511  * kdb_summary - This function implements the 'summary' command.
2512  */
2513 static int kdb_summary(int argc, const char **argv)
2514 {
2515 	time64_t now;
2516 	struct tm tm;
2517 	struct sysinfo val;
2518 
2519 	if (argc)
2520 		return KDB_ARGCOUNT;
2521 
2522 	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2523 	kdb_printf("release    %s\n", init_uts_ns.name.release);
2524 	kdb_printf("version    %s\n", init_uts_ns.name.version);
2525 	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2526 	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2527 	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2528 
2529 	now = __ktime_get_real_seconds();
2530 	time64_to_tm(now, 0, &tm);
2531 	kdb_printf("date       %04ld-%02d-%02d %02d:%02d:%02d "
2532 		   "tz_minuteswest %d\n",
2533 		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2534 		tm.tm_hour, tm.tm_min, tm.tm_sec,
2535 		sys_tz.tz_minuteswest);
2536 
2537 	kdb_sysinfo(&val);
2538 	kdb_printf("uptime     ");
2539 	if (val.uptime > (24*60*60)) {
2540 		int days = val.uptime / (24*60*60);
2541 		val.uptime %= (24*60*60);
2542 		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2543 	}
2544 	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2545 
2546 	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2547 		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2548 		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2549 		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2550 
2551 	/* Display in kilobytes */
2552 #define K(x) ((x) << (PAGE_SHIFT - 10))
2553 	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2554 		   "Buffers:        %8lu kB\n",
2555 		   K(val.totalram), K(val.freeram), K(val.bufferram));
2556 	return 0;
2557 }
2558 
2559 /*
2560  * kdb_per_cpu - This function implements the 'per_cpu' command.
2561  */
2562 static int kdb_per_cpu(int argc, const char **argv)
2563 {
2564 	char fmtstr[64];
2565 	int cpu, diag, nextarg = 1;
2566 	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2567 
2568 	if (argc < 1 || argc > 3)
2569 		return KDB_ARGCOUNT;
2570 
2571 	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2572 	if (diag)
2573 		return diag;
2574 
2575 	if (argc >= 2) {
2576 		diag = kdbgetularg(argv[2], &bytesperword);
2577 		if (diag)
2578 			return diag;
2579 	}
2580 	if (!bytesperword)
2581 		bytesperword = KDB_WORD_SIZE;
2582 	else if (bytesperword > KDB_WORD_SIZE)
2583 		return KDB_BADWIDTH;
2584 	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2585 	if (argc >= 3) {
2586 		diag = kdbgetularg(argv[3], &whichcpu);
2587 		if (diag)
2588 			return diag;
2589 		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2590 			kdb_printf("cpu %ld is not online\n", whichcpu);
2591 			return KDB_BADCPUNUM;
2592 		}
2593 	}
2594 
2595 	/* Most architectures use __per_cpu_offset[cpu], some use
2596 	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2597 	 */
2598 #ifdef	__per_cpu_offset
2599 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2600 #else
2601 #ifdef	CONFIG_SMP
2602 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2603 #else
2604 #define KDB_PCU(cpu) 0
2605 #endif
2606 #endif
2607 	for_each_online_cpu(cpu) {
2608 		if (KDB_FLAG(CMD_INTERRUPT))
2609 			return 0;
2610 
2611 		if (whichcpu != ~0UL && whichcpu != cpu)
2612 			continue;
2613 		addr = symaddr + KDB_PCU(cpu);
2614 		diag = kdb_getword(&val, addr, bytesperword);
2615 		if (diag) {
2616 			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2617 				   "read, diag=%d\n", cpu, addr, diag);
2618 			continue;
2619 		}
2620 		kdb_printf("%5d ", cpu);
2621 		kdb_md_line(fmtstr, addr,
2622 			bytesperword == KDB_WORD_SIZE,
2623 			1, bytesperword, 1, 1, 0);
2624 	}
2625 #undef KDB_PCU
2626 	return 0;
2627 }
2628 
2629 /*
2630  * display help for the use of cmd | grep pattern
2631  */
2632 static int kdb_grep_help(int argc, const char **argv)
2633 {
2634 	kdb_printf("Usage of  cmd args | grep pattern:\n");
2635 	kdb_printf("  Any command's output may be filtered through an ");
2636 	kdb_printf("emulated 'pipe'.\n");
2637 	kdb_printf("  'grep' is just a key word.\n");
2638 	kdb_printf("  The pattern may include a very limited set of "
2639 		   "metacharacters:\n");
2640 	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2641 	kdb_printf("  And if there are spaces in the pattern, you may "
2642 		   "quote it:\n");
2643 	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2644 		   " or \"^pat tern$\"\n");
2645 	return 0;
2646 }
2647 
2648 /*
2649  * kdb_register_flags - This function is used to register a kernel
2650  * 	debugger command.
2651  * Inputs:
2652  *	cmd	Command name
2653  *	func	Function to execute the command
2654  *	usage	A simple usage string showing arguments
2655  *	help	A simple help string describing command
2656  *	repeat	Does the command auto repeat on enter?
2657  * Returns:
2658  *	zero for success, one if a duplicate command.
2659  */
2660 #define kdb_command_extend 50	/* arbitrary */
2661 int kdb_register_flags(char *cmd,
2662 		       kdb_func_t func,
2663 		       char *usage,
2664 		       char *help,
2665 		       short minlen,
2666 		       kdb_cmdflags_t flags)
2667 {
2668 	int i;
2669 	kdbtab_t *kp;
2670 
2671 	/*
2672 	 *  Brute force method to determine duplicates
2673 	 */
2674 	for_each_kdbcmd(kp, i) {
2675 		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2676 			kdb_printf("Duplicate kdb command registered: "
2677 				"%s, func %px help %s\n", cmd, func, help);
2678 			return 1;
2679 		}
2680 	}
2681 
2682 	/*
2683 	 * Insert command into first available location in table
2684 	 */
2685 	for_each_kdbcmd(kp, i) {
2686 		if (kp->cmd_name == NULL)
2687 			break;
2688 	}
2689 
2690 	if (i >= kdb_max_commands) {
2691 		kdbtab_t *new = kmalloc_array(kdb_max_commands -
2692 						KDB_BASE_CMD_MAX +
2693 						kdb_command_extend,
2694 					      sizeof(*new),
2695 					      GFP_KDB);
2696 		if (!new) {
2697 			kdb_printf("Could not allocate new kdb_command "
2698 				   "table\n");
2699 			return 1;
2700 		}
2701 		if (kdb_commands) {
2702 			memcpy(new, kdb_commands,
2703 			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2704 			kfree(kdb_commands);
2705 		}
2706 		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2707 		       kdb_command_extend * sizeof(*new));
2708 		kdb_commands = new;
2709 		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2710 		kdb_max_commands += kdb_command_extend;
2711 	}
2712 
2713 	kp->cmd_name   = cmd;
2714 	kp->cmd_func   = func;
2715 	kp->cmd_usage  = usage;
2716 	kp->cmd_help   = help;
2717 	kp->cmd_minlen = minlen;
2718 	kp->cmd_flags  = flags;
2719 
2720 	return 0;
2721 }
2722 EXPORT_SYMBOL_GPL(kdb_register_flags);
2723 
2724 
2725 /*
2726  * kdb_register - Compatibility register function for commands that do
2727  *	not need to specify a repeat state.  Equivalent to
2728  *	kdb_register_flags with flags set to 0.
2729  * Inputs:
2730  *	cmd	Command name
2731  *	func	Function to execute the command
2732  *	usage	A simple usage string showing arguments
2733  *	help	A simple help string describing command
2734  * Returns:
2735  *	zero for success, one if a duplicate command.
2736  */
2737 int kdb_register(char *cmd,
2738 	     kdb_func_t func,
2739 	     char *usage,
2740 	     char *help,
2741 	     short minlen)
2742 {
2743 	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2744 }
2745 EXPORT_SYMBOL_GPL(kdb_register);
2746 
2747 /*
2748  * kdb_unregister - This function is used to unregister a kernel
2749  *	debugger command.  It is generally called when a module which
2750  *	implements kdb commands is unloaded.
2751  * Inputs:
2752  *	cmd	Command name
2753  * Returns:
2754  *	zero for success, one command not registered.
2755  */
2756 int kdb_unregister(char *cmd)
2757 {
2758 	int i;
2759 	kdbtab_t *kp;
2760 
2761 	/*
2762 	 *  find the command.
2763 	 */
2764 	for_each_kdbcmd(kp, i) {
2765 		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2766 			kp->cmd_name = NULL;
2767 			return 0;
2768 		}
2769 	}
2770 
2771 	/* Couldn't find it.  */
2772 	return 1;
2773 }
2774 EXPORT_SYMBOL_GPL(kdb_unregister);
2775 
2776 /* Initialize the kdb command table. */
2777 static void __init kdb_inittab(void)
2778 {
2779 	int i;
2780 	kdbtab_t *kp;
2781 
2782 	for_each_kdbcmd(kp, i)
2783 		kp->cmd_name = NULL;
2784 
2785 	kdb_register_flags("md", kdb_md, "<vaddr>",
2786 	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2787 	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2788 	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2789 	  "Display Raw Memory", 0,
2790 	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2791 	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2792 	  "Display Physical Memory", 0,
2793 	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2794 	kdb_register_flags("mds", kdb_md, "<vaddr>",
2795 	  "Display Memory Symbolically", 0,
2796 	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2797 	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2798 	  "Modify Memory Contents", 0,
2799 	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2800 	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2801 	  "Continue Execution", 1,
2802 	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2803 	kdb_register_flags("rd", kdb_rd, "",
2804 	  "Display Registers", 0,
2805 	  KDB_ENABLE_REG_READ);
2806 	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2807 	  "Modify Registers", 0,
2808 	  KDB_ENABLE_REG_WRITE);
2809 	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2810 	  "Display exception frame", 0,
2811 	  KDB_ENABLE_MEM_READ);
2812 	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2813 	  "Stack traceback", 1,
2814 	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2815 	kdb_register_flags("btp", kdb_bt, "<pid>",
2816 	  "Display stack for process <pid>", 0,
2817 	  KDB_ENABLE_INSPECT);
2818 	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2819 	  "Backtrace all processes matching state flag", 0,
2820 	  KDB_ENABLE_INSPECT);
2821 	kdb_register_flags("btc", kdb_bt, "",
2822 	  "Backtrace current process on each cpu", 0,
2823 	  KDB_ENABLE_INSPECT);
2824 	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2825 	  "Backtrace process given its struct task address", 0,
2826 	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2827 	kdb_register_flags("env", kdb_env, "",
2828 	  "Show environment variables", 0,
2829 	  KDB_ENABLE_ALWAYS_SAFE);
2830 	kdb_register_flags("set", kdb_set, "",
2831 	  "Set environment variables", 0,
2832 	  KDB_ENABLE_ALWAYS_SAFE);
2833 	kdb_register_flags("help", kdb_help, "",
2834 	  "Display Help Message", 1,
2835 	  KDB_ENABLE_ALWAYS_SAFE);
2836 	kdb_register_flags("?", kdb_help, "",
2837 	  "Display Help Message", 0,
2838 	  KDB_ENABLE_ALWAYS_SAFE);
2839 	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2840 	  "Switch to new cpu", 0,
2841 	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2842 	kdb_register_flags("kgdb", kdb_kgdb, "",
2843 	  "Enter kgdb mode", 0, 0);
2844 	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2845 	  "Display active task list", 0,
2846 	  KDB_ENABLE_INSPECT);
2847 	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2848 	  "Switch to another task", 0,
2849 	  KDB_ENABLE_INSPECT);
2850 	kdb_register_flags("reboot", kdb_reboot, "",
2851 	  "Reboot the machine immediately", 0,
2852 	  KDB_ENABLE_REBOOT);
2853 #if defined(CONFIG_MODULES)
2854 	kdb_register_flags("lsmod", kdb_lsmod, "",
2855 	  "List loaded kernel modules", 0,
2856 	  KDB_ENABLE_INSPECT);
2857 #endif
2858 #if defined(CONFIG_MAGIC_SYSRQ)
2859 	kdb_register_flags("sr", kdb_sr, "<key>",
2860 	  "Magic SysRq key", 0,
2861 	  KDB_ENABLE_ALWAYS_SAFE);
2862 #endif
2863 #if defined(CONFIG_PRINTK)
2864 	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2865 	  "Display syslog buffer", 0,
2866 	  KDB_ENABLE_ALWAYS_SAFE);
2867 #endif
2868 	if (arch_kgdb_ops.enable_nmi) {
2869 		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2870 		  "Disable NMI entry to KDB", 0,
2871 		  KDB_ENABLE_ALWAYS_SAFE);
2872 	}
2873 	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2874 	  "Define a set of commands, down to endefcmd", 0,
2875 	  KDB_ENABLE_ALWAYS_SAFE);
2876 	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2877 	  "Send a signal to a process", 0,
2878 	  KDB_ENABLE_SIGNAL);
2879 	kdb_register_flags("summary", kdb_summary, "",
2880 	  "Summarize the system", 4,
2881 	  KDB_ENABLE_ALWAYS_SAFE);
2882 	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2883 	  "Display per_cpu variables", 3,
2884 	  KDB_ENABLE_MEM_READ);
2885 	kdb_register_flags("grephelp", kdb_grep_help, "",
2886 	  "Display help on | grep", 0,
2887 	  KDB_ENABLE_ALWAYS_SAFE);
2888 }
2889 
2890 /* Execute any commands defined in kdb_cmds.  */
2891 static void __init kdb_cmd_init(void)
2892 {
2893 	int i, diag;
2894 	for (i = 0; kdb_cmds[i]; ++i) {
2895 		diag = kdb_parse(kdb_cmds[i]);
2896 		if (diag)
2897 			kdb_printf("kdb command %s failed, kdb diag %d\n",
2898 				kdb_cmds[i], diag);
2899 	}
2900 	if (defcmd_in_progress) {
2901 		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2902 		kdb_parse("endefcmd");
2903 	}
2904 }
2905 
2906 /* Initialize kdb_printf, breakpoint tables and kdb state */
2907 void __init kdb_init(int lvl)
2908 {
2909 	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2910 	int i;
2911 
2912 	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2913 		return;
2914 	for (i = kdb_init_lvl; i < lvl; i++) {
2915 		switch (i) {
2916 		case KDB_NOT_INITIALIZED:
2917 			kdb_inittab();		/* Initialize Command Table */
2918 			kdb_initbptab();	/* Initialize Breakpoints */
2919 			break;
2920 		case KDB_INIT_EARLY:
2921 			kdb_cmd_init();		/* Build kdb_cmds tables */
2922 			break;
2923 		}
2924 	}
2925 	kdb_init_lvl = lvl;
2926 }
2927