xref: /openbmc/linux/kernel/debug/kdb/kdb_main.c (revision 495363d3)
1 /*
2  * Kernel Debugger Architecture Independent Main Code
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
9  * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10  * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11  * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
12  */
13 
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/kernel.h>
17 #include <linux/reboot.h>
18 #include <linux/sched.h>
19 #include <linux/sysrq.h>
20 #include <linux/smp.h>
21 #include <linux/utsname.h>
22 #include <linux/vmalloc.h>
23 #include <linux/module.h>
24 #include <linux/mm.h>
25 #include <linux/init.h>
26 #include <linux/kallsyms.h>
27 #include <linux/kgdb.h>
28 #include <linux/kdb.h>
29 #include <linux/notifier.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/nmi.h>
33 #include <linux/time.h>
34 #include <linux/ptrace.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/kdebug.h>
38 #include <linux/proc_fs.h>
39 #include <linux/uaccess.h>
40 #include <linux/slab.h>
41 #include "kdb_private.h"
42 
43 #define GREP_LEN 256
44 char kdb_grep_string[GREP_LEN];
45 int kdb_grepping_flag;
46 EXPORT_SYMBOL(kdb_grepping_flag);
47 int kdb_grep_leading;
48 int kdb_grep_trailing;
49 
50 /*
51  * Kernel debugger state flags
52  */
53 int kdb_flags;
54 atomic_t kdb_event;
55 
56 /*
57  * kdb_lock protects updates to kdb_initial_cpu.  Used to
58  * single thread processors through the kernel debugger.
59  */
60 int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
61 int kdb_nextline = 1;
62 int kdb_state;			/* General KDB state */
63 
64 struct task_struct *kdb_current_task;
65 EXPORT_SYMBOL(kdb_current_task);
66 struct pt_regs *kdb_current_regs;
67 
68 const char *kdb_diemsg;
69 static int kdb_go_count;
70 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
71 static unsigned int kdb_continue_catastrophic =
72 	CONFIG_KDB_CONTINUE_CATASTROPHIC;
73 #else
74 static unsigned int kdb_continue_catastrophic;
75 #endif
76 
77 /* kdb_commands describes the available commands. */
78 static kdbtab_t *kdb_commands;
79 #define KDB_BASE_CMD_MAX 50
80 static int kdb_max_commands = KDB_BASE_CMD_MAX;
81 static kdbtab_t kdb_base_commands[50];
82 #define for_each_kdbcmd(cmd, num)					\
83 	for ((cmd) = kdb_base_commands, (num) = 0;			\
84 	     num < kdb_max_commands;					\
85 	     num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++, num++)
86 
87 typedef struct _kdbmsg {
88 	int	km_diag;	/* kdb diagnostic */
89 	char	*km_msg;	/* Corresponding message text */
90 } kdbmsg_t;
91 
92 #define KDBMSG(msgnum, text) \
93 	{ KDB_##msgnum, text }
94 
95 static kdbmsg_t kdbmsgs[] = {
96 	KDBMSG(NOTFOUND, "Command Not Found"),
97 	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
98 	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
99 	       "8 is only allowed on 64 bit systems"),
100 	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
101 	KDBMSG(NOTENV, "Cannot find environment variable"),
102 	KDBMSG(NOENVVALUE, "Environment variable should have value"),
103 	KDBMSG(NOTIMP, "Command not implemented"),
104 	KDBMSG(ENVFULL, "Environment full"),
105 	KDBMSG(ENVBUFFULL, "Environment buffer full"),
106 	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
107 #ifdef CONFIG_CPU_XSCALE
108 	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
109 #else
110 	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
111 #endif
112 	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
113 	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
114 	KDBMSG(BADMODE, "Invalid IDMODE"),
115 	KDBMSG(BADINT, "Illegal numeric value"),
116 	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
117 	KDBMSG(BADREG, "Invalid register name"),
118 	KDBMSG(BADCPUNUM, "Invalid cpu number"),
119 	KDBMSG(BADLENGTH, "Invalid length field"),
120 	KDBMSG(NOBP, "No Breakpoint exists"),
121 	KDBMSG(BADADDR, "Invalid address"),
122 };
123 #undef KDBMSG
124 
125 static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
126 
127 
128 /*
129  * Initial environment.   This is all kept static and local to
130  * this file.   We don't want to rely on the memory allocation
131  * mechanisms in the kernel, so we use a very limited allocate-only
132  * heap for new and altered environment variables.  The entire
133  * environment is limited to a fixed number of entries (add more
134  * to __env[] if required) and a fixed amount of heap (add more to
135  * KDB_ENVBUFSIZE if required).
136  */
137 
138 static char *__env[] = {
139 #if defined(CONFIG_SMP)
140  "PROMPT=[%d]kdb> ",
141  "MOREPROMPT=[%d]more> ",
142 #else
143  "PROMPT=kdb> ",
144  "MOREPROMPT=more> ",
145 #endif
146  "RADIX=16",
147  "MDCOUNT=8",			/* lines of md output */
148  "BTARGS=9",			/* 9 possible args in bt */
149  KDB_PLATFORM_ENV,
150  "DTABCOUNT=30",
151  "NOSECT=1",
152  (char *)0,
153  (char *)0,
154  (char *)0,
155  (char *)0,
156  (char *)0,
157  (char *)0,
158  (char *)0,
159  (char *)0,
160  (char *)0,
161  (char *)0,
162  (char *)0,
163  (char *)0,
164  (char *)0,
165  (char *)0,
166  (char *)0,
167  (char *)0,
168  (char *)0,
169  (char *)0,
170  (char *)0,
171  (char *)0,
172  (char *)0,
173  (char *)0,
174  (char *)0,
175 };
176 
177 static const int __nenv = (sizeof(__env) / sizeof(char *));
178 
179 struct task_struct *kdb_curr_task(int cpu)
180 {
181 	struct task_struct *p = curr_task(cpu);
182 #ifdef	_TIF_MCA_INIT
183 	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
184 		p = krp->p;
185 #endif
186 	return p;
187 }
188 
189 /*
190  * kdbgetenv - This function will return the character string value of
191  *	an environment variable.
192  * Parameters:
193  *	match	A character string representing an environment variable.
194  * Returns:
195  *	NULL	No environment variable matches 'match'
196  *	char*	Pointer to string value of environment variable.
197  */
198 char *kdbgetenv(const char *match)
199 {
200 	char **ep = __env;
201 	int matchlen = strlen(match);
202 	int i;
203 
204 	for (i = 0; i < __nenv; i++) {
205 		char *e = *ep++;
206 
207 		if (!e)
208 			continue;
209 
210 		if ((strncmp(match, e, matchlen) == 0)
211 		 && ((e[matchlen] == '\0')
212 		   || (e[matchlen] == '='))) {
213 			char *cp = strchr(e, '=');
214 			return cp ? ++cp : "";
215 		}
216 	}
217 	return NULL;
218 }
219 
220 /*
221  * kdballocenv - This function is used to allocate bytes for
222  *	environment entries.
223  * Parameters:
224  *	match	A character string representing a numeric value
225  * Outputs:
226  *	*value  the unsigned long representation of the env variable 'match'
227  * Returns:
228  *	Zero on success, a kdb diagnostic on failure.
229  * Remarks:
230  *	We use a static environment buffer (envbuffer) to hold the values
231  *	of dynamically generated environment variables (see kdb_set).  Buffer
232  *	space once allocated is never free'd, so over time, the amount of space
233  *	(currently 512 bytes) will be exhausted if env variables are changed
234  *	frequently.
235  */
236 static char *kdballocenv(size_t bytes)
237 {
238 #define	KDB_ENVBUFSIZE	512
239 	static char envbuffer[KDB_ENVBUFSIZE];
240 	static int envbufsize;
241 	char *ep = NULL;
242 
243 	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 		ep = &envbuffer[envbufsize];
245 		envbufsize += bytes;
246 	}
247 	return ep;
248 }
249 
250 /*
251  * kdbgetulenv - This function will return the value of an unsigned
252  *	long-valued environment variable.
253  * Parameters:
254  *	match	A character string representing a numeric value
255  * Outputs:
256  *	*value  the unsigned long represntation of the env variable 'match'
257  * Returns:
258  *	Zero on success, a kdb diagnostic on failure.
259  */
260 static int kdbgetulenv(const char *match, unsigned long *value)
261 {
262 	char *ep;
263 
264 	ep = kdbgetenv(match);
265 	if (!ep)
266 		return KDB_NOTENV;
267 	if (strlen(ep) == 0)
268 		return KDB_NOENVVALUE;
269 
270 	*value = simple_strtoul(ep, NULL, 0);
271 
272 	return 0;
273 }
274 
275 /*
276  * kdbgetintenv - This function will return the value of an
277  *	integer-valued environment variable.
278  * Parameters:
279  *	match	A character string representing an integer-valued env variable
280  * Outputs:
281  *	*value  the integer representation of the environment variable 'match'
282  * Returns:
283  *	Zero on success, a kdb diagnostic on failure.
284  */
285 int kdbgetintenv(const char *match, int *value)
286 {
287 	unsigned long val;
288 	int diag;
289 
290 	diag = kdbgetulenv(match, &val);
291 	if (!diag)
292 		*value = (int) val;
293 	return diag;
294 }
295 
296 /*
297  * kdbgetularg - This function will convert a numeric string into an
298  *	unsigned long value.
299  * Parameters:
300  *	arg	A character string representing a numeric value
301  * Outputs:
302  *	*value  the unsigned long represntation of arg.
303  * Returns:
304  *	Zero on success, a kdb diagnostic on failure.
305  */
306 int kdbgetularg(const char *arg, unsigned long *value)
307 {
308 	char *endp;
309 	unsigned long val;
310 
311 	val = simple_strtoul(arg, &endp, 0);
312 
313 	if (endp == arg) {
314 		/*
315 		 * Also try base 16, for us folks too lazy to type the
316 		 * leading 0x...
317 		 */
318 		val = simple_strtoul(arg, &endp, 16);
319 		if (endp == arg)
320 			return KDB_BADINT;
321 	}
322 
323 	*value = val;
324 
325 	return 0;
326 }
327 
328 int kdbgetu64arg(const char *arg, u64 *value)
329 {
330 	char *endp;
331 	u64 val;
332 
333 	val = simple_strtoull(arg, &endp, 0);
334 
335 	if (endp == arg) {
336 
337 		val = simple_strtoull(arg, &endp, 16);
338 		if (endp == arg)
339 			return KDB_BADINT;
340 	}
341 
342 	*value = val;
343 
344 	return 0;
345 }
346 
347 /*
348  * kdb_set - This function implements the 'set' command.  Alter an
349  *	existing environment variable or create a new one.
350  */
351 int kdb_set(int argc, const char **argv)
352 {
353 	int i;
354 	char *ep;
355 	size_t varlen, vallen;
356 
357 	/*
358 	 * we can be invoked two ways:
359 	 *   set var=value    argv[1]="var", argv[2]="value"
360 	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
361 	 * - if the latter, shift 'em down.
362 	 */
363 	if (argc == 3) {
364 		argv[2] = argv[3];
365 		argc--;
366 	}
367 
368 	if (argc != 2)
369 		return KDB_ARGCOUNT;
370 
371 	/*
372 	 * Check for internal variables
373 	 */
374 	if (strcmp(argv[1], "KDBDEBUG") == 0) {
375 		unsigned int debugflags;
376 		char *cp;
377 
378 		debugflags = simple_strtoul(argv[2], &cp, 0);
379 		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
380 			kdb_printf("kdb: illegal debug flags '%s'\n",
381 				    argv[2]);
382 			return 0;
383 		}
384 		kdb_flags = (kdb_flags &
385 			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
386 			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
387 
388 		return 0;
389 	}
390 
391 	/*
392 	 * Tokenizer squashed the '=' sign.  argv[1] is variable
393 	 * name, argv[2] = value.
394 	 */
395 	varlen = strlen(argv[1]);
396 	vallen = strlen(argv[2]);
397 	ep = kdballocenv(varlen + vallen + 2);
398 	if (ep == (char *)0)
399 		return KDB_ENVBUFFULL;
400 
401 	sprintf(ep, "%s=%s", argv[1], argv[2]);
402 
403 	ep[varlen+vallen+1] = '\0';
404 
405 	for (i = 0; i < __nenv; i++) {
406 		if (__env[i]
407 		 && ((strncmp(__env[i], argv[1], varlen) == 0)
408 		   && ((__env[i][varlen] == '\0')
409 		    || (__env[i][varlen] == '=')))) {
410 			__env[i] = ep;
411 			return 0;
412 		}
413 	}
414 
415 	/*
416 	 * Wasn't existing variable.  Fit into slot.
417 	 */
418 	for (i = 0; i < __nenv-1; i++) {
419 		if (__env[i] == (char *)0) {
420 			__env[i] = ep;
421 			return 0;
422 		}
423 	}
424 
425 	return KDB_ENVFULL;
426 }
427 
428 static int kdb_check_regs(void)
429 {
430 	if (!kdb_current_regs) {
431 		kdb_printf("No current kdb registers."
432 			   "  You may need to select another task\n");
433 		return KDB_BADREG;
434 	}
435 	return 0;
436 }
437 
438 /*
439  * kdbgetaddrarg - This function is responsible for parsing an
440  *	address-expression and returning the value of the expression,
441  *	symbol name, and offset to the caller.
442  *
443  *	The argument may consist of a numeric value (decimal or
444  *	hexidecimal), a symbol name, a register name (preceeded by the
445  *	percent sign), an environment variable with a numeric value
446  *	(preceeded by a dollar sign) or a simple arithmetic expression
447  *	consisting of a symbol name, +/-, and a numeric constant value
448  *	(offset).
449  * Parameters:
450  *	argc	- count of arguments in argv
451  *	argv	- argument vector
452  *	*nextarg - index to next unparsed argument in argv[]
453  *	regs	- Register state at time of KDB entry
454  * Outputs:
455  *	*value	- receives the value of the address-expression
456  *	*offset - receives the offset specified, if any
457  *	*name   - receives the symbol name, if any
458  *	*nextarg - index to next unparsed argument in argv[]
459  * Returns:
460  *	zero is returned on success, a kdb diagnostic code is
461  *      returned on error.
462  */
463 int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
464 		  unsigned long *value,  long *offset,
465 		  char **name)
466 {
467 	unsigned long addr;
468 	unsigned long off = 0;
469 	int positive;
470 	int diag;
471 	int found = 0;
472 	char *symname;
473 	char symbol = '\0';
474 	char *cp;
475 	kdb_symtab_t symtab;
476 
477 	/*
478 	 * Process arguments which follow the following syntax:
479 	 *
480 	 *  symbol | numeric-address [+/- numeric-offset]
481 	 *  %register
482 	 *  $environment-variable
483 	 */
484 
485 	if (*nextarg > argc)
486 		return KDB_ARGCOUNT;
487 
488 	symname = (char *)argv[*nextarg];
489 
490 	/*
491 	 * If there is no whitespace between the symbol
492 	 * or address and the '+' or '-' symbols, we
493 	 * remember the character and replace it with a
494 	 * null so the symbol/value can be properly parsed
495 	 */
496 	cp = strpbrk(symname, "+-");
497 	if (cp != NULL) {
498 		symbol = *cp;
499 		*cp++ = '\0';
500 	}
501 
502 	if (symname[0] == '$') {
503 		diag = kdbgetulenv(&symname[1], &addr);
504 		if (diag)
505 			return diag;
506 	} else if (symname[0] == '%') {
507 		diag = kdb_check_regs();
508 		if (diag)
509 			return diag;
510 		/* Implement register values with % at a later time as it is
511 		 * arch optional.
512 		 */
513 		return KDB_NOTIMP;
514 	} else {
515 		found = kdbgetsymval(symname, &symtab);
516 		if (found) {
517 			addr = symtab.sym_start;
518 		} else {
519 			diag = kdbgetularg(argv[*nextarg], &addr);
520 			if (diag)
521 				return diag;
522 		}
523 	}
524 
525 	if (!found)
526 		found = kdbnearsym(addr, &symtab);
527 
528 	(*nextarg)++;
529 
530 	if (name)
531 		*name = symname;
532 	if (value)
533 		*value = addr;
534 	if (offset && name && *name)
535 		*offset = addr - symtab.sym_start;
536 
537 	if ((*nextarg > argc)
538 	 && (symbol == '\0'))
539 		return 0;
540 
541 	/*
542 	 * check for +/- and offset
543 	 */
544 
545 	if (symbol == '\0') {
546 		if ((argv[*nextarg][0] != '+')
547 		 && (argv[*nextarg][0] != '-')) {
548 			/*
549 			 * Not our argument.  Return.
550 			 */
551 			return 0;
552 		} else {
553 			positive = (argv[*nextarg][0] == '+');
554 			(*nextarg)++;
555 		}
556 	} else
557 		positive = (symbol == '+');
558 
559 	/*
560 	 * Now there must be an offset!
561 	 */
562 	if ((*nextarg > argc)
563 	 && (symbol == '\0')) {
564 		return KDB_INVADDRFMT;
565 	}
566 
567 	if (!symbol) {
568 		cp = (char *)argv[*nextarg];
569 		(*nextarg)++;
570 	}
571 
572 	diag = kdbgetularg(cp, &off);
573 	if (diag)
574 		return diag;
575 
576 	if (!positive)
577 		off = -off;
578 
579 	if (offset)
580 		*offset += off;
581 
582 	if (value)
583 		*value += off;
584 
585 	return 0;
586 }
587 
588 static void kdb_cmderror(int diag)
589 {
590 	int i;
591 
592 	if (diag >= 0) {
593 		kdb_printf("no error detected (diagnostic is %d)\n", diag);
594 		return;
595 	}
596 
597 	for (i = 0; i < __nkdb_err; i++) {
598 		if (kdbmsgs[i].km_diag == diag) {
599 			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
600 			return;
601 		}
602 	}
603 
604 	kdb_printf("Unknown diag %d\n", -diag);
605 }
606 
607 /*
608  * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
609  *	command which defines one command as a set of other commands,
610  *	terminated by endefcmd.  kdb_defcmd processes the initial
611  *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
612  *	the following commands until 'endefcmd'.
613  * Inputs:
614  *	argc	argument count
615  *	argv	argument vector
616  * Returns:
617  *	zero for success, a kdb diagnostic if error
618  */
619 struct defcmd_set {
620 	int count;
621 	int usable;
622 	char *name;
623 	char *usage;
624 	char *help;
625 	char **command;
626 };
627 static struct defcmd_set *defcmd_set;
628 static int defcmd_set_count;
629 static int defcmd_in_progress;
630 
631 /* Forward references */
632 static int kdb_exec_defcmd(int argc, const char **argv);
633 
634 static int kdb_defcmd2(const char *cmdstr, const char *argv0)
635 {
636 	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
637 	char **save_command = s->command;
638 	if (strcmp(argv0, "endefcmd") == 0) {
639 		defcmd_in_progress = 0;
640 		if (!s->count)
641 			s->usable = 0;
642 		if (s->usable)
643 			kdb_register(s->name, kdb_exec_defcmd,
644 				     s->usage, s->help, 0);
645 		return 0;
646 	}
647 	if (!s->usable)
648 		return KDB_NOTIMP;
649 	s->command = kmalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
650 	if (!s->command) {
651 		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
652 			   cmdstr);
653 		s->usable = 0;
654 		return KDB_NOTIMP;
655 	}
656 	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
657 	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
658 	kfree(save_command);
659 	return 0;
660 }
661 
662 static int kdb_defcmd(int argc, const char **argv)
663 {
664 	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
665 	if (defcmd_in_progress) {
666 		kdb_printf("kdb: nested defcmd detected, assuming missing "
667 			   "endefcmd\n");
668 		kdb_defcmd2("endefcmd", "endefcmd");
669 	}
670 	if (argc == 0) {
671 		int i;
672 		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
673 			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
674 				   s->usage, s->help);
675 			for (i = 0; i < s->count; ++i)
676 				kdb_printf("%s", s->command[i]);
677 			kdb_printf("endefcmd\n");
678 		}
679 		return 0;
680 	}
681 	if (argc != 3)
682 		return KDB_ARGCOUNT;
683 	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
684 			     GFP_KDB);
685 	if (!defcmd_set) {
686 		kdb_printf("Could not allocate new defcmd_set entry for %s\n",
687 			   argv[1]);
688 		defcmd_set = save_defcmd_set;
689 		return KDB_NOTIMP;
690 	}
691 	memcpy(defcmd_set, save_defcmd_set,
692 	       defcmd_set_count * sizeof(*defcmd_set));
693 	kfree(save_defcmd_set);
694 	s = defcmd_set + defcmd_set_count;
695 	memset(s, 0, sizeof(*s));
696 	s->usable = 1;
697 	s->name = kdb_strdup(argv[1], GFP_KDB);
698 	s->usage = kdb_strdup(argv[2], GFP_KDB);
699 	s->help = kdb_strdup(argv[3], GFP_KDB);
700 	if (s->usage[0] == '"') {
701 		strcpy(s->usage, s->usage+1);
702 		s->usage[strlen(s->usage)-1] = '\0';
703 	}
704 	if (s->help[0] == '"') {
705 		strcpy(s->help, s->help+1);
706 		s->help[strlen(s->help)-1] = '\0';
707 	}
708 	++defcmd_set_count;
709 	defcmd_in_progress = 1;
710 	return 0;
711 }
712 
713 /*
714  * kdb_exec_defcmd - Execute the set of commands associated with this
715  *	defcmd name.
716  * Inputs:
717  *	argc	argument count
718  *	argv	argument vector
719  * Returns:
720  *	zero for success, a kdb diagnostic if error
721  */
722 static int kdb_exec_defcmd(int argc, const char **argv)
723 {
724 	int i, ret;
725 	struct defcmd_set *s;
726 	if (argc != 0)
727 		return KDB_ARGCOUNT;
728 	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
729 		if (strcmp(s->name, argv[0]) == 0)
730 			break;
731 	}
732 	if (i == defcmd_set_count) {
733 		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
734 			   argv[0]);
735 		return KDB_NOTIMP;
736 	}
737 	for (i = 0; i < s->count; ++i) {
738 		/* Recursive use of kdb_parse, do not use argv after
739 		 * this point */
740 		argv = NULL;
741 		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
742 		ret = kdb_parse(s->command[i]);
743 		if (ret)
744 			return ret;
745 	}
746 	return 0;
747 }
748 
749 /* Command history */
750 #define KDB_CMD_HISTORY_COUNT	32
751 #define CMD_BUFLEN		200	/* kdb_printf: max printline
752 					 * size == 256 */
753 static unsigned int cmd_head, cmd_tail;
754 static unsigned int cmdptr;
755 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
756 static char cmd_cur[CMD_BUFLEN];
757 
758 /*
759  * The "str" argument may point to something like  | grep xyz
760  */
761 static void parse_grep(const char *str)
762 {
763 	int	len;
764 	char	*cp = (char *)str, *cp2;
765 
766 	/* sanity check: we should have been called with the \ first */
767 	if (*cp != '|')
768 		return;
769 	cp++;
770 	while (isspace(*cp))
771 		cp++;
772 	if (strncmp(cp, "grep ", 5)) {
773 		kdb_printf("invalid 'pipe', see grephelp\n");
774 		return;
775 	}
776 	cp += 5;
777 	while (isspace(*cp))
778 		cp++;
779 	cp2 = strchr(cp, '\n');
780 	if (cp2)
781 		*cp2 = '\0'; /* remove the trailing newline */
782 	len = strlen(cp);
783 	if (len == 0) {
784 		kdb_printf("invalid 'pipe', see grephelp\n");
785 		return;
786 	}
787 	/* now cp points to a nonzero length search string */
788 	if (*cp == '"') {
789 		/* allow it be "x y z" by removing the "'s - there must
790 		   be two of them */
791 		cp++;
792 		cp2 = strchr(cp, '"');
793 		if (!cp2) {
794 			kdb_printf("invalid quoted string, see grephelp\n");
795 			return;
796 		}
797 		*cp2 = '\0'; /* end the string where the 2nd " was */
798 	}
799 	kdb_grep_leading = 0;
800 	if (*cp == '^') {
801 		kdb_grep_leading = 1;
802 		cp++;
803 	}
804 	len = strlen(cp);
805 	kdb_grep_trailing = 0;
806 	if (*(cp+len-1) == '$') {
807 		kdb_grep_trailing = 1;
808 		*(cp+len-1) = '\0';
809 	}
810 	len = strlen(cp);
811 	if (!len)
812 		return;
813 	if (len >= GREP_LEN) {
814 		kdb_printf("search string too long\n");
815 		return;
816 	}
817 	strcpy(kdb_grep_string, cp);
818 	kdb_grepping_flag++;
819 	return;
820 }
821 
822 /*
823  * kdb_parse - Parse the command line, search the command table for a
824  *	matching command and invoke the command function.  This
825  *	function may be called recursively, if it is, the second call
826  *	will overwrite argv and cbuf.  It is the caller's
827  *	responsibility to save their argv if they recursively call
828  *	kdb_parse().
829  * Parameters:
830  *      cmdstr	The input command line to be parsed.
831  *	regs	The registers at the time kdb was entered.
832  * Returns:
833  *	Zero for success, a kdb diagnostic if failure.
834  * Remarks:
835  *	Limited to 20 tokens.
836  *
837  *	Real rudimentary tokenization. Basically only whitespace
838  *	is considered a token delimeter (but special consideration
839  *	is taken of the '=' sign as used by the 'set' command).
840  *
841  *	The algorithm used to tokenize the input string relies on
842  *	there being at least one whitespace (or otherwise useless)
843  *	character between tokens as the character immediately following
844  *	the token is altered in-place to a null-byte to terminate the
845  *	token string.
846  */
847 
848 #define MAXARGC	20
849 
850 int kdb_parse(const char *cmdstr)
851 {
852 	static char *argv[MAXARGC];
853 	static int argc;
854 	static char cbuf[CMD_BUFLEN+2];
855 	char *cp;
856 	char *cpp, quoted;
857 	kdbtab_t *tp;
858 	int i, escaped, ignore_errors = 0, check_grep;
859 
860 	/*
861 	 * First tokenize the command string.
862 	 */
863 	cp = (char *)cmdstr;
864 	kdb_grepping_flag = check_grep = 0;
865 
866 	if (KDB_FLAG(CMD_INTERRUPT)) {
867 		/* Previous command was interrupted, newline must not
868 		 * repeat the command */
869 		KDB_FLAG_CLEAR(CMD_INTERRUPT);
870 		KDB_STATE_SET(PAGER);
871 		argc = 0;	/* no repeat */
872 	}
873 
874 	if (*cp != '\n' && *cp != '\0') {
875 		argc = 0;
876 		cpp = cbuf;
877 		while (*cp) {
878 			/* skip whitespace */
879 			while (isspace(*cp))
880 				cp++;
881 			if ((*cp == '\0') || (*cp == '\n') ||
882 			    (*cp == '#' && !defcmd_in_progress))
883 				break;
884 			/* special case: check for | grep pattern */
885 			if (*cp == '|') {
886 				check_grep++;
887 				break;
888 			}
889 			if (cpp >= cbuf + CMD_BUFLEN) {
890 				kdb_printf("kdb_parse: command buffer "
891 					   "overflow, command ignored\n%s\n",
892 					   cmdstr);
893 				return KDB_NOTFOUND;
894 			}
895 			if (argc >= MAXARGC - 1) {
896 				kdb_printf("kdb_parse: too many arguments, "
897 					   "command ignored\n%s\n", cmdstr);
898 				return KDB_NOTFOUND;
899 			}
900 			argv[argc++] = cpp;
901 			escaped = 0;
902 			quoted = '\0';
903 			/* Copy to next unquoted and unescaped
904 			 * whitespace or '=' */
905 			while (*cp && *cp != '\n' &&
906 			       (escaped || quoted || !isspace(*cp))) {
907 				if (cpp >= cbuf + CMD_BUFLEN)
908 					break;
909 				if (escaped) {
910 					escaped = 0;
911 					*cpp++ = *cp++;
912 					continue;
913 				}
914 				if (*cp == '\\') {
915 					escaped = 1;
916 					++cp;
917 					continue;
918 				}
919 				if (*cp == quoted)
920 					quoted = '\0';
921 				else if (*cp == '\'' || *cp == '"')
922 					quoted = *cp;
923 				*cpp = *cp++;
924 				if (*cpp == '=' && !quoted)
925 					break;
926 				++cpp;
927 			}
928 			*cpp++ = '\0';	/* Squash a ws or '=' character */
929 		}
930 	}
931 	if (!argc)
932 		return 0;
933 	if (check_grep)
934 		parse_grep(cp);
935 	if (defcmd_in_progress) {
936 		int result = kdb_defcmd2(cmdstr, argv[0]);
937 		if (!defcmd_in_progress) {
938 			argc = 0;	/* avoid repeat on endefcmd */
939 			*(argv[0]) = '\0';
940 		}
941 		return result;
942 	}
943 	if (argv[0][0] == '-' && argv[0][1] &&
944 	    (argv[0][1] < '0' || argv[0][1] > '9')) {
945 		ignore_errors = 1;
946 		++argv[0];
947 	}
948 
949 	for_each_kdbcmd(tp, i) {
950 		if (tp->cmd_name) {
951 			/*
952 			 * If this command is allowed to be abbreviated,
953 			 * check to see if this is it.
954 			 */
955 
956 			if (tp->cmd_minlen
957 			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
958 				if (strncmp(argv[0],
959 					    tp->cmd_name,
960 					    tp->cmd_minlen) == 0) {
961 					break;
962 				}
963 			}
964 
965 			if (strcmp(argv[0], tp->cmd_name) == 0)
966 				break;
967 		}
968 	}
969 
970 	/*
971 	 * If we don't find a command by this name, see if the first
972 	 * few characters of this match any of the known commands.
973 	 * e.g., md1c20 should match md.
974 	 */
975 	if (i == kdb_max_commands) {
976 		for_each_kdbcmd(tp, i) {
977 			if (tp->cmd_name) {
978 				if (strncmp(argv[0],
979 					    tp->cmd_name,
980 					    strlen(tp->cmd_name)) == 0) {
981 					break;
982 				}
983 			}
984 		}
985 	}
986 
987 	if (i < kdb_max_commands) {
988 		int result;
989 		KDB_STATE_SET(CMD);
990 		result = (*tp->cmd_func)(argc-1, (const char **)argv);
991 		if (result && ignore_errors && result > KDB_CMD_GO)
992 			result = 0;
993 		KDB_STATE_CLEAR(CMD);
994 		switch (tp->cmd_repeat) {
995 		case KDB_REPEAT_NONE:
996 			argc = 0;
997 			if (argv[0])
998 				*(argv[0]) = '\0';
999 			break;
1000 		case KDB_REPEAT_NO_ARGS:
1001 			argc = 1;
1002 			if (argv[1])
1003 				*(argv[1]) = '\0';
1004 			break;
1005 		case KDB_REPEAT_WITH_ARGS:
1006 			break;
1007 		}
1008 		return result;
1009 	}
1010 
1011 	/*
1012 	 * If the input with which we were presented does not
1013 	 * map to an existing command, attempt to parse it as an
1014 	 * address argument and display the result.   Useful for
1015 	 * obtaining the address of a variable, or the nearest symbol
1016 	 * to an address contained in a register.
1017 	 */
1018 	{
1019 		unsigned long value;
1020 		char *name = NULL;
1021 		long offset;
1022 		int nextarg = 0;
1023 
1024 		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1025 				  &value, &offset, &name)) {
1026 			return KDB_NOTFOUND;
1027 		}
1028 
1029 		kdb_printf("%s = ", argv[0]);
1030 		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1031 		kdb_printf("\n");
1032 		return 0;
1033 	}
1034 }
1035 
1036 
1037 static int handle_ctrl_cmd(char *cmd)
1038 {
1039 #define CTRL_P	16
1040 #define CTRL_N	14
1041 
1042 	/* initial situation */
1043 	if (cmd_head == cmd_tail)
1044 		return 0;
1045 	switch (*cmd) {
1046 	case CTRL_P:
1047 		if (cmdptr != cmd_tail)
1048 			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1049 		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1050 		return 1;
1051 	case CTRL_N:
1052 		if (cmdptr != cmd_head)
1053 			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1054 		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1055 		return 1;
1056 	}
1057 	return 0;
1058 }
1059 
1060 /*
1061  * kdb_reboot - This function implements the 'reboot' command.  Reboot
1062  *	the system immediately, or loop for ever on failure.
1063  */
1064 static int kdb_reboot(int argc, const char **argv)
1065 {
1066 	emergency_restart();
1067 	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1068 	while (1)
1069 		cpu_relax();
1070 	/* NOTREACHED */
1071 	return 0;
1072 }
1073 
1074 static void kdb_dumpregs(struct pt_regs *regs)
1075 {
1076 	int old_lvl = console_loglevel;
1077 	console_loglevel = 15;
1078 	kdb_trap_printk++;
1079 	show_regs(regs);
1080 	kdb_trap_printk--;
1081 	kdb_printf("\n");
1082 	console_loglevel = old_lvl;
1083 }
1084 
1085 void kdb_set_current_task(struct task_struct *p)
1086 {
1087 	kdb_current_task = p;
1088 
1089 	if (kdb_task_has_cpu(p)) {
1090 		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1091 		return;
1092 	}
1093 	kdb_current_regs = NULL;
1094 }
1095 
1096 /*
1097  * kdb_local - The main code for kdb.  This routine is invoked on a
1098  *	specific processor, it is not global.  The main kdb() routine
1099  *	ensures that only one processor at a time is in this routine.
1100  *	This code is called with the real reason code on the first
1101  *	entry to a kdb session, thereafter it is called with reason
1102  *	SWITCH, even if the user goes back to the original cpu.
1103  * Inputs:
1104  *	reason		The reason KDB was invoked
1105  *	error		The hardware-defined error code
1106  *	regs		The exception frame at time of fault/breakpoint.
1107  *	db_result	Result code from the break or debug point.
1108  * Returns:
1109  *	0	KDB was invoked for an event which it wasn't responsible
1110  *	1	KDB handled the event for which it was invoked.
1111  *	KDB_CMD_GO	User typed 'go'.
1112  *	KDB_CMD_CPU	User switched to another cpu.
1113  *	KDB_CMD_SS	Single step.
1114  *	KDB_CMD_SSB	Single step until branch.
1115  */
1116 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1117 		     kdb_dbtrap_t db_result)
1118 {
1119 	char *cmdbuf;
1120 	int diag;
1121 	struct task_struct *kdb_current =
1122 		kdb_curr_task(raw_smp_processor_id());
1123 
1124 	KDB_DEBUG_STATE("kdb_local 1", reason);
1125 	kdb_go_count = 0;
1126 	if (reason == KDB_REASON_DEBUG) {
1127 		/* special case below */
1128 	} else {
1129 		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130 			   kdb_current, kdb_current->pid);
1131 #if defined(CONFIG_SMP)
1132 		kdb_printf("on processor %d ", raw_smp_processor_id());
1133 #endif
1134 	}
1135 
1136 	switch (reason) {
1137 	case KDB_REASON_DEBUG:
1138 	{
1139 		/*
1140 		 * If re-entering kdb after a single step
1141 		 * command, don't print the message.
1142 		 */
1143 		switch (db_result) {
1144 		case KDB_DB_BPT:
1145 			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146 				   kdb_current, kdb_current->pid);
1147 #if defined(CONFIG_SMP)
1148 			kdb_printf("on processor %d ", raw_smp_processor_id());
1149 #endif
1150 			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1151 				   instruction_pointer(regs));
1152 			break;
1153 		case KDB_DB_SSB:
1154 			/*
1155 			 * In the midst of ssb command. Just return.
1156 			 */
1157 			KDB_DEBUG_STATE("kdb_local 3", reason);
1158 			return KDB_CMD_SSB;	/* Continue with SSB command */
1159 
1160 			break;
1161 		case KDB_DB_SS:
1162 			break;
1163 		case KDB_DB_SSBPT:
1164 			KDB_DEBUG_STATE("kdb_local 4", reason);
1165 			return 1;	/* kdba_db_trap did the work */
1166 		default:
1167 			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1168 				   db_result);
1169 			break;
1170 		}
1171 
1172 	}
1173 		break;
1174 	case KDB_REASON_ENTER:
1175 		if (KDB_STATE(KEYBOARD))
1176 			kdb_printf("due to Keyboard Entry\n");
1177 		else
1178 			kdb_printf("due to KDB_ENTER()\n");
1179 		break;
1180 	case KDB_REASON_KEYBOARD:
1181 		KDB_STATE_SET(KEYBOARD);
1182 		kdb_printf("due to Keyboard Entry\n");
1183 		break;
1184 	case KDB_REASON_ENTER_SLAVE:
1185 		/* drop through, slaves only get released via cpu switch */
1186 	case KDB_REASON_SWITCH:
1187 		kdb_printf("due to cpu switch\n");
1188 		break;
1189 	case KDB_REASON_OOPS:
1190 		kdb_printf("Oops: %s\n", kdb_diemsg);
1191 		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1192 			   instruction_pointer(regs));
1193 		kdb_dumpregs(regs);
1194 		break;
1195 	case KDB_REASON_NMI:
1196 		kdb_printf("due to NonMaskable Interrupt @ "
1197 			   kdb_machreg_fmt "\n",
1198 			   instruction_pointer(regs));
1199 		kdb_dumpregs(regs);
1200 		break;
1201 	case KDB_REASON_SSTEP:
1202 	case KDB_REASON_BREAK:
1203 		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1204 			   reason == KDB_REASON_BREAK ?
1205 			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1206 		/*
1207 		 * Determine if this breakpoint is one that we
1208 		 * are interested in.
1209 		 */
1210 		if (db_result != KDB_DB_BPT) {
1211 			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1212 				   db_result);
1213 			KDB_DEBUG_STATE("kdb_local 6", reason);
1214 			return 0;	/* Not for us, dismiss it */
1215 		}
1216 		break;
1217 	case KDB_REASON_RECURSE:
1218 		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1219 			   instruction_pointer(regs));
1220 		break;
1221 	default:
1222 		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1223 		KDB_DEBUG_STATE("kdb_local 8", reason);
1224 		return 0;	/* Not for us, dismiss it */
1225 	}
1226 
1227 	while (1) {
1228 		/*
1229 		 * Initialize pager context.
1230 		 */
1231 		kdb_nextline = 1;
1232 		KDB_STATE_CLEAR(SUPPRESS);
1233 
1234 		cmdbuf = cmd_cur;
1235 		*cmdbuf = '\0';
1236 		*(cmd_hist[cmd_head]) = '\0';
1237 
1238 		if (KDB_FLAG(ONLY_DO_DUMP)) {
1239 			/* kdb is off but a catastrophic error requires a dump.
1240 			 * Take the dump and reboot.
1241 			 * Turn on logging so the kdb output appears in the log
1242 			 * buffer in the dump.
1243 			 */
1244 			const char *setargs[] = { "set", "LOGGING", "1" };
1245 			kdb_set(2, setargs);
1246 			kdb_reboot(0, NULL);
1247 			/*NOTREACHED*/
1248 		}
1249 
1250 do_full_getstr:
1251 #if defined(CONFIG_SMP)
1252 		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1253 			 raw_smp_processor_id());
1254 #else
1255 		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1256 #endif
1257 		if (defcmd_in_progress)
1258 			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1259 
1260 		/*
1261 		 * Fetch command from keyboard
1262 		 */
1263 		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1264 		if (*cmdbuf != '\n') {
1265 			if (*cmdbuf < 32) {
1266 				if (cmdptr == cmd_head) {
1267 					strncpy(cmd_hist[cmd_head], cmd_cur,
1268 						CMD_BUFLEN);
1269 					*(cmd_hist[cmd_head] +
1270 					  strlen(cmd_hist[cmd_head])-1) = '\0';
1271 				}
1272 				if (!handle_ctrl_cmd(cmdbuf))
1273 					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1274 				cmdbuf = cmd_cur;
1275 				goto do_full_getstr;
1276 			} else {
1277 				strncpy(cmd_hist[cmd_head], cmd_cur,
1278 					CMD_BUFLEN);
1279 			}
1280 
1281 			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1282 			if (cmd_head == cmd_tail)
1283 				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1284 		}
1285 
1286 		cmdptr = cmd_head;
1287 		diag = kdb_parse(cmdbuf);
1288 		if (diag == KDB_NOTFOUND) {
1289 			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1290 			diag = 0;
1291 		}
1292 		if (diag == KDB_CMD_GO
1293 		 || diag == KDB_CMD_CPU
1294 		 || diag == KDB_CMD_SS
1295 		 || diag == KDB_CMD_SSB
1296 		 || diag == KDB_CMD_KGDB)
1297 			break;
1298 
1299 		if (diag)
1300 			kdb_cmderror(diag);
1301 	}
1302 	KDB_DEBUG_STATE("kdb_local 9", diag);
1303 	return diag;
1304 }
1305 
1306 
1307 /*
1308  * kdb_print_state - Print the state data for the current processor
1309  *	for debugging.
1310  * Inputs:
1311  *	text		Identifies the debug point
1312  *	value		Any integer value to be printed, e.g. reason code.
1313  */
1314 void kdb_print_state(const char *text, int value)
1315 {
1316 	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1317 		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1318 		   kdb_state);
1319 }
1320 
1321 /*
1322  * kdb_main_loop - After initial setup and assignment of the
1323  *	controlling cpu, all cpus are in this loop.  One cpu is in
1324  *	control and will issue the kdb prompt, the others will spin
1325  *	until 'go' or cpu switch.
1326  *
1327  *	To get a consistent view of the kernel stacks for all
1328  *	processes, this routine is invoked from the main kdb code via
1329  *	an architecture specific routine.  kdba_main_loop is
1330  *	responsible for making the kernel stacks consistent for all
1331  *	processes, there should be no difference between a blocked
1332  *	process and a running process as far as kdb is concerned.
1333  * Inputs:
1334  *	reason		The reason KDB was invoked
1335  *	error		The hardware-defined error code
1336  *	reason2		kdb's current reason code.
1337  *			Initially error but can change
1338  *			acording to kdb state.
1339  *	db_result	Result code from break or debug point.
1340  *	regs		The exception frame at time of fault/breakpoint.
1341  *			should always be valid.
1342  * Returns:
1343  *	0	KDB was invoked for an event which it wasn't responsible
1344  *	1	KDB handled the event for which it was invoked.
1345  */
1346 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1347 	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1348 {
1349 	int result = 1;
1350 	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1351 	while (1) {
1352 		/*
1353 		 * All processors except the one that is in control
1354 		 * will spin here.
1355 		 */
1356 		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1357 		while (KDB_STATE(HOLD_CPU)) {
1358 			/* state KDB is turned off by kdb_cpu to see if the
1359 			 * other cpus are still live, each cpu in this loop
1360 			 * turns it back on.
1361 			 */
1362 			if (!KDB_STATE(KDB))
1363 				KDB_STATE_SET(KDB);
1364 		}
1365 
1366 		KDB_STATE_CLEAR(SUPPRESS);
1367 		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1368 		if (KDB_STATE(LEAVING))
1369 			break;	/* Another cpu said 'go' */
1370 		/* Still using kdb, this processor is in control */
1371 		result = kdb_local(reason2, error, regs, db_result);
1372 		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1373 
1374 		if (result == KDB_CMD_CPU)
1375 			break;
1376 
1377 		if (result == KDB_CMD_SS) {
1378 			KDB_STATE_SET(DOING_SS);
1379 			break;
1380 		}
1381 
1382 		if (result == KDB_CMD_SSB) {
1383 			KDB_STATE_SET(DOING_SS);
1384 			KDB_STATE_SET(DOING_SSB);
1385 			break;
1386 		}
1387 
1388 		if (result == KDB_CMD_KGDB) {
1389 			if (!(KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2)))
1390 				kdb_printf("Entering please attach debugger "
1391 					   "or use $D#44+ or $3#33\n");
1392 			break;
1393 		}
1394 		if (result && result != 1 && result != KDB_CMD_GO)
1395 			kdb_printf("\nUnexpected kdb_local return code %d\n",
1396 				   result);
1397 		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1398 		break;
1399 	}
1400 	if (KDB_STATE(DOING_SS))
1401 		KDB_STATE_CLEAR(SSBPT);
1402 
1403 	return result;
1404 }
1405 
1406 /*
1407  * kdb_mdr - This function implements the guts of the 'mdr', memory
1408  * read command.
1409  *	mdr  <addr arg>,<byte count>
1410  * Inputs:
1411  *	addr	Start address
1412  *	count	Number of bytes
1413  * Returns:
1414  *	Always 0.  Any errors are detected and printed by kdb_getarea.
1415  */
1416 static int kdb_mdr(unsigned long addr, unsigned int count)
1417 {
1418 	unsigned char c;
1419 	while (count--) {
1420 		if (kdb_getarea(c, addr))
1421 			return 0;
1422 		kdb_printf("%02x", c);
1423 		addr++;
1424 	}
1425 	kdb_printf("\n");
1426 	return 0;
1427 }
1428 
1429 /*
1430  * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1431  *	'md8' 'mdr' and 'mds' commands.
1432  *
1433  *	md|mds  [<addr arg> [<line count> [<radix>]]]
1434  *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1435  *		where W = is the width (1, 2, 4 or 8) and N is the count.
1436  *		for eg., md1c20 reads 20 bytes, 1 at a time.
1437  *	mdr  <addr arg>,<byte count>
1438  */
1439 static void kdb_md_line(const char *fmtstr, unsigned long addr,
1440 			int symbolic, int nosect, int bytesperword,
1441 			int num, int repeat, int phys)
1442 {
1443 	/* print just one line of data */
1444 	kdb_symtab_t symtab;
1445 	char cbuf[32];
1446 	char *c = cbuf;
1447 	int i;
1448 	unsigned long word;
1449 
1450 	memset(cbuf, '\0', sizeof(cbuf));
1451 	if (phys)
1452 		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1453 	else
1454 		kdb_printf(kdb_machreg_fmt0 " ", addr);
1455 
1456 	for (i = 0; i < num && repeat--; i++) {
1457 		if (phys) {
1458 			if (kdb_getphysword(&word, addr, bytesperword))
1459 				break;
1460 		} else if (kdb_getword(&word, addr, bytesperword))
1461 			break;
1462 		kdb_printf(fmtstr, word);
1463 		if (symbolic)
1464 			kdbnearsym(word, &symtab);
1465 		else
1466 			memset(&symtab, 0, sizeof(symtab));
1467 		if (symtab.sym_name) {
1468 			kdb_symbol_print(word, &symtab, 0);
1469 			if (!nosect) {
1470 				kdb_printf("\n");
1471 				kdb_printf("                       %s %s "
1472 					   kdb_machreg_fmt " "
1473 					   kdb_machreg_fmt " "
1474 					   kdb_machreg_fmt, symtab.mod_name,
1475 					   symtab.sec_name, symtab.sec_start,
1476 					   symtab.sym_start, symtab.sym_end);
1477 			}
1478 			addr += bytesperword;
1479 		} else {
1480 			union {
1481 				u64 word;
1482 				unsigned char c[8];
1483 			} wc;
1484 			unsigned char *cp;
1485 #ifdef	__BIG_ENDIAN
1486 			cp = wc.c + 8 - bytesperword;
1487 #else
1488 			cp = wc.c;
1489 #endif
1490 			wc.word = word;
1491 #define printable_char(c) \
1492 	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1493 			switch (bytesperword) {
1494 			case 8:
1495 				*c++ = printable_char(*cp++);
1496 				*c++ = printable_char(*cp++);
1497 				*c++ = printable_char(*cp++);
1498 				*c++ = printable_char(*cp++);
1499 				addr += 4;
1500 			case 4:
1501 				*c++ = printable_char(*cp++);
1502 				*c++ = printable_char(*cp++);
1503 				addr += 2;
1504 			case 2:
1505 				*c++ = printable_char(*cp++);
1506 				addr++;
1507 			case 1:
1508 				*c++ = printable_char(*cp++);
1509 				addr++;
1510 				break;
1511 			}
1512 #undef printable_char
1513 		}
1514 	}
1515 	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1516 		   " ", cbuf);
1517 }
1518 
1519 static int kdb_md(int argc, const char **argv)
1520 {
1521 	static unsigned long last_addr;
1522 	static int last_radix, last_bytesperword, last_repeat;
1523 	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1524 	int nosect = 0;
1525 	char fmtchar, fmtstr[64];
1526 	unsigned long addr;
1527 	unsigned long word;
1528 	long offset = 0;
1529 	int symbolic = 0;
1530 	int valid = 0;
1531 	int phys = 0;
1532 
1533 	kdbgetintenv("MDCOUNT", &mdcount);
1534 	kdbgetintenv("RADIX", &radix);
1535 	kdbgetintenv("BYTESPERWORD", &bytesperword);
1536 
1537 	/* Assume 'md <addr>' and start with environment values */
1538 	repeat = mdcount * 16 / bytesperword;
1539 
1540 	if (strcmp(argv[0], "mdr") == 0) {
1541 		if (argc != 2)
1542 			return KDB_ARGCOUNT;
1543 		valid = 1;
1544 	} else if (isdigit(argv[0][2])) {
1545 		bytesperword = (int)(argv[0][2] - '0');
1546 		if (bytesperword == 0) {
1547 			bytesperword = last_bytesperword;
1548 			if (bytesperword == 0)
1549 				bytesperword = 4;
1550 		}
1551 		last_bytesperword = bytesperword;
1552 		repeat = mdcount * 16 / bytesperword;
1553 		if (!argv[0][3])
1554 			valid = 1;
1555 		else if (argv[0][3] == 'c' && argv[0][4]) {
1556 			char *p;
1557 			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1558 			mdcount = ((repeat * bytesperword) + 15) / 16;
1559 			valid = !*p;
1560 		}
1561 		last_repeat = repeat;
1562 	} else if (strcmp(argv[0], "md") == 0)
1563 		valid = 1;
1564 	else if (strcmp(argv[0], "mds") == 0)
1565 		valid = 1;
1566 	else if (strcmp(argv[0], "mdp") == 0) {
1567 		phys = valid = 1;
1568 	}
1569 	if (!valid)
1570 		return KDB_NOTFOUND;
1571 
1572 	if (argc == 0) {
1573 		if (last_addr == 0)
1574 			return KDB_ARGCOUNT;
1575 		addr = last_addr;
1576 		radix = last_radix;
1577 		bytesperword = last_bytesperword;
1578 		repeat = last_repeat;
1579 		mdcount = ((repeat * bytesperword) + 15) / 16;
1580 	}
1581 
1582 	if (argc) {
1583 		unsigned long val;
1584 		int diag, nextarg = 1;
1585 		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1586 				     &offset, NULL);
1587 		if (diag)
1588 			return diag;
1589 		if (argc > nextarg+2)
1590 			return KDB_ARGCOUNT;
1591 
1592 		if (argc >= nextarg) {
1593 			diag = kdbgetularg(argv[nextarg], &val);
1594 			if (!diag) {
1595 				mdcount = (int) val;
1596 				repeat = mdcount * 16 / bytesperword;
1597 			}
1598 		}
1599 		if (argc >= nextarg+1) {
1600 			diag = kdbgetularg(argv[nextarg+1], &val);
1601 			if (!diag)
1602 				radix = (int) val;
1603 		}
1604 	}
1605 
1606 	if (strcmp(argv[0], "mdr") == 0)
1607 		return kdb_mdr(addr, mdcount);
1608 
1609 	switch (radix) {
1610 	case 10:
1611 		fmtchar = 'd';
1612 		break;
1613 	case 16:
1614 		fmtchar = 'x';
1615 		break;
1616 	case 8:
1617 		fmtchar = 'o';
1618 		break;
1619 	default:
1620 		return KDB_BADRADIX;
1621 	}
1622 
1623 	last_radix = radix;
1624 
1625 	if (bytesperword > KDB_WORD_SIZE)
1626 		return KDB_BADWIDTH;
1627 
1628 	switch (bytesperword) {
1629 	case 8:
1630 		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1631 		break;
1632 	case 4:
1633 		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1634 		break;
1635 	case 2:
1636 		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1637 		break;
1638 	case 1:
1639 		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1640 		break;
1641 	default:
1642 		return KDB_BADWIDTH;
1643 	}
1644 
1645 	last_repeat = repeat;
1646 	last_bytesperword = bytesperword;
1647 
1648 	if (strcmp(argv[0], "mds") == 0) {
1649 		symbolic = 1;
1650 		/* Do not save these changes as last_*, they are temporary mds
1651 		 * overrides.
1652 		 */
1653 		bytesperword = KDB_WORD_SIZE;
1654 		repeat = mdcount;
1655 		kdbgetintenv("NOSECT", &nosect);
1656 	}
1657 
1658 	/* Round address down modulo BYTESPERWORD */
1659 
1660 	addr &= ~(bytesperword-1);
1661 
1662 	while (repeat > 0) {
1663 		unsigned long a;
1664 		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1665 
1666 		if (KDB_FLAG(CMD_INTERRUPT))
1667 			return 0;
1668 		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1669 			if (phys) {
1670 				if (kdb_getphysword(&word, a, bytesperword)
1671 						|| word)
1672 					break;
1673 			} else if (kdb_getword(&word, a, bytesperword) || word)
1674 				break;
1675 		}
1676 		n = min(num, repeat);
1677 		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1678 			    num, repeat, phys);
1679 		addr += bytesperword * n;
1680 		repeat -= n;
1681 		z = (z + num - 1) / num;
1682 		if (z > 2) {
1683 			int s = num * (z-2);
1684 			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1685 				   " zero suppressed\n",
1686 				addr, addr + bytesperword * s - 1);
1687 			addr += bytesperword * s;
1688 			repeat -= s;
1689 		}
1690 	}
1691 	last_addr = addr;
1692 
1693 	return 0;
1694 }
1695 
1696 /*
1697  * kdb_mm - This function implements the 'mm' command.
1698  *	mm address-expression new-value
1699  * Remarks:
1700  *	mm works on machine words, mmW works on bytes.
1701  */
1702 static int kdb_mm(int argc, const char **argv)
1703 {
1704 	int diag;
1705 	unsigned long addr;
1706 	long offset = 0;
1707 	unsigned long contents;
1708 	int nextarg;
1709 	int width;
1710 
1711 	if (argv[0][2] && !isdigit(argv[0][2]))
1712 		return KDB_NOTFOUND;
1713 
1714 	if (argc < 2)
1715 		return KDB_ARGCOUNT;
1716 
1717 	nextarg = 1;
1718 	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1719 	if (diag)
1720 		return diag;
1721 
1722 	if (nextarg > argc)
1723 		return KDB_ARGCOUNT;
1724 	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1725 	if (diag)
1726 		return diag;
1727 
1728 	if (nextarg != argc + 1)
1729 		return KDB_ARGCOUNT;
1730 
1731 	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1732 	diag = kdb_putword(addr, contents, width);
1733 	if (diag)
1734 		return diag;
1735 
1736 	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1737 
1738 	return 0;
1739 }
1740 
1741 /*
1742  * kdb_go - This function implements the 'go' command.
1743  *	go [address-expression]
1744  */
1745 static int kdb_go(int argc, const char **argv)
1746 {
1747 	unsigned long addr;
1748 	int diag;
1749 	int nextarg;
1750 	long offset;
1751 
1752 	if (raw_smp_processor_id() != kdb_initial_cpu) {
1753 		kdb_printf("go must execute on the entry cpu, "
1754 			   "please use \"cpu %d\" and then execute go\n",
1755 			   kdb_initial_cpu);
1756 		return KDB_BADCPUNUM;
1757 	}
1758 	if (argc == 1) {
1759 		nextarg = 1;
1760 		diag = kdbgetaddrarg(argc, argv, &nextarg,
1761 				     &addr, &offset, NULL);
1762 		if (diag)
1763 			return diag;
1764 	} else if (argc) {
1765 		return KDB_ARGCOUNT;
1766 	}
1767 
1768 	diag = KDB_CMD_GO;
1769 	if (KDB_FLAG(CATASTROPHIC)) {
1770 		kdb_printf("Catastrophic error detected\n");
1771 		kdb_printf("kdb_continue_catastrophic=%d, ",
1772 			kdb_continue_catastrophic);
1773 		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1774 			kdb_printf("type go a second time if you really want "
1775 				   "to continue\n");
1776 			return 0;
1777 		}
1778 		if (kdb_continue_catastrophic == 2) {
1779 			kdb_printf("forcing reboot\n");
1780 			kdb_reboot(0, NULL);
1781 		}
1782 		kdb_printf("attempting to continue\n");
1783 	}
1784 	return diag;
1785 }
1786 
1787 /*
1788  * kdb_rd - This function implements the 'rd' command.
1789  */
1790 static int kdb_rd(int argc, const char **argv)
1791 {
1792 	int len = kdb_check_regs();
1793 #if DBG_MAX_REG_NUM > 0
1794 	int i;
1795 	char *rname;
1796 	int rsize;
1797 	u64 reg64;
1798 	u32 reg32;
1799 	u16 reg16;
1800 	u8 reg8;
1801 
1802 	if (len)
1803 		return len;
1804 
1805 	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1806 		rsize = dbg_reg_def[i].size * 2;
1807 		if (rsize > 16)
1808 			rsize = 2;
1809 		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1810 			len = 0;
1811 			kdb_printf("\n");
1812 		}
1813 		if (len)
1814 			len += kdb_printf("  ");
1815 		switch(dbg_reg_def[i].size * 8) {
1816 		case 8:
1817 			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1818 			if (!rname)
1819 				break;
1820 			len += kdb_printf("%s: %02x", rname, reg8);
1821 			break;
1822 		case 16:
1823 			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1824 			if (!rname)
1825 				break;
1826 			len += kdb_printf("%s: %04x", rname, reg16);
1827 			break;
1828 		case 32:
1829 			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1830 			if (!rname)
1831 				break;
1832 			len += kdb_printf("%s: %08x", rname, reg32);
1833 			break;
1834 		case 64:
1835 			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1836 			if (!rname)
1837 				break;
1838 			len += kdb_printf("%s: %016llx", rname, reg64);
1839 			break;
1840 		default:
1841 			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1842 		}
1843 	}
1844 	kdb_printf("\n");
1845 #else
1846 	if (len)
1847 		return len;
1848 
1849 	kdb_dumpregs(kdb_current_regs);
1850 #endif
1851 	return 0;
1852 }
1853 
1854 /*
1855  * kdb_rm - This function implements the 'rm' (register modify)  command.
1856  *	rm register-name new-contents
1857  * Remarks:
1858  *	Allows register modification with the same restrictions as gdb
1859  */
1860 static int kdb_rm(int argc, const char **argv)
1861 {
1862 #if DBG_MAX_REG_NUM > 0
1863 	int diag;
1864 	const char *rname;
1865 	int i;
1866 	u64 reg64;
1867 	u32 reg32;
1868 	u16 reg16;
1869 	u8 reg8;
1870 
1871 	if (argc != 2)
1872 		return KDB_ARGCOUNT;
1873 	/*
1874 	 * Allow presence or absence of leading '%' symbol.
1875 	 */
1876 	rname = argv[1];
1877 	if (*rname == '%')
1878 		rname++;
1879 
1880 	diag = kdbgetu64arg(argv[2], &reg64);
1881 	if (diag)
1882 		return diag;
1883 
1884 	diag = kdb_check_regs();
1885 	if (diag)
1886 		return diag;
1887 
1888 	diag = KDB_BADREG;
1889 	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1890 		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1891 			diag = 0;
1892 			break;
1893 		}
1894 	}
1895 	if (!diag) {
1896 		switch(dbg_reg_def[i].size * 8) {
1897 		case 8:
1898 			reg8 = reg64;
1899 			dbg_set_reg(i, &reg8, kdb_current_regs);
1900 			break;
1901 		case 16:
1902 			reg16 = reg64;
1903 			dbg_set_reg(i, &reg16, kdb_current_regs);
1904 			break;
1905 		case 32:
1906 			reg32 = reg64;
1907 			dbg_set_reg(i, &reg32, kdb_current_regs);
1908 			break;
1909 		case 64:
1910 			dbg_set_reg(i, &reg64, kdb_current_regs);
1911 			break;
1912 		}
1913 	}
1914 	return diag;
1915 #else
1916 	kdb_printf("ERROR: Register set currently not implemented\n");
1917     return 0;
1918 #endif
1919 }
1920 
1921 #if defined(CONFIG_MAGIC_SYSRQ)
1922 /*
1923  * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1924  *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1925  *		sr <magic-sysrq-code>
1926  */
1927 static int kdb_sr(int argc, const char **argv)
1928 {
1929 	if (argc != 1)
1930 		return KDB_ARGCOUNT;
1931 	kdb_trap_printk++;
1932 	__handle_sysrq(*argv[1], false);
1933 	kdb_trap_printk--;
1934 
1935 	return 0;
1936 }
1937 #endif	/* CONFIG_MAGIC_SYSRQ */
1938 
1939 /*
1940  * kdb_ef - This function implements the 'regs' (display exception
1941  *	frame) command.  This command takes an address and expects to
1942  *	find an exception frame at that address, formats and prints
1943  *	it.
1944  *		regs address-expression
1945  * Remarks:
1946  *	Not done yet.
1947  */
1948 static int kdb_ef(int argc, const char **argv)
1949 {
1950 	int diag;
1951 	unsigned long addr;
1952 	long offset;
1953 	int nextarg;
1954 
1955 	if (argc != 1)
1956 		return KDB_ARGCOUNT;
1957 
1958 	nextarg = 1;
1959 	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1960 	if (diag)
1961 		return diag;
1962 	show_regs((struct pt_regs *)addr);
1963 	return 0;
1964 }
1965 
1966 #if defined(CONFIG_MODULES)
1967 /*
1968  * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1969  *	currently loaded kernel modules.
1970  *	Mostly taken from userland lsmod.
1971  */
1972 static int kdb_lsmod(int argc, const char **argv)
1973 {
1974 	struct module *mod;
1975 
1976 	if (argc != 0)
1977 		return KDB_ARGCOUNT;
1978 
1979 	kdb_printf("Module                  Size  modstruct     Used by\n");
1980 	list_for_each_entry(mod, kdb_modules, list) {
1981 
1982 		kdb_printf("%-20s%8u  0x%p ", mod->name,
1983 			   mod->core_size, (void *)mod);
1984 #ifdef CONFIG_MODULE_UNLOAD
1985 		kdb_printf("%4d ", module_refcount(mod));
1986 #endif
1987 		if (mod->state == MODULE_STATE_GOING)
1988 			kdb_printf(" (Unloading)");
1989 		else if (mod->state == MODULE_STATE_COMING)
1990 			kdb_printf(" (Loading)");
1991 		else
1992 			kdb_printf(" (Live)");
1993 		kdb_printf(" 0x%p", mod->module_core);
1994 
1995 #ifdef CONFIG_MODULE_UNLOAD
1996 		{
1997 			struct module_use *use;
1998 			kdb_printf(" [ ");
1999 			list_for_each_entry(use, &mod->source_list,
2000 					    source_list)
2001 				kdb_printf("%s ", use->target->name);
2002 			kdb_printf("]\n");
2003 		}
2004 #endif
2005 	}
2006 
2007 	return 0;
2008 }
2009 
2010 #endif	/* CONFIG_MODULES */
2011 
2012 /*
2013  * kdb_env - This function implements the 'env' command.  Display the
2014  *	current environment variables.
2015  */
2016 
2017 static int kdb_env(int argc, const char **argv)
2018 {
2019 	int i;
2020 
2021 	for (i = 0; i < __nenv; i++) {
2022 		if (__env[i])
2023 			kdb_printf("%s\n", __env[i]);
2024 	}
2025 
2026 	if (KDB_DEBUG(MASK))
2027 		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2028 
2029 	return 0;
2030 }
2031 
2032 #ifdef CONFIG_PRINTK
2033 /*
2034  * kdb_dmesg - This function implements the 'dmesg' command to display
2035  *	the contents of the syslog buffer.
2036  *		dmesg [lines] [adjust]
2037  */
2038 static int kdb_dmesg(int argc, const char **argv)
2039 {
2040 	char *syslog_data[4], *start, *end, c = '\0', *p;
2041 	int diag, logging, logsize, lines = 0, adjust = 0, n;
2042 
2043 	if (argc > 2)
2044 		return KDB_ARGCOUNT;
2045 	if (argc) {
2046 		char *cp;
2047 		lines = simple_strtol(argv[1], &cp, 0);
2048 		if (*cp)
2049 			lines = 0;
2050 		if (argc > 1) {
2051 			adjust = simple_strtoul(argv[2], &cp, 0);
2052 			if (*cp || adjust < 0)
2053 				adjust = 0;
2054 		}
2055 	}
2056 
2057 	/* disable LOGGING if set */
2058 	diag = kdbgetintenv("LOGGING", &logging);
2059 	if (!diag && logging) {
2060 		const char *setargs[] = { "set", "LOGGING", "0" };
2061 		kdb_set(2, setargs);
2062 	}
2063 
2064 	/* syslog_data[0,1] physical start, end+1.  syslog_data[2,3]
2065 	 * logical start, end+1. */
2066 	kdb_syslog_data(syslog_data);
2067 	if (syslog_data[2] == syslog_data[3])
2068 		return 0;
2069 	logsize = syslog_data[1] - syslog_data[0];
2070 	start = syslog_data[2];
2071 	end = syslog_data[3];
2072 #define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
2073 	for (n = 0, p = start; p < end; ++p) {
2074 		c = *KDB_WRAP(p);
2075 		if (c == '\n')
2076 			++n;
2077 	}
2078 	if (c != '\n')
2079 		++n;
2080 	if (lines < 0) {
2081 		if (adjust >= n)
2082 			kdb_printf("buffer only contains %d lines, nothing "
2083 				   "printed\n", n);
2084 		else if (adjust - lines >= n)
2085 			kdb_printf("buffer only contains %d lines, last %d "
2086 				   "lines printed\n", n, n - adjust);
2087 		if (adjust) {
2088 			for (; start < end && adjust; ++start) {
2089 				if (*KDB_WRAP(start) == '\n')
2090 					--adjust;
2091 			}
2092 			if (start < end)
2093 				++start;
2094 		}
2095 		for (p = start; p < end && lines; ++p) {
2096 			if (*KDB_WRAP(p) == '\n')
2097 				++lines;
2098 		}
2099 		end = p;
2100 	} else if (lines > 0) {
2101 		int skip = n - (adjust + lines);
2102 		if (adjust >= n) {
2103 			kdb_printf("buffer only contains %d lines, "
2104 				   "nothing printed\n", n);
2105 			skip = n;
2106 		} else if (skip < 0) {
2107 			lines += skip;
2108 			skip = 0;
2109 			kdb_printf("buffer only contains %d lines, first "
2110 				   "%d lines printed\n", n, lines);
2111 		}
2112 		for (; start < end && skip; ++start) {
2113 			if (*KDB_WRAP(start) == '\n')
2114 				--skip;
2115 		}
2116 		for (p = start; p < end && lines; ++p) {
2117 			if (*KDB_WRAP(p) == '\n')
2118 				--lines;
2119 		}
2120 		end = p;
2121 	}
2122 	/* Do a line at a time (max 200 chars) to reduce protocol overhead */
2123 	c = '\n';
2124 	while (start != end) {
2125 		char buf[201];
2126 		p = buf;
2127 		if (KDB_FLAG(CMD_INTERRUPT))
2128 			return 0;
2129 		while (start < end && (c = *KDB_WRAP(start)) &&
2130 		       (p - buf) < sizeof(buf)-1) {
2131 			++start;
2132 			*p++ = c;
2133 			if (c == '\n')
2134 				break;
2135 		}
2136 		*p = '\0';
2137 		kdb_printf("%s", buf);
2138 	}
2139 	if (c != '\n')
2140 		kdb_printf("\n");
2141 
2142 	return 0;
2143 }
2144 #endif /* CONFIG_PRINTK */
2145 /*
2146  * kdb_cpu - This function implements the 'cpu' command.
2147  *	cpu	[<cpunum>]
2148  * Returns:
2149  *	KDB_CMD_CPU for success, a kdb diagnostic if error
2150  */
2151 static void kdb_cpu_status(void)
2152 {
2153 	int i, start_cpu, first_print = 1;
2154 	char state, prev_state = '?';
2155 
2156 	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2157 	kdb_printf("Available cpus: ");
2158 	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2159 		if (!cpu_online(i)) {
2160 			state = 'F';	/* cpu is offline */
2161 		} else {
2162 			state = ' ';	/* cpu is responding to kdb */
2163 			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2164 				state = 'I';	/* idle task */
2165 		}
2166 		if (state != prev_state) {
2167 			if (prev_state != '?') {
2168 				if (!first_print)
2169 					kdb_printf(", ");
2170 				first_print = 0;
2171 				kdb_printf("%d", start_cpu);
2172 				if (start_cpu < i-1)
2173 					kdb_printf("-%d", i-1);
2174 				if (prev_state != ' ')
2175 					kdb_printf("(%c)", prev_state);
2176 			}
2177 			prev_state = state;
2178 			start_cpu = i;
2179 		}
2180 	}
2181 	/* print the trailing cpus, ignoring them if they are all offline */
2182 	if (prev_state != 'F') {
2183 		if (!first_print)
2184 			kdb_printf(", ");
2185 		kdb_printf("%d", start_cpu);
2186 		if (start_cpu < i-1)
2187 			kdb_printf("-%d", i-1);
2188 		if (prev_state != ' ')
2189 			kdb_printf("(%c)", prev_state);
2190 	}
2191 	kdb_printf("\n");
2192 }
2193 
2194 static int kdb_cpu(int argc, const char **argv)
2195 {
2196 	unsigned long cpunum;
2197 	int diag;
2198 
2199 	if (argc == 0) {
2200 		kdb_cpu_status();
2201 		return 0;
2202 	}
2203 
2204 	if (argc != 1)
2205 		return KDB_ARGCOUNT;
2206 
2207 	diag = kdbgetularg(argv[1], &cpunum);
2208 	if (diag)
2209 		return diag;
2210 
2211 	/*
2212 	 * Validate cpunum
2213 	 */
2214 	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2215 		return KDB_BADCPUNUM;
2216 
2217 	dbg_switch_cpu = cpunum;
2218 
2219 	/*
2220 	 * Switch to other cpu
2221 	 */
2222 	return KDB_CMD_CPU;
2223 }
2224 
2225 /* The user may not realize that ps/bta with no parameters does not print idle
2226  * or sleeping system daemon processes, so tell them how many were suppressed.
2227  */
2228 void kdb_ps_suppressed(void)
2229 {
2230 	int idle = 0, daemon = 0;
2231 	unsigned long mask_I = kdb_task_state_string("I"),
2232 		      mask_M = kdb_task_state_string("M");
2233 	unsigned long cpu;
2234 	const struct task_struct *p, *g;
2235 	for_each_online_cpu(cpu) {
2236 		p = kdb_curr_task(cpu);
2237 		if (kdb_task_state(p, mask_I))
2238 			++idle;
2239 	}
2240 	kdb_do_each_thread(g, p) {
2241 		if (kdb_task_state(p, mask_M))
2242 			++daemon;
2243 	} kdb_while_each_thread(g, p);
2244 	if (idle || daemon) {
2245 		if (idle)
2246 			kdb_printf("%d idle process%s (state I)%s\n",
2247 				   idle, idle == 1 ? "" : "es",
2248 				   daemon ? " and " : "");
2249 		if (daemon)
2250 			kdb_printf("%d sleeping system daemon (state M) "
2251 				   "process%s", daemon,
2252 				   daemon == 1 ? "" : "es");
2253 		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2254 	}
2255 }
2256 
2257 /*
2258  * kdb_ps - This function implements the 'ps' command which shows a
2259  *	list of the active processes.
2260  *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2261  */
2262 void kdb_ps1(const struct task_struct *p)
2263 {
2264 	int cpu;
2265 	unsigned long tmp;
2266 
2267 	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2268 		return;
2269 
2270 	cpu = kdb_process_cpu(p);
2271 	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2272 		   (void *)p, p->pid, p->parent->pid,
2273 		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2274 		   kdb_task_state_char(p),
2275 		   (void *)(&p->thread),
2276 		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2277 		   p->comm);
2278 	if (kdb_task_has_cpu(p)) {
2279 		if (!KDB_TSK(cpu)) {
2280 			kdb_printf("  Error: no saved data for this cpu\n");
2281 		} else {
2282 			if (KDB_TSK(cpu) != p)
2283 				kdb_printf("  Error: does not match running "
2284 				   "process table (0x%p)\n", KDB_TSK(cpu));
2285 		}
2286 	}
2287 }
2288 
2289 static int kdb_ps(int argc, const char **argv)
2290 {
2291 	struct task_struct *g, *p;
2292 	unsigned long mask, cpu;
2293 
2294 	if (argc == 0)
2295 		kdb_ps_suppressed();
2296 	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2297 		(int)(2*sizeof(void *))+2, "Task Addr",
2298 		(int)(2*sizeof(void *))+2, "Thread");
2299 	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2300 	/* Run the active tasks first */
2301 	for_each_online_cpu(cpu) {
2302 		if (KDB_FLAG(CMD_INTERRUPT))
2303 			return 0;
2304 		p = kdb_curr_task(cpu);
2305 		if (kdb_task_state(p, mask))
2306 			kdb_ps1(p);
2307 	}
2308 	kdb_printf("\n");
2309 	/* Now the real tasks */
2310 	kdb_do_each_thread(g, p) {
2311 		if (KDB_FLAG(CMD_INTERRUPT))
2312 			return 0;
2313 		if (kdb_task_state(p, mask))
2314 			kdb_ps1(p);
2315 	} kdb_while_each_thread(g, p);
2316 
2317 	return 0;
2318 }
2319 
2320 /*
2321  * kdb_pid - This function implements the 'pid' command which switches
2322  *	the currently active process.
2323  *		pid [<pid> | R]
2324  */
2325 static int kdb_pid(int argc, const char **argv)
2326 {
2327 	struct task_struct *p;
2328 	unsigned long val;
2329 	int diag;
2330 
2331 	if (argc > 1)
2332 		return KDB_ARGCOUNT;
2333 
2334 	if (argc) {
2335 		if (strcmp(argv[1], "R") == 0) {
2336 			p = KDB_TSK(kdb_initial_cpu);
2337 		} else {
2338 			diag = kdbgetularg(argv[1], &val);
2339 			if (diag)
2340 				return KDB_BADINT;
2341 
2342 			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2343 			if (!p) {
2344 				kdb_printf("No task with pid=%d\n", (pid_t)val);
2345 				return 0;
2346 			}
2347 		}
2348 		kdb_set_current_task(p);
2349 	}
2350 	kdb_printf("KDB current process is %s(pid=%d)\n",
2351 		   kdb_current_task->comm,
2352 		   kdb_current_task->pid);
2353 
2354 	return 0;
2355 }
2356 
2357 /*
2358  * kdb_ll - This function implements the 'll' command which follows a
2359  *	linked list and executes an arbitrary command for each
2360  *	element.
2361  */
2362 static int kdb_ll(int argc, const char **argv)
2363 {
2364 	int diag;
2365 	unsigned long addr;
2366 	long offset = 0;
2367 	unsigned long va;
2368 	unsigned long linkoffset;
2369 	int nextarg;
2370 	const char *command;
2371 
2372 	if (argc != 3)
2373 		return KDB_ARGCOUNT;
2374 
2375 	nextarg = 1;
2376 	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2377 	if (diag)
2378 		return diag;
2379 
2380 	diag = kdbgetularg(argv[2], &linkoffset);
2381 	if (diag)
2382 		return diag;
2383 
2384 	/*
2385 	 * Using the starting address as
2386 	 * the first element in the list, and assuming that
2387 	 * the list ends with a null pointer.
2388 	 */
2389 
2390 	va = addr;
2391 	command = kdb_strdup(argv[3], GFP_KDB);
2392 	if (!command) {
2393 		kdb_printf("%s: cannot duplicate command\n", __func__);
2394 		return 0;
2395 	}
2396 	/* Recursive use of kdb_parse, do not use argv after this point */
2397 	argv = NULL;
2398 
2399 	while (va) {
2400 		char buf[80];
2401 
2402 		if (KDB_FLAG(CMD_INTERRUPT))
2403 			return 0;
2404 
2405 		sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2406 		diag = kdb_parse(buf);
2407 		if (diag)
2408 			return diag;
2409 
2410 		addr = va + linkoffset;
2411 		if (kdb_getword(&va, addr, sizeof(va)))
2412 			return 0;
2413 	}
2414 	kfree(command);
2415 
2416 	return 0;
2417 }
2418 
2419 static int kdb_kgdb(int argc, const char **argv)
2420 {
2421 	return KDB_CMD_KGDB;
2422 }
2423 
2424 /*
2425  * kdb_help - This function implements the 'help' and '?' commands.
2426  */
2427 static int kdb_help(int argc, const char **argv)
2428 {
2429 	kdbtab_t *kt;
2430 	int i;
2431 
2432 	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2433 	kdb_printf("-----------------------------"
2434 		   "-----------------------------\n");
2435 	for_each_kdbcmd(kt, i) {
2436 		if (kt->cmd_name)
2437 			kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2438 				   kt->cmd_usage, kt->cmd_help);
2439 		if (KDB_FLAG(CMD_INTERRUPT))
2440 			return 0;
2441 	}
2442 	return 0;
2443 }
2444 
2445 /*
2446  * kdb_kill - This function implements the 'kill' commands.
2447  */
2448 static int kdb_kill(int argc, const char **argv)
2449 {
2450 	long sig, pid;
2451 	char *endp;
2452 	struct task_struct *p;
2453 	struct siginfo info;
2454 
2455 	if (argc != 2)
2456 		return KDB_ARGCOUNT;
2457 
2458 	sig = simple_strtol(argv[1], &endp, 0);
2459 	if (*endp)
2460 		return KDB_BADINT;
2461 	if (sig >= 0) {
2462 		kdb_printf("Invalid signal parameter.<-signal>\n");
2463 		return 0;
2464 	}
2465 	sig = -sig;
2466 
2467 	pid = simple_strtol(argv[2], &endp, 0);
2468 	if (*endp)
2469 		return KDB_BADINT;
2470 	if (pid <= 0) {
2471 		kdb_printf("Process ID must be large than 0.\n");
2472 		return 0;
2473 	}
2474 
2475 	/* Find the process. */
2476 	p = find_task_by_pid_ns(pid, &init_pid_ns);
2477 	if (!p) {
2478 		kdb_printf("The specified process isn't found.\n");
2479 		return 0;
2480 	}
2481 	p = p->group_leader;
2482 	info.si_signo = sig;
2483 	info.si_errno = 0;
2484 	info.si_code = SI_USER;
2485 	info.si_pid = pid;  /* same capabilities as process being signalled */
2486 	info.si_uid = 0;    /* kdb has root authority */
2487 	kdb_send_sig_info(p, &info);
2488 	return 0;
2489 }
2490 
2491 struct kdb_tm {
2492 	int tm_sec;	/* seconds */
2493 	int tm_min;	/* minutes */
2494 	int tm_hour;	/* hours */
2495 	int tm_mday;	/* day of the month */
2496 	int tm_mon;	/* month */
2497 	int tm_year;	/* year */
2498 };
2499 
2500 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2501 {
2502 	/* This will work from 1970-2099, 2100 is not a leap year */
2503 	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2504 				 31, 30, 31, 30, 31 };
2505 	memset(tm, 0, sizeof(*tm));
2506 	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2507 	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2508 		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2509 	tm->tm_min =  tm->tm_sec / 60 % 60;
2510 	tm->tm_hour = tm->tm_sec / 60 / 60;
2511 	tm->tm_sec =  tm->tm_sec % 60;
2512 	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2513 	tm->tm_mday %= (4*365+1);
2514 	mon_day[1] = 29;
2515 	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2516 		tm->tm_mday -= mon_day[tm->tm_mon];
2517 		if (++tm->tm_mon == 12) {
2518 			tm->tm_mon = 0;
2519 			++tm->tm_year;
2520 			mon_day[1] = 28;
2521 		}
2522 	}
2523 	++tm->tm_mday;
2524 }
2525 
2526 /*
2527  * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2528  * I cannot call that code directly from kdb, it has an unconditional
2529  * cli()/sti() and calls routines that take locks which can stop the debugger.
2530  */
2531 static void kdb_sysinfo(struct sysinfo *val)
2532 {
2533 	struct timespec uptime;
2534 	do_posix_clock_monotonic_gettime(&uptime);
2535 	memset(val, 0, sizeof(*val));
2536 	val->uptime = uptime.tv_sec;
2537 	val->loads[0] = avenrun[0];
2538 	val->loads[1] = avenrun[1];
2539 	val->loads[2] = avenrun[2];
2540 	val->procs = nr_threads-1;
2541 	si_meminfo(val);
2542 
2543 	return;
2544 }
2545 
2546 /*
2547  * kdb_summary - This function implements the 'summary' command.
2548  */
2549 static int kdb_summary(int argc, const char **argv)
2550 {
2551 	struct timespec now;
2552 	struct kdb_tm tm;
2553 	struct sysinfo val;
2554 
2555 	if (argc)
2556 		return KDB_ARGCOUNT;
2557 
2558 	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2559 	kdb_printf("release    %s\n", init_uts_ns.name.release);
2560 	kdb_printf("version    %s\n", init_uts_ns.name.version);
2561 	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2562 	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2563 	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2564 	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2565 
2566 	now = __current_kernel_time();
2567 	kdb_gmtime(&now, &tm);
2568 	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2569 		   "tz_minuteswest %d\n",
2570 		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2571 		tm.tm_hour, tm.tm_min, tm.tm_sec,
2572 		sys_tz.tz_minuteswest);
2573 
2574 	kdb_sysinfo(&val);
2575 	kdb_printf("uptime     ");
2576 	if (val.uptime > (24*60*60)) {
2577 		int days = val.uptime / (24*60*60);
2578 		val.uptime %= (24*60*60);
2579 		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2580 	}
2581 	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2582 
2583 	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2584 
2585 #define LOAD_INT(x) ((x) >> FSHIFT)
2586 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2587 	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2588 		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2589 		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2590 		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2591 #undef LOAD_INT
2592 #undef LOAD_FRAC
2593 	/* Display in kilobytes */
2594 #define K(x) ((x) << (PAGE_SHIFT - 10))
2595 	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2596 		   "Buffers:        %8lu kB\n",
2597 		   val.totalram, val.freeram, val.bufferram);
2598 	return 0;
2599 }
2600 
2601 /*
2602  * kdb_per_cpu - This function implements the 'per_cpu' command.
2603  */
2604 static int kdb_per_cpu(int argc, const char **argv)
2605 {
2606 	char buf[256], fmtstr[64];
2607 	kdb_symtab_t symtab;
2608 	cpumask_t suppress = CPU_MASK_NONE;
2609 	int cpu, diag;
2610 	unsigned long addr, val, bytesperword = 0, whichcpu = ~0UL;
2611 
2612 	if (argc < 1 || argc > 3)
2613 		return KDB_ARGCOUNT;
2614 
2615 	snprintf(buf, sizeof(buf), "per_cpu__%s", argv[1]);
2616 	if (!kdbgetsymval(buf, &symtab)) {
2617 		kdb_printf("%s is not a per_cpu variable\n", argv[1]);
2618 		return KDB_BADADDR;
2619 	}
2620 	if (argc >= 2) {
2621 		diag = kdbgetularg(argv[2], &bytesperword);
2622 		if (diag)
2623 			return diag;
2624 	}
2625 	if (!bytesperword)
2626 		bytesperword = KDB_WORD_SIZE;
2627 	else if (bytesperword > KDB_WORD_SIZE)
2628 		return KDB_BADWIDTH;
2629 	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2630 	if (argc >= 3) {
2631 		diag = kdbgetularg(argv[3], &whichcpu);
2632 		if (diag)
2633 			return diag;
2634 		if (!cpu_online(whichcpu)) {
2635 			kdb_printf("cpu %ld is not online\n", whichcpu);
2636 			return KDB_BADCPUNUM;
2637 		}
2638 	}
2639 
2640 	/* Most architectures use __per_cpu_offset[cpu], some use
2641 	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2642 	 */
2643 #ifdef	__per_cpu_offset
2644 #define KDB_PCU(cpu) __per_cpu_offset(cpu)
2645 #else
2646 #ifdef	CONFIG_SMP
2647 #define KDB_PCU(cpu) __per_cpu_offset[cpu]
2648 #else
2649 #define KDB_PCU(cpu) 0
2650 #endif
2651 #endif
2652 
2653 	for_each_online_cpu(cpu) {
2654 		if (whichcpu != ~0UL && whichcpu != cpu)
2655 			continue;
2656 		addr = symtab.sym_start + KDB_PCU(cpu);
2657 		diag = kdb_getword(&val, addr, bytesperword);
2658 		if (diag) {
2659 			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2660 				   "read, diag=%d\n", cpu, addr, diag);
2661 			continue;
2662 		}
2663 #ifdef	CONFIG_SMP
2664 		if (!val) {
2665 			cpu_set(cpu, suppress);
2666 			continue;
2667 		}
2668 #endif	/* CONFIG_SMP */
2669 		kdb_printf("%5d ", cpu);
2670 		kdb_md_line(fmtstr, addr,
2671 			bytesperword == KDB_WORD_SIZE,
2672 			1, bytesperword, 1, 1, 0);
2673 	}
2674 	if (cpus_weight(suppress) == 0)
2675 		return 0;
2676 	kdb_printf("Zero suppressed cpu(s):");
2677 	for (cpu = first_cpu(suppress); cpu < num_possible_cpus();
2678 	     cpu = next_cpu(cpu, suppress)) {
2679 		kdb_printf(" %d", cpu);
2680 		if (cpu == num_possible_cpus() - 1 ||
2681 		    next_cpu(cpu, suppress) != cpu + 1)
2682 			continue;
2683 		while (cpu < num_possible_cpus() &&
2684 		       next_cpu(cpu, suppress) == cpu + 1)
2685 			++cpu;
2686 		kdb_printf("-%d", cpu);
2687 	}
2688 	kdb_printf("\n");
2689 
2690 #undef KDB_PCU
2691 
2692 	return 0;
2693 }
2694 
2695 /*
2696  * display help for the use of cmd | grep pattern
2697  */
2698 static int kdb_grep_help(int argc, const char **argv)
2699 {
2700 	kdb_printf("Usage of  cmd args | grep pattern:\n");
2701 	kdb_printf("  Any command's output may be filtered through an ");
2702 	kdb_printf("emulated 'pipe'.\n");
2703 	kdb_printf("  'grep' is just a key word.\n");
2704 	kdb_printf("  The pattern may include a very limited set of "
2705 		   "metacharacters:\n");
2706 	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2707 	kdb_printf("  And if there are spaces in the pattern, you may "
2708 		   "quote it:\n");
2709 	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2710 		   " or \"^pat tern$\"\n");
2711 	return 0;
2712 }
2713 
2714 /*
2715  * kdb_register_repeat - This function is used to register a kernel
2716  * 	debugger command.
2717  * Inputs:
2718  *	cmd	Command name
2719  *	func	Function to execute the command
2720  *	usage	A simple usage string showing arguments
2721  *	help	A simple help string describing command
2722  *	repeat	Does the command auto repeat on enter?
2723  * Returns:
2724  *	zero for success, one if a duplicate command.
2725  */
2726 #define kdb_command_extend 50	/* arbitrary */
2727 int kdb_register_repeat(char *cmd,
2728 			kdb_func_t func,
2729 			char *usage,
2730 			char *help,
2731 			short minlen,
2732 			kdb_repeat_t repeat)
2733 {
2734 	int i;
2735 	kdbtab_t *kp;
2736 
2737 	/*
2738 	 *  Brute force method to determine duplicates
2739 	 */
2740 	for_each_kdbcmd(kp, i) {
2741 		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2742 			kdb_printf("Duplicate kdb command registered: "
2743 				"%s, func %p help %s\n", cmd, func, help);
2744 			return 1;
2745 		}
2746 	}
2747 
2748 	/*
2749 	 * Insert command into first available location in table
2750 	 */
2751 	for_each_kdbcmd(kp, i) {
2752 		if (kp->cmd_name == NULL)
2753 			break;
2754 	}
2755 
2756 	if (i >= kdb_max_commands) {
2757 		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2758 			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2759 		if (!new) {
2760 			kdb_printf("Could not allocate new kdb_command "
2761 				   "table\n");
2762 			return 1;
2763 		}
2764 		if (kdb_commands) {
2765 			memcpy(new, kdb_commands,
2766 			       kdb_max_commands * sizeof(*new));
2767 			kfree(kdb_commands);
2768 		}
2769 		memset(new + kdb_max_commands, 0,
2770 		       kdb_command_extend * sizeof(*new));
2771 		kdb_commands = new;
2772 		kp = kdb_commands + kdb_max_commands;
2773 		kdb_max_commands += kdb_command_extend;
2774 	}
2775 
2776 	kp->cmd_name   = cmd;
2777 	kp->cmd_func   = func;
2778 	kp->cmd_usage  = usage;
2779 	kp->cmd_help   = help;
2780 	kp->cmd_flags  = 0;
2781 	kp->cmd_minlen = minlen;
2782 	kp->cmd_repeat = repeat;
2783 
2784 	return 0;
2785 }
2786 EXPORT_SYMBOL_GPL(kdb_register_repeat);
2787 
2788 
2789 /*
2790  * kdb_register - Compatibility register function for commands that do
2791  *	not need to specify a repeat state.  Equivalent to
2792  *	kdb_register_repeat with KDB_REPEAT_NONE.
2793  * Inputs:
2794  *	cmd	Command name
2795  *	func	Function to execute the command
2796  *	usage	A simple usage string showing arguments
2797  *	help	A simple help string describing command
2798  * Returns:
2799  *	zero for success, one if a duplicate command.
2800  */
2801 int kdb_register(char *cmd,
2802 	     kdb_func_t func,
2803 	     char *usage,
2804 	     char *help,
2805 	     short minlen)
2806 {
2807 	return kdb_register_repeat(cmd, func, usage, help, minlen,
2808 				   KDB_REPEAT_NONE);
2809 }
2810 EXPORT_SYMBOL_GPL(kdb_register);
2811 
2812 /*
2813  * kdb_unregister - This function is used to unregister a kernel
2814  *	debugger command.  It is generally called when a module which
2815  *	implements kdb commands is unloaded.
2816  * Inputs:
2817  *	cmd	Command name
2818  * Returns:
2819  *	zero for success, one command not registered.
2820  */
2821 int kdb_unregister(char *cmd)
2822 {
2823 	int i;
2824 	kdbtab_t *kp;
2825 
2826 	/*
2827 	 *  find the command.
2828 	 */
2829 	for_each_kdbcmd(kp, i) {
2830 		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2831 			kp->cmd_name = NULL;
2832 			return 0;
2833 		}
2834 	}
2835 
2836 	/* Couldn't find it.  */
2837 	return 1;
2838 }
2839 EXPORT_SYMBOL_GPL(kdb_unregister);
2840 
2841 /* Initialize the kdb command table. */
2842 static void __init kdb_inittab(void)
2843 {
2844 	int i;
2845 	kdbtab_t *kp;
2846 
2847 	for_each_kdbcmd(kp, i)
2848 		kp->cmd_name = NULL;
2849 
2850 	kdb_register_repeat("md", kdb_md, "<vaddr>",
2851 	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2852 			    KDB_REPEAT_NO_ARGS);
2853 	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2854 	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2855 	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2856 	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2857 	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2858 	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2859 	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2860 	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2861 	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2862 	  "Continue Execution", 1, KDB_REPEAT_NONE);
2863 	kdb_register_repeat("rd", kdb_rd, "",
2864 	  "Display Registers", 0, KDB_REPEAT_NONE);
2865 	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2866 	  "Modify Registers", 0, KDB_REPEAT_NONE);
2867 	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2868 	  "Display exception frame", 0, KDB_REPEAT_NONE);
2869 	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2870 	  "Stack traceback", 1, KDB_REPEAT_NONE);
2871 	kdb_register_repeat("btp", kdb_bt, "<pid>",
2872 	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2873 	kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2874 	  "Display stack all processes", 0, KDB_REPEAT_NONE);
2875 	kdb_register_repeat("btc", kdb_bt, "",
2876 	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2877 	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2878 	  "Backtrace process given its struct task address", 0,
2879 			    KDB_REPEAT_NONE);
2880 	kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2881 	  "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2882 	kdb_register_repeat("env", kdb_env, "",
2883 	  "Show environment variables", 0, KDB_REPEAT_NONE);
2884 	kdb_register_repeat("set", kdb_set, "",
2885 	  "Set environment variables", 0, KDB_REPEAT_NONE);
2886 	kdb_register_repeat("help", kdb_help, "",
2887 	  "Display Help Message", 1, KDB_REPEAT_NONE);
2888 	kdb_register_repeat("?", kdb_help, "",
2889 	  "Display Help Message", 0, KDB_REPEAT_NONE);
2890 	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2891 	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2892 	kdb_register_repeat("kgdb", kdb_kgdb, "",
2893 	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2894 	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2895 	  "Display active task list", 0, KDB_REPEAT_NONE);
2896 	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2897 	  "Switch to another task", 0, KDB_REPEAT_NONE);
2898 	kdb_register_repeat("reboot", kdb_reboot, "",
2899 	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2900 #if defined(CONFIG_MODULES)
2901 	kdb_register_repeat("lsmod", kdb_lsmod, "",
2902 	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2903 #endif
2904 #if defined(CONFIG_MAGIC_SYSRQ)
2905 	kdb_register_repeat("sr", kdb_sr, "<key>",
2906 	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
2907 #endif
2908 #if defined(CONFIG_PRINTK)
2909 	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2910 	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
2911 #endif
2912 	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2913 	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2914 	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2915 	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2916 	kdb_register_repeat("summary", kdb_summary, "",
2917 	  "Summarize the system", 4, KDB_REPEAT_NONE);
2918 	kdb_register_repeat("per_cpu", kdb_per_cpu, "",
2919 	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2920 	kdb_register_repeat("grephelp", kdb_grep_help, "",
2921 	  "Display help on | grep", 0, KDB_REPEAT_NONE);
2922 }
2923 
2924 /* Execute any commands defined in kdb_cmds.  */
2925 static void __init kdb_cmd_init(void)
2926 {
2927 	int i, diag;
2928 	for (i = 0; kdb_cmds[i]; ++i) {
2929 		diag = kdb_parse(kdb_cmds[i]);
2930 		if (diag)
2931 			kdb_printf("kdb command %s failed, kdb diag %d\n",
2932 				kdb_cmds[i], diag);
2933 	}
2934 	if (defcmd_in_progress) {
2935 		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2936 		kdb_parse("endefcmd");
2937 	}
2938 }
2939 
2940 /* Intialize kdb_printf, breakpoint tables and kdb state */
2941 void __init kdb_init(int lvl)
2942 {
2943 	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2944 	int i;
2945 
2946 	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2947 		return;
2948 	for (i = kdb_init_lvl; i < lvl; i++) {
2949 		switch (i) {
2950 		case KDB_NOT_INITIALIZED:
2951 			kdb_inittab();		/* Initialize Command Table */
2952 			kdb_initbptab();	/* Initialize Breakpoints */
2953 			break;
2954 		case KDB_INIT_EARLY:
2955 			kdb_cmd_init();		/* Build kdb_cmds tables */
2956 			break;
2957 		}
2958 	}
2959 	kdb_init_lvl = lvl;
2960 }
2961