1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/string.h> 16 #include <linux/kernel.h> 17 #include <linux/reboot.h> 18 #include <linux/sched.h> 19 #include <linux/sysrq.h> 20 #include <linux/smp.h> 21 #include <linux/utsname.h> 22 #include <linux/vmalloc.h> 23 #include <linux/module.h> 24 #include <linux/mm.h> 25 #include <linux/init.h> 26 #include <linux/kallsyms.h> 27 #include <linux/kgdb.h> 28 #include <linux/kdb.h> 29 #include <linux/notifier.h> 30 #include <linux/interrupt.h> 31 #include <linux/delay.h> 32 #include <linux/nmi.h> 33 #include <linux/time.h> 34 #include <linux/ptrace.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/kdebug.h> 38 #include <linux/proc_fs.h> 39 #include <linux/uaccess.h> 40 #include <linux/slab.h> 41 #include "kdb_private.h" 42 43 #define GREP_LEN 256 44 char kdb_grep_string[GREP_LEN]; 45 int kdb_grepping_flag; 46 EXPORT_SYMBOL(kdb_grepping_flag); 47 int kdb_grep_leading; 48 int kdb_grep_trailing; 49 50 /* 51 * Kernel debugger state flags 52 */ 53 int kdb_flags; 54 atomic_t kdb_event; 55 56 /* 57 * kdb_lock protects updates to kdb_initial_cpu. Used to 58 * single thread processors through the kernel debugger. 59 */ 60 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 61 int kdb_nextline = 1; 62 int kdb_state; /* General KDB state */ 63 64 struct task_struct *kdb_current_task; 65 EXPORT_SYMBOL(kdb_current_task); 66 struct pt_regs *kdb_current_regs; 67 68 const char *kdb_diemsg; 69 static int kdb_go_count; 70 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 71 static unsigned int kdb_continue_catastrophic = 72 CONFIG_KDB_CONTINUE_CATASTROPHIC; 73 #else 74 static unsigned int kdb_continue_catastrophic; 75 #endif 76 77 /* kdb_commands describes the available commands. */ 78 static kdbtab_t *kdb_commands; 79 #define KDB_BASE_CMD_MAX 50 80 static int kdb_max_commands = KDB_BASE_CMD_MAX; 81 static kdbtab_t kdb_base_commands[50]; 82 #define for_each_kdbcmd(cmd, num) \ 83 for ((cmd) = kdb_base_commands, (num) = 0; \ 84 num < kdb_max_commands; \ 85 num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++, num++) 86 87 typedef struct _kdbmsg { 88 int km_diag; /* kdb diagnostic */ 89 char *km_msg; /* Corresponding message text */ 90 } kdbmsg_t; 91 92 #define KDBMSG(msgnum, text) \ 93 { KDB_##msgnum, text } 94 95 static kdbmsg_t kdbmsgs[] = { 96 KDBMSG(NOTFOUND, "Command Not Found"), 97 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 98 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 99 "8 is only allowed on 64 bit systems"), 100 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 101 KDBMSG(NOTENV, "Cannot find environment variable"), 102 KDBMSG(NOENVVALUE, "Environment variable should have value"), 103 KDBMSG(NOTIMP, "Command not implemented"), 104 KDBMSG(ENVFULL, "Environment full"), 105 KDBMSG(ENVBUFFULL, "Environment buffer full"), 106 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 107 #ifdef CONFIG_CPU_XSCALE 108 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 109 #else 110 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 111 #endif 112 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 113 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 114 KDBMSG(BADMODE, "Invalid IDMODE"), 115 KDBMSG(BADINT, "Illegal numeric value"), 116 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 117 KDBMSG(BADREG, "Invalid register name"), 118 KDBMSG(BADCPUNUM, "Invalid cpu number"), 119 KDBMSG(BADLENGTH, "Invalid length field"), 120 KDBMSG(NOBP, "No Breakpoint exists"), 121 KDBMSG(BADADDR, "Invalid address"), 122 }; 123 #undef KDBMSG 124 125 static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t); 126 127 128 /* 129 * Initial environment. This is all kept static and local to 130 * this file. We don't want to rely on the memory allocation 131 * mechanisms in the kernel, so we use a very limited allocate-only 132 * heap for new and altered environment variables. The entire 133 * environment is limited to a fixed number of entries (add more 134 * to __env[] if required) and a fixed amount of heap (add more to 135 * KDB_ENVBUFSIZE if required). 136 */ 137 138 static char *__env[] = { 139 #if defined(CONFIG_SMP) 140 "PROMPT=[%d]kdb> ", 141 "MOREPROMPT=[%d]more> ", 142 #else 143 "PROMPT=kdb> ", 144 "MOREPROMPT=more> ", 145 #endif 146 "RADIX=16", 147 "MDCOUNT=8", /* lines of md output */ 148 "BTARGS=9", /* 9 possible args in bt */ 149 KDB_PLATFORM_ENV, 150 "DTABCOUNT=30", 151 "NOSECT=1", 152 (char *)0, 153 (char *)0, 154 (char *)0, 155 (char *)0, 156 (char *)0, 157 (char *)0, 158 (char *)0, 159 (char *)0, 160 (char *)0, 161 (char *)0, 162 (char *)0, 163 (char *)0, 164 (char *)0, 165 (char *)0, 166 (char *)0, 167 (char *)0, 168 (char *)0, 169 (char *)0, 170 (char *)0, 171 (char *)0, 172 (char *)0, 173 (char *)0, 174 (char *)0, 175 }; 176 177 static const int __nenv = (sizeof(__env) / sizeof(char *)); 178 179 struct task_struct *kdb_curr_task(int cpu) 180 { 181 struct task_struct *p = curr_task(cpu); 182 #ifdef _TIF_MCA_INIT 183 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 184 p = krp->p; 185 #endif 186 return p; 187 } 188 189 /* 190 * kdbgetenv - This function will return the character string value of 191 * an environment variable. 192 * Parameters: 193 * match A character string representing an environment variable. 194 * Returns: 195 * NULL No environment variable matches 'match' 196 * char* Pointer to string value of environment variable. 197 */ 198 char *kdbgetenv(const char *match) 199 { 200 char **ep = __env; 201 int matchlen = strlen(match); 202 int i; 203 204 for (i = 0; i < __nenv; i++) { 205 char *e = *ep++; 206 207 if (!e) 208 continue; 209 210 if ((strncmp(match, e, matchlen) == 0) 211 && ((e[matchlen] == '\0') 212 || (e[matchlen] == '='))) { 213 char *cp = strchr(e, '='); 214 return cp ? ++cp : ""; 215 } 216 } 217 return NULL; 218 } 219 220 /* 221 * kdballocenv - This function is used to allocate bytes for 222 * environment entries. 223 * Parameters: 224 * match A character string representing a numeric value 225 * Outputs: 226 * *value the unsigned long representation of the env variable 'match' 227 * Returns: 228 * Zero on success, a kdb diagnostic on failure. 229 * Remarks: 230 * We use a static environment buffer (envbuffer) to hold the values 231 * of dynamically generated environment variables (see kdb_set). Buffer 232 * space once allocated is never free'd, so over time, the amount of space 233 * (currently 512 bytes) will be exhausted if env variables are changed 234 * frequently. 235 */ 236 static char *kdballocenv(size_t bytes) 237 { 238 #define KDB_ENVBUFSIZE 512 239 static char envbuffer[KDB_ENVBUFSIZE]; 240 static int envbufsize; 241 char *ep = NULL; 242 243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 244 ep = &envbuffer[envbufsize]; 245 envbufsize += bytes; 246 } 247 return ep; 248 } 249 250 /* 251 * kdbgetulenv - This function will return the value of an unsigned 252 * long-valued environment variable. 253 * Parameters: 254 * match A character string representing a numeric value 255 * Outputs: 256 * *value the unsigned long represntation of the env variable 'match' 257 * Returns: 258 * Zero on success, a kdb diagnostic on failure. 259 */ 260 static int kdbgetulenv(const char *match, unsigned long *value) 261 { 262 char *ep; 263 264 ep = kdbgetenv(match); 265 if (!ep) 266 return KDB_NOTENV; 267 if (strlen(ep) == 0) 268 return KDB_NOENVVALUE; 269 270 *value = simple_strtoul(ep, NULL, 0); 271 272 return 0; 273 } 274 275 /* 276 * kdbgetintenv - This function will return the value of an 277 * integer-valued environment variable. 278 * Parameters: 279 * match A character string representing an integer-valued env variable 280 * Outputs: 281 * *value the integer representation of the environment variable 'match' 282 * Returns: 283 * Zero on success, a kdb diagnostic on failure. 284 */ 285 int kdbgetintenv(const char *match, int *value) 286 { 287 unsigned long val; 288 int diag; 289 290 diag = kdbgetulenv(match, &val); 291 if (!diag) 292 *value = (int) val; 293 return diag; 294 } 295 296 /* 297 * kdbgetularg - This function will convert a numeric string into an 298 * unsigned long value. 299 * Parameters: 300 * arg A character string representing a numeric value 301 * Outputs: 302 * *value the unsigned long represntation of arg. 303 * Returns: 304 * Zero on success, a kdb diagnostic on failure. 305 */ 306 int kdbgetularg(const char *arg, unsigned long *value) 307 { 308 char *endp; 309 unsigned long val; 310 311 val = simple_strtoul(arg, &endp, 0); 312 313 if (endp == arg) { 314 /* 315 * Also try base 16, for us folks too lazy to type the 316 * leading 0x... 317 */ 318 val = simple_strtoul(arg, &endp, 16); 319 if (endp == arg) 320 return KDB_BADINT; 321 } 322 323 *value = val; 324 325 return 0; 326 } 327 328 int kdbgetu64arg(const char *arg, u64 *value) 329 { 330 char *endp; 331 u64 val; 332 333 val = simple_strtoull(arg, &endp, 0); 334 335 if (endp == arg) { 336 337 val = simple_strtoull(arg, &endp, 16); 338 if (endp == arg) 339 return KDB_BADINT; 340 } 341 342 *value = val; 343 344 return 0; 345 } 346 347 /* 348 * kdb_set - This function implements the 'set' command. Alter an 349 * existing environment variable or create a new one. 350 */ 351 int kdb_set(int argc, const char **argv) 352 { 353 int i; 354 char *ep; 355 size_t varlen, vallen; 356 357 /* 358 * we can be invoked two ways: 359 * set var=value argv[1]="var", argv[2]="value" 360 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 361 * - if the latter, shift 'em down. 362 */ 363 if (argc == 3) { 364 argv[2] = argv[3]; 365 argc--; 366 } 367 368 if (argc != 2) 369 return KDB_ARGCOUNT; 370 371 /* 372 * Check for internal variables 373 */ 374 if (strcmp(argv[1], "KDBDEBUG") == 0) { 375 unsigned int debugflags; 376 char *cp; 377 378 debugflags = simple_strtoul(argv[2], &cp, 0); 379 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 380 kdb_printf("kdb: illegal debug flags '%s'\n", 381 argv[2]); 382 return 0; 383 } 384 kdb_flags = (kdb_flags & 385 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT)) 386 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 387 388 return 0; 389 } 390 391 /* 392 * Tokenizer squashed the '=' sign. argv[1] is variable 393 * name, argv[2] = value. 394 */ 395 varlen = strlen(argv[1]); 396 vallen = strlen(argv[2]); 397 ep = kdballocenv(varlen + vallen + 2); 398 if (ep == (char *)0) 399 return KDB_ENVBUFFULL; 400 401 sprintf(ep, "%s=%s", argv[1], argv[2]); 402 403 ep[varlen+vallen+1] = '\0'; 404 405 for (i = 0; i < __nenv; i++) { 406 if (__env[i] 407 && ((strncmp(__env[i], argv[1], varlen) == 0) 408 && ((__env[i][varlen] == '\0') 409 || (__env[i][varlen] == '=')))) { 410 __env[i] = ep; 411 return 0; 412 } 413 } 414 415 /* 416 * Wasn't existing variable. Fit into slot. 417 */ 418 for (i = 0; i < __nenv-1; i++) { 419 if (__env[i] == (char *)0) { 420 __env[i] = ep; 421 return 0; 422 } 423 } 424 425 return KDB_ENVFULL; 426 } 427 428 static int kdb_check_regs(void) 429 { 430 if (!kdb_current_regs) { 431 kdb_printf("No current kdb registers." 432 " You may need to select another task\n"); 433 return KDB_BADREG; 434 } 435 return 0; 436 } 437 438 /* 439 * kdbgetaddrarg - This function is responsible for parsing an 440 * address-expression and returning the value of the expression, 441 * symbol name, and offset to the caller. 442 * 443 * The argument may consist of a numeric value (decimal or 444 * hexidecimal), a symbol name, a register name (preceeded by the 445 * percent sign), an environment variable with a numeric value 446 * (preceeded by a dollar sign) or a simple arithmetic expression 447 * consisting of a symbol name, +/-, and a numeric constant value 448 * (offset). 449 * Parameters: 450 * argc - count of arguments in argv 451 * argv - argument vector 452 * *nextarg - index to next unparsed argument in argv[] 453 * regs - Register state at time of KDB entry 454 * Outputs: 455 * *value - receives the value of the address-expression 456 * *offset - receives the offset specified, if any 457 * *name - receives the symbol name, if any 458 * *nextarg - index to next unparsed argument in argv[] 459 * Returns: 460 * zero is returned on success, a kdb diagnostic code is 461 * returned on error. 462 */ 463 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 464 unsigned long *value, long *offset, 465 char **name) 466 { 467 unsigned long addr; 468 unsigned long off = 0; 469 int positive; 470 int diag; 471 int found = 0; 472 char *symname; 473 char symbol = '\0'; 474 char *cp; 475 kdb_symtab_t symtab; 476 477 /* 478 * Process arguments which follow the following syntax: 479 * 480 * symbol | numeric-address [+/- numeric-offset] 481 * %register 482 * $environment-variable 483 */ 484 485 if (*nextarg > argc) 486 return KDB_ARGCOUNT; 487 488 symname = (char *)argv[*nextarg]; 489 490 /* 491 * If there is no whitespace between the symbol 492 * or address and the '+' or '-' symbols, we 493 * remember the character and replace it with a 494 * null so the symbol/value can be properly parsed 495 */ 496 cp = strpbrk(symname, "+-"); 497 if (cp != NULL) { 498 symbol = *cp; 499 *cp++ = '\0'; 500 } 501 502 if (symname[0] == '$') { 503 diag = kdbgetulenv(&symname[1], &addr); 504 if (diag) 505 return diag; 506 } else if (symname[0] == '%') { 507 diag = kdb_check_regs(); 508 if (diag) 509 return diag; 510 /* Implement register values with % at a later time as it is 511 * arch optional. 512 */ 513 return KDB_NOTIMP; 514 } else { 515 found = kdbgetsymval(symname, &symtab); 516 if (found) { 517 addr = symtab.sym_start; 518 } else { 519 diag = kdbgetularg(argv[*nextarg], &addr); 520 if (diag) 521 return diag; 522 } 523 } 524 525 if (!found) 526 found = kdbnearsym(addr, &symtab); 527 528 (*nextarg)++; 529 530 if (name) 531 *name = symname; 532 if (value) 533 *value = addr; 534 if (offset && name && *name) 535 *offset = addr - symtab.sym_start; 536 537 if ((*nextarg > argc) 538 && (symbol == '\0')) 539 return 0; 540 541 /* 542 * check for +/- and offset 543 */ 544 545 if (symbol == '\0') { 546 if ((argv[*nextarg][0] != '+') 547 && (argv[*nextarg][0] != '-')) { 548 /* 549 * Not our argument. Return. 550 */ 551 return 0; 552 } else { 553 positive = (argv[*nextarg][0] == '+'); 554 (*nextarg)++; 555 } 556 } else 557 positive = (symbol == '+'); 558 559 /* 560 * Now there must be an offset! 561 */ 562 if ((*nextarg > argc) 563 && (symbol == '\0')) { 564 return KDB_INVADDRFMT; 565 } 566 567 if (!symbol) { 568 cp = (char *)argv[*nextarg]; 569 (*nextarg)++; 570 } 571 572 diag = kdbgetularg(cp, &off); 573 if (diag) 574 return diag; 575 576 if (!positive) 577 off = -off; 578 579 if (offset) 580 *offset += off; 581 582 if (value) 583 *value += off; 584 585 return 0; 586 } 587 588 static void kdb_cmderror(int diag) 589 { 590 int i; 591 592 if (diag >= 0) { 593 kdb_printf("no error detected (diagnostic is %d)\n", diag); 594 return; 595 } 596 597 for (i = 0; i < __nkdb_err; i++) { 598 if (kdbmsgs[i].km_diag == diag) { 599 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 600 return; 601 } 602 } 603 604 kdb_printf("Unknown diag %d\n", -diag); 605 } 606 607 /* 608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 609 * command which defines one command as a set of other commands, 610 * terminated by endefcmd. kdb_defcmd processes the initial 611 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 612 * the following commands until 'endefcmd'. 613 * Inputs: 614 * argc argument count 615 * argv argument vector 616 * Returns: 617 * zero for success, a kdb diagnostic if error 618 */ 619 struct defcmd_set { 620 int count; 621 int usable; 622 char *name; 623 char *usage; 624 char *help; 625 char **command; 626 }; 627 static struct defcmd_set *defcmd_set; 628 static int defcmd_set_count; 629 static int defcmd_in_progress; 630 631 /* Forward references */ 632 static int kdb_exec_defcmd(int argc, const char **argv); 633 634 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 635 { 636 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; 637 char **save_command = s->command; 638 if (strcmp(argv0, "endefcmd") == 0) { 639 defcmd_in_progress = 0; 640 if (!s->count) 641 s->usable = 0; 642 if (s->usable) 643 kdb_register(s->name, kdb_exec_defcmd, 644 s->usage, s->help, 0); 645 return 0; 646 } 647 if (!s->usable) 648 return KDB_NOTIMP; 649 s->command = kmalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB); 650 if (!s->command) { 651 kdb_printf("Could not allocate new kdb_defcmd table for %s\n", 652 cmdstr); 653 s->usable = 0; 654 return KDB_NOTIMP; 655 } 656 memcpy(s->command, save_command, s->count * sizeof(*(s->command))); 657 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); 658 kfree(save_command); 659 return 0; 660 } 661 662 static int kdb_defcmd(int argc, const char **argv) 663 { 664 struct defcmd_set *save_defcmd_set = defcmd_set, *s; 665 if (defcmd_in_progress) { 666 kdb_printf("kdb: nested defcmd detected, assuming missing " 667 "endefcmd\n"); 668 kdb_defcmd2("endefcmd", "endefcmd"); 669 } 670 if (argc == 0) { 671 int i; 672 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { 673 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, 674 s->usage, s->help); 675 for (i = 0; i < s->count; ++i) 676 kdb_printf("%s", s->command[i]); 677 kdb_printf("endefcmd\n"); 678 } 679 return 0; 680 } 681 if (argc != 3) 682 return KDB_ARGCOUNT; 683 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set), 684 GFP_KDB); 685 if (!defcmd_set) { 686 kdb_printf("Could not allocate new defcmd_set entry for %s\n", 687 argv[1]); 688 defcmd_set = save_defcmd_set; 689 return KDB_NOTIMP; 690 } 691 memcpy(defcmd_set, save_defcmd_set, 692 defcmd_set_count * sizeof(*defcmd_set)); 693 kfree(save_defcmd_set); 694 s = defcmd_set + defcmd_set_count; 695 memset(s, 0, sizeof(*s)); 696 s->usable = 1; 697 s->name = kdb_strdup(argv[1], GFP_KDB); 698 s->usage = kdb_strdup(argv[2], GFP_KDB); 699 s->help = kdb_strdup(argv[3], GFP_KDB); 700 if (s->usage[0] == '"') { 701 strcpy(s->usage, s->usage+1); 702 s->usage[strlen(s->usage)-1] = '\0'; 703 } 704 if (s->help[0] == '"') { 705 strcpy(s->help, s->help+1); 706 s->help[strlen(s->help)-1] = '\0'; 707 } 708 ++defcmd_set_count; 709 defcmd_in_progress = 1; 710 return 0; 711 } 712 713 /* 714 * kdb_exec_defcmd - Execute the set of commands associated with this 715 * defcmd name. 716 * Inputs: 717 * argc argument count 718 * argv argument vector 719 * Returns: 720 * zero for success, a kdb diagnostic if error 721 */ 722 static int kdb_exec_defcmd(int argc, const char **argv) 723 { 724 int i, ret; 725 struct defcmd_set *s; 726 if (argc != 0) 727 return KDB_ARGCOUNT; 728 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { 729 if (strcmp(s->name, argv[0]) == 0) 730 break; 731 } 732 if (i == defcmd_set_count) { 733 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 734 argv[0]); 735 return KDB_NOTIMP; 736 } 737 for (i = 0; i < s->count; ++i) { 738 /* Recursive use of kdb_parse, do not use argv after 739 * this point */ 740 argv = NULL; 741 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); 742 ret = kdb_parse(s->command[i]); 743 if (ret) 744 return ret; 745 } 746 return 0; 747 } 748 749 /* Command history */ 750 #define KDB_CMD_HISTORY_COUNT 32 751 #define CMD_BUFLEN 200 /* kdb_printf: max printline 752 * size == 256 */ 753 static unsigned int cmd_head, cmd_tail; 754 static unsigned int cmdptr; 755 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 756 static char cmd_cur[CMD_BUFLEN]; 757 758 /* 759 * The "str" argument may point to something like | grep xyz 760 */ 761 static void parse_grep(const char *str) 762 { 763 int len; 764 char *cp = (char *)str, *cp2; 765 766 /* sanity check: we should have been called with the \ first */ 767 if (*cp != '|') 768 return; 769 cp++; 770 while (isspace(*cp)) 771 cp++; 772 if (strncmp(cp, "grep ", 5)) { 773 kdb_printf("invalid 'pipe', see grephelp\n"); 774 return; 775 } 776 cp += 5; 777 while (isspace(*cp)) 778 cp++; 779 cp2 = strchr(cp, '\n'); 780 if (cp2) 781 *cp2 = '\0'; /* remove the trailing newline */ 782 len = strlen(cp); 783 if (len == 0) { 784 kdb_printf("invalid 'pipe', see grephelp\n"); 785 return; 786 } 787 /* now cp points to a nonzero length search string */ 788 if (*cp == '"') { 789 /* allow it be "x y z" by removing the "'s - there must 790 be two of them */ 791 cp++; 792 cp2 = strchr(cp, '"'); 793 if (!cp2) { 794 kdb_printf("invalid quoted string, see grephelp\n"); 795 return; 796 } 797 *cp2 = '\0'; /* end the string where the 2nd " was */ 798 } 799 kdb_grep_leading = 0; 800 if (*cp == '^') { 801 kdb_grep_leading = 1; 802 cp++; 803 } 804 len = strlen(cp); 805 kdb_grep_trailing = 0; 806 if (*(cp+len-1) == '$') { 807 kdb_grep_trailing = 1; 808 *(cp+len-1) = '\0'; 809 } 810 len = strlen(cp); 811 if (!len) 812 return; 813 if (len >= GREP_LEN) { 814 kdb_printf("search string too long\n"); 815 return; 816 } 817 strcpy(kdb_grep_string, cp); 818 kdb_grepping_flag++; 819 return; 820 } 821 822 /* 823 * kdb_parse - Parse the command line, search the command table for a 824 * matching command and invoke the command function. This 825 * function may be called recursively, if it is, the second call 826 * will overwrite argv and cbuf. It is the caller's 827 * responsibility to save their argv if they recursively call 828 * kdb_parse(). 829 * Parameters: 830 * cmdstr The input command line to be parsed. 831 * regs The registers at the time kdb was entered. 832 * Returns: 833 * Zero for success, a kdb diagnostic if failure. 834 * Remarks: 835 * Limited to 20 tokens. 836 * 837 * Real rudimentary tokenization. Basically only whitespace 838 * is considered a token delimeter (but special consideration 839 * is taken of the '=' sign as used by the 'set' command). 840 * 841 * The algorithm used to tokenize the input string relies on 842 * there being at least one whitespace (or otherwise useless) 843 * character between tokens as the character immediately following 844 * the token is altered in-place to a null-byte to terminate the 845 * token string. 846 */ 847 848 #define MAXARGC 20 849 850 int kdb_parse(const char *cmdstr) 851 { 852 static char *argv[MAXARGC]; 853 static int argc; 854 static char cbuf[CMD_BUFLEN+2]; 855 char *cp; 856 char *cpp, quoted; 857 kdbtab_t *tp; 858 int i, escaped, ignore_errors = 0, check_grep; 859 860 /* 861 * First tokenize the command string. 862 */ 863 cp = (char *)cmdstr; 864 kdb_grepping_flag = check_grep = 0; 865 866 if (KDB_FLAG(CMD_INTERRUPT)) { 867 /* Previous command was interrupted, newline must not 868 * repeat the command */ 869 KDB_FLAG_CLEAR(CMD_INTERRUPT); 870 KDB_STATE_SET(PAGER); 871 argc = 0; /* no repeat */ 872 } 873 874 if (*cp != '\n' && *cp != '\0') { 875 argc = 0; 876 cpp = cbuf; 877 while (*cp) { 878 /* skip whitespace */ 879 while (isspace(*cp)) 880 cp++; 881 if ((*cp == '\0') || (*cp == '\n') || 882 (*cp == '#' && !defcmd_in_progress)) 883 break; 884 /* special case: check for | grep pattern */ 885 if (*cp == '|') { 886 check_grep++; 887 break; 888 } 889 if (cpp >= cbuf + CMD_BUFLEN) { 890 kdb_printf("kdb_parse: command buffer " 891 "overflow, command ignored\n%s\n", 892 cmdstr); 893 return KDB_NOTFOUND; 894 } 895 if (argc >= MAXARGC - 1) { 896 kdb_printf("kdb_parse: too many arguments, " 897 "command ignored\n%s\n", cmdstr); 898 return KDB_NOTFOUND; 899 } 900 argv[argc++] = cpp; 901 escaped = 0; 902 quoted = '\0'; 903 /* Copy to next unquoted and unescaped 904 * whitespace or '=' */ 905 while (*cp && *cp != '\n' && 906 (escaped || quoted || !isspace(*cp))) { 907 if (cpp >= cbuf + CMD_BUFLEN) 908 break; 909 if (escaped) { 910 escaped = 0; 911 *cpp++ = *cp++; 912 continue; 913 } 914 if (*cp == '\\') { 915 escaped = 1; 916 ++cp; 917 continue; 918 } 919 if (*cp == quoted) 920 quoted = '\0'; 921 else if (*cp == '\'' || *cp == '"') 922 quoted = *cp; 923 *cpp = *cp++; 924 if (*cpp == '=' && !quoted) 925 break; 926 ++cpp; 927 } 928 *cpp++ = '\0'; /* Squash a ws or '=' character */ 929 } 930 } 931 if (!argc) 932 return 0; 933 if (check_grep) 934 parse_grep(cp); 935 if (defcmd_in_progress) { 936 int result = kdb_defcmd2(cmdstr, argv[0]); 937 if (!defcmd_in_progress) { 938 argc = 0; /* avoid repeat on endefcmd */ 939 *(argv[0]) = '\0'; 940 } 941 return result; 942 } 943 if (argv[0][0] == '-' && argv[0][1] && 944 (argv[0][1] < '0' || argv[0][1] > '9')) { 945 ignore_errors = 1; 946 ++argv[0]; 947 } 948 949 for_each_kdbcmd(tp, i) { 950 if (tp->cmd_name) { 951 /* 952 * If this command is allowed to be abbreviated, 953 * check to see if this is it. 954 */ 955 956 if (tp->cmd_minlen 957 && (strlen(argv[0]) <= tp->cmd_minlen)) { 958 if (strncmp(argv[0], 959 tp->cmd_name, 960 tp->cmd_minlen) == 0) { 961 break; 962 } 963 } 964 965 if (strcmp(argv[0], tp->cmd_name) == 0) 966 break; 967 } 968 } 969 970 /* 971 * If we don't find a command by this name, see if the first 972 * few characters of this match any of the known commands. 973 * e.g., md1c20 should match md. 974 */ 975 if (i == kdb_max_commands) { 976 for_each_kdbcmd(tp, i) { 977 if (tp->cmd_name) { 978 if (strncmp(argv[0], 979 tp->cmd_name, 980 strlen(tp->cmd_name)) == 0) { 981 break; 982 } 983 } 984 } 985 } 986 987 if (i < kdb_max_commands) { 988 int result; 989 KDB_STATE_SET(CMD); 990 result = (*tp->cmd_func)(argc-1, (const char **)argv); 991 if (result && ignore_errors && result > KDB_CMD_GO) 992 result = 0; 993 KDB_STATE_CLEAR(CMD); 994 switch (tp->cmd_repeat) { 995 case KDB_REPEAT_NONE: 996 argc = 0; 997 if (argv[0]) 998 *(argv[0]) = '\0'; 999 break; 1000 case KDB_REPEAT_NO_ARGS: 1001 argc = 1; 1002 if (argv[1]) 1003 *(argv[1]) = '\0'; 1004 break; 1005 case KDB_REPEAT_WITH_ARGS: 1006 break; 1007 } 1008 return result; 1009 } 1010 1011 /* 1012 * If the input with which we were presented does not 1013 * map to an existing command, attempt to parse it as an 1014 * address argument and display the result. Useful for 1015 * obtaining the address of a variable, or the nearest symbol 1016 * to an address contained in a register. 1017 */ 1018 { 1019 unsigned long value; 1020 char *name = NULL; 1021 long offset; 1022 int nextarg = 0; 1023 1024 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1025 &value, &offset, &name)) { 1026 return KDB_NOTFOUND; 1027 } 1028 1029 kdb_printf("%s = ", argv[0]); 1030 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1031 kdb_printf("\n"); 1032 return 0; 1033 } 1034 } 1035 1036 1037 static int handle_ctrl_cmd(char *cmd) 1038 { 1039 #define CTRL_P 16 1040 #define CTRL_N 14 1041 1042 /* initial situation */ 1043 if (cmd_head == cmd_tail) 1044 return 0; 1045 switch (*cmd) { 1046 case CTRL_P: 1047 if (cmdptr != cmd_tail) 1048 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT; 1049 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1050 return 1; 1051 case CTRL_N: 1052 if (cmdptr != cmd_head) 1053 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1054 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1055 return 1; 1056 } 1057 return 0; 1058 } 1059 1060 /* 1061 * kdb_reboot - This function implements the 'reboot' command. Reboot 1062 * the system immediately, or loop for ever on failure. 1063 */ 1064 static int kdb_reboot(int argc, const char **argv) 1065 { 1066 emergency_restart(); 1067 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1068 while (1) 1069 cpu_relax(); 1070 /* NOTREACHED */ 1071 return 0; 1072 } 1073 1074 static void kdb_dumpregs(struct pt_regs *regs) 1075 { 1076 int old_lvl = console_loglevel; 1077 console_loglevel = 15; 1078 kdb_trap_printk++; 1079 show_regs(regs); 1080 kdb_trap_printk--; 1081 kdb_printf("\n"); 1082 console_loglevel = old_lvl; 1083 } 1084 1085 void kdb_set_current_task(struct task_struct *p) 1086 { 1087 kdb_current_task = p; 1088 1089 if (kdb_task_has_cpu(p)) { 1090 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1091 return; 1092 } 1093 kdb_current_regs = NULL; 1094 } 1095 1096 /* 1097 * kdb_local - The main code for kdb. This routine is invoked on a 1098 * specific processor, it is not global. The main kdb() routine 1099 * ensures that only one processor at a time is in this routine. 1100 * This code is called with the real reason code on the first 1101 * entry to a kdb session, thereafter it is called with reason 1102 * SWITCH, even if the user goes back to the original cpu. 1103 * Inputs: 1104 * reason The reason KDB was invoked 1105 * error The hardware-defined error code 1106 * regs The exception frame at time of fault/breakpoint. 1107 * db_result Result code from the break or debug point. 1108 * Returns: 1109 * 0 KDB was invoked for an event which it wasn't responsible 1110 * 1 KDB handled the event for which it was invoked. 1111 * KDB_CMD_GO User typed 'go'. 1112 * KDB_CMD_CPU User switched to another cpu. 1113 * KDB_CMD_SS Single step. 1114 * KDB_CMD_SSB Single step until branch. 1115 */ 1116 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1117 kdb_dbtrap_t db_result) 1118 { 1119 char *cmdbuf; 1120 int diag; 1121 struct task_struct *kdb_current = 1122 kdb_curr_task(raw_smp_processor_id()); 1123 1124 KDB_DEBUG_STATE("kdb_local 1", reason); 1125 kdb_go_count = 0; 1126 if (reason == KDB_REASON_DEBUG) { 1127 /* special case below */ 1128 } else { 1129 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ", 1130 kdb_current, kdb_current->pid); 1131 #if defined(CONFIG_SMP) 1132 kdb_printf("on processor %d ", raw_smp_processor_id()); 1133 #endif 1134 } 1135 1136 switch (reason) { 1137 case KDB_REASON_DEBUG: 1138 { 1139 /* 1140 * If re-entering kdb after a single step 1141 * command, don't print the message. 1142 */ 1143 switch (db_result) { 1144 case KDB_DB_BPT: 1145 kdb_printf("\nEntering kdb (0x%p, pid %d) ", 1146 kdb_current, kdb_current->pid); 1147 #if defined(CONFIG_SMP) 1148 kdb_printf("on processor %d ", raw_smp_processor_id()); 1149 #endif 1150 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1151 instruction_pointer(regs)); 1152 break; 1153 case KDB_DB_SSB: 1154 /* 1155 * In the midst of ssb command. Just return. 1156 */ 1157 KDB_DEBUG_STATE("kdb_local 3", reason); 1158 return KDB_CMD_SSB; /* Continue with SSB command */ 1159 1160 break; 1161 case KDB_DB_SS: 1162 break; 1163 case KDB_DB_SSBPT: 1164 KDB_DEBUG_STATE("kdb_local 4", reason); 1165 return 1; /* kdba_db_trap did the work */ 1166 default: 1167 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1168 db_result); 1169 break; 1170 } 1171 1172 } 1173 break; 1174 case KDB_REASON_ENTER: 1175 if (KDB_STATE(KEYBOARD)) 1176 kdb_printf("due to Keyboard Entry\n"); 1177 else 1178 kdb_printf("due to KDB_ENTER()\n"); 1179 break; 1180 case KDB_REASON_KEYBOARD: 1181 KDB_STATE_SET(KEYBOARD); 1182 kdb_printf("due to Keyboard Entry\n"); 1183 break; 1184 case KDB_REASON_ENTER_SLAVE: 1185 /* drop through, slaves only get released via cpu switch */ 1186 case KDB_REASON_SWITCH: 1187 kdb_printf("due to cpu switch\n"); 1188 break; 1189 case KDB_REASON_OOPS: 1190 kdb_printf("Oops: %s\n", kdb_diemsg); 1191 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1192 instruction_pointer(regs)); 1193 kdb_dumpregs(regs); 1194 break; 1195 case KDB_REASON_NMI: 1196 kdb_printf("due to NonMaskable Interrupt @ " 1197 kdb_machreg_fmt "\n", 1198 instruction_pointer(regs)); 1199 kdb_dumpregs(regs); 1200 break; 1201 case KDB_REASON_SSTEP: 1202 case KDB_REASON_BREAK: 1203 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1204 reason == KDB_REASON_BREAK ? 1205 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1206 /* 1207 * Determine if this breakpoint is one that we 1208 * are interested in. 1209 */ 1210 if (db_result != KDB_DB_BPT) { 1211 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1212 db_result); 1213 KDB_DEBUG_STATE("kdb_local 6", reason); 1214 return 0; /* Not for us, dismiss it */ 1215 } 1216 break; 1217 case KDB_REASON_RECURSE: 1218 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1219 instruction_pointer(regs)); 1220 break; 1221 default: 1222 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1223 KDB_DEBUG_STATE("kdb_local 8", reason); 1224 return 0; /* Not for us, dismiss it */ 1225 } 1226 1227 while (1) { 1228 /* 1229 * Initialize pager context. 1230 */ 1231 kdb_nextline = 1; 1232 KDB_STATE_CLEAR(SUPPRESS); 1233 1234 cmdbuf = cmd_cur; 1235 *cmdbuf = '\0'; 1236 *(cmd_hist[cmd_head]) = '\0'; 1237 1238 if (KDB_FLAG(ONLY_DO_DUMP)) { 1239 /* kdb is off but a catastrophic error requires a dump. 1240 * Take the dump and reboot. 1241 * Turn on logging so the kdb output appears in the log 1242 * buffer in the dump. 1243 */ 1244 const char *setargs[] = { "set", "LOGGING", "1" }; 1245 kdb_set(2, setargs); 1246 kdb_reboot(0, NULL); 1247 /*NOTREACHED*/ 1248 } 1249 1250 do_full_getstr: 1251 #if defined(CONFIG_SMP) 1252 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1253 raw_smp_processor_id()); 1254 #else 1255 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT")); 1256 #endif 1257 if (defcmd_in_progress) 1258 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); 1259 1260 /* 1261 * Fetch command from keyboard 1262 */ 1263 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1264 if (*cmdbuf != '\n') { 1265 if (*cmdbuf < 32) { 1266 if (cmdptr == cmd_head) { 1267 strncpy(cmd_hist[cmd_head], cmd_cur, 1268 CMD_BUFLEN); 1269 *(cmd_hist[cmd_head] + 1270 strlen(cmd_hist[cmd_head])-1) = '\0'; 1271 } 1272 if (!handle_ctrl_cmd(cmdbuf)) 1273 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1274 cmdbuf = cmd_cur; 1275 goto do_full_getstr; 1276 } else { 1277 strncpy(cmd_hist[cmd_head], cmd_cur, 1278 CMD_BUFLEN); 1279 } 1280 1281 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1282 if (cmd_head == cmd_tail) 1283 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1284 } 1285 1286 cmdptr = cmd_head; 1287 diag = kdb_parse(cmdbuf); 1288 if (diag == KDB_NOTFOUND) { 1289 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1290 diag = 0; 1291 } 1292 if (diag == KDB_CMD_GO 1293 || diag == KDB_CMD_CPU 1294 || diag == KDB_CMD_SS 1295 || diag == KDB_CMD_SSB 1296 || diag == KDB_CMD_KGDB) 1297 break; 1298 1299 if (diag) 1300 kdb_cmderror(diag); 1301 } 1302 KDB_DEBUG_STATE("kdb_local 9", diag); 1303 return diag; 1304 } 1305 1306 1307 /* 1308 * kdb_print_state - Print the state data for the current processor 1309 * for debugging. 1310 * Inputs: 1311 * text Identifies the debug point 1312 * value Any integer value to be printed, e.g. reason code. 1313 */ 1314 void kdb_print_state(const char *text, int value) 1315 { 1316 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1317 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1318 kdb_state); 1319 } 1320 1321 /* 1322 * kdb_main_loop - After initial setup and assignment of the 1323 * controlling cpu, all cpus are in this loop. One cpu is in 1324 * control and will issue the kdb prompt, the others will spin 1325 * until 'go' or cpu switch. 1326 * 1327 * To get a consistent view of the kernel stacks for all 1328 * processes, this routine is invoked from the main kdb code via 1329 * an architecture specific routine. kdba_main_loop is 1330 * responsible for making the kernel stacks consistent for all 1331 * processes, there should be no difference between a blocked 1332 * process and a running process as far as kdb is concerned. 1333 * Inputs: 1334 * reason The reason KDB was invoked 1335 * error The hardware-defined error code 1336 * reason2 kdb's current reason code. 1337 * Initially error but can change 1338 * acording to kdb state. 1339 * db_result Result code from break or debug point. 1340 * regs The exception frame at time of fault/breakpoint. 1341 * should always be valid. 1342 * Returns: 1343 * 0 KDB was invoked for an event which it wasn't responsible 1344 * 1 KDB handled the event for which it was invoked. 1345 */ 1346 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1347 kdb_dbtrap_t db_result, struct pt_regs *regs) 1348 { 1349 int result = 1; 1350 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1351 while (1) { 1352 /* 1353 * All processors except the one that is in control 1354 * will spin here. 1355 */ 1356 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1357 while (KDB_STATE(HOLD_CPU)) { 1358 /* state KDB is turned off by kdb_cpu to see if the 1359 * other cpus are still live, each cpu in this loop 1360 * turns it back on. 1361 */ 1362 if (!KDB_STATE(KDB)) 1363 KDB_STATE_SET(KDB); 1364 } 1365 1366 KDB_STATE_CLEAR(SUPPRESS); 1367 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1368 if (KDB_STATE(LEAVING)) 1369 break; /* Another cpu said 'go' */ 1370 /* Still using kdb, this processor is in control */ 1371 result = kdb_local(reason2, error, regs, db_result); 1372 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1373 1374 if (result == KDB_CMD_CPU) 1375 break; 1376 1377 if (result == KDB_CMD_SS) { 1378 KDB_STATE_SET(DOING_SS); 1379 break; 1380 } 1381 1382 if (result == KDB_CMD_SSB) { 1383 KDB_STATE_SET(DOING_SS); 1384 KDB_STATE_SET(DOING_SSB); 1385 break; 1386 } 1387 1388 if (result == KDB_CMD_KGDB) { 1389 if (!(KDB_STATE(DOING_KGDB) || KDB_STATE(DOING_KGDB2))) 1390 kdb_printf("Entering please attach debugger " 1391 "or use $D#44+ or $3#33\n"); 1392 break; 1393 } 1394 if (result && result != 1 && result != KDB_CMD_GO) 1395 kdb_printf("\nUnexpected kdb_local return code %d\n", 1396 result); 1397 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1398 break; 1399 } 1400 if (KDB_STATE(DOING_SS)) 1401 KDB_STATE_CLEAR(SSBPT); 1402 1403 return result; 1404 } 1405 1406 /* 1407 * kdb_mdr - This function implements the guts of the 'mdr', memory 1408 * read command. 1409 * mdr <addr arg>,<byte count> 1410 * Inputs: 1411 * addr Start address 1412 * count Number of bytes 1413 * Returns: 1414 * Always 0. Any errors are detected and printed by kdb_getarea. 1415 */ 1416 static int kdb_mdr(unsigned long addr, unsigned int count) 1417 { 1418 unsigned char c; 1419 while (count--) { 1420 if (kdb_getarea(c, addr)) 1421 return 0; 1422 kdb_printf("%02x", c); 1423 addr++; 1424 } 1425 kdb_printf("\n"); 1426 return 0; 1427 } 1428 1429 /* 1430 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1431 * 'md8' 'mdr' and 'mds' commands. 1432 * 1433 * md|mds [<addr arg> [<line count> [<radix>]]] 1434 * mdWcN [<addr arg> [<line count> [<radix>]]] 1435 * where W = is the width (1, 2, 4 or 8) and N is the count. 1436 * for eg., md1c20 reads 20 bytes, 1 at a time. 1437 * mdr <addr arg>,<byte count> 1438 */ 1439 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1440 int symbolic, int nosect, int bytesperword, 1441 int num, int repeat, int phys) 1442 { 1443 /* print just one line of data */ 1444 kdb_symtab_t symtab; 1445 char cbuf[32]; 1446 char *c = cbuf; 1447 int i; 1448 unsigned long word; 1449 1450 memset(cbuf, '\0', sizeof(cbuf)); 1451 if (phys) 1452 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1453 else 1454 kdb_printf(kdb_machreg_fmt0 " ", addr); 1455 1456 for (i = 0; i < num && repeat--; i++) { 1457 if (phys) { 1458 if (kdb_getphysword(&word, addr, bytesperword)) 1459 break; 1460 } else if (kdb_getword(&word, addr, bytesperword)) 1461 break; 1462 kdb_printf(fmtstr, word); 1463 if (symbolic) 1464 kdbnearsym(word, &symtab); 1465 else 1466 memset(&symtab, 0, sizeof(symtab)); 1467 if (symtab.sym_name) { 1468 kdb_symbol_print(word, &symtab, 0); 1469 if (!nosect) { 1470 kdb_printf("\n"); 1471 kdb_printf(" %s %s " 1472 kdb_machreg_fmt " " 1473 kdb_machreg_fmt " " 1474 kdb_machreg_fmt, symtab.mod_name, 1475 symtab.sec_name, symtab.sec_start, 1476 symtab.sym_start, symtab.sym_end); 1477 } 1478 addr += bytesperword; 1479 } else { 1480 union { 1481 u64 word; 1482 unsigned char c[8]; 1483 } wc; 1484 unsigned char *cp; 1485 #ifdef __BIG_ENDIAN 1486 cp = wc.c + 8 - bytesperword; 1487 #else 1488 cp = wc.c; 1489 #endif 1490 wc.word = word; 1491 #define printable_char(c) \ 1492 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1493 switch (bytesperword) { 1494 case 8: 1495 *c++ = printable_char(*cp++); 1496 *c++ = printable_char(*cp++); 1497 *c++ = printable_char(*cp++); 1498 *c++ = printable_char(*cp++); 1499 addr += 4; 1500 case 4: 1501 *c++ = printable_char(*cp++); 1502 *c++ = printable_char(*cp++); 1503 addr += 2; 1504 case 2: 1505 *c++ = printable_char(*cp++); 1506 addr++; 1507 case 1: 1508 *c++ = printable_char(*cp++); 1509 addr++; 1510 break; 1511 } 1512 #undef printable_char 1513 } 1514 } 1515 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1516 " ", cbuf); 1517 } 1518 1519 static int kdb_md(int argc, const char **argv) 1520 { 1521 static unsigned long last_addr; 1522 static int last_radix, last_bytesperword, last_repeat; 1523 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1524 int nosect = 0; 1525 char fmtchar, fmtstr[64]; 1526 unsigned long addr; 1527 unsigned long word; 1528 long offset = 0; 1529 int symbolic = 0; 1530 int valid = 0; 1531 int phys = 0; 1532 1533 kdbgetintenv("MDCOUNT", &mdcount); 1534 kdbgetintenv("RADIX", &radix); 1535 kdbgetintenv("BYTESPERWORD", &bytesperword); 1536 1537 /* Assume 'md <addr>' and start with environment values */ 1538 repeat = mdcount * 16 / bytesperword; 1539 1540 if (strcmp(argv[0], "mdr") == 0) { 1541 if (argc != 2) 1542 return KDB_ARGCOUNT; 1543 valid = 1; 1544 } else if (isdigit(argv[0][2])) { 1545 bytesperword = (int)(argv[0][2] - '0'); 1546 if (bytesperword == 0) { 1547 bytesperword = last_bytesperword; 1548 if (bytesperword == 0) 1549 bytesperword = 4; 1550 } 1551 last_bytesperword = bytesperword; 1552 repeat = mdcount * 16 / bytesperword; 1553 if (!argv[0][3]) 1554 valid = 1; 1555 else if (argv[0][3] == 'c' && argv[0][4]) { 1556 char *p; 1557 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1558 mdcount = ((repeat * bytesperword) + 15) / 16; 1559 valid = !*p; 1560 } 1561 last_repeat = repeat; 1562 } else if (strcmp(argv[0], "md") == 0) 1563 valid = 1; 1564 else if (strcmp(argv[0], "mds") == 0) 1565 valid = 1; 1566 else if (strcmp(argv[0], "mdp") == 0) { 1567 phys = valid = 1; 1568 } 1569 if (!valid) 1570 return KDB_NOTFOUND; 1571 1572 if (argc == 0) { 1573 if (last_addr == 0) 1574 return KDB_ARGCOUNT; 1575 addr = last_addr; 1576 radix = last_radix; 1577 bytesperword = last_bytesperword; 1578 repeat = last_repeat; 1579 mdcount = ((repeat * bytesperword) + 15) / 16; 1580 } 1581 1582 if (argc) { 1583 unsigned long val; 1584 int diag, nextarg = 1; 1585 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1586 &offset, NULL); 1587 if (diag) 1588 return diag; 1589 if (argc > nextarg+2) 1590 return KDB_ARGCOUNT; 1591 1592 if (argc >= nextarg) { 1593 diag = kdbgetularg(argv[nextarg], &val); 1594 if (!diag) { 1595 mdcount = (int) val; 1596 repeat = mdcount * 16 / bytesperword; 1597 } 1598 } 1599 if (argc >= nextarg+1) { 1600 diag = kdbgetularg(argv[nextarg+1], &val); 1601 if (!diag) 1602 radix = (int) val; 1603 } 1604 } 1605 1606 if (strcmp(argv[0], "mdr") == 0) 1607 return kdb_mdr(addr, mdcount); 1608 1609 switch (radix) { 1610 case 10: 1611 fmtchar = 'd'; 1612 break; 1613 case 16: 1614 fmtchar = 'x'; 1615 break; 1616 case 8: 1617 fmtchar = 'o'; 1618 break; 1619 default: 1620 return KDB_BADRADIX; 1621 } 1622 1623 last_radix = radix; 1624 1625 if (bytesperword > KDB_WORD_SIZE) 1626 return KDB_BADWIDTH; 1627 1628 switch (bytesperword) { 1629 case 8: 1630 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1631 break; 1632 case 4: 1633 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1634 break; 1635 case 2: 1636 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1637 break; 1638 case 1: 1639 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1640 break; 1641 default: 1642 return KDB_BADWIDTH; 1643 } 1644 1645 last_repeat = repeat; 1646 last_bytesperword = bytesperword; 1647 1648 if (strcmp(argv[0], "mds") == 0) { 1649 symbolic = 1; 1650 /* Do not save these changes as last_*, they are temporary mds 1651 * overrides. 1652 */ 1653 bytesperword = KDB_WORD_SIZE; 1654 repeat = mdcount; 1655 kdbgetintenv("NOSECT", &nosect); 1656 } 1657 1658 /* Round address down modulo BYTESPERWORD */ 1659 1660 addr &= ~(bytesperword-1); 1661 1662 while (repeat > 0) { 1663 unsigned long a; 1664 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1665 1666 if (KDB_FLAG(CMD_INTERRUPT)) 1667 return 0; 1668 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1669 if (phys) { 1670 if (kdb_getphysword(&word, a, bytesperword) 1671 || word) 1672 break; 1673 } else if (kdb_getword(&word, a, bytesperword) || word) 1674 break; 1675 } 1676 n = min(num, repeat); 1677 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1678 num, repeat, phys); 1679 addr += bytesperword * n; 1680 repeat -= n; 1681 z = (z + num - 1) / num; 1682 if (z > 2) { 1683 int s = num * (z-2); 1684 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1685 " zero suppressed\n", 1686 addr, addr + bytesperword * s - 1); 1687 addr += bytesperword * s; 1688 repeat -= s; 1689 } 1690 } 1691 last_addr = addr; 1692 1693 return 0; 1694 } 1695 1696 /* 1697 * kdb_mm - This function implements the 'mm' command. 1698 * mm address-expression new-value 1699 * Remarks: 1700 * mm works on machine words, mmW works on bytes. 1701 */ 1702 static int kdb_mm(int argc, const char **argv) 1703 { 1704 int diag; 1705 unsigned long addr; 1706 long offset = 0; 1707 unsigned long contents; 1708 int nextarg; 1709 int width; 1710 1711 if (argv[0][2] && !isdigit(argv[0][2])) 1712 return KDB_NOTFOUND; 1713 1714 if (argc < 2) 1715 return KDB_ARGCOUNT; 1716 1717 nextarg = 1; 1718 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1719 if (diag) 1720 return diag; 1721 1722 if (nextarg > argc) 1723 return KDB_ARGCOUNT; 1724 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1725 if (diag) 1726 return diag; 1727 1728 if (nextarg != argc + 1) 1729 return KDB_ARGCOUNT; 1730 1731 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1732 diag = kdb_putword(addr, contents, width); 1733 if (diag) 1734 return diag; 1735 1736 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1737 1738 return 0; 1739 } 1740 1741 /* 1742 * kdb_go - This function implements the 'go' command. 1743 * go [address-expression] 1744 */ 1745 static int kdb_go(int argc, const char **argv) 1746 { 1747 unsigned long addr; 1748 int diag; 1749 int nextarg; 1750 long offset; 1751 1752 if (raw_smp_processor_id() != kdb_initial_cpu) { 1753 kdb_printf("go must execute on the entry cpu, " 1754 "please use \"cpu %d\" and then execute go\n", 1755 kdb_initial_cpu); 1756 return KDB_BADCPUNUM; 1757 } 1758 if (argc == 1) { 1759 nextarg = 1; 1760 diag = kdbgetaddrarg(argc, argv, &nextarg, 1761 &addr, &offset, NULL); 1762 if (diag) 1763 return diag; 1764 } else if (argc) { 1765 return KDB_ARGCOUNT; 1766 } 1767 1768 diag = KDB_CMD_GO; 1769 if (KDB_FLAG(CATASTROPHIC)) { 1770 kdb_printf("Catastrophic error detected\n"); 1771 kdb_printf("kdb_continue_catastrophic=%d, ", 1772 kdb_continue_catastrophic); 1773 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1774 kdb_printf("type go a second time if you really want " 1775 "to continue\n"); 1776 return 0; 1777 } 1778 if (kdb_continue_catastrophic == 2) { 1779 kdb_printf("forcing reboot\n"); 1780 kdb_reboot(0, NULL); 1781 } 1782 kdb_printf("attempting to continue\n"); 1783 } 1784 return diag; 1785 } 1786 1787 /* 1788 * kdb_rd - This function implements the 'rd' command. 1789 */ 1790 static int kdb_rd(int argc, const char **argv) 1791 { 1792 int len = kdb_check_regs(); 1793 #if DBG_MAX_REG_NUM > 0 1794 int i; 1795 char *rname; 1796 int rsize; 1797 u64 reg64; 1798 u32 reg32; 1799 u16 reg16; 1800 u8 reg8; 1801 1802 if (len) 1803 return len; 1804 1805 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1806 rsize = dbg_reg_def[i].size * 2; 1807 if (rsize > 16) 1808 rsize = 2; 1809 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1810 len = 0; 1811 kdb_printf("\n"); 1812 } 1813 if (len) 1814 len += kdb_printf(" "); 1815 switch(dbg_reg_def[i].size * 8) { 1816 case 8: 1817 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1818 if (!rname) 1819 break; 1820 len += kdb_printf("%s: %02x", rname, reg8); 1821 break; 1822 case 16: 1823 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1824 if (!rname) 1825 break; 1826 len += kdb_printf("%s: %04x", rname, reg16); 1827 break; 1828 case 32: 1829 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1830 if (!rname) 1831 break; 1832 len += kdb_printf("%s: %08x", rname, reg32); 1833 break; 1834 case 64: 1835 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1836 if (!rname) 1837 break; 1838 len += kdb_printf("%s: %016llx", rname, reg64); 1839 break; 1840 default: 1841 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1842 } 1843 } 1844 kdb_printf("\n"); 1845 #else 1846 if (len) 1847 return len; 1848 1849 kdb_dumpregs(kdb_current_regs); 1850 #endif 1851 return 0; 1852 } 1853 1854 /* 1855 * kdb_rm - This function implements the 'rm' (register modify) command. 1856 * rm register-name new-contents 1857 * Remarks: 1858 * Allows register modification with the same restrictions as gdb 1859 */ 1860 static int kdb_rm(int argc, const char **argv) 1861 { 1862 #if DBG_MAX_REG_NUM > 0 1863 int diag; 1864 const char *rname; 1865 int i; 1866 u64 reg64; 1867 u32 reg32; 1868 u16 reg16; 1869 u8 reg8; 1870 1871 if (argc != 2) 1872 return KDB_ARGCOUNT; 1873 /* 1874 * Allow presence or absence of leading '%' symbol. 1875 */ 1876 rname = argv[1]; 1877 if (*rname == '%') 1878 rname++; 1879 1880 diag = kdbgetu64arg(argv[2], ®64); 1881 if (diag) 1882 return diag; 1883 1884 diag = kdb_check_regs(); 1885 if (diag) 1886 return diag; 1887 1888 diag = KDB_BADREG; 1889 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1890 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1891 diag = 0; 1892 break; 1893 } 1894 } 1895 if (!diag) { 1896 switch(dbg_reg_def[i].size * 8) { 1897 case 8: 1898 reg8 = reg64; 1899 dbg_set_reg(i, ®8, kdb_current_regs); 1900 break; 1901 case 16: 1902 reg16 = reg64; 1903 dbg_set_reg(i, ®16, kdb_current_regs); 1904 break; 1905 case 32: 1906 reg32 = reg64; 1907 dbg_set_reg(i, ®32, kdb_current_regs); 1908 break; 1909 case 64: 1910 dbg_set_reg(i, ®64, kdb_current_regs); 1911 break; 1912 } 1913 } 1914 return diag; 1915 #else 1916 kdb_printf("ERROR: Register set currently not implemented\n"); 1917 return 0; 1918 #endif 1919 } 1920 1921 #if defined(CONFIG_MAGIC_SYSRQ) 1922 /* 1923 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 1924 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 1925 * sr <magic-sysrq-code> 1926 */ 1927 static int kdb_sr(int argc, const char **argv) 1928 { 1929 if (argc != 1) 1930 return KDB_ARGCOUNT; 1931 kdb_trap_printk++; 1932 __handle_sysrq(*argv[1], false); 1933 kdb_trap_printk--; 1934 1935 return 0; 1936 } 1937 #endif /* CONFIG_MAGIC_SYSRQ */ 1938 1939 /* 1940 * kdb_ef - This function implements the 'regs' (display exception 1941 * frame) command. This command takes an address and expects to 1942 * find an exception frame at that address, formats and prints 1943 * it. 1944 * regs address-expression 1945 * Remarks: 1946 * Not done yet. 1947 */ 1948 static int kdb_ef(int argc, const char **argv) 1949 { 1950 int diag; 1951 unsigned long addr; 1952 long offset; 1953 int nextarg; 1954 1955 if (argc != 1) 1956 return KDB_ARGCOUNT; 1957 1958 nextarg = 1; 1959 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1960 if (diag) 1961 return diag; 1962 show_regs((struct pt_regs *)addr); 1963 return 0; 1964 } 1965 1966 #if defined(CONFIG_MODULES) 1967 /* 1968 * kdb_lsmod - This function implements the 'lsmod' command. Lists 1969 * currently loaded kernel modules. 1970 * Mostly taken from userland lsmod. 1971 */ 1972 static int kdb_lsmod(int argc, const char **argv) 1973 { 1974 struct module *mod; 1975 1976 if (argc != 0) 1977 return KDB_ARGCOUNT; 1978 1979 kdb_printf("Module Size modstruct Used by\n"); 1980 list_for_each_entry(mod, kdb_modules, list) { 1981 1982 kdb_printf("%-20s%8u 0x%p ", mod->name, 1983 mod->core_size, (void *)mod); 1984 #ifdef CONFIG_MODULE_UNLOAD 1985 kdb_printf("%4d ", module_refcount(mod)); 1986 #endif 1987 if (mod->state == MODULE_STATE_GOING) 1988 kdb_printf(" (Unloading)"); 1989 else if (mod->state == MODULE_STATE_COMING) 1990 kdb_printf(" (Loading)"); 1991 else 1992 kdb_printf(" (Live)"); 1993 kdb_printf(" 0x%p", mod->module_core); 1994 1995 #ifdef CONFIG_MODULE_UNLOAD 1996 { 1997 struct module_use *use; 1998 kdb_printf(" [ "); 1999 list_for_each_entry(use, &mod->source_list, 2000 source_list) 2001 kdb_printf("%s ", use->target->name); 2002 kdb_printf("]\n"); 2003 } 2004 #endif 2005 } 2006 2007 return 0; 2008 } 2009 2010 #endif /* CONFIG_MODULES */ 2011 2012 /* 2013 * kdb_env - This function implements the 'env' command. Display the 2014 * current environment variables. 2015 */ 2016 2017 static int kdb_env(int argc, const char **argv) 2018 { 2019 int i; 2020 2021 for (i = 0; i < __nenv; i++) { 2022 if (__env[i]) 2023 kdb_printf("%s\n", __env[i]); 2024 } 2025 2026 if (KDB_DEBUG(MASK)) 2027 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags); 2028 2029 return 0; 2030 } 2031 2032 #ifdef CONFIG_PRINTK 2033 /* 2034 * kdb_dmesg - This function implements the 'dmesg' command to display 2035 * the contents of the syslog buffer. 2036 * dmesg [lines] [adjust] 2037 */ 2038 static int kdb_dmesg(int argc, const char **argv) 2039 { 2040 char *syslog_data[4], *start, *end, c = '\0', *p; 2041 int diag, logging, logsize, lines = 0, adjust = 0, n; 2042 2043 if (argc > 2) 2044 return KDB_ARGCOUNT; 2045 if (argc) { 2046 char *cp; 2047 lines = simple_strtol(argv[1], &cp, 0); 2048 if (*cp) 2049 lines = 0; 2050 if (argc > 1) { 2051 adjust = simple_strtoul(argv[2], &cp, 0); 2052 if (*cp || adjust < 0) 2053 adjust = 0; 2054 } 2055 } 2056 2057 /* disable LOGGING if set */ 2058 diag = kdbgetintenv("LOGGING", &logging); 2059 if (!diag && logging) { 2060 const char *setargs[] = { "set", "LOGGING", "0" }; 2061 kdb_set(2, setargs); 2062 } 2063 2064 /* syslog_data[0,1] physical start, end+1. syslog_data[2,3] 2065 * logical start, end+1. */ 2066 kdb_syslog_data(syslog_data); 2067 if (syslog_data[2] == syslog_data[3]) 2068 return 0; 2069 logsize = syslog_data[1] - syslog_data[0]; 2070 start = syslog_data[2]; 2071 end = syslog_data[3]; 2072 #define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0]) 2073 for (n = 0, p = start; p < end; ++p) { 2074 c = *KDB_WRAP(p); 2075 if (c == '\n') 2076 ++n; 2077 } 2078 if (c != '\n') 2079 ++n; 2080 if (lines < 0) { 2081 if (adjust >= n) 2082 kdb_printf("buffer only contains %d lines, nothing " 2083 "printed\n", n); 2084 else if (adjust - lines >= n) 2085 kdb_printf("buffer only contains %d lines, last %d " 2086 "lines printed\n", n, n - adjust); 2087 if (adjust) { 2088 for (; start < end && adjust; ++start) { 2089 if (*KDB_WRAP(start) == '\n') 2090 --adjust; 2091 } 2092 if (start < end) 2093 ++start; 2094 } 2095 for (p = start; p < end && lines; ++p) { 2096 if (*KDB_WRAP(p) == '\n') 2097 ++lines; 2098 } 2099 end = p; 2100 } else if (lines > 0) { 2101 int skip = n - (adjust + lines); 2102 if (adjust >= n) { 2103 kdb_printf("buffer only contains %d lines, " 2104 "nothing printed\n", n); 2105 skip = n; 2106 } else if (skip < 0) { 2107 lines += skip; 2108 skip = 0; 2109 kdb_printf("buffer only contains %d lines, first " 2110 "%d lines printed\n", n, lines); 2111 } 2112 for (; start < end && skip; ++start) { 2113 if (*KDB_WRAP(start) == '\n') 2114 --skip; 2115 } 2116 for (p = start; p < end && lines; ++p) { 2117 if (*KDB_WRAP(p) == '\n') 2118 --lines; 2119 } 2120 end = p; 2121 } 2122 /* Do a line at a time (max 200 chars) to reduce protocol overhead */ 2123 c = '\n'; 2124 while (start != end) { 2125 char buf[201]; 2126 p = buf; 2127 if (KDB_FLAG(CMD_INTERRUPT)) 2128 return 0; 2129 while (start < end && (c = *KDB_WRAP(start)) && 2130 (p - buf) < sizeof(buf)-1) { 2131 ++start; 2132 *p++ = c; 2133 if (c == '\n') 2134 break; 2135 } 2136 *p = '\0'; 2137 kdb_printf("%s", buf); 2138 } 2139 if (c != '\n') 2140 kdb_printf("\n"); 2141 2142 return 0; 2143 } 2144 #endif /* CONFIG_PRINTK */ 2145 /* 2146 * kdb_cpu - This function implements the 'cpu' command. 2147 * cpu [<cpunum>] 2148 * Returns: 2149 * KDB_CMD_CPU for success, a kdb diagnostic if error 2150 */ 2151 static void kdb_cpu_status(void) 2152 { 2153 int i, start_cpu, first_print = 1; 2154 char state, prev_state = '?'; 2155 2156 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2157 kdb_printf("Available cpus: "); 2158 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2159 if (!cpu_online(i)) { 2160 state = 'F'; /* cpu is offline */ 2161 } else { 2162 state = ' '; /* cpu is responding to kdb */ 2163 if (kdb_task_state_char(KDB_TSK(i)) == 'I') 2164 state = 'I'; /* idle task */ 2165 } 2166 if (state != prev_state) { 2167 if (prev_state != '?') { 2168 if (!first_print) 2169 kdb_printf(", "); 2170 first_print = 0; 2171 kdb_printf("%d", start_cpu); 2172 if (start_cpu < i-1) 2173 kdb_printf("-%d", i-1); 2174 if (prev_state != ' ') 2175 kdb_printf("(%c)", prev_state); 2176 } 2177 prev_state = state; 2178 start_cpu = i; 2179 } 2180 } 2181 /* print the trailing cpus, ignoring them if they are all offline */ 2182 if (prev_state != 'F') { 2183 if (!first_print) 2184 kdb_printf(", "); 2185 kdb_printf("%d", start_cpu); 2186 if (start_cpu < i-1) 2187 kdb_printf("-%d", i-1); 2188 if (prev_state != ' ') 2189 kdb_printf("(%c)", prev_state); 2190 } 2191 kdb_printf("\n"); 2192 } 2193 2194 static int kdb_cpu(int argc, const char **argv) 2195 { 2196 unsigned long cpunum; 2197 int diag; 2198 2199 if (argc == 0) { 2200 kdb_cpu_status(); 2201 return 0; 2202 } 2203 2204 if (argc != 1) 2205 return KDB_ARGCOUNT; 2206 2207 diag = kdbgetularg(argv[1], &cpunum); 2208 if (diag) 2209 return diag; 2210 2211 /* 2212 * Validate cpunum 2213 */ 2214 if ((cpunum > NR_CPUS) || !cpu_online(cpunum)) 2215 return KDB_BADCPUNUM; 2216 2217 dbg_switch_cpu = cpunum; 2218 2219 /* 2220 * Switch to other cpu 2221 */ 2222 return KDB_CMD_CPU; 2223 } 2224 2225 /* The user may not realize that ps/bta with no parameters does not print idle 2226 * or sleeping system daemon processes, so tell them how many were suppressed. 2227 */ 2228 void kdb_ps_suppressed(void) 2229 { 2230 int idle = 0, daemon = 0; 2231 unsigned long mask_I = kdb_task_state_string("I"), 2232 mask_M = kdb_task_state_string("M"); 2233 unsigned long cpu; 2234 const struct task_struct *p, *g; 2235 for_each_online_cpu(cpu) { 2236 p = kdb_curr_task(cpu); 2237 if (kdb_task_state(p, mask_I)) 2238 ++idle; 2239 } 2240 kdb_do_each_thread(g, p) { 2241 if (kdb_task_state(p, mask_M)) 2242 ++daemon; 2243 } kdb_while_each_thread(g, p); 2244 if (idle || daemon) { 2245 if (idle) 2246 kdb_printf("%d idle process%s (state I)%s\n", 2247 idle, idle == 1 ? "" : "es", 2248 daemon ? " and " : ""); 2249 if (daemon) 2250 kdb_printf("%d sleeping system daemon (state M) " 2251 "process%s", daemon, 2252 daemon == 1 ? "" : "es"); 2253 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2254 } 2255 } 2256 2257 /* 2258 * kdb_ps - This function implements the 'ps' command which shows a 2259 * list of the active processes. 2260 * ps [DRSTCZEUIMA] All processes, optionally filtered by state 2261 */ 2262 void kdb_ps1(const struct task_struct *p) 2263 { 2264 int cpu; 2265 unsigned long tmp; 2266 2267 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) 2268 return; 2269 2270 cpu = kdb_process_cpu(p); 2271 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n", 2272 (void *)p, p->pid, p->parent->pid, 2273 kdb_task_has_cpu(p), kdb_process_cpu(p), 2274 kdb_task_state_char(p), 2275 (void *)(&p->thread), 2276 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2277 p->comm); 2278 if (kdb_task_has_cpu(p)) { 2279 if (!KDB_TSK(cpu)) { 2280 kdb_printf(" Error: no saved data for this cpu\n"); 2281 } else { 2282 if (KDB_TSK(cpu) != p) 2283 kdb_printf(" Error: does not match running " 2284 "process table (0x%p)\n", KDB_TSK(cpu)); 2285 } 2286 } 2287 } 2288 2289 static int kdb_ps(int argc, const char **argv) 2290 { 2291 struct task_struct *g, *p; 2292 unsigned long mask, cpu; 2293 2294 if (argc == 0) 2295 kdb_ps_suppressed(); 2296 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2297 (int)(2*sizeof(void *))+2, "Task Addr", 2298 (int)(2*sizeof(void *))+2, "Thread"); 2299 mask = kdb_task_state_string(argc ? argv[1] : NULL); 2300 /* Run the active tasks first */ 2301 for_each_online_cpu(cpu) { 2302 if (KDB_FLAG(CMD_INTERRUPT)) 2303 return 0; 2304 p = kdb_curr_task(cpu); 2305 if (kdb_task_state(p, mask)) 2306 kdb_ps1(p); 2307 } 2308 kdb_printf("\n"); 2309 /* Now the real tasks */ 2310 kdb_do_each_thread(g, p) { 2311 if (KDB_FLAG(CMD_INTERRUPT)) 2312 return 0; 2313 if (kdb_task_state(p, mask)) 2314 kdb_ps1(p); 2315 } kdb_while_each_thread(g, p); 2316 2317 return 0; 2318 } 2319 2320 /* 2321 * kdb_pid - This function implements the 'pid' command which switches 2322 * the currently active process. 2323 * pid [<pid> | R] 2324 */ 2325 static int kdb_pid(int argc, const char **argv) 2326 { 2327 struct task_struct *p; 2328 unsigned long val; 2329 int diag; 2330 2331 if (argc > 1) 2332 return KDB_ARGCOUNT; 2333 2334 if (argc) { 2335 if (strcmp(argv[1], "R") == 0) { 2336 p = KDB_TSK(kdb_initial_cpu); 2337 } else { 2338 diag = kdbgetularg(argv[1], &val); 2339 if (diag) 2340 return KDB_BADINT; 2341 2342 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2343 if (!p) { 2344 kdb_printf("No task with pid=%d\n", (pid_t)val); 2345 return 0; 2346 } 2347 } 2348 kdb_set_current_task(p); 2349 } 2350 kdb_printf("KDB current process is %s(pid=%d)\n", 2351 kdb_current_task->comm, 2352 kdb_current_task->pid); 2353 2354 return 0; 2355 } 2356 2357 /* 2358 * kdb_ll - This function implements the 'll' command which follows a 2359 * linked list and executes an arbitrary command for each 2360 * element. 2361 */ 2362 static int kdb_ll(int argc, const char **argv) 2363 { 2364 int diag; 2365 unsigned long addr; 2366 long offset = 0; 2367 unsigned long va; 2368 unsigned long linkoffset; 2369 int nextarg; 2370 const char *command; 2371 2372 if (argc != 3) 2373 return KDB_ARGCOUNT; 2374 2375 nextarg = 1; 2376 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2377 if (diag) 2378 return diag; 2379 2380 diag = kdbgetularg(argv[2], &linkoffset); 2381 if (diag) 2382 return diag; 2383 2384 /* 2385 * Using the starting address as 2386 * the first element in the list, and assuming that 2387 * the list ends with a null pointer. 2388 */ 2389 2390 va = addr; 2391 command = kdb_strdup(argv[3], GFP_KDB); 2392 if (!command) { 2393 kdb_printf("%s: cannot duplicate command\n", __func__); 2394 return 0; 2395 } 2396 /* Recursive use of kdb_parse, do not use argv after this point */ 2397 argv = NULL; 2398 2399 while (va) { 2400 char buf[80]; 2401 2402 if (KDB_FLAG(CMD_INTERRUPT)) 2403 return 0; 2404 2405 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va); 2406 diag = kdb_parse(buf); 2407 if (diag) 2408 return diag; 2409 2410 addr = va + linkoffset; 2411 if (kdb_getword(&va, addr, sizeof(va))) 2412 return 0; 2413 } 2414 kfree(command); 2415 2416 return 0; 2417 } 2418 2419 static int kdb_kgdb(int argc, const char **argv) 2420 { 2421 return KDB_CMD_KGDB; 2422 } 2423 2424 /* 2425 * kdb_help - This function implements the 'help' and '?' commands. 2426 */ 2427 static int kdb_help(int argc, const char **argv) 2428 { 2429 kdbtab_t *kt; 2430 int i; 2431 2432 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2433 kdb_printf("-----------------------------" 2434 "-----------------------------\n"); 2435 for_each_kdbcmd(kt, i) { 2436 if (kt->cmd_name) 2437 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name, 2438 kt->cmd_usage, kt->cmd_help); 2439 if (KDB_FLAG(CMD_INTERRUPT)) 2440 return 0; 2441 } 2442 return 0; 2443 } 2444 2445 /* 2446 * kdb_kill - This function implements the 'kill' commands. 2447 */ 2448 static int kdb_kill(int argc, const char **argv) 2449 { 2450 long sig, pid; 2451 char *endp; 2452 struct task_struct *p; 2453 struct siginfo info; 2454 2455 if (argc != 2) 2456 return KDB_ARGCOUNT; 2457 2458 sig = simple_strtol(argv[1], &endp, 0); 2459 if (*endp) 2460 return KDB_BADINT; 2461 if (sig >= 0) { 2462 kdb_printf("Invalid signal parameter.<-signal>\n"); 2463 return 0; 2464 } 2465 sig = -sig; 2466 2467 pid = simple_strtol(argv[2], &endp, 0); 2468 if (*endp) 2469 return KDB_BADINT; 2470 if (pid <= 0) { 2471 kdb_printf("Process ID must be large than 0.\n"); 2472 return 0; 2473 } 2474 2475 /* Find the process. */ 2476 p = find_task_by_pid_ns(pid, &init_pid_ns); 2477 if (!p) { 2478 kdb_printf("The specified process isn't found.\n"); 2479 return 0; 2480 } 2481 p = p->group_leader; 2482 info.si_signo = sig; 2483 info.si_errno = 0; 2484 info.si_code = SI_USER; 2485 info.si_pid = pid; /* same capabilities as process being signalled */ 2486 info.si_uid = 0; /* kdb has root authority */ 2487 kdb_send_sig_info(p, &info); 2488 return 0; 2489 } 2490 2491 struct kdb_tm { 2492 int tm_sec; /* seconds */ 2493 int tm_min; /* minutes */ 2494 int tm_hour; /* hours */ 2495 int tm_mday; /* day of the month */ 2496 int tm_mon; /* month */ 2497 int tm_year; /* year */ 2498 }; 2499 2500 static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm) 2501 { 2502 /* This will work from 1970-2099, 2100 is not a leap year */ 2503 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31, 2504 31, 30, 31, 30, 31 }; 2505 memset(tm, 0, sizeof(*tm)); 2506 tm->tm_sec = tv->tv_sec % (24 * 60 * 60); 2507 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) + 2508 (2 * 365 + 1); /* shift base from 1970 to 1968 */ 2509 tm->tm_min = tm->tm_sec / 60 % 60; 2510 tm->tm_hour = tm->tm_sec / 60 / 60; 2511 tm->tm_sec = tm->tm_sec % 60; 2512 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1)); 2513 tm->tm_mday %= (4*365+1); 2514 mon_day[1] = 29; 2515 while (tm->tm_mday >= mon_day[tm->tm_mon]) { 2516 tm->tm_mday -= mon_day[tm->tm_mon]; 2517 if (++tm->tm_mon == 12) { 2518 tm->tm_mon = 0; 2519 ++tm->tm_year; 2520 mon_day[1] = 28; 2521 } 2522 } 2523 ++tm->tm_mday; 2524 } 2525 2526 /* 2527 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2528 * I cannot call that code directly from kdb, it has an unconditional 2529 * cli()/sti() and calls routines that take locks which can stop the debugger. 2530 */ 2531 static void kdb_sysinfo(struct sysinfo *val) 2532 { 2533 struct timespec uptime; 2534 do_posix_clock_monotonic_gettime(&uptime); 2535 memset(val, 0, sizeof(*val)); 2536 val->uptime = uptime.tv_sec; 2537 val->loads[0] = avenrun[0]; 2538 val->loads[1] = avenrun[1]; 2539 val->loads[2] = avenrun[2]; 2540 val->procs = nr_threads-1; 2541 si_meminfo(val); 2542 2543 return; 2544 } 2545 2546 /* 2547 * kdb_summary - This function implements the 'summary' command. 2548 */ 2549 static int kdb_summary(int argc, const char **argv) 2550 { 2551 struct timespec now; 2552 struct kdb_tm tm; 2553 struct sysinfo val; 2554 2555 if (argc) 2556 return KDB_ARGCOUNT; 2557 2558 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2559 kdb_printf("release %s\n", init_uts_ns.name.release); 2560 kdb_printf("version %s\n", init_uts_ns.name.version); 2561 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2562 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2563 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2564 kdb_printf("ccversion %s\n", __stringify(CCVERSION)); 2565 2566 now = __current_kernel_time(); 2567 kdb_gmtime(&now, &tm); 2568 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d " 2569 "tz_minuteswest %d\n", 2570 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, 2571 tm.tm_hour, tm.tm_min, tm.tm_sec, 2572 sys_tz.tz_minuteswest); 2573 2574 kdb_sysinfo(&val); 2575 kdb_printf("uptime "); 2576 if (val.uptime > (24*60*60)) { 2577 int days = val.uptime / (24*60*60); 2578 val.uptime %= (24*60*60); 2579 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2580 } 2581 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2582 2583 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */ 2584 2585 #define LOAD_INT(x) ((x) >> FSHIFT) 2586 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100) 2587 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2588 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2589 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2590 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2591 #undef LOAD_INT 2592 #undef LOAD_FRAC 2593 /* Display in kilobytes */ 2594 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2595 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2596 "Buffers: %8lu kB\n", 2597 val.totalram, val.freeram, val.bufferram); 2598 return 0; 2599 } 2600 2601 /* 2602 * kdb_per_cpu - This function implements the 'per_cpu' command. 2603 */ 2604 static int kdb_per_cpu(int argc, const char **argv) 2605 { 2606 char buf[256], fmtstr[64]; 2607 kdb_symtab_t symtab; 2608 cpumask_t suppress = CPU_MASK_NONE; 2609 int cpu, diag; 2610 unsigned long addr, val, bytesperword = 0, whichcpu = ~0UL; 2611 2612 if (argc < 1 || argc > 3) 2613 return KDB_ARGCOUNT; 2614 2615 snprintf(buf, sizeof(buf), "per_cpu__%s", argv[1]); 2616 if (!kdbgetsymval(buf, &symtab)) { 2617 kdb_printf("%s is not a per_cpu variable\n", argv[1]); 2618 return KDB_BADADDR; 2619 } 2620 if (argc >= 2) { 2621 diag = kdbgetularg(argv[2], &bytesperword); 2622 if (diag) 2623 return diag; 2624 } 2625 if (!bytesperword) 2626 bytesperword = KDB_WORD_SIZE; 2627 else if (bytesperword > KDB_WORD_SIZE) 2628 return KDB_BADWIDTH; 2629 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2630 if (argc >= 3) { 2631 diag = kdbgetularg(argv[3], &whichcpu); 2632 if (diag) 2633 return diag; 2634 if (!cpu_online(whichcpu)) { 2635 kdb_printf("cpu %ld is not online\n", whichcpu); 2636 return KDB_BADCPUNUM; 2637 } 2638 } 2639 2640 /* Most architectures use __per_cpu_offset[cpu], some use 2641 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2642 */ 2643 #ifdef __per_cpu_offset 2644 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2645 #else 2646 #ifdef CONFIG_SMP 2647 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2648 #else 2649 #define KDB_PCU(cpu) 0 2650 #endif 2651 #endif 2652 2653 for_each_online_cpu(cpu) { 2654 if (whichcpu != ~0UL && whichcpu != cpu) 2655 continue; 2656 addr = symtab.sym_start + KDB_PCU(cpu); 2657 diag = kdb_getword(&val, addr, bytesperword); 2658 if (diag) { 2659 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2660 "read, diag=%d\n", cpu, addr, diag); 2661 continue; 2662 } 2663 #ifdef CONFIG_SMP 2664 if (!val) { 2665 cpu_set(cpu, suppress); 2666 continue; 2667 } 2668 #endif /* CONFIG_SMP */ 2669 kdb_printf("%5d ", cpu); 2670 kdb_md_line(fmtstr, addr, 2671 bytesperword == KDB_WORD_SIZE, 2672 1, bytesperword, 1, 1, 0); 2673 } 2674 if (cpus_weight(suppress) == 0) 2675 return 0; 2676 kdb_printf("Zero suppressed cpu(s):"); 2677 for (cpu = first_cpu(suppress); cpu < num_possible_cpus(); 2678 cpu = next_cpu(cpu, suppress)) { 2679 kdb_printf(" %d", cpu); 2680 if (cpu == num_possible_cpus() - 1 || 2681 next_cpu(cpu, suppress) != cpu + 1) 2682 continue; 2683 while (cpu < num_possible_cpus() && 2684 next_cpu(cpu, suppress) == cpu + 1) 2685 ++cpu; 2686 kdb_printf("-%d", cpu); 2687 } 2688 kdb_printf("\n"); 2689 2690 #undef KDB_PCU 2691 2692 return 0; 2693 } 2694 2695 /* 2696 * display help for the use of cmd | grep pattern 2697 */ 2698 static int kdb_grep_help(int argc, const char **argv) 2699 { 2700 kdb_printf("Usage of cmd args | grep pattern:\n"); 2701 kdb_printf(" Any command's output may be filtered through an "); 2702 kdb_printf("emulated 'pipe'.\n"); 2703 kdb_printf(" 'grep' is just a key word.\n"); 2704 kdb_printf(" The pattern may include a very limited set of " 2705 "metacharacters:\n"); 2706 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2707 kdb_printf(" And if there are spaces in the pattern, you may " 2708 "quote it:\n"); 2709 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2710 " or \"^pat tern$\"\n"); 2711 return 0; 2712 } 2713 2714 /* 2715 * kdb_register_repeat - This function is used to register a kernel 2716 * debugger command. 2717 * Inputs: 2718 * cmd Command name 2719 * func Function to execute the command 2720 * usage A simple usage string showing arguments 2721 * help A simple help string describing command 2722 * repeat Does the command auto repeat on enter? 2723 * Returns: 2724 * zero for success, one if a duplicate command. 2725 */ 2726 #define kdb_command_extend 50 /* arbitrary */ 2727 int kdb_register_repeat(char *cmd, 2728 kdb_func_t func, 2729 char *usage, 2730 char *help, 2731 short minlen, 2732 kdb_repeat_t repeat) 2733 { 2734 int i; 2735 kdbtab_t *kp; 2736 2737 /* 2738 * Brute force method to determine duplicates 2739 */ 2740 for_each_kdbcmd(kp, i) { 2741 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2742 kdb_printf("Duplicate kdb command registered: " 2743 "%s, func %p help %s\n", cmd, func, help); 2744 return 1; 2745 } 2746 } 2747 2748 /* 2749 * Insert command into first available location in table 2750 */ 2751 for_each_kdbcmd(kp, i) { 2752 if (kp->cmd_name == NULL) 2753 break; 2754 } 2755 2756 if (i >= kdb_max_commands) { 2757 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX + 2758 kdb_command_extend) * sizeof(*new), GFP_KDB); 2759 if (!new) { 2760 kdb_printf("Could not allocate new kdb_command " 2761 "table\n"); 2762 return 1; 2763 } 2764 if (kdb_commands) { 2765 memcpy(new, kdb_commands, 2766 kdb_max_commands * sizeof(*new)); 2767 kfree(kdb_commands); 2768 } 2769 memset(new + kdb_max_commands, 0, 2770 kdb_command_extend * sizeof(*new)); 2771 kdb_commands = new; 2772 kp = kdb_commands + kdb_max_commands; 2773 kdb_max_commands += kdb_command_extend; 2774 } 2775 2776 kp->cmd_name = cmd; 2777 kp->cmd_func = func; 2778 kp->cmd_usage = usage; 2779 kp->cmd_help = help; 2780 kp->cmd_flags = 0; 2781 kp->cmd_minlen = minlen; 2782 kp->cmd_repeat = repeat; 2783 2784 return 0; 2785 } 2786 EXPORT_SYMBOL_GPL(kdb_register_repeat); 2787 2788 2789 /* 2790 * kdb_register - Compatibility register function for commands that do 2791 * not need to specify a repeat state. Equivalent to 2792 * kdb_register_repeat with KDB_REPEAT_NONE. 2793 * Inputs: 2794 * cmd Command name 2795 * func Function to execute the command 2796 * usage A simple usage string showing arguments 2797 * help A simple help string describing command 2798 * Returns: 2799 * zero for success, one if a duplicate command. 2800 */ 2801 int kdb_register(char *cmd, 2802 kdb_func_t func, 2803 char *usage, 2804 char *help, 2805 short minlen) 2806 { 2807 return kdb_register_repeat(cmd, func, usage, help, minlen, 2808 KDB_REPEAT_NONE); 2809 } 2810 EXPORT_SYMBOL_GPL(kdb_register); 2811 2812 /* 2813 * kdb_unregister - This function is used to unregister a kernel 2814 * debugger command. It is generally called when a module which 2815 * implements kdb commands is unloaded. 2816 * Inputs: 2817 * cmd Command name 2818 * Returns: 2819 * zero for success, one command not registered. 2820 */ 2821 int kdb_unregister(char *cmd) 2822 { 2823 int i; 2824 kdbtab_t *kp; 2825 2826 /* 2827 * find the command. 2828 */ 2829 for_each_kdbcmd(kp, i) { 2830 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2831 kp->cmd_name = NULL; 2832 return 0; 2833 } 2834 } 2835 2836 /* Couldn't find it. */ 2837 return 1; 2838 } 2839 EXPORT_SYMBOL_GPL(kdb_unregister); 2840 2841 /* Initialize the kdb command table. */ 2842 static void __init kdb_inittab(void) 2843 { 2844 int i; 2845 kdbtab_t *kp; 2846 2847 for_each_kdbcmd(kp, i) 2848 kp->cmd_name = NULL; 2849 2850 kdb_register_repeat("md", kdb_md, "<vaddr>", 2851 "Display Memory Contents, also mdWcN, e.g. md8c1", 1, 2852 KDB_REPEAT_NO_ARGS); 2853 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>", 2854 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS); 2855 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>", 2856 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS); 2857 kdb_register_repeat("mds", kdb_md, "<vaddr>", 2858 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS); 2859 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>", 2860 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS); 2861 kdb_register_repeat("go", kdb_go, "[<vaddr>]", 2862 "Continue Execution", 1, KDB_REPEAT_NONE); 2863 kdb_register_repeat("rd", kdb_rd, "", 2864 "Display Registers", 0, KDB_REPEAT_NONE); 2865 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>", 2866 "Modify Registers", 0, KDB_REPEAT_NONE); 2867 kdb_register_repeat("ef", kdb_ef, "<vaddr>", 2868 "Display exception frame", 0, KDB_REPEAT_NONE); 2869 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]", 2870 "Stack traceback", 1, KDB_REPEAT_NONE); 2871 kdb_register_repeat("btp", kdb_bt, "<pid>", 2872 "Display stack for process <pid>", 0, KDB_REPEAT_NONE); 2873 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]", 2874 "Display stack all processes", 0, KDB_REPEAT_NONE); 2875 kdb_register_repeat("btc", kdb_bt, "", 2876 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE); 2877 kdb_register_repeat("btt", kdb_bt, "<vaddr>", 2878 "Backtrace process given its struct task address", 0, 2879 KDB_REPEAT_NONE); 2880 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>", 2881 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE); 2882 kdb_register_repeat("env", kdb_env, "", 2883 "Show environment variables", 0, KDB_REPEAT_NONE); 2884 kdb_register_repeat("set", kdb_set, "", 2885 "Set environment variables", 0, KDB_REPEAT_NONE); 2886 kdb_register_repeat("help", kdb_help, "", 2887 "Display Help Message", 1, KDB_REPEAT_NONE); 2888 kdb_register_repeat("?", kdb_help, "", 2889 "Display Help Message", 0, KDB_REPEAT_NONE); 2890 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>", 2891 "Switch to new cpu", 0, KDB_REPEAT_NONE); 2892 kdb_register_repeat("kgdb", kdb_kgdb, "", 2893 "Enter kgdb mode", 0, KDB_REPEAT_NONE); 2894 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]", 2895 "Display active task list", 0, KDB_REPEAT_NONE); 2896 kdb_register_repeat("pid", kdb_pid, "<pidnum>", 2897 "Switch to another task", 0, KDB_REPEAT_NONE); 2898 kdb_register_repeat("reboot", kdb_reboot, "", 2899 "Reboot the machine immediately", 0, KDB_REPEAT_NONE); 2900 #if defined(CONFIG_MODULES) 2901 kdb_register_repeat("lsmod", kdb_lsmod, "", 2902 "List loaded kernel modules", 0, KDB_REPEAT_NONE); 2903 #endif 2904 #if defined(CONFIG_MAGIC_SYSRQ) 2905 kdb_register_repeat("sr", kdb_sr, "<key>", 2906 "Magic SysRq key", 0, KDB_REPEAT_NONE); 2907 #endif 2908 #if defined(CONFIG_PRINTK) 2909 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]", 2910 "Display syslog buffer", 0, KDB_REPEAT_NONE); 2911 #endif 2912 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"", 2913 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE); 2914 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>", 2915 "Send a signal to a process", 0, KDB_REPEAT_NONE); 2916 kdb_register_repeat("summary", kdb_summary, "", 2917 "Summarize the system", 4, KDB_REPEAT_NONE); 2918 kdb_register_repeat("per_cpu", kdb_per_cpu, "", 2919 "Display per_cpu variables", 3, KDB_REPEAT_NONE); 2920 kdb_register_repeat("grephelp", kdb_grep_help, "", 2921 "Display help on | grep", 0, KDB_REPEAT_NONE); 2922 } 2923 2924 /* Execute any commands defined in kdb_cmds. */ 2925 static void __init kdb_cmd_init(void) 2926 { 2927 int i, diag; 2928 for (i = 0; kdb_cmds[i]; ++i) { 2929 diag = kdb_parse(kdb_cmds[i]); 2930 if (diag) 2931 kdb_printf("kdb command %s failed, kdb diag %d\n", 2932 kdb_cmds[i], diag); 2933 } 2934 if (defcmd_in_progress) { 2935 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2936 kdb_parse("endefcmd"); 2937 } 2938 } 2939 2940 /* Intialize kdb_printf, breakpoint tables and kdb state */ 2941 void __init kdb_init(int lvl) 2942 { 2943 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2944 int i; 2945 2946 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2947 return; 2948 for (i = kdb_init_lvl; i < lvl; i++) { 2949 switch (i) { 2950 case KDB_NOT_INITIALIZED: 2951 kdb_inittab(); /* Initialize Command Table */ 2952 kdb_initbptab(); /* Initialize Breakpoints */ 2953 break; 2954 case KDB_INIT_EARLY: 2955 kdb_cmd_init(); /* Build kdb_cmds tables */ 2956 break; 2957 } 2958 } 2959 kdb_init_lvl = lvl; 2960 } 2961