1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/types.h> 16 #include <linux/string.h> 17 #include <linux/kernel.h> 18 #include <linux/kmsg_dump.h> 19 #include <linux/reboot.h> 20 #include <linux/sched.h> 21 #include <linux/sched/loadavg.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sysrq.h> 25 #include <linux/smp.h> 26 #include <linux/utsname.h> 27 #include <linux/vmalloc.h> 28 #include <linux/atomic.h> 29 #include <linux/moduleparam.h> 30 #include <linux/mm.h> 31 #include <linux/init.h> 32 #include <linux/kallsyms.h> 33 #include <linux/kgdb.h> 34 #include <linux/kdb.h> 35 #include <linux/notifier.h> 36 #include <linux/interrupt.h> 37 #include <linux/delay.h> 38 #include <linux/nmi.h> 39 #include <linux/time.h> 40 #include <linux/ptrace.h> 41 #include <linux/sysctl.h> 42 #include <linux/cpu.h> 43 #include <linux/kdebug.h> 44 #include <linux/proc_fs.h> 45 #include <linux/uaccess.h> 46 #include <linux/slab.h> 47 #include <linux/security.h> 48 #include "kdb_private.h" 49 50 #undef MODULE_PARAM_PREFIX 51 #define MODULE_PARAM_PREFIX "kdb." 52 53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE; 54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600); 55 56 char kdb_grep_string[KDB_GREP_STRLEN]; 57 int kdb_grepping_flag; 58 EXPORT_SYMBOL(kdb_grepping_flag); 59 int kdb_grep_leading; 60 int kdb_grep_trailing; 61 62 /* 63 * Kernel debugger state flags 64 */ 65 unsigned int kdb_flags; 66 67 /* 68 * kdb_lock protects updates to kdb_initial_cpu. Used to 69 * single thread processors through the kernel debugger. 70 */ 71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 72 int kdb_nextline = 1; 73 int kdb_state; /* General KDB state */ 74 75 struct task_struct *kdb_current_task; 76 struct pt_regs *kdb_current_regs; 77 78 const char *kdb_diemsg; 79 static int kdb_go_count; 80 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 81 static unsigned int kdb_continue_catastrophic = 82 CONFIG_KDB_CONTINUE_CATASTROPHIC; 83 #else 84 static unsigned int kdb_continue_catastrophic; 85 #endif 86 87 /* kdb_cmds_head describes the available commands. */ 88 static LIST_HEAD(kdb_cmds_head); 89 90 typedef struct _kdbmsg { 91 int km_diag; /* kdb diagnostic */ 92 char *km_msg; /* Corresponding message text */ 93 } kdbmsg_t; 94 95 #define KDBMSG(msgnum, text) \ 96 { KDB_##msgnum, text } 97 98 static kdbmsg_t kdbmsgs[] = { 99 KDBMSG(NOTFOUND, "Command Not Found"), 100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 102 "8 is only allowed on 64 bit systems"), 103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 104 KDBMSG(NOTENV, "Cannot find environment variable"), 105 KDBMSG(NOENVVALUE, "Environment variable should have value"), 106 KDBMSG(NOTIMP, "Command not implemented"), 107 KDBMSG(ENVFULL, "Environment full"), 108 KDBMSG(ENVBUFFULL, "Environment buffer full"), 109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 110 #ifdef CONFIG_CPU_XSCALE 111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 112 #else 113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 114 #endif 115 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 117 KDBMSG(BADMODE, "Invalid IDMODE"), 118 KDBMSG(BADINT, "Illegal numeric value"), 119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 120 KDBMSG(BADREG, "Invalid register name"), 121 KDBMSG(BADCPUNUM, "Invalid cpu number"), 122 KDBMSG(BADLENGTH, "Invalid length field"), 123 KDBMSG(NOBP, "No Breakpoint exists"), 124 KDBMSG(BADADDR, "Invalid address"), 125 KDBMSG(NOPERM, "Permission denied"), 126 }; 127 #undef KDBMSG 128 129 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs); 130 131 132 /* 133 * Initial environment. This is all kept static and local to 134 * this file. We don't want to rely on the memory allocation 135 * mechanisms in the kernel, so we use a very limited allocate-only 136 * heap for new and altered environment variables. The entire 137 * environment is limited to a fixed number of entries (add more 138 * to __env[] if required) and a fixed amount of heap (add more to 139 * KDB_ENVBUFSIZE if required). 140 */ 141 142 static char *__env[31] = { 143 #if defined(CONFIG_SMP) 144 "PROMPT=[%d]kdb> ", 145 #else 146 "PROMPT=kdb> ", 147 #endif 148 "MOREPROMPT=more> ", 149 "RADIX=16", 150 "MDCOUNT=8", /* lines of md output */ 151 KDB_PLATFORM_ENV, 152 "DTABCOUNT=30", 153 "NOSECT=1", 154 }; 155 156 static const int __nenv = ARRAY_SIZE(__env); 157 158 struct task_struct *kdb_curr_task(int cpu) 159 { 160 struct task_struct *p = curr_task(cpu); 161 #ifdef _TIF_MCA_INIT 162 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 163 p = krp->p; 164 #endif 165 return p; 166 } 167 168 /* 169 * Update the permissions flags (kdb_cmd_enabled) to match the 170 * current lockdown state. 171 * 172 * Within this function the calls to security_locked_down() are "lazy". We 173 * avoid calling them if the current value of kdb_cmd_enabled already excludes 174 * flags that might be subject to lockdown. Additionally we deliberately check 175 * the lockdown flags independently (even though read lockdown implies write 176 * lockdown) since that results in both simpler code and clearer messages to 177 * the user on first-time debugger entry. 178 * 179 * The permission masks during a read+write lockdown permits the following 180 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE). 181 * 182 * The INSPECT commands are not blocked during lockdown because they are 183 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes 184 * forcing them to have no arguments) and lsmod. These commands do expose 185 * some kernel state but do not allow the developer seated at the console to 186 * choose what state is reported. SIGNAL and REBOOT should not be controversial, 187 * given these are allowed for root during lockdown already. 188 */ 189 static void kdb_check_for_lockdown(void) 190 { 191 const int write_flags = KDB_ENABLE_MEM_WRITE | 192 KDB_ENABLE_REG_WRITE | 193 KDB_ENABLE_FLOW_CTRL; 194 const int read_flags = KDB_ENABLE_MEM_READ | 195 KDB_ENABLE_REG_READ; 196 197 bool need_to_lockdown_write = false; 198 bool need_to_lockdown_read = false; 199 200 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags)) 201 need_to_lockdown_write = 202 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL); 203 204 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags)) 205 need_to_lockdown_read = 206 security_locked_down(LOCKDOWN_DBG_READ_KERNEL); 207 208 /* De-compose KDB_ENABLE_ALL if required */ 209 if (need_to_lockdown_write || need_to_lockdown_read) 210 if (kdb_cmd_enabled & KDB_ENABLE_ALL) 211 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL; 212 213 if (need_to_lockdown_write) 214 kdb_cmd_enabled &= ~write_flags; 215 216 if (need_to_lockdown_read) 217 kdb_cmd_enabled &= ~read_flags; 218 } 219 220 /* 221 * Check whether the flags of the current command, the permissions of the kdb 222 * console and the lockdown state allow a command to be run. 223 */ 224 static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions, 225 bool no_args) 226 { 227 /* permissions comes from userspace so needs massaging slightly */ 228 permissions &= KDB_ENABLE_MASK; 229 permissions |= KDB_ENABLE_ALWAYS_SAFE; 230 231 /* some commands change group when launched with no arguments */ 232 if (no_args) 233 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT; 234 235 flags |= KDB_ENABLE_ALL; 236 237 return permissions & flags; 238 } 239 240 /* 241 * kdbgetenv - This function will return the character string value of 242 * an environment variable. 243 * Parameters: 244 * match A character string representing an environment variable. 245 * Returns: 246 * NULL No environment variable matches 'match' 247 * char* Pointer to string value of environment variable. 248 */ 249 char *kdbgetenv(const char *match) 250 { 251 char **ep = __env; 252 int matchlen = strlen(match); 253 int i; 254 255 for (i = 0; i < __nenv; i++) { 256 char *e = *ep++; 257 258 if (!e) 259 continue; 260 261 if ((strncmp(match, e, matchlen) == 0) 262 && ((e[matchlen] == '\0') 263 || (e[matchlen] == '='))) { 264 char *cp = strchr(e, '='); 265 return cp ? ++cp : ""; 266 } 267 } 268 return NULL; 269 } 270 271 /* 272 * kdballocenv - This function is used to allocate bytes for 273 * environment entries. 274 * Parameters: 275 * match A character string representing a numeric value 276 * Outputs: 277 * *value the unsigned long representation of the env variable 'match' 278 * Returns: 279 * Zero on success, a kdb diagnostic on failure. 280 * Remarks: 281 * We use a static environment buffer (envbuffer) to hold the values 282 * of dynamically generated environment variables (see kdb_set). Buffer 283 * space once allocated is never free'd, so over time, the amount of space 284 * (currently 512 bytes) will be exhausted if env variables are changed 285 * frequently. 286 */ 287 static char *kdballocenv(size_t bytes) 288 { 289 #define KDB_ENVBUFSIZE 512 290 static char envbuffer[KDB_ENVBUFSIZE]; 291 static int envbufsize; 292 char *ep = NULL; 293 294 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 295 ep = &envbuffer[envbufsize]; 296 envbufsize += bytes; 297 } 298 return ep; 299 } 300 301 /* 302 * kdbgetulenv - This function will return the value of an unsigned 303 * long-valued environment variable. 304 * Parameters: 305 * match A character string representing a numeric value 306 * Outputs: 307 * *value the unsigned long representation of the env variable 'match' 308 * Returns: 309 * Zero on success, a kdb diagnostic on failure. 310 */ 311 static int kdbgetulenv(const char *match, unsigned long *value) 312 { 313 char *ep; 314 315 ep = kdbgetenv(match); 316 if (!ep) 317 return KDB_NOTENV; 318 if (strlen(ep) == 0) 319 return KDB_NOENVVALUE; 320 321 *value = simple_strtoul(ep, NULL, 0); 322 323 return 0; 324 } 325 326 /* 327 * kdbgetintenv - This function will return the value of an 328 * integer-valued environment variable. 329 * Parameters: 330 * match A character string representing an integer-valued env variable 331 * Outputs: 332 * *value the integer representation of the environment variable 'match' 333 * Returns: 334 * Zero on success, a kdb diagnostic on failure. 335 */ 336 int kdbgetintenv(const char *match, int *value) 337 { 338 unsigned long val; 339 int diag; 340 341 diag = kdbgetulenv(match, &val); 342 if (!diag) 343 *value = (int) val; 344 return diag; 345 } 346 347 /* 348 * kdb_setenv() - Alter an existing environment variable or create a new one. 349 * @var: Name of the variable 350 * @val: Value of the variable 351 * 352 * Return: Zero on success, a kdb diagnostic on failure. 353 */ 354 static int kdb_setenv(const char *var, const char *val) 355 { 356 int i; 357 char *ep; 358 size_t varlen, vallen; 359 360 varlen = strlen(var); 361 vallen = strlen(val); 362 ep = kdballocenv(varlen + vallen + 2); 363 if (ep == (char *)0) 364 return KDB_ENVBUFFULL; 365 366 sprintf(ep, "%s=%s", var, val); 367 368 for (i = 0; i < __nenv; i++) { 369 if (__env[i] 370 && ((strncmp(__env[i], var, varlen) == 0) 371 && ((__env[i][varlen] == '\0') 372 || (__env[i][varlen] == '=')))) { 373 __env[i] = ep; 374 return 0; 375 } 376 } 377 378 /* 379 * Wasn't existing variable. Fit into slot. 380 */ 381 for (i = 0; i < __nenv-1; i++) { 382 if (__env[i] == (char *)0) { 383 __env[i] = ep; 384 return 0; 385 } 386 } 387 388 return KDB_ENVFULL; 389 } 390 391 /* 392 * kdb_printenv() - Display the current environment variables. 393 */ 394 static void kdb_printenv(void) 395 { 396 int i; 397 398 for (i = 0; i < __nenv; i++) { 399 if (__env[i]) 400 kdb_printf("%s\n", __env[i]); 401 } 402 } 403 404 /* 405 * kdbgetularg - This function will convert a numeric string into an 406 * unsigned long value. 407 * Parameters: 408 * arg A character string representing a numeric value 409 * Outputs: 410 * *value the unsigned long representation of arg. 411 * Returns: 412 * Zero on success, a kdb diagnostic on failure. 413 */ 414 int kdbgetularg(const char *arg, unsigned long *value) 415 { 416 char *endp; 417 unsigned long val; 418 419 val = simple_strtoul(arg, &endp, 0); 420 421 if (endp == arg) { 422 /* 423 * Also try base 16, for us folks too lazy to type the 424 * leading 0x... 425 */ 426 val = simple_strtoul(arg, &endp, 16); 427 if (endp == arg) 428 return KDB_BADINT; 429 } 430 431 *value = val; 432 433 return 0; 434 } 435 436 int kdbgetu64arg(const char *arg, u64 *value) 437 { 438 char *endp; 439 u64 val; 440 441 val = simple_strtoull(arg, &endp, 0); 442 443 if (endp == arg) { 444 445 val = simple_strtoull(arg, &endp, 16); 446 if (endp == arg) 447 return KDB_BADINT; 448 } 449 450 *value = val; 451 452 return 0; 453 } 454 455 /* 456 * kdb_set - This function implements the 'set' command. Alter an 457 * existing environment variable or create a new one. 458 */ 459 int kdb_set(int argc, const char **argv) 460 { 461 /* 462 * we can be invoked two ways: 463 * set var=value argv[1]="var", argv[2]="value" 464 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 465 * - if the latter, shift 'em down. 466 */ 467 if (argc == 3) { 468 argv[2] = argv[3]; 469 argc--; 470 } 471 472 if (argc != 2) 473 return KDB_ARGCOUNT; 474 475 /* 476 * Censor sensitive variables 477 */ 478 if (strcmp(argv[1], "PROMPT") == 0 && 479 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false)) 480 return KDB_NOPERM; 481 482 /* 483 * Check for internal variables 484 */ 485 if (strcmp(argv[1], "KDBDEBUG") == 0) { 486 unsigned int debugflags; 487 char *cp; 488 489 debugflags = simple_strtoul(argv[2], &cp, 0); 490 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 491 kdb_printf("kdb: illegal debug flags '%s'\n", 492 argv[2]); 493 return 0; 494 } 495 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK)) 496 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 497 498 return 0; 499 } 500 501 /* 502 * Tokenizer squashed the '=' sign. argv[1] is variable 503 * name, argv[2] = value. 504 */ 505 return kdb_setenv(argv[1], argv[2]); 506 } 507 508 static int kdb_check_regs(void) 509 { 510 if (!kdb_current_regs) { 511 kdb_printf("No current kdb registers." 512 " You may need to select another task\n"); 513 return KDB_BADREG; 514 } 515 return 0; 516 } 517 518 /* 519 * kdbgetaddrarg - This function is responsible for parsing an 520 * address-expression and returning the value of the expression, 521 * symbol name, and offset to the caller. 522 * 523 * The argument may consist of a numeric value (decimal or 524 * hexadecimal), a symbol name, a register name (preceded by the 525 * percent sign), an environment variable with a numeric value 526 * (preceded by a dollar sign) or a simple arithmetic expression 527 * consisting of a symbol name, +/-, and a numeric constant value 528 * (offset). 529 * Parameters: 530 * argc - count of arguments in argv 531 * argv - argument vector 532 * *nextarg - index to next unparsed argument in argv[] 533 * regs - Register state at time of KDB entry 534 * Outputs: 535 * *value - receives the value of the address-expression 536 * *offset - receives the offset specified, if any 537 * *name - receives the symbol name, if any 538 * *nextarg - index to next unparsed argument in argv[] 539 * Returns: 540 * zero is returned on success, a kdb diagnostic code is 541 * returned on error. 542 */ 543 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 544 unsigned long *value, long *offset, 545 char **name) 546 { 547 unsigned long addr; 548 unsigned long off = 0; 549 int positive; 550 int diag; 551 int found = 0; 552 char *symname; 553 char symbol = '\0'; 554 char *cp; 555 kdb_symtab_t symtab; 556 557 /* 558 * If the enable flags prohibit both arbitrary memory access 559 * and flow control then there are no reasonable grounds to 560 * provide symbol lookup. 561 */ 562 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL, 563 kdb_cmd_enabled, false)) 564 return KDB_NOPERM; 565 566 /* 567 * Process arguments which follow the following syntax: 568 * 569 * symbol | numeric-address [+/- numeric-offset] 570 * %register 571 * $environment-variable 572 */ 573 574 if (*nextarg > argc) 575 return KDB_ARGCOUNT; 576 577 symname = (char *)argv[*nextarg]; 578 579 /* 580 * If there is no whitespace between the symbol 581 * or address and the '+' or '-' symbols, we 582 * remember the character and replace it with a 583 * null so the symbol/value can be properly parsed 584 */ 585 cp = strpbrk(symname, "+-"); 586 if (cp != NULL) { 587 symbol = *cp; 588 *cp++ = '\0'; 589 } 590 591 if (symname[0] == '$') { 592 diag = kdbgetulenv(&symname[1], &addr); 593 if (diag) 594 return diag; 595 } else if (symname[0] == '%') { 596 diag = kdb_check_regs(); 597 if (diag) 598 return diag; 599 /* Implement register values with % at a later time as it is 600 * arch optional. 601 */ 602 return KDB_NOTIMP; 603 } else { 604 found = kdbgetsymval(symname, &symtab); 605 if (found) { 606 addr = symtab.sym_start; 607 } else { 608 diag = kdbgetularg(argv[*nextarg], &addr); 609 if (diag) 610 return diag; 611 } 612 } 613 614 if (!found) 615 found = kdbnearsym(addr, &symtab); 616 617 (*nextarg)++; 618 619 if (name) 620 *name = symname; 621 if (value) 622 *value = addr; 623 if (offset && name && *name) 624 *offset = addr - symtab.sym_start; 625 626 if ((*nextarg > argc) 627 && (symbol == '\0')) 628 return 0; 629 630 /* 631 * check for +/- and offset 632 */ 633 634 if (symbol == '\0') { 635 if ((argv[*nextarg][0] != '+') 636 && (argv[*nextarg][0] != '-')) { 637 /* 638 * Not our argument. Return. 639 */ 640 return 0; 641 } else { 642 positive = (argv[*nextarg][0] == '+'); 643 (*nextarg)++; 644 } 645 } else 646 positive = (symbol == '+'); 647 648 /* 649 * Now there must be an offset! 650 */ 651 if ((*nextarg > argc) 652 && (symbol == '\0')) { 653 return KDB_INVADDRFMT; 654 } 655 656 if (!symbol) { 657 cp = (char *)argv[*nextarg]; 658 (*nextarg)++; 659 } 660 661 diag = kdbgetularg(cp, &off); 662 if (diag) 663 return diag; 664 665 if (!positive) 666 off = -off; 667 668 if (offset) 669 *offset += off; 670 671 if (value) 672 *value += off; 673 674 return 0; 675 } 676 677 static void kdb_cmderror(int diag) 678 { 679 int i; 680 681 if (diag >= 0) { 682 kdb_printf("no error detected (diagnostic is %d)\n", diag); 683 return; 684 } 685 686 for (i = 0; i < __nkdb_err; i++) { 687 if (kdbmsgs[i].km_diag == diag) { 688 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 689 return; 690 } 691 } 692 693 kdb_printf("Unknown diag %d\n", -diag); 694 } 695 696 /* 697 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 698 * command which defines one command as a set of other commands, 699 * terminated by endefcmd. kdb_defcmd processes the initial 700 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 701 * the following commands until 'endefcmd'. 702 * Inputs: 703 * argc argument count 704 * argv argument vector 705 * Returns: 706 * zero for success, a kdb diagnostic if error 707 */ 708 struct kdb_macro { 709 kdbtab_t cmd; /* Macro command */ 710 struct list_head statements; /* Associated statement list */ 711 }; 712 713 struct kdb_macro_statement { 714 char *statement; /* Statement text */ 715 struct list_head list_node; /* Statement list node */ 716 }; 717 718 static struct kdb_macro *kdb_macro; 719 static bool defcmd_in_progress; 720 721 /* Forward references */ 722 static int kdb_exec_defcmd(int argc, const char **argv); 723 724 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 725 { 726 struct kdb_macro_statement *kms; 727 728 if (!kdb_macro) 729 return KDB_NOTIMP; 730 731 if (strcmp(argv0, "endefcmd") == 0) { 732 defcmd_in_progress = false; 733 if (!list_empty(&kdb_macro->statements)) 734 kdb_register(&kdb_macro->cmd); 735 return 0; 736 } 737 738 kms = kmalloc(sizeof(*kms), GFP_KDB); 739 if (!kms) { 740 kdb_printf("Could not allocate new kdb macro command: %s\n", 741 cmdstr); 742 return KDB_NOTIMP; 743 } 744 745 kms->statement = kdb_strdup(cmdstr, GFP_KDB); 746 list_add_tail(&kms->list_node, &kdb_macro->statements); 747 748 return 0; 749 } 750 751 static int kdb_defcmd(int argc, const char **argv) 752 { 753 kdbtab_t *mp; 754 755 if (defcmd_in_progress) { 756 kdb_printf("kdb: nested defcmd detected, assuming missing " 757 "endefcmd\n"); 758 kdb_defcmd2("endefcmd", "endefcmd"); 759 } 760 if (argc == 0) { 761 kdbtab_t *kp; 762 struct kdb_macro *kmp; 763 struct kdb_macro_statement *kms; 764 765 list_for_each_entry(kp, &kdb_cmds_head, list_node) { 766 if (kp->func == kdb_exec_defcmd) { 767 kdb_printf("defcmd %s \"%s\" \"%s\"\n", 768 kp->name, kp->usage, kp->help); 769 kmp = container_of(kp, struct kdb_macro, cmd); 770 list_for_each_entry(kms, &kmp->statements, 771 list_node) 772 kdb_printf("%s", kms->statement); 773 kdb_printf("endefcmd\n"); 774 } 775 } 776 return 0; 777 } 778 if (argc != 3) 779 return KDB_ARGCOUNT; 780 if (in_dbg_master()) { 781 kdb_printf("Command only available during kdb_init()\n"); 782 return KDB_NOTIMP; 783 } 784 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB); 785 if (!kdb_macro) 786 goto fail_defcmd; 787 788 mp = &kdb_macro->cmd; 789 mp->func = kdb_exec_defcmd; 790 mp->minlen = 0; 791 mp->flags = KDB_ENABLE_ALWAYS_SAFE; 792 mp->name = kdb_strdup(argv[1], GFP_KDB); 793 if (!mp->name) 794 goto fail_name; 795 mp->usage = kdb_strdup(argv[2], GFP_KDB); 796 if (!mp->usage) 797 goto fail_usage; 798 mp->help = kdb_strdup(argv[3], GFP_KDB); 799 if (!mp->help) 800 goto fail_help; 801 if (mp->usage[0] == '"') { 802 strcpy(mp->usage, argv[2]+1); 803 mp->usage[strlen(mp->usage)-1] = '\0'; 804 } 805 if (mp->help[0] == '"') { 806 strcpy(mp->help, argv[3]+1); 807 mp->help[strlen(mp->help)-1] = '\0'; 808 } 809 810 INIT_LIST_HEAD(&kdb_macro->statements); 811 defcmd_in_progress = true; 812 return 0; 813 fail_help: 814 kfree(mp->usage); 815 fail_usage: 816 kfree(mp->name); 817 fail_name: 818 kfree(kdb_macro); 819 fail_defcmd: 820 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]); 821 return KDB_NOTIMP; 822 } 823 824 /* 825 * kdb_exec_defcmd - Execute the set of commands associated with this 826 * defcmd name. 827 * Inputs: 828 * argc argument count 829 * argv argument vector 830 * Returns: 831 * zero for success, a kdb diagnostic if error 832 */ 833 static int kdb_exec_defcmd(int argc, const char **argv) 834 { 835 int ret; 836 kdbtab_t *kp; 837 struct kdb_macro *kmp; 838 struct kdb_macro_statement *kms; 839 840 if (argc != 0) 841 return KDB_ARGCOUNT; 842 843 list_for_each_entry(kp, &kdb_cmds_head, list_node) { 844 if (strcmp(kp->name, argv[0]) == 0) 845 break; 846 } 847 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) { 848 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 849 argv[0]); 850 return KDB_NOTIMP; 851 } 852 kmp = container_of(kp, struct kdb_macro, cmd); 853 list_for_each_entry(kms, &kmp->statements, list_node) { 854 /* 855 * Recursive use of kdb_parse, do not use argv after this point. 856 */ 857 argv = NULL; 858 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement); 859 ret = kdb_parse(kms->statement); 860 if (ret) 861 return ret; 862 } 863 return 0; 864 } 865 866 /* Command history */ 867 #define KDB_CMD_HISTORY_COUNT 32 868 #define CMD_BUFLEN 200 /* kdb_printf: max printline 869 * size == 256 */ 870 static unsigned int cmd_head, cmd_tail; 871 static unsigned int cmdptr; 872 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 873 static char cmd_cur[CMD_BUFLEN]; 874 875 /* 876 * The "str" argument may point to something like | grep xyz 877 */ 878 static void parse_grep(const char *str) 879 { 880 int len; 881 char *cp = (char *)str, *cp2; 882 883 /* sanity check: we should have been called with the \ first */ 884 if (*cp != '|') 885 return; 886 cp++; 887 while (isspace(*cp)) 888 cp++; 889 if (!str_has_prefix(cp, "grep ")) { 890 kdb_printf("invalid 'pipe', see grephelp\n"); 891 return; 892 } 893 cp += 5; 894 while (isspace(*cp)) 895 cp++; 896 cp2 = strchr(cp, '\n'); 897 if (cp2) 898 *cp2 = '\0'; /* remove the trailing newline */ 899 len = strlen(cp); 900 if (len == 0) { 901 kdb_printf("invalid 'pipe', see grephelp\n"); 902 return; 903 } 904 /* now cp points to a nonzero length search string */ 905 if (*cp == '"') { 906 /* allow it be "x y z" by removing the "'s - there must 907 be two of them */ 908 cp++; 909 cp2 = strchr(cp, '"'); 910 if (!cp2) { 911 kdb_printf("invalid quoted string, see grephelp\n"); 912 return; 913 } 914 *cp2 = '\0'; /* end the string where the 2nd " was */ 915 } 916 kdb_grep_leading = 0; 917 if (*cp == '^') { 918 kdb_grep_leading = 1; 919 cp++; 920 } 921 len = strlen(cp); 922 kdb_grep_trailing = 0; 923 if (*(cp+len-1) == '$') { 924 kdb_grep_trailing = 1; 925 *(cp+len-1) = '\0'; 926 } 927 len = strlen(cp); 928 if (!len) 929 return; 930 if (len >= KDB_GREP_STRLEN) { 931 kdb_printf("search string too long\n"); 932 return; 933 } 934 strcpy(kdb_grep_string, cp); 935 kdb_grepping_flag++; 936 return; 937 } 938 939 /* 940 * kdb_parse - Parse the command line, search the command table for a 941 * matching command and invoke the command function. This 942 * function may be called recursively, if it is, the second call 943 * will overwrite argv and cbuf. It is the caller's 944 * responsibility to save their argv if they recursively call 945 * kdb_parse(). 946 * Parameters: 947 * cmdstr The input command line to be parsed. 948 * regs The registers at the time kdb was entered. 949 * Returns: 950 * Zero for success, a kdb diagnostic if failure. 951 * Remarks: 952 * Limited to 20 tokens. 953 * 954 * Real rudimentary tokenization. Basically only whitespace 955 * is considered a token delimiter (but special consideration 956 * is taken of the '=' sign as used by the 'set' command). 957 * 958 * The algorithm used to tokenize the input string relies on 959 * there being at least one whitespace (or otherwise useless) 960 * character between tokens as the character immediately following 961 * the token is altered in-place to a null-byte to terminate the 962 * token string. 963 */ 964 965 #define MAXARGC 20 966 967 int kdb_parse(const char *cmdstr) 968 { 969 static char *argv[MAXARGC]; 970 static int argc; 971 static char cbuf[CMD_BUFLEN+2]; 972 char *cp; 973 char *cpp, quoted; 974 kdbtab_t *tp; 975 int escaped, ignore_errors = 0, check_grep = 0; 976 977 /* 978 * First tokenize the command string. 979 */ 980 cp = (char *)cmdstr; 981 982 if (KDB_FLAG(CMD_INTERRUPT)) { 983 /* Previous command was interrupted, newline must not 984 * repeat the command */ 985 KDB_FLAG_CLEAR(CMD_INTERRUPT); 986 KDB_STATE_SET(PAGER); 987 argc = 0; /* no repeat */ 988 } 989 990 if (*cp != '\n' && *cp != '\0') { 991 argc = 0; 992 cpp = cbuf; 993 while (*cp) { 994 /* skip whitespace */ 995 while (isspace(*cp)) 996 cp++; 997 if ((*cp == '\0') || (*cp == '\n') || 998 (*cp == '#' && !defcmd_in_progress)) 999 break; 1000 /* special case: check for | grep pattern */ 1001 if (*cp == '|') { 1002 check_grep++; 1003 break; 1004 } 1005 if (cpp >= cbuf + CMD_BUFLEN) { 1006 kdb_printf("kdb_parse: command buffer " 1007 "overflow, command ignored\n%s\n", 1008 cmdstr); 1009 return KDB_NOTFOUND; 1010 } 1011 if (argc >= MAXARGC - 1) { 1012 kdb_printf("kdb_parse: too many arguments, " 1013 "command ignored\n%s\n", cmdstr); 1014 return KDB_NOTFOUND; 1015 } 1016 argv[argc++] = cpp; 1017 escaped = 0; 1018 quoted = '\0'; 1019 /* Copy to next unquoted and unescaped 1020 * whitespace or '=' */ 1021 while (*cp && *cp != '\n' && 1022 (escaped || quoted || !isspace(*cp))) { 1023 if (cpp >= cbuf + CMD_BUFLEN) 1024 break; 1025 if (escaped) { 1026 escaped = 0; 1027 *cpp++ = *cp++; 1028 continue; 1029 } 1030 if (*cp == '\\') { 1031 escaped = 1; 1032 ++cp; 1033 continue; 1034 } 1035 if (*cp == quoted) 1036 quoted = '\0'; 1037 else if (*cp == '\'' || *cp == '"') 1038 quoted = *cp; 1039 *cpp = *cp++; 1040 if (*cpp == '=' && !quoted) 1041 break; 1042 ++cpp; 1043 } 1044 *cpp++ = '\0'; /* Squash a ws or '=' character */ 1045 } 1046 } 1047 if (!argc) 1048 return 0; 1049 if (check_grep) 1050 parse_grep(cp); 1051 if (defcmd_in_progress) { 1052 int result = kdb_defcmd2(cmdstr, argv[0]); 1053 if (!defcmd_in_progress) { 1054 argc = 0; /* avoid repeat on endefcmd */ 1055 *(argv[0]) = '\0'; 1056 } 1057 return result; 1058 } 1059 if (argv[0][0] == '-' && argv[0][1] && 1060 (argv[0][1] < '0' || argv[0][1] > '9')) { 1061 ignore_errors = 1; 1062 ++argv[0]; 1063 } 1064 1065 list_for_each_entry(tp, &kdb_cmds_head, list_node) { 1066 /* 1067 * If this command is allowed to be abbreviated, 1068 * check to see if this is it. 1069 */ 1070 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) && 1071 (strncmp(argv[0], tp->name, tp->minlen) == 0)) 1072 break; 1073 1074 if (strcmp(argv[0], tp->name) == 0) 1075 break; 1076 } 1077 1078 /* 1079 * If we don't find a command by this name, see if the first 1080 * few characters of this match any of the known commands. 1081 * e.g., md1c20 should match md. 1082 */ 1083 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) { 1084 list_for_each_entry(tp, &kdb_cmds_head, list_node) { 1085 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0) 1086 break; 1087 } 1088 } 1089 1090 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) { 1091 int result; 1092 1093 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1)) 1094 return KDB_NOPERM; 1095 1096 KDB_STATE_SET(CMD); 1097 result = (*tp->func)(argc-1, (const char **)argv); 1098 if (result && ignore_errors && result > KDB_CMD_GO) 1099 result = 0; 1100 KDB_STATE_CLEAR(CMD); 1101 1102 if (tp->flags & KDB_REPEAT_WITH_ARGS) 1103 return result; 1104 1105 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0; 1106 if (argv[argc]) 1107 *(argv[argc]) = '\0'; 1108 return result; 1109 } 1110 1111 /* 1112 * If the input with which we were presented does not 1113 * map to an existing command, attempt to parse it as an 1114 * address argument and display the result. Useful for 1115 * obtaining the address of a variable, or the nearest symbol 1116 * to an address contained in a register. 1117 */ 1118 { 1119 unsigned long value; 1120 char *name = NULL; 1121 long offset; 1122 int nextarg = 0; 1123 1124 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1125 &value, &offset, &name)) { 1126 return KDB_NOTFOUND; 1127 } 1128 1129 kdb_printf("%s = ", argv[0]); 1130 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1131 kdb_printf("\n"); 1132 return 0; 1133 } 1134 } 1135 1136 1137 static int handle_ctrl_cmd(char *cmd) 1138 { 1139 #define CTRL_P 16 1140 #define CTRL_N 14 1141 1142 /* initial situation */ 1143 if (cmd_head == cmd_tail) 1144 return 0; 1145 switch (*cmd) { 1146 case CTRL_P: 1147 if (cmdptr != cmd_tail) 1148 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) % 1149 KDB_CMD_HISTORY_COUNT; 1150 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1151 return 1; 1152 case CTRL_N: 1153 if (cmdptr != cmd_head) 1154 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1155 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1156 return 1; 1157 } 1158 return 0; 1159 } 1160 1161 /* 1162 * kdb_reboot - This function implements the 'reboot' command. Reboot 1163 * the system immediately, or loop for ever on failure. 1164 */ 1165 static int kdb_reboot(int argc, const char **argv) 1166 { 1167 emergency_restart(); 1168 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1169 while (1) 1170 cpu_relax(); 1171 /* NOTREACHED */ 1172 return 0; 1173 } 1174 1175 static void kdb_dumpregs(struct pt_regs *regs) 1176 { 1177 int old_lvl = console_loglevel; 1178 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 1179 kdb_trap_printk++; 1180 show_regs(regs); 1181 kdb_trap_printk--; 1182 kdb_printf("\n"); 1183 console_loglevel = old_lvl; 1184 } 1185 1186 static void kdb_set_current_task(struct task_struct *p) 1187 { 1188 kdb_current_task = p; 1189 1190 if (kdb_task_has_cpu(p)) { 1191 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1192 return; 1193 } 1194 kdb_current_regs = NULL; 1195 } 1196 1197 static void drop_newline(char *buf) 1198 { 1199 size_t len = strlen(buf); 1200 1201 if (len == 0) 1202 return; 1203 if (*(buf + len - 1) == '\n') 1204 *(buf + len - 1) = '\0'; 1205 } 1206 1207 /* 1208 * kdb_local - The main code for kdb. This routine is invoked on a 1209 * specific processor, it is not global. The main kdb() routine 1210 * ensures that only one processor at a time is in this routine. 1211 * This code is called with the real reason code on the first 1212 * entry to a kdb session, thereafter it is called with reason 1213 * SWITCH, even if the user goes back to the original cpu. 1214 * Inputs: 1215 * reason The reason KDB was invoked 1216 * error The hardware-defined error code 1217 * regs The exception frame at time of fault/breakpoint. 1218 * db_result Result code from the break or debug point. 1219 * Returns: 1220 * 0 KDB was invoked for an event which it wasn't responsible 1221 * 1 KDB handled the event for which it was invoked. 1222 * KDB_CMD_GO User typed 'go'. 1223 * KDB_CMD_CPU User switched to another cpu. 1224 * KDB_CMD_SS Single step. 1225 */ 1226 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1227 kdb_dbtrap_t db_result) 1228 { 1229 char *cmdbuf; 1230 int diag; 1231 struct task_struct *kdb_current = 1232 kdb_curr_task(raw_smp_processor_id()); 1233 1234 KDB_DEBUG_STATE("kdb_local 1", reason); 1235 1236 kdb_check_for_lockdown(); 1237 1238 kdb_go_count = 0; 1239 if (reason == KDB_REASON_DEBUG) { 1240 /* special case below */ 1241 } else { 1242 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ", 1243 kdb_current, kdb_current ? kdb_current->pid : 0); 1244 #if defined(CONFIG_SMP) 1245 kdb_printf("on processor %d ", raw_smp_processor_id()); 1246 #endif 1247 } 1248 1249 switch (reason) { 1250 case KDB_REASON_DEBUG: 1251 { 1252 /* 1253 * If re-entering kdb after a single step 1254 * command, don't print the message. 1255 */ 1256 switch (db_result) { 1257 case KDB_DB_BPT: 1258 kdb_printf("\nEntering kdb (0x%px, pid %d) ", 1259 kdb_current, kdb_current->pid); 1260 #if defined(CONFIG_SMP) 1261 kdb_printf("on processor %d ", raw_smp_processor_id()); 1262 #endif 1263 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1264 instruction_pointer(regs)); 1265 break; 1266 case KDB_DB_SS: 1267 break; 1268 case KDB_DB_SSBPT: 1269 KDB_DEBUG_STATE("kdb_local 4", reason); 1270 return 1; /* kdba_db_trap did the work */ 1271 default: 1272 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1273 db_result); 1274 break; 1275 } 1276 1277 } 1278 break; 1279 case KDB_REASON_ENTER: 1280 if (KDB_STATE(KEYBOARD)) 1281 kdb_printf("due to Keyboard Entry\n"); 1282 else 1283 kdb_printf("due to KDB_ENTER()\n"); 1284 break; 1285 case KDB_REASON_KEYBOARD: 1286 KDB_STATE_SET(KEYBOARD); 1287 kdb_printf("due to Keyboard Entry\n"); 1288 break; 1289 case KDB_REASON_ENTER_SLAVE: 1290 /* drop through, slaves only get released via cpu switch */ 1291 case KDB_REASON_SWITCH: 1292 kdb_printf("due to cpu switch\n"); 1293 break; 1294 case KDB_REASON_OOPS: 1295 kdb_printf("Oops: %s\n", kdb_diemsg); 1296 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1297 instruction_pointer(regs)); 1298 kdb_dumpregs(regs); 1299 break; 1300 case KDB_REASON_SYSTEM_NMI: 1301 kdb_printf("due to System NonMaskable Interrupt\n"); 1302 break; 1303 case KDB_REASON_NMI: 1304 kdb_printf("due to NonMaskable Interrupt @ " 1305 kdb_machreg_fmt "\n", 1306 instruction_pointer(regs)); 1307 break; 1308 case KDB_REASON_SSTEP: 1309 case KDB_REASON_BREAK: 1310 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1311 reason == KDB_REASON_BREAK ? 1312 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1313 /* 1314 * Determine if this breakpoint is one that we 1315 * are interested in. 1316 */ 1317 if (db_result != KDB_DB_BPT) { 1318 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1319 db_result); 1320 KDB_DEBUG_STATE("kdb_local 6", reason); 1321 return 0; /* Not for us, dismiss it */ 1322 } 1323 break; 1324 case KDB_REASON_RECURSE: 1325 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1326 instruction_pointer(regs)); 1327 break; 1328 default: 1329 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1330 KDB_DEBUG_STATE("kdb_local 8", reason); 1331 return 0; /* Not for us, dismiss it */ 1332 } 1333 1334 while (1) { 1335 /* 1336 * Initialize pager context. 1337 */ 1338 kdb_nextline = 1; 1339 KDB_STATE_CLEAR(SUPPRESS); 1340 kdb_grepping_flag = 0; 1341 /* ensure the old search does not leak into '/' commands */ 1342 kdb_grep_string[0] = '\0'; 1343 1344 cmdbuf = cmd_cur; 1345 *cmdbuf = '\0'; 1346 *(cmd_hist[cmd_head]) = '\0'; 1347 1348 do_full_getstr: 1349 /* PROMPT can only be set if we have MEM_READ permission. */ 1350 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1351 raw_smp_processor_id()); 1352 1353 /* 1354 * Fetch command from keyboard 1355 */ 1356 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1357 if (*cmdbuf != '\n') { 1358 if (*cmdbuf < 32) { 1359 if (cmdptr == cmd_head) { 1360 strscpy(cmd_hist[cmd_head], cmd_cur, 1361 CMD_BUFLEN); 1362 *(cmd_hist[cmd_head] + 1363 strlen(cmd_hist[cmd_head])-1) = '\0'; 1364 } 1365 if (!handle_ctrl_cmd(cmdbuf)) 1366 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1367 cmdbuf = cmd_cur; 1368 goto do_full_getstr; 1369 } else { 1370 strscpy(cmd_hist[cmd_head], cmd_cur, 1371 CMD_BUFLEN); 1372 } 1373 1374 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1375 if (cmd_head == cmd_tail) 1376 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1377 } 1378 1379 cmdptr = cmd_head; 1380 diag = kdb_parse(cmdbuf); 1381 if (diag == KDB_NOTFOUND) { 1382 drop_newline(cmdbuf); 1383 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1384 diag = 0; 1385 } 1386 if (diag == KDB_CMD_GO 1387 || diag == KDB_CMD_CPU 1388 || diag == KDB_CMD_SS 1389 || diag == KDB_CMD_KGDB) 1390 break; 1391 1392 if (diag) 1393 kdb_cmderror(diag); 1394 } 1395 KDB_DEBUG_STATE("kdb_local 9", diag); 1396 return diag; 1397 } 1398 1399 1400 /* 1401 * kdb_print_state - Print the state data for the current processor 1402 * for debugging. 1403 * Inputs: 1404 * text Identifies the debug point 1405 * value Any integer value to be printed, e.g. reason code. 1406 */ 1407 void kdb_print_state(const char *text, int value) 1408 { 1409 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1410 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1411 kdb_state); 1412 } 1413 1414 /* 1415 * kdb_main_loop - After initial setup and assignment of the 1416 * controlling cpu, all cpus are in this loop. One cpu is in 1417 * control and will issue the kdb prompt, the others will spin 1418 * until 'go' or cpu switch. 1419 * 1420 * To get a consistent view of the kernel stacks for all 1421 * processes, this routine is invoked from the main kdb code via 1422 * an architecture specific routine. kdba_main_loop is 1423 * responsible for making the kernel stacks consistent for all 1424 * processes, there should be no difference between a blocked 1425 * process and a running process as far as kdb is concerned. 1426 * Inputs: 1427 * reason The reason KDB was invoked 1428 * error The hardware-defined error code 1429 * reason2 kdb's current reason code. 1430 * Initially error but can change 1431 * according to kdb state. 1432 * db_result Result code from break or debug point. 1433 * regs The exception frame at time of fault/breakpoint. 1434 * should always be valid. 1435 * Returns: 1436 * 0 KDB was invoked for an event which it wasn't responsible 1437 * 1 KDB handled the event for which it was invoked. 1438 */ 1439 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1440 kdb_dbtrap_t db_result, struct pt_regs *regs) 1441 { 1442 int result = 1; 1443 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1444 while (1) { 1445 /* 1446 * All processors except the one that is in control 1447 * will spin here. 1448 */ 1449 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1450 while (KDB_STATE(HOLD_CPU)) { 1451 /* state KDB is turned off by kdb_cpu to see if the 1452 * other cpus are still live, each cpu in this loop 1453 * turns it back on. 1454 */ 1455 if (!KDB_STATE(KDB)) 1456 KDB_STATE_SET(KDB); 1457 } 1458 1459 KDB_STATE_CLEAR(SUPPRESS); 1460 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1461 if (KDB_STATE(LEAVING)) 1462 break; /* Another cpu said 'go' */ 1463 /* Still using kdb, this processor is in control */ 1464 result = kdb_local(reason2, error, regs, db_result); 1465 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1466 1467 if (result == KDB_CMD_CPU) 1468 break; 1469 1470 if (result == KDB_CMD_SS) { 1471 KDB_STATE_SET(DOING_SS); 1472 break; 1473 } 1474 1475 if (result == KDB_CMD_KGDB) { 1476 if (!KDB_STATE(DOING_KGDB)) 1477 kdb_printf("Entering please attach debugger " 1478 "or use $D#44+ or $3#33\n"); 1479 break; 1480 } 1481 if (result && result != 1 && result != KDB_CMD_GO) 1482 kdb_printf("\nUnexpected kdb_local return code %d\n", 1483 result); 1484 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1485 break; 1486 } 1487 if (KDB_STATE(DOING_SS)) 1488 KDB_STATE_CLEAR(SSBPT); 1489 1490 /* Clean up any keyboard devices before leaving */ 1491 kdb_kbd_cleanup_state(); 1492 1493 return result; 1494 } 1495 1496 /* 1497 * kdb_mdr - This function implements the guts of the 'mdr', memory 1498 * read command. 1499 * mdr <addr arg>,<byte count> 1500 * Inputs: 1501 * addr Start address 1502 * count Number of bytes 1503 * Returns: 1504 * Always 0. Any errors are detected and printed by kdb_getarea. 1505 */ 1506 static int kdb_mdr(unsigned long addr, unsigned int count) 1507 { 1508 unsigned char c; 1509 while (count--) { 1510 if (kdb_getarea(c, addr)) 1511 return 0; 1512 kdb_printf("%02x", c); 1513 addr++; 1514 } 1515 kdb_printf("\n"); 1516 return 0; 1517 } 1518 1519 /* 1520 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1521 * 'md8' 'mdr' and 'mds' commands. 1522 * 1523 * md|mds [<addr arg> [<line count> [<radix>]]] 1524 * mdWcN [<addr arg> [<line count> [<radix>]]] 1525 * where W = is the width (1, 2, 4 or 8) and N is the count. 1526 * for eg., md1c20 reads 20 bytes, 1 at a time. 1527 * mdr <addr arg>,<byte count> 1528 */ 1529 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1530 int symbolic, int nosect, int bytesperword, 1531 int num, int repeat, int phys) 1532 { 1533 /* print just one line of data */ 1534 kdb_symtab_t symtab; 1535 char cbuf[32]; 1536 char *c = cbuf; 1537 int i; 1538 int j; 1539 unsigned long word; 1540 1541 memset(cbuf, '\0', sizeof(cbuf)); 1542 if (phys) 1543 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1544 else 1545 kdb_printf(kdb_machreg_fmt0 " ", addr); 1546 1547 for (i = 0; i < num && repeat--; i++) { 1548 if (phys) { 1549 if (kdb_getphysword(&word, addr, bytesperword)) 1550 break; 1551 } else if (kdb_getword(&word, addr, bytesperword)) 1552 break; 1553 kdb_printf(fmtstr, word); 1554 if (symbolic) 1555 kdbnearsym(word, &symtab); 1556 else 1557 memset(&symtab, 0, sizeof(symtab)); 1558 if (symtab.sym_name) { 1559 kdb_symbol_print(word, &symtab, 0); 1560 if (!nosect) { 1561 kdb_printf("\n"); 1562 kdb_printf(" %s %s " 1563 kdb_machreg_fmt " " 1564 kdb_machreg_fmt " " 1565 kdb_machreg_fmt, symtab.mod_name, 1566 symtab.sec_name, symtab.sec_start, 1567 symtab.sym_start, symtab.sym_end); 1568 } 1569 addr += bytesperword; 1570 } else { 1571 union { 1572 u64 word; 1573 unsigned char c[8]; 1574 } wc; 1575 unsigned char *cp; 1576 #ifdef __BIG_ENDIAN 1577 cp = wc.c + 8 - bytesperword; 1578 #else 1579 cp = wc.c; 1580 #endif 1581 wc.word = word; 1582 #define printable_char(c) \ 1583 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1584 for (j = 0; j < bytesperword; j++) 1585 *c++ = printable_char(*cp++); 1586 addr += bytesperword; 1587 #undef printable_char 1588 } 1589 } 1590 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1591 " ", cbuf); 1592 } 1593 1594 static int kdb_md(int argc, const char **argv) 1595 { 1596 static unsigned long last_addr; 1597 static int last_radix, last_bytesperword, last_repeat; 1598 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1599 int nosect = 0; 1600 char fmtchar, fmtstr[64]; 1601 unsigned long addr; 1602 unsigned long word; 1603 long offset = 0; 1604 int symbolic = 0; 1605 int valid = 0; 1606 int phys = 0; 1607 int raw = 0; 1608 1609 kdbgetintenv("MDCOUNT", &mdcount); 1610 kdbgetintenv("RADIX", &radix); 1611 kdbgetintenv("BYTESPERWORD", &bytesperword); 1612 1613 /* Assume 'md <addr>' and start with environment values */ 1614 repeat = mdcount * 16 / bytesperword; 1615 1616 if (strcmp(argv[0], "mdr") == 0) { 1617 if (argc == 2 || (argc == 0 && last_addr != 0)) 1618 valid = raw = 1; 1619 else 1620 return KDB_ARGCOUNT; 1621 } else if (isdigit(argv[0][2])) { 1622 bytesperword = (int)(argv[0][2] - '0'); 1623 if (bytesperword == 0) { 1624 bytesperword = last_bytesperword; 1625 if (bytesperword == 0) 1626 bytesperword = 4; 1627 } 1628 last_bytesperword = bytesperword; 1629 repeat = mdcount * 16 / bytesperword; 1630 if (!argv[0][3]) 1631 valid = 1; 1632 else if (argv[0][3] == 'c' && argv[0][4]) { 1633 char *p; 1634 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1635 mdcount = ((repeat * bytesperword) + 15) / 16; 1636 valid = !*p; 1637 } 1638 last_repeat = repeat; 1639 } else if (strcmp(argv[0], "md") == 0) 1640 valid = 1; 1641 else if (strcmp(argv[0], "mds") == 0) 1642 valid = 1; 1643 else if (strcmp(argv[0], "mdp") == 0) { 1644 phys = valid = 1; 1645 } 1646 if (!valid) 1647 return KDB_NOTFOUND; 1648 1649 if (argc == 0) { 1650 if (last_addr == 0) 1651 return KDB_ARGCOUNT; 1652 addr = last_addr; 1653 radix = last_radix; 1654 bytesperword = last_bytesperword; 1655 repeat = last_repeat; 1656 if (raw) 1657 mdcount = repeat; 1658 else 1659 mdcount = ((repeat * bytesperword) + 15) / 16; 1660 } 1661 1662 if (argc) { 1663 unsigned long val; 1664 int diag, nextarg = 1; 1665 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1666 &offset, NULL); 1667 if (diag) 1668 return diag; 1669 if (argc > nextarg+2) 1670 return KDB_ARGCOUNT; 1671 1672 if (argc >= nextarg) { 1673 diag = kdbgetularg(argv[nextarg], &val); 1674 if (!diag) { 1675 mdcount = (int) val; 1676 if (raw) 1677 repeat = mdcount; 1678 else 1679 repeat = mdcount * 16 / bytesperword; 1680 } 1681 } 1682 if (argc >= nextarg+1) { 1683 diag = kdbgetularg(argv[nextarg+1], &val); 1684 if (!diag) 1685 radix = (int) val; 1686 } 1687 } 1688 1689 if (strcmp(argv[0], "mdr") == 0) { 1690 int ret; 1691 last_addr = addr; 1692 ret = kdb_mdr(addr, mdcount); 1693 last_addr += mdcount; 1694 last_repeat = mdcount; 1695 last_bytesperword = bytesperword; // to make REPEAT happy 1696 return ret; 1697 } 1698 1699 switch (radix) { 1700 case 10: 1701 fmtchar = 'd'; 1702 break; 1703 case 16: 1704 fmtchar = 'x'; 1705 break; 1706 case 8: 1707 fmtchar = 'o'; 1708 break; 1709 default: 1710 return KDB_BADRADIX; 1711 } 1712 1713 last_radix = radix; 1714 1715 if (bytesperword > KDB_WORD_SIZE) 1716 return KDB_BADWIDTH; 1717 1718 switch (bytesperword) { 1719 case 8: 1720 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1721 break; 1722 case 4: 1723 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1724 break; 1725 case 2: 1726 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1727 break; 1728 case 1: 1729 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1730 break; 1731 default: 1732 return KDB_BADWIDTH; 1733 } 1734 1735 last_repeat = repeat; 1736 last_bytesperword = bytesperword; 1737 1738 if (strcmp(argv[0], "mds") == 0) { 1739 symbolic = 1; 1740 /* Do not save these changes as last_*, they are temporary mds 1741 * overrides. 1742 */ 1743 bytesperword = KDB_WORD_SIZE; 1744 repeat = mdcount; 1745 kdbgetintenv("NOSECT", &nosect); 1746 } 1747 1748 /* Round address down modulo BYTESPERWORD */ 1749 1750 addr &= ~(bytesperword-1); 1751 1752 while (repeat > 0) { 1753 unsigned long a; 1754 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1755 1756 if (KDB_FLAG(CMD_INTERRUPT)) 1757 return 0; 1758 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1759 if (phys) { 1760 if (kdb_getphysword(&word, a, bytesperword) 1761 || word) 1762 break; 1763 } else if (kdb_getword(&word, a, bytesperword) || word) 1764 break; 1765 } 1766 n = min(num, repeat); 1767 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1768 num, repeat, phys); 1769 addr += bytesperword * n; 1770 repeat -= n; 1771 z = (z + num - 1) / num; 1772 if (z > 2) { 1773 int s = num * (z-2); 1774 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1775 " zero suppressed\n", 1776 addr, addr + bytesperword * s - 1); 1777 addr += bytesperword * s; 1778 repeat -= s; 1779 } 1780 } 1781 last_addr = addr; 1782 1783 return 0; 1784 } 1785 1786 /* 1787 * kdb_mm - This function implements the 'mm' command. 1788 * mm address-expression new-value 1789 * Remarks: 1790 * mm works on machine words, mmW works on bytes. 1791 */ 1792 static int kdb_mm(int argc, const char **argv) 1793 { 1794 int diag; 1795 unsigned long addr; 1796 long offset = 0; 1797 unsigned long contents; 1798 int nextarg; 1799 int width; 1800 1801 if (argv[0][2] && !isdigit(argv[0][2])) 1802 return KDB_NOTFOUND; 1803 1804 if (argc < 2) 1805 return KDB_ARGCOUNT; 1806 1807 nextarg = 1; 1808 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1809 if (diag) 1810 return diag; 1811 1812 if (nextarg > argc) 1813 return KDB_ARGCOUNT; 1814 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1815 if (diag) 1816 return diag; 1817 1818 if (nextarg != argc + 1) 1819 return KDB_ARGCOUNT; 1820 1821 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1822 diag = kdb_putword(addr, contents, width); 1823 if (diag) 1824 return diag; 1825 1826 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1827 1828 return 0; 1829 } 1830 1831 /* 1832 * kdb_go - This function implements the 'go' command. 1833 * go [address-expression] 1834 */ 1835 static int kdb_go(int argc, const char **argv) 1836 { 1837 unsigned long addr; 1838 int diag; 1839 int nextarg; 1840 long offset; 1841 1842 if (raw_smp_processor_id() != kdb_initial_cpu) { 1843 kdb_printf("go must execute on the entry cpu, " 1844 "please use \"cpu %d\" and then execute go\n", 1845 kdb_initial_cpu); 1846 return KDB_BADCPUNUM; 1847 } 1848 if (argc == 1) { 1849 nextarg = 1; 1850 diag = kdbgetaddrarg(argc, argv, &nextarg, 1851 &addr, &offset, NULL); 1852 if (diag) 1853 return diag; 1854 } else if (argc) { 1855 return KDB_ARGCOUNT; 1856 } 1857 1858 diag = KDB_CMD_GO; 1859 if (KDB_FLAG(CATASTROPHIC)) { 1860 kdb_printf("Catastrophic error detected\n"); 1861 kdb_printf("kdb_continue_catastrophic=%d, ", 1862 kdb_continue_catastrophic); 1863 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1864 kdb_printf("type go a second time if you really want " 1865 "to continue\n"); 1866 return 0; 1867 } 1868 if (kdb_continue_catastrophic == 2) { 1869 kdb_printf("forcing reboot\n"); 1870 kdb_reboot(0, NULL); 1871 } 1872 kdb_printf("attempting to continue\n"); 1873 } 1874 return diag; 1875 } 1876 1877 /* 1878 * kdb_rd - This function implements the 'rd' command. 1879 */ 1880 static int kdb_rd(int argc, const char **argv) 1881 { 1882 int len = kdb_check_regs(); 1883 #if DBG_MAX_REG_NUM > 0 1884 int i; 1885 char *rname; 1886 int rsize; 1887 u64 reg64; 1888 u32 reg32; 1889 u16 reg16; 1890 u8 reg8; 1891 1892 if (len) 1893 return len; 1894 1895 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1896 rsize = dbg_reg_def[i].size * 2; 1897 if (rsize > 16) 1898 rsize = 2; 1899 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1900 len = 0; 1901 kdb_printf("\n"); 1902 } 1903 if (len) 1904 len += kdb_printf(" "); 1905 switch(dbg_reg_def[i].size * 8) { 1906 case 8: 1907 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1908 if (!rname) 1909 break; 1910 len += kdb_printf("%s: %02x", rname, reg8); 1911 break; 1912 case 16: 1913 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1914 if (!rname) 1915 break; 1916 len += kdb_printf("%s: %04x", rname, reg16); 1917 break; 1918 case 32: 1919 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1920 if (!rname) 1921 break; 1922 len += kdb_printf("%s: %08x", rname, reg32); 1923 break; 1924 case 64: 1925 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1926 if (!rname) 1927 break; 1928 len += kdb_printf("%s: %016llx", rname, reg64); 1929 break; 1930 default: 1931 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1932 } 1933 } 1934 kdb_printf("\n"); 1935 #else 1936 if (len) 1937 return len; 1938 1939 kdb_dumpregs(kdb_current_regs); 1940 #endif 1941 return 0; 1942 } 1943 1944 /* 1945 * kdb_rm - This function implements the 'rm' (register modify) command. 1946 * rm register-name new-contents 1947 * Remarks: 1948 * Allows register modification with the same restrictions as gdb 1949 */ 1950 static int kdb_rm(int argc, const char **argv) 1951 { 1952 #if DBG_MAX_REG_NUM > 0 1953 int diag; 1954 const char *rname; 1955 int i; 1956 u64 reg64; 1957 u32 reg32; 1958 u16 reg16; 1959 u8 reg8; 1960 1961 if (argc != 2) 1962 return KDB_ARGCOUNT; 1963 /* 1964 * Allow presence or absence of leading '%' symbol. 1965 */ 1966 rname = argv[1]; 1967 if (*rname == '%') 1968 rname++; 1969 1970 diag = kdbgetu64arg(argv[2], ®64); 1971 if (diag) 1972 return diag; 1973 1974 diag = kdb_check_regs(); 1975 if (diag) 1976 return diag; 1977 1978 diag = KDB_BADREG; 1979 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1980 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1981 diag = 0; 1982 break; 1983 } 1984 } 1985 if (!diag) { 1986 switch(dbg_reg_def[i].size * 8) { 1987 case 8: 1988 reg8 = reg64; 1989 dbg_set_reg(i, ®8, kdb_current_regs); 1990 break; 1991 case 16: 1992 reg16 = reg64; 1993 dbg_set_reg(i, ®16, kdb_current_regs); 1994 break; 1995 case 32: 1996 reg32 = reg64; 1997 dbg_set_reg(i, ®32, kdb_current_regs); 1998 break; 1999 case 64: 2000 dbg_set_reg(i, ®64, kdb_current_regs); 2001 break; 2002 } 2003 } 2004 return diag; 2005 #else 2006 kdb_printf("ERROR: Register set currently not implemented\n"); 2007 return 0; 2008 #endif 2009 } 2010 2011 #if defined(CONFIG_MAGIC_SYSRQ) 2012 /* 2013 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 2014 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 2015 * sr <magic-sysrq-code> 2016 */ 2017 static int kdb_sr(int argc, const char **argv) 2018 { 2019 bool check_mask = 2020 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false); 2021 2022 if (argc != 1) 2023 return KDB_ARGCOUNT; 2024 2025 kdb_trap_printk++; 2026 __handle_sysrq(*argv[1], check_mask); 2027 kdb_trap_printk--; 2028 2029 return 0; 2030 } 2031 #endif /* CONFIG_MAGIC_SYSRQ */ 2032 2033 /* 2034 * kdb_ef - This function implements the 'regs' (display exception 2035 * frame) command. This command takes an address and expects to 2036 * find an exception frame at that address, formats and prints 2037 * it. 2038 * regs address-expression 2039 * Remarks: 2040 * Not done yet. 2041 */ 2042 static int kdb_ef(int argc, const char **argv) 2043 { 2044 int diag; 2045 unsigned long addr; 2046 long offset; 2047 int nextarg; 2048 2049 if (argc != 1) 2050 return KDB_ARGCOUNT; 2051 2052 nextarg = 1; 2053 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2054 if (diag) 2055 return diag; 2056 show_regs((struct pt_regs *)addr); 2057 return 0; 2058 } 2059 2060 /* 2061 * kdb_env - This function implements the 'env' command. Display the 2062 * current environment variables. 2063 */ 2064 2065 static int kdb_env(int argc, const char **argv) 2066 { 2067 kdb_printenv(); 2068 2069 if (KDB_DEBUG(MASK)) 2070 kdb_printf("KDBDEBUG=0x%x\n", 2071 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT); 2072 2073 return 0; 2074 } 2075 2076 #ifdef CONFIG_PRINTK 2077 /* 2078 * kdb_dmesg - This function implements the 'dmesg' command to display 2079 * the contents of the syslog buffer. 2080 * dmesg [lines] [adjust] 2081 */ 2082 static int kdb_dmesg(int argc, const char **argv) 2083 { 2084 int diag; 2085 int logging; 2086 int lines = 0; 2087 int adjust = 0; 2088 int n = 0; 2089 int skip = 0; 2090 struct kmsg_dump_iter iter; 2091 size_t len; 2092 char buf[201]; 2093 2094 if (argc > 2) 2095 return KDB_ARGCOUNT; 2096 if (argc) { 2097 char *cp; 2098 lines = simple_strtol(argv[1], &cp, 0); 2099 if (*cp) 2100 lines = 0; 2101 if (argc > 1) { 2102 adjust = simple_strtoul(argv[2], &cp, 0); 2103 if (*cp || adjust < 0) 2104 adjust = 0; 2105 } 2106 } 2107 2108 /* disable LOGGING if set */ 2109 diag = kdbgetintenv("LOGGING", &logging); 2110 if (!diag && logging) { 2111 const char *setargs[] = { "set", "LOGGING", "0" }; 2112 kdb_set(2, setargs); 2113 } 2114 2115 kmsg_dump_rewind(&iter); 2116 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL)) 2117 n++; 2118 2119 if (lines < 0) { 2120 if (adjust >= n) 2121 kdb_printf("buffer only contains %d lines, nothing " 2122 "printed\n", n); 2123 else if (adjust - lines >= n) 2124 kdb_printf("buffer only contains %d lines, last %d " 2125 "lines printed\n", n, n - adjust); 2126 skip = adjust; 2127 lines = abs(lines); 2128 } else if (lines > 0) { 2129 skip = n - lines - adjust; 2130 lines = abs(lines); 2131 if (adjust >= n) { 2132 kdb_printf("buffer only contains %d lines, " 2133 "nothing printed\n", n); 2134 skip = n; 2135 } else if (skip < 0) { 2136 lines += skip; 2137 skip = 0; 2138 kdb_printf("buffer only contains %d lines, first " 2139 "%d lines printed\n", n, lines); 2140 } 2141 } else { 2142 lines = n; 2143 } 2144 2145 if (skip >= n || skip < 0) 2146 return 0; 2147 2148 kmsg_dump_rewind(&iter); 2149 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) { 2150 if (skip) { 2151 skip--; 2152 continue; 2153 } 2154 if (!lines--) 2155 break; 2156 if (KDB_FLAG(CMD_INTERRUPT)) 2157 return 0; 2158 2159 kdb_printf("%.*s\n", (int)len - 1, buf); 2160 } 2161 2162 return 0; 2163 } 2164 #endif /* CONFIG_PRINTK */ 2165 2166 /* Make sure we balance enable/disable calls, must disable first. */ 2167 static atomic_t kdb_nmi_disabled; 2168 2169 static int kdb_disable_nmi(int argc, const char *argv[]) 2170 { 2171 if (atomic_read(&kdb_nmi_disabled)) 2172 return 0; 2173 atomic_set(&kdb_nmi_disabled, 1); 2174 arch_kgdb_ops.enable_nmi(0); 2175 return 0; 2176 } 2177 2178 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2179 { 2180 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2181 return -EINVAL; 2182 arch_kgdb_ops.enable_nmi(1); 2183 return 0; 2184 } 2185 2186 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2187 .set = kdb_param_enable_nmi, 2188 }; 2189 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2190 2191 /* 2192 * kdb_cpu - This function implements the 'cpu' command. 2193 * cpu [<cpunum>] 2194 * Returns: 2195 * KDB_CMD_CPU for success, a kdb diagnostic if error 2196 */ 2197 static void kdb_cpu_status(void) 2198 { 2199 int i, start_cpu, first_print = 1; 2200 char state, prev_state = '?'; 2201 2202 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2203 kdb_printf("Available cpus: "); 2204 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2205 if (!cpu_online(i)) { 2206 state = 'F'; /* cpu is offline */ 2207 } else if (!kgdb_info[i].enter_kgdb) { 2208 state = 'D'; /* cpu is online but unresponsive */ 2209 } else { 2210 state = ' '; /* cpu is responding to kdb */ 2211 if (kdb_task_state_char(KDB_TSK(i)) == '-') 2212 state = '-'; /* idle task */ 2213 } 2214 if (state != prev_state) { 2215 if (prev_state != '?') { 2216 if (!first_print) 2217 kdb_printf(", "); 2218 first_print = 0; 2219 kdb_printf("%d", start_cpu); 2220 if (start_cpu < i-1) 2221 kdb_printf("-%d", i-1); 2222 if (prev_state != ' ') 2223 kdb_printf("(%c)", prev_state); 2224 } 2225 prev_state = state; 2226 start_cpu = i; 2227 } 2228 } 2229 /* print the trailing cpus, ignoring them if they are all offline */ 2230 if (prev_state != 'F') { 2231 if (!first_print) 2232 kdb_printf(", "); 2233 kdb_printf("%d", start_cpu); 2234 if (start_cpu < i-1) 2235 kdb_printf("-%d", i-1); 2236 if (prev_state != ' ') 2237 kdb_printf("(%c)", prev_state); 2238 } 2239 kdb_printf("\n"); 2240 } 2241 2242 static int kdb_cpu(int argc, const char **argv) 2243 { 2244 unsigned long cpunum; 2245 int diag; 2246 2247 if (argc == 0) { 2248 kdb_cpu_status(); 2249 return 0; 2250 } 2251 2252 if (argc != 1) 2253 return KDB_ARGCOUNT; 2254 2255 diag = kdbgetularg(argv[1], &cpunum); 2256 if (diag) 2257 return diag; 2258 2259 /* 2260 * Validate cpunum 2261 */ 2262 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb) 2263 return KDB_BADCPUNUM; 2264 2265 dbg_switch_cpu = cpunum; 2266 2267 /* 2268 * Switch to other cpu 2269 */ 2270 return KDB_CMD_CPU; 2271 } 2272 2273 /* The user may not realize that ps/bta with no parameters does not print idle 2274 * or sleeping system daemon processes, so tell them how many were suppressed. 2275 */ 2276 void kdb_ps_suppressed(void) 2277 { 2278 int idle = 0, daemon = 0; 2279 unsigned long cpu; 2280 const struct task_struct *p, *g; 2281 for_each_online_cpu(cpu) { 2282 p = kdb_curr_task(cpu); 2283 if (kdb_task_state(p, "-")) 2284 ++idle; 2285 } 2286 for_each_process_thread(g, p) { 2287 if (kdb_task_state(p, "ims")) 2288 ++daemon; 2289 } 2290 if (idle || daemon) { 2291 if (idle) 2292 kdb_printf("%d idle process%s (state -)%s\n", 2293 idle, idle == 1 ? "" : "es", 2294 daemon ? " and " : ""); 2295 if (daemon) 2296 kdb_printf("%d sleeping system daemon (state [ims]) " 2297 "process%s", daemon, 2298 daemon == 1 ? "" : "es"); 2299 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2300 } 2301 } 2302 2303 void kdb_ps1(const struct task_struct *p) 2304 { 2305 int cpu; 2306 unsigned long tmp; 2307 2308 if (!p || 2309 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long))) 2310 return; 2311 2312 cpu = kdb_process_cpu(p); 2313 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n", 2314 (void *)p, p->pid, p->parent->pid, 2315 kdb_task_has_cpu(p), kdb_process_cpu(p), 2316 kdb_task_state_char(p), 2317 (void *)(&p->thread), 2318 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2319 p->comm); 2320 if (kdb_task_has_cpu(p)) { 2321 if (!KDB_TSK(cpu)) { 2322 kdb_printf(" Error: no saved data for this cpu\n"); 2323 } else { 2324 if (KDB_TSK(cpu) != p) 2325 kdb_printf(" Error: does not match running " 2326 "process table (0x%px)\n", KDB_TSK(cpu)); 2327 } 2328 } 2329 } 2330 2331 /* 2332 * kdb_ps - This function implements the 'ps' command which shows a 2333 * list of the active processes. 2334 * 2335 * ps [<state_chars>] Show processes, optionally selecting only those whose 2336 * state character is found in <state_chars>. 2337 */ 2338 static int kdb_ps(int argc, const char **argv) 2339 { 2340 struct task_struct *g, *p; 2341 const char *mask; 2342 unsigned long cpu; 2343 2344 if (argc == 0) 2345 kdb_ps_suppressed(); 2346 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2347 (int)(2*sizeof(void *))+2, "Task Addr", 2348 (int)(2*sizeof(void *))+2, "Thread"); 2349 mask = argc ? argv[1] : kdbgetenv("PS"); 2350 /* Run the active tasks first */ 2351 for_each_online_cpu(cpu) { 2352 if (KDB_FLAG(CMD_INTERRUPT)) 2353 return 0; 2354 p = kdb_curr_task(cpu); 2355 if (kdb_task_state(p, mask)) 2356 kdb_ps1(p); 2357 } 2358 kdb_printf("\n"); 2359 /* Now the real tasks */ 2360 for_each_process_thread(g, p) { 2361 if (KDB_FLAG(CMD_INTERRUPT)) 2362 return 0; 2363 if (kdb_task_state(p, mask)) 2364 kdb_ps1(p); 2365 } 2366 2367 return 0; 2368 } 2369 2370 /* 2371 * kdb_pid - This function implements the 'pid' command which switches 2372 * the currently active process. 2373 * pid [<pid> | R] 2374 */ 2375 static int kdb_pid(int argc, const char **argv) 2376 { 2377 struct task_struct *p; 2378 unsigned long val; 2379 int diag; 2380 2381 if (argc > 1) 2382 return KDB_ARGCOUNT; 2383 2384 if (argc) { 2385 if (strcmp(argv[1], "R") == 0) { 2386 p = KDB_TSK(kdb_initial_cpu); 2387 } else { 2388 diag = kdbgetularg(argv[1], &val); 2389 if (diag) 2390 return KDB_BADINT; 2391 2392 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2393 if (!p) { 2394 kdb_printf("No task with pid=%d\n", (pid_t)val); 2395 return 0; 2396 } 2397 } 2398 kdb_set_current_task(p); 2399 } 2400 kdb_printf("KDB current process is %s(pid=%d)\n", 2401 kdb_current_task->comm, 2402 kdb_current_task->pid); 2403 2404 return 0; 2405 } 2406 2407 static int kdb_kgdb(int argc, const char **argv) 2408 { 2409 return KDB_CMD_KGDB; 2410 } 2411 2412 /* 2413 * kdb_help - This function implements the 'help' and '?' commands. 2414 */ 2415 static int kdb_help(int argc, const char **argv) 2416 { 2417 kdbtab_t *kt; 2418 2419 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2420 kdb_printf("-----------------------------" 2421 "-----------------------------\n"); 2422 list_for_each_entry(kt, &kdb_cmds_head, list_node) { 2423 char *space = ""; 2424 if (KDB_FLAG(CMD_INTERRUPT)) 2425 return 0; 2426 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true)) 2427 continue; 2428 if (strlen(kt->usage) > 20) 2429 space = "\n "; 2430 kdb_printf("%-15.15s %-20s%s%s\n", kt->name, 2431 kt->usage, space, kt->help); 2432 } 2433 return 0; 2434 } 2435 2436 /* 2437 * kdb_kill - This function implements the 'kill' commands. 2438 */ 2439 static int kdb_kill(int argc, const char **argv) 2440 { 2441 long sig, pid; 2442 char *endp; 2443 struct task_struct *p; 2444 2445 if (argc != 2) 2446 return KDB_ARGCOUNT; 2447 2448 sig = simple_strtol(argv[1], &endp, 0); 2449 if (*endp) 2450 return KDB_BADINT; 2451 if ((sig >= 0) || !valid_signal(-sig)) { 2452 kdb_printf("Invalid signal parameter.<-signal>\n"); 2453 return 0; 2454 } 2455 sig = -sig; 2456 2457 pid = simple_strtol(argv[2], &endp, 0); 2458 if (*endp) 2459 return KDB_BADINT; 2460 if (pid <= 0) { 2461 kdb_printf("Process ID must be large than 0.\n"); 2462 return 0; 2463 } 2464 2465 /* Find the process. */ 2466 p = find_task_by_pid_ns(pid, &init_pid_ns); 2467 if (!p) { 2468 kdb_printf("The specified process isn't found.\n"); 2469 return 0; 2470 } 2471 p = p->group_leader; 2472 kdb_send_sig(p, sig); 2473 return 0; 2474 } 2475 2476 /* 2477 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2478 * I cannot call that code directly from kdb, it has an unconditional 2479 * cli()/sti() and calls routines that take locks which can stop the debugger. 2480 */ 2481 static void kdb_sysinfo(struct sysinfo *val) 2482 { 2483 u64 uptime = ktime_get_mono_fast_ns(); 2484 2485 memset(val, 0, sizeof(*val)); 2486 val->uptime = div_u64(uptime, NSEC_PER_SEC); 2487 val->loads[0] = avenrun[0]; 2488 val->loads[1] = avenrun[1]; 2489 val->loads[2] = avenrun[2]; 2490 val->procs = nr_threads-1; 2491 si_meminfo(val); 2492 2493 return; 2494 } 2495 2496 /* 2497 * kdb_summary - This function implements the 'summary' command. 2498 */ 2499 static int kdb_summary(int argc, const char **argv) 2500 { 2501 time64_t now; 2502 struct sysinfo val; 2503 2504 if (argc) 2505 return KDB_ARGCOUNT; 2506 2507 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2508 kdb_printf("release %s\n", init_uts_ns.name.release); 2509 kdb_printf("version %s\n", init_uts_ns.name.version); 2510 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2511 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2512 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2513 2514 now = __ktime_get_real_seconds(); 2515 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest); 2516 kdb_sysinfo(&val); 2517 kdb_printf("uptime "); 2518 if (val.uptime > (24*60*60)) { 2519 int days = val.uptime / (24*60*60); 2520 val.uptime %= (24*60*60); 2521 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2522 } 2523 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2524 2525 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2526 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2527 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2528 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2529 2530 /* Display in kilobytes */ 2531 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2532 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2533 "Buffers: %8lu kB\n", 2534 K(val.totalram), K(val.freeram), K(val.bufferram)); 2535 return 0; 2536 } 2537 2538 /* 2539 * kdb_per_cpu - This function implements the 'per_cpu' command. 2540 */ 2541 static int kdb_per_cpu(int argc, const char **argv) 2542 { 2543 char fmtstr[64]; 2544 int cpu, diag, nextarg = 1; 2545 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2546 2547 if (argc < 1 || argc > 3) 2548 return KDB_ARGCOUNT; 2549 2550 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2551 if (diag) 2552 return diag; 2553 2554 if (argc >= 2) { 2555 diag = kdbgetularg(argv[2], &bytesperword); 2556 if (diag) 2557 return diag; 2558 } 2559 if (!bytesperword) 2560 bytesperword = KDB_WORD_SIZE; 2561 else if (bytesperword > KDB_WORD_SIZE) 2562 return KDB_BADWIDTH; 2563 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2564 if (argc >= 3) { 2565 diag = kdbgetularg(argv[3], &whichcpu); 2566 if (diag) 2567 return diag; 2568 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) { 2569 kdb_printf("cpu %ld is not online\n", whichcpu); 2570 return KDB_BADCPUNUM; 2571 } 2572 } 2573 2574 /* Most architectures use __per_cpu_offset[cpu], some use 2575 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2576 */ 2577 #ifdef __per_cpu_offset 2578 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2579 #else 2580 #ifdef CONFIG_SMP 2581 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2582 #else 2583 #define KDB_PCU(cpu) 0 2584 #endif 2585 #endif 2586 for_each_online_cpu(cpu) { 2587 if (KDB_FLAG(CMD_INTERRUPT)) 2588 return 0; 2589 2590 if (whichcpu != ~0UL && whichcpu != cpu) 2591 continue; 2592 addr = symaddr + KDB_PCU(cpu); 2593 diag = kdb_getword(&val, addr, bytesperword); 2594 if (diag) { 2595 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2596 "read, diag=%d\n", cpu, addr, diag); 2597 continue; 2598 } 2599 kdb_printf("%5d ", cpu); 2600 kdb_md_line(fmtstr, addr, 2601 bytesperword == KDB_WORD_SIZE, 2602 1, bytesperword, 1, 1, 0); 2603 } 2604 #undef KDB_PCU 2605 return 0; 2606 } 2607 2608 /* 2609 * display help for the use of cmd | grep pattern 2610 */ 2611 static int kdb_grep_help(int argc, const char **argv) 2612 { 2613 kdb_printf("Usage of cmd args | grep pattern:\n"); 2614 kdb_printf(" Any command's output may be filtered through an "); 2615 kdb_printf("emulated 'pipe'.\n"); 2616 kdb_printf(" 'grep' is just a key word.\n"); 2617 kdb_printf(" The pattern may include a very limited set of " 2618 "metacharacters:\n"); 2619 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2620 kdb_printf(" And if there are spaces in the pattern, you may " 2621 "quote it:\n"); 2622 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2623 " or \"^pat tern$\"\n"); 2624 return 0; 2625 } 2626 2627 /** 2628 * kdb_register() - This function is used to register a kernel debugger 2629 * command. 2630 * @cmd: pointer to kdb command 2631 * 2632 * Note that it's the job of the caller to keep the memory for the cmd 2633 * allocated until unregister is called. 2634 */ 2635 int kdb_register(kdbtab_t *cmd) 2636 { 2637 kdbtab_t *kp; 2638 2639 list_for_each_entry(kp, &kdb_cmds_head, list_node) { 2640 if (strcmp(kp->name, cmd->name) == 0) { 2641 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n", 2642 cmd->name, cmd->func, cmd->help); 2643 return 1; 2644 } 2645 } 2646 2647 list_add_tail(&cmd->list_node, &kdb_cmds_head); 2648 return 0; 2649 } 2650 EXPORT_SYMBOL_GPL(kdb_register); 2651 2652 /** 2653 * kdb_register_table() - This function is used to register a kdb command 2654 * table. 2655 * @kp: pointer to kdb command table 2656 * @len: length of kdb command table 2657 */ 2658 void kdb_register_table(kdbtab_t *kp, size_t len) 2659 { 2660 while (len--) { 2661 list_add_tail(&kp->list_node, &kdb_cmds_head); 2662 kp++; 2663 } 2664 } 2665 2666 /** 2667 * kdb_unregister() - This function is used to unregister a kernel debugger 2668 * command. It is generally called when a module which 2669 * implements kdb command is unloaded. 2670 * @cmd: pointer to kdb command 2671 */ 2672 void kdb_unregister(kdbtab_t *cmd) 2673 { 2674 list_del(&cmd->list_node); 2675 } 2676 EXPORT_SYMBOL_GPL(kdb_unregister); 2677 2678 static kdbtab_t maintab[] = { 2679 { .name = "md", 2680 .func = kdb_md, 2681 .usage = "<vaddr>", 2682 .help = "Display Memory Contents, also mdWcN, e.g. md8c1", 2683 .minlen = 1, 2684 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2685 }, 2686 { .name = "mdr", 2687 .func = kdb_md, 2688 .usage = "<vaddr> <bytes>", 2689 .help = "Display Raw Memory", 2690 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2691 }, 2692 { .name = "mdp", 2693 .func = kdb_md, 2694 .usage = "<paddr> <bytes>", 2695 .help = "Display Physical Memory", 2696 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2697 }, 2698 { .name = "mds", 2699 .func = kdb_md, 2700 .usage = "<vaddr>", 2701 .help = "Display Memory Symbolically", 2702 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS, 2703 }, 2704 { .name = "mm", 2705 .func = kdb_mm, 2706 .usage = "<vaddr> <contents>", 2707 .help = "Modify Memory Contents", 2708 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS, 2709 }, 2710 { .name = "go", 2711 .func = kdb_go, 2712 .usage = "[<vaddr>]", 2713 .help = "Continue Execution", 2714 .minlen = 1, 2715 .flags = KDB_ENABLE_REG_WRITE | 2716 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS, 2717 }, 2718 { .name = "rd", 2719 .func = kdb_rd, 2720 .usage = "", 2721 .help = "Display Registers", 2722 .flags = KDB_ENABLE_REG_READ, 2723 }, 2724 { .name = "rm", 2725 .func = kdb_rm, 2726 .usage = "<reg> <contents>", 2727 .help = "Modify Registers", 2728 .flags = KDB_ENABLE_REG_WRITE, 2729 }, 2730 { .name = "ef", 2731 .func = kdb_ef, 2732 .usage = "<vaddr>", 2733 .help = "Display exception frame", 2734 .flags = KDB_ENABLE_MEM_READ, 2735 }, 2736 { .name = "bt", 2737 .func = kdb_bt, 2738 .usage = "[<vaddr>]", 2739 .help = "Stack traceback", 2740 .minlen = 1, 2741 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS, 2742 }, 2743 { .name = "btp", 2744 .func = kdb_bt, 2745 .usage = "<pid>", 2746 .help = "Display stack for process <pid>", 2747 .flags = KDB_ENABLE_INSPECT, 2748 }, 2749 { .name = "bta", 2750 .func = kdb_bt, 2751 .usage = "[<state_chars>|A]", 2752 .help = "Backtrace all processes whose state matches", 2753 .flags = KDB_ENABLE_INSPECT, 2754 }, 2755 { .name = "btc", 2756 .func = kdb_bt, 2757 .usage = "", 2758 .help = "Backtrace current process on each cpu", 2759 .flags = KDB_ENABLE_INSPECT, 2760 }, 2761 { .name = "btt", 2762 .func = kdb_bt, 2763 .usage = "<vaddr>", 2764 .help = "Backtrace process given its struct task address", 2765 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS, 2766 }, 2767 { .name = "env", 2768 .func = kdb_env, 2769 .usage = "", 2770 .help = "Show environment variables", 2771 .flags = KDB_ENABLE_ALWAYS_SAFE, 2772 }, 2773 { .name = "set", 2774 .func = kdb_set, 2775 .usage = "", 2776 .help = "Set environment variables", 2777 .flags = KDB_ENABLE_ALWAYS_SAFE, 2778 }, 2779 { .name = "help", 2780 .func = kdb_help, 2781 .usage = "", 2782 .help = "Display Help Message", 2783 .minlen = 1, 2784 .flags = KDB_ENABLE_ALWAYS_SAFE, 2785 }, 2786 { .name = "?", 2787 .func = kdb_help, 2788 .usage = "", 2789 .help = "Display Help Message", 2790 .flags = KDB_ENABLE_ALWAYS_SAFE, 2791 }, 2792 { .name = "cpu", 2793 .func = kdb_cpu, 2794 .usage = "<cpunum>", 2795 .help = "Switch to new cpu", 2796 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS, 2797 }, 2798 { .name = "kgdb", 2799 .func = kdb_kgdb, 2800 .usage = "", 2801 .help = "Enter kgdb mode", 2802 .flags = 0, 2803 }, 2804 { .name = "ps", 2805 .func = kdb_ps, 2806 .usage = "[<state_chars>|A]", 2807 .help = "Display active task list", 2808 .flags = KDB_ENABLE_INSPECT, 2809 }, 2810 { .name = "pid", 2811 .func = kdb_pid, 2812 .usage = "<pidnum>", 2813 .help = "Switch to another task", 2814 .flags = KDB_ENABLE_INSPECT, 2815 }, 2816 { .name = "reboot", 2817 .func = kdb_reboot, 2818 .usage = "", 2819 .help = "Reboot the machine immediately", 2820 .flags = KDB_ENABLE_REBOOT, 2821 }, 2822 #if defined(CONFIG_MODULES) 2823 { .name = "lsmod", 2824 .func = kdb_lsmod, 2825 .usage = "", 2826 .help = "List loaded kernel modules", 2827 .flags = KDB_ENABLE_INSPECT, 2828 }, 2829 #endif 2830 #if defined(CONFIG_MAGIC_SYSRQ) 2831 { .name = "sr", 2832 .func = kdb_sr, 2833 .usage = "<key>", 2834 .help = "Magic SysRq key", 2835 .flags = KDB_ENABLE_ALWAYS_SAFE, 2836 }, 2837 #endif 2838 #if defined(CONFIG_PRINTK) 2839 { .name = "dmesg", 2840 .func = kdb_dmesg, 2841 .usage = "[lines]", 2842 .help = "Display syslog buffer", 2843 .flags = KDB_ENABLE_ALWAYS_SAFE, 2844 }, 2845 #endif 2846 { .name = "defcmd", 2847 .func = kdb_defcmd, 2848 .usage = "name \"usage\" \"help\"", 2849 .help = "Define a set of commands, down to endefcmd", 2850 /* 2851 * Macros are always safe because when executed each 2852 * internal command re-enters kdb_parse() and is safety 2853 * checked individually. 2854 */ 2855 .flags = KDB_ENABLE_ALWAYS_SAFE, 2856 }, 2857 { .name = "kill", 2858 .func = kdb_kill, 2859 .usage = "<-signal> <pid>", 2860 .help = "Send a signal to a process", 2861 .flags = KDB_ENABLE_SIGNAL, 2862 }, 2863 { .name = "summary", 2864 .func = kdb_summary, 2865 .usage = "", 2866 .help = "Summarize the system", 2867 .minlen = 4, 2868 .flags = KDB_ENABLE_ALWAYS_SAFE, 2869 }, 2870 { .name = "per_cpu", 2871 .func = kdb_per_cpu, 2872 .usage = "<sym> [<bytes>] [<cpu>]", 2873 .help = "Display per_cpu variables", 2874 .minlen = 3, 2875 .flags = KDB_ENABLE_MEM_READ, 2876 }, 2877 { .name = "grephelp", 2878 .func = kdb_grep_help, 2879 .usage = "", 2880 .help = "Display help on | grep", 2881 .flags = KDB_ENABLE_ALWAYS_SAFE, 2882 }, 2883 }; 2884 2885 static kdbtab_t nmicmd = { 2886 .name = "disable_nmi", 2887 .func = kdb_disable_nmi, 2888 .usage = "", 2889 .help = "Disable NMI entry to KDB", 2890 .flags = KDB_ENABLE_ALWAYS_SAFE, 2891 }; 2892 2893 /* Initialize the kdb command table. */ 2894 static void __init kdb_inittab(void) 2895 { 2896 kdb_register_table(maintab, ARRAY_SIZE(maintab)); 2897 if (arch_kgdb_ops.enable_nmi) 2898 kdb_register_table(&nmicmd, 1); 2899 } 2900 2901 /* Execute any commands defined in kdb_cmds. */ 2902 static void __init kdb_cmd_init(void) 2903 { 2904 int i, diag; 2905 for (i = 0; kdb_cmds[i]; ++i) { 2906 diag = kdb_parse(kdb_cmds[i]); 2907 if (diag) 2908 kdb_printf("kdb command %s failed, kdb diag %d\n", 2909 kdb_cmds[i], diag); 2910 } 2911 if (defcmd_in_progress) { 2912 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2913 kdb_parse("endefcmd"); 2914 } 2915 } 2916 2917 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2918 void __init kdb_init(int lvl) 2919 { 2920 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2921 int i; 2922 2923 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2924 return; 2925 for (i = kdb_init_lvl; i < lvl; i++) { 2926 switch (i) { 2927 case KDB_NOT_INITIALIZED: 2928 kdb_inittab(); /* Initialize Command Table */ 2929 kdb_initbptab(); /* Initialize Breakpoints */ 2930 break; 2931 case KDB_INIT_EARLY: 2932 kdb_cmd_init(); /* Build kdb_cmds tables */ 2933 break; 2934 } 2935 } 2936 kdb_init_lvl = lvl; 2937 } 2938