1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/types.h> 16 #include <linux/string.h> 17 #include <linux/kernel.h> 18 #include <linux/kmsg_dump.h> 19 #include <linux/reboot.h> 20 #include <linux/sched.h> 21 #include <linux/sched/loadavg.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sysrq.h> 25 #include <linux/smp.h> 26 #include <linux/utsname.h> 27 #include <linux/vmalloc.h> 28 #include <linux/atomic.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/mm.h> 32 #include <linux/init.h> 33 #include <linux/kallsyms.h> 34 #include <linux/kgdb.h> 35 #include <linux/kdb.h> 36 #include <linux/notifier.h> 37 #include <linux/interrupt.h> 38 #include <linux/delay.h> 39 #include <linux/nmi.h> 40 #include <linux/time.h> 41 #include <linux/ptrace.h> 42 #include <linux/sysctl.h> 43 #include <linux/cpu.h> 44 #include <linux/kdebug.h> 45 #include <linux/proc_fs.h> 46 #include <linux/uaccess.h> 47 #include <linux/slab.h> 48 #include "kdb_private.h" 49 50 #undef MODULE_PARAM_PREFIX 51 #define MODULE_PARAM_PREFIX "kdb." 52 53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE; 54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600); 55 56 char kdb_grep_string[KDB_GREP_STRLEN]; 57 int kdb_grepping_flag; 58 EXPORT_SYMBOL(kdb_grepping_flag); 59 int kdb_grep_leading; 60 int kdb_grep_trailing; 61 62 /* 63 * Kernel debugger state flags 64 */ 65 int kdb_flags; 66 67 /* 68 * kdb_lock protects updates to kdb_initial_cpu. Used to 69 * single thread processors through the kernel debugger. 70 */ 71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 72 int kdb_nextline = 1; 73 int kdb_state; /* General KDB state */ 74 75 struct task_struct *kdb_current_task; 76 struct pt_regs *kdb_current_regs; 77 78 const char *kdb_diemsg; 79 static int kdb_go_count; 80 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 81 static unsigned int kdb_continue_catastrophic = 82 CONFIG_KDB_CONTINUE_CATASTROPHIC; 83 #else 84 static unsigned int kdb_continue_catastrophic; 85 #endif 86 87 /* kdb_commands describes the available commands. */ 88 static kdbtab_t *kdb_commands; 89 #define KDB_BASE_CMD_MAX 50 90 static int kdb_max_commands = KDB_BASE_CMD_MAX; 91 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX]; 92 #define for_each_kdbcmd(cmd, num) \ 93 for ((cmd) = kdb_base_commands, (num) = 0; \ 94 num < kdb_max_commands; \ 95 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++) 96 97 typedef struct _kdbmsg { 98 int km_diag; /* kdb diagnostic */ 99 char *km_msg; /* Corresponding message text */ 100 } kdbmsg_t; 101 102 #define KDBMSG(msgnum, text) \ 103 { KDB_##msgnum, text } 104 105 static kdbmsg_t kdbmsgs[] = { 106 KDBMSG(NOTFOUND, "Command Not Found"), 107 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 108 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 109 "8 is only allowed on 64 bit systems"), 110 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 111 KDBMSG(NOTENV, "Cannot find environment variable"), 112 KDBMSG(NOENVVALUE, "Environment variable should have value"), 113 KDBMSG(NOTIMP, "Command not implemented"), 114 KDBMSG(ENVFULL, "Environment full"), 115 KDBMSG(ENVBUFFULL, "Environment buffer full"), 116 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 117 #ifdef CONFIG_CPU_XSCALE 118 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 119 #else 120 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 121 #endif 122 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 123 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 124 KDBMSG(BADMODE, "Invalid IDMODE"), 125 KDBMSG(BADINT, "Illegal numeric value"), 126 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 127 KDBMSG(BADREG, "Invalid register name"), 128 KDBMSG(BADCPUNUM, "Invalid cpu number"), 129 KDBMSG(BADLENGTH, "Invalid length field"), 130 KDBMSG(NOBP, "No Breakpoint exists"), 131 KDBMSG(BADADDR, "Invalid address"), 132 KDBMSG(NOPERM, "Permission denied"), 133 }; 134 #undef KDBMSG 135 136 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs); 137 138 139 /* 140 * Initial environment. This is all kept static and local to 141 * this file. We don't want to rely on the memory allocation 142 * mechanisms in the kernel, so we use a very limited allocate-only 143 * heap for new and altered environment variables. The entire 144 * environment is limited to a fixed number of entries (add more 145 * to __env[] if required) and a fixed amount of heap (add more to 146 * KDB_ENVBUFSIZE if required). 147 */ 148 149 static char *__env[] = { 150 #if defined(CONFIG_SMP) 151 "PROMPT=[%d]kdb> ", 152 #else 153 "PROMPT=kdb> ", 154 #endif 155 "MOREPROMPT=more> ", 156 "RADIX=16", 157 "MDCOUNT=8", /* lines of md output */ 158 KDB_PLATFORM_ENV, 159 "DTABCOUNT=30", 160 "NOSECT=1", 161 (char *)0, 162 (char *)0, 163 (char *)0, 164 (char *)0, 165 (char *)0, 166 (char *)0, 167 (char *)0, 168 (char *)0, 169 (char *)0, 170 (char *)0, 171 (char *)0, 172 (char *)0, 173 (char *)0, 174 (char *)0, 175 (char *)0, 176 (char *)0, 177 (char *)0, 178 (char *)0, 179 (char *)0, 180 (char *)0, 181 (char *)0, 182 (char *)0, 183 (char *)0, 184 (char *)0, 185 }; 186 187 static const int __nenv = ARRAY_SIZE(__env); 188 189 struct task_struct *kdb_curr_task(int cpu) 190 { 191 struct task_struct *p = curr_task(cpu); 192 #ifdef _TIF_MCA_INIT 193 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 194 p = krp->p; 195 #endif 196 return p; 197 } 198 199 /* 200 * Check whether the flags of the current command and the permissions 201 * of the kdb console has allow a command to be run. 202 */ 203 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions, 204 bool no_args) 205 { 206 /* permissions comes from userspace so needs massaging slightly */ 207 permissions &= KDB_ENABLE_MASK; 208 permissions |= KDB_ENABLE_ALWAYS_SAFE; 209 210 /* some commands change group when launched with no arguments */ 211 if (no_args) 212 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT; 213 214 flags |= KDB_ENABLE_ALL; 215 216 return permissions & flags; 217 } 218 219 /* 220 * kdbgetenv - This function will return the character string value of 221 * an environment variable. 222 * Parameters: 223 * match A character string representing an environment variable. 224 * Returns: 225 * NULL No environment variable matches 'match' 226 * char* Pointer to string value of environment variable. 227 */ 228 char *kdbgetenv(const char *match) 229 { 230 char **ep = __env; 231 int matchlen = strlen(match); 232 int i; 233 234 for (i = 0; i < __nenv; i++) { 235 char *e = *ep++; 236 237 if (!e) 238 continue; 239 240 if ((strncmp(match, e, matchlen) == 0) 241 && ((e[matchlen] == '\0') 242 || (e[matchlen] == '='))) { 243 char *cp = strchr(e, '='); 244 return cp ? ++cp : ""; 245 } 246 } 247 return NULL; 248 } 249 250 /* 251 * kdballocenv - This function is used to allocate bytes for 252 * environment entries. 253 * Parameters: 254 * match A character string representing a numeric value 255 * Outputs: 256 * *value the unsigned long representation of the env variable 'match' 257 * Returns: 258 * Zero on success, a kdb diagnostic on failure. 259 * Remarks: 260 * We use a static environment buffer (envbuffer) to hold the values 261 * of dynamically generated environment variables (see kdb_set). Buffer 262 * space once allocated is never free'd, so over time, the amount of space 263 * (currently 512 bytes) will be exhausted if env variables are changed 264 * frequently. 265 */ 266 static char *kdballocenv(size_t bytes) 267 { 268 #define KDB_ENVBUFSIZE 512 269 static char envbuffer[KDB_ENVBUFSIZE]; 270 static int envbufsize; 271 char *ep = NULL; 272 273 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 274 ep = &envbuffer[envbufsize]; 275 envbufsize += bytes; 276 } 277 return ep; 278 } 279 280 /* 281 * kdbgetulenv - This function will return the value of an unsigned 282 * long-valued environment variable. 283 * Parameters: 284 * match A character string representing a numeric value 285 * Outputs: 286 * *value the unsigned long represntation of the env variable 'match' 287 * Returns: 288 * Zero on success, a kdb diagnostic on failure. 289 */ 290 static int kdbgetulenv(const char *match, unsigned long *value) 291 { 292 char *ep; 293 294 ep = kdbgetenv(match); 295 if (!ep) 296 return KDB_NOTENV; 297 if (strlen(ep) == 0) 298 return KDB_NOENVVALUE; 299 300 *value = simple_strtoul(ep, NULL, 0); 301 302 return 0; 303 } 304 305 /* 306 * kdbgetintenv - This function will return the value of an 307 * integer-valued environment variable. 308 * Parameters: 309 * match A character string representing an integer-valued env variable 310 * Outputs: 311 * *value the integer representation of the environment variable 'match' 312 * Returns: 313 * Zero on success, a kdb diagnostic on failure. 314 */ 315 int kdbgetintenv(const char *match, int *value) 316 { 317 unsigned long val; 318 int diag; 319 320 diag = kdbgetulenv(match, &val); 321 if (!diag) 322 *value = (int) val; 323 return diag; 324 } 325 326 /* 327 * kdbgetularg - This function will convert a numeric string into an 328 * unsigned long value. 329 * Parameters: 330 * arg A character string representing a numeric value 331 * Outputs: 332 * *value the unsigned long represntation of arg. 333 * Returns: 334 * Zero on success, a kdb diagnostic on failure. 335 */ 336 int kdbgetularg(const char *arg, unsigned long *value) 337 { 338 char *endp; 339 unsigned long val; 340 341 val = simple_strtoul(arg, &endp, 0); 342 343 if (endp == arg) { 344 /* 345 * Also try base 16, for us folks too lazy to type the 346 * leading 0x... 347 */ 348 val = simple_strtoul(arg, &endp, 16); 349 if (endp == arg) 350 return KDB_BADINT; 351 } 352 353 *value = val; 354 355 return 0; 356 } 357 358 int kdbgetu64arg(const char *arg, u64 *value) 359 { 360 char *endp; 361 u64 val; 362 363 val = simple_strtoull(arg, &endp, 0); 364 365 if (endp == arg) { 366 367 val = simple_strtoull(arg, &endp, 16); 368 if (endp == arg) 369 return KDB_BADINT; 370 } 371 372 *value = val; 373 374 return 0; 375 } 376 377 /* 378 * kdb_set - This function implements the 'set' command. Alter an 379 * existing environment variable or create a new one. 380 */ 381 int kdb_set(int argc, const char **argv) 382 { 383 int i; 384 char *ep; 385 size_t varlen, vallen; 386 387 /* 388 * we can be invoked two ways: 389 * set var=value argv[1]="var", argv[2]="value" 390 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 391 * - if the latter, shift 'em down. 392 */ 393 if (argc == 3) { 394 argv[2] = argv[3]; 395 argc--; 396 } 397 398 if (argc != 2) 399 return KDB_ARGCOUNT; 400 401 /* 402 * Censor sensitive variables 403 */ 404 if (strcmp(argv[1], "PROMPT") == 0 && 405 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false)) 406 return KDB_NOPERM; 407 408 /* 409 * Check for internal variables 410 */ 411 if (strcmp(argv[1], "KDBDEBUG") == 0) { 412 unsigned int debugflags; 413 char *cp; 414 415 debugflags = simple_strtoul(argv[2], &cp, 0); 416 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 417 kdb_printf("kdb: illegal debug flags '%s'\n", 418 argv[2]); 419 return 0; 420 } 421 kdb_flags = (kdb_flags & 422 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT)) 423 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 424 425 return 0; 426 } 427 428 /* 429 * Tokenizer squashed the '=' sign. argv[1] is variable 430 * name, argv[2] = value. 431 */ 432 varlen = strlen(argv[1]); 433 vallen = strlen(argv[2]); 434 ep = kdballocenv(varlen + vallen + 2); 435 if (ep == (char *)0) 436 return KDB_ENVBUFFULL; 437 438 sprintf(ep, "%s=%s", argv[1], argv[2]); 439 440 ep[varlen+vallen+1] = '\0'; 441 442 for (i = 0; i < __nenv; i++) { 443 if (__env[i] 444 && ((strncmp(__env[i], argv[1], varlen) == 0) 445 && ((__env[i][varlen] == '\0') 446 || (__env[i][varlen] == '=')))) { 447 __env[i] = ep; 448 return 0; 449 } 450 } 451 452 /* 453 * Wasn't existing variable. Fit into slot. 454 */ 455 for (i = 0; i < __nenv-1; i++) { 456 if (__env[i] == (char *)0) { 457 __env[i] = ep; 458 return 0; 459 } 460 } 461 462 return KDB_ENVFULL; 463 } 464 465 static int kdb_check_regs(void) 466 { 467 if (!kdb_current_regs) { 468 kdb_printf("No current kdb registers." 469 " You may need to select another task\n"); 470 return KDB_BADREG; 471 } 472 return 0; 473 } 474 475 /* 476 * kdbgetaddrarg - This function is responsible for parsing an 477 * address-expression and returning the value of the expression, 478 * symbol name, and offset to the caller. 479 * 480 * The argument may consist of a numeric value (decimal or 481 * hexidecimal), a symbol name, a register name (preceded by the 482 * percent sign), an environment variable with a numeric value 483 * (preceded by a dollar sign) or a simple arithmetic expression 484 * consisting of a symbol name, +/-, and a numeric constant value 485 * (offset). 486 * Parameters: 487 * argc - count of arguments in argv 488 * argv - argument vector 489 * *nextarg - index to next unparsed argument in argv[] 490 * regs - Register state at time of KDB entry 491 * Outputs: 492 * *value - receives the value of the address-expression 493 * *offset - receives the offset specified, if any 494 * *name - receives the symbol name, if any 495 * *nextarg - index to next unparsed argument in argv[] 496 * Returns: 497 * zero is returned on success, a kdb diagnostic code is 498 * returned on error. 499 */ 500 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 501 unsigned long *value, long *offset, 502 char **name) 503 { 504 unsigned long addr; 505 unsigned long off = 0; 506 int positive; 507 int diag; 508 int found = 0; 509 char *symname; 510 char symbol = '\0'; 511 char *cp; 512 kdb_symtab_t symtab; 513 514 /* 515 * If the enable flags prohibit both arbitrary memory access 516 * and flow control then there are no reasonable grounds to 517 * provide symbol lookup. 518 */ 519 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL, 520 kdb_cmd_enabled, false)) 521 return KDB_NOPERM; 522 523 /* 524 * Process arguments which follow the following syntax: 525 * 526 * symbol | numeric-address [+/- numeric-offset] 527 * %register 528 * $environment-variable 529 */ 530 531 if (*nextarg > argc) 532 return KDB_ARGCOUNT; 533 534 symname = (char *)argv[*nextarg]; 535 536 /* 537 * If there is no whitespace between the symbol 538 * or address and the '+' or '-' symbols, we 539 * remember the character and replace it with a 540 * null so the symbol/value can be properly parsed 541 */ 542 cp = strpbrk(symname, "+-"); 543 if (cp != NULL) { 544 symbol = *cp; 545 *cp++ = '\0'; 546 } 547 548 if (symname[0] == '$') { 549 diag = kdbgetulenv(&symname[1], &addr); 550 if (diag) 551 return diag; 552 } else if (symname[0] == '%') { 553 diag = kdb_check_regs(); 554 if (diag) 555 return diag; 556 /* Implement register values with % at a later time as it is 557 * arch optional. 558 */ 559 return KDB_NOTIMP; 560 } else { 561 found = kdbgetsymval(symname, &symtab); 562 if (found) { 563 addr = symtab.sym_start; 564 } else { 565 diag = kdbgetularg(argv[*nextarg], &addr); 566 if (diag) 567 return diag; 568 } 569 } 570 571 if (!found) 572 found = kdbnearsym(addr, &symtab); 573 574 (*nextarg)++; 575 576 if (name) 577 *name = symname; 578 if (value) 579 *value = addr; 580 if (offset && name && *name) 581 *offset = addr - symtab.sym_start; 582 583 if ((*nextarg > argc) 584 && (symbol == '\0')) 585 return 0; 586 587 /* 588 * check for +/- and offset 589 */ 590 591 if (symbol == '\0') { 592 if ((argv[*nextarg][0] != '+') 593 && (argv[*nextarg][0] != '-')) { 594 /* 595 * Not our argument. Return. 596 */ 597 return 0; 598 } else { 599 positive = (argv[*nextarg][0] == '+'); 600 (*nextarg)++; 601 } 602 } else 603 positive = (symbol == '+'); 604 605 /* 606 * Now there must be an offset! 607 */ 608 if ((*nextarg > argc) 609 && (symbol == '\0')) { 610 return KDB_INVADDRFMT; 611 } 612 613 if (!symbol) { 614 cp = (char *)argv[*nextarg]; 615 (*nextarg)++; 616 } 617 618 diag = kdbgetularg(cp, &off); 619 if (diag) 620 return diag; 621 622 if (!positive) 623 off = -off; 624 625 if (offset) 626 *offset += off; 627 628 if (value) 629 *value += off; 630 631 return 0; 632 } 633 634 static void kdb_cmderror(int diag) 635 { 636 int i; 637 638 if (diag >= 0) { 639 kdb_printf("no error detected (diagnostic is %d)\n", diag); 640 return; 641 } 642 643 for (i = 0; i < __nkdb_err; i++) { 644 if (kdbmsgs[i].km_diag == diag) { 645 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 646 return; 647 } 648 } 649 650 kdb_printf("Unknown diag %d\n", -diag); 651 } 652 653 /* 654 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 655 * command which defines one command as a set of other commands, 656 * terminated by endefcmd. kdb_defcmd processes the initial 657 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 658 * the following commands until 'endefcmd'. 659 * Inputs: 660 * argc argument count 661 * argv argument vector 662 * Returns: 663 * zero for success, a kdb diagnostic if error 664 */ 665 struct defcmd_set { 666 int count; 667 bool usable; 668 char *name; 669 char *usage; 670 char *help; 671 char **command; 672 }; 673 static struct defcmd_set *defcmd_set; 674 static int defcmd_set_count; 675 static bool defcmd_in_progress; 676 677 /* Forward references */ 678 static int kdb_exec_defcmd(int argc, const char **argv); 679 680 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 681 { 682 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; 683 char **save_command = s->command; 684 if (strcmp(argv0, "endefcmd") == 0) { 685 defcmd_in_progress = false; 686 if (!s->count) 687 s->usable = false; 688 if (s->usable) 689 /* macros are always safe because when executed each 690 * internal command re-enters kdb_parse() and is 691 * safety checked individually. 692 */ 693 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage, 694 s->help, 0, 695 KDB_ENABLE_ALWAYS_SAFE); 696 return 0; 697 } 698 if (!s->usable) 699 return KDB_NOTIMP; 700 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB); 701 if (!s->command) { 702 kdb_printf("Could not allocate new kdb_defcmd table for %s\n", 703 cmdstr); 704 s->usable = false; 705 return KDB_NOTIMP; 706 } 707 memcpy(s->command, save_command, s->count * sizeof(*(s->command))); 708 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); 709 kfree(save_command); 710 return 0; 711 } 712 713 static int kdb_defcmd(int argc, const char **argv) 714 { 715 struct defcmd_set *save_defcmd_set = defcmd_set, *s; 716 if (defcmd_in_progress) { 717 kdb_printf("kdb: nested defcmd detected, assuming missing " 718 "endefcmd\n"); 719 kdb_defcmd2("endefcmd", "endefcmd"); 720 } 721 if (argc == 0) { 722 int i; 723 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { 724 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, 725 s->usage, s->help); 726 for (i = 0; i < s->count; ++i) 727 kdb_printf("%s", s->command[i]); 728 kdb_printf("endefcmd\n"); 729 } 730 return 0; 731 } 732 if (argc != 3) 733 return KDB_ARGCOUNT; 734 if (in_dbg_master()) { 735 kdb_printf("Command only available during kdb_init()\n"); 736 return KDB_NOTIMP; 737 } 738 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set), 739 GFP_KDB); 740 if (!defcmd_set) 741 goto fail_defcmd; 742 memcpy(defcmd_set, save_defcmd_set, 743 defcmd_set_count * sizeof(*defcmd_set)); 744 s = defcmd_set + defcmd_set_count; 745 memset(s, 0, sizeof(*s)); 746 s->usable = true; 747 s->name = kdb_strdup(argv[1], GFP_KDB); 748 if (!s->name) 749 goto fail_name; 750 s->usage = kdb_strdup(argv[2], GFP_KDB); 751 if (!s->usage) 752 goto fail_usage; 753 s->help = kdb_strdup(argv[3], GFP_KDB); 754 if (!s->help) 755 goto fail_help; 756 if (s->usage[0] == '"') { 757 strcpy(s->usage, argv[2]+1); 758 s->usage[strlen(s->usage)-1] = '\0'; 759 } 760 if (s->help[0] == '"') { 761 strcpy(s->help, argv[3]+1); 762 s->help[strlen(s->help)-1] = '\0'; 763 } 764 ++defcmd_set_count; 765 defcmd_in_progress = true; 766 kfree(save_defcmd_set); 767 return 0; 768 fail_help: 769 kfree(s->usage); 770 fail_usage: 771 kfree(s->name); 772 fail_name: 773 kfree(defcmd_set); 774 fail_defcmd: 775 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]); 776 defcmd_set = save_defcmd_set; 777 return KDB_NOTIMP; 778 } 779 780 /* 781 * kdb_exec_defcmd - Execute the set of commands associated with this 782 * defcmd name. 783 * Inputs: 784 * argc argument count 785 * argv argument vector 786 * Returns: 787 * zero for success, a kdb diagnostic if error 788 */ 789 static int kdb_exec_defcmd(int argc, const char **argv) 790 { 791 int i, ret; 792 struct defcmd_set *s; 793 if (argc != 0) 794 return KDB_ARGCOUNT; 795 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { 796 if (strcmp(s->name, argv[0]) == 0) 797 break; 798 } 799 if (i == defcmd_set_count) { 800 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 801 argv[0]); 802 return KDB_NOTIMP; 803 } 804 for (i = 0; i < s->count; ++i) { 805 /* Recursive use of kdb_parse, do not use argv after 806 * this point */ 807 argv = NULL; 808 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); 809 ret = kdb_parse(s->command[i]); 810 if (ret) 811 return ret; 812 } 813 return 0; 814 } 815 816 /* Command history */ 817 #define KDB_CMD_HISTORY_COUNT 32 818 #define CMD_BUFLEN 200 /* kdb_printf: max printline 819 * size == 256 */ 820 static unsigned int cmd_head, cmd_tail; 821 static unsigned int cmdptr; 822 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 823 static char cmd_cur[CMD_BUFLEN]; 824 825 /* 826 * The "str" argument may point to something like | grep xyz 827 */ 828 static void parse_grep(const char *str) 829 { 830 int len; 831 char *cp = (char *)str, *cp2; 832 833 /* sanity check: we should have been called with the \ first */ 834 if (*cp != '|') 835 return; 836 cp++; 837 while (isspace(*cp)) 838 cp++; 839 if (!str_has_prefix(cp, "grep ")) { 840 kdb_printf("invalid 'pipe', see grephelp\n"); 841 return; 842 } 843 cp += 5; 844 while (isspace(*cp)) 845 cp++; 846 cp2 = strchr(cp, '\n'); 847 if (cp2) 848 *cp2 = '\0'; /* remove the trailing newline */ 849 len = strlen(cp); 850 if (len == 0) { 851 kdb_printf("invalid 'pipe', see grephelp\n"); 852 return; 853 } 854 /* now cp points to a nonzero length search string */ 855 if (*cp == '"') { 856 /* allow it be "x y z" by removing the "'s - there must 857 be two of them */ 858 cp++; 859 cp2 = strchr(cp, '"'); 860 if (!cp2) { 861 kdb_printf("invalid quoted string, see grephelp\n"); 862 return; 863 } 864 *cp2 = '\0'; /* end the string where the 2nd " was */ 865 } 866 kdb_grep_leading = 0; 867 if (*cp == '^') { 868 kdb_grep_leading = 1; 869 cp++; 870 } 871 len = strlen(cp); 872 kdb_grep_trailing = 0; 873 if (*(cp+len-1) == '$') { 874 kdb_grep_trailing = 1; 875 *(cp+len-1) = '\0'; 876 } 877 len = strlen(cp); 878 if (!len) 879 return; 880 if (len >= KDB_GREP_STRLEN) { 881 kdb_printf("search string too long\n"); 882 return; 883 } 884 strcpy(kdb_grep_string, cp); 885 kdb_grepping_flag++; 886 return; 887 } 888 889 /* 890 * kdb_parse - Parse the command line, search the command table for a 891 * matching command and invoke the command function. This 892 * function may be called recursively, if it is, the second call 893 * will overwrite argv and cbuf. It is the caller's 894 * responsibility to save their argv if they recursively call 895 * kdb_parse(). 896 * Parameters: 897 * cmdstr The input command line to be parsed. 898 * regs The registers at the time kdb was entered. 899 * Returns: 900 * Zero for success, a kdb diagnostic if failure. 901 * Remarks: 902 * Limited to 20 tokens. 903 * 904 * Real rudimentary tokenization. Basically only whitespace 905 * is considered a token delimeter (but special consideration 906 * is taken of the '=' sign as used by the 'set' command). 907 * 908 * The algorithm used to tokenize the input string relies on 909 * there being at least one whitespace (or otherwise useless) 910 * character between tokens as the character immediately following 911 * the token is altered in-place to a null-byte to terminate the 912 * token string. 913 */ 914 915 #define MAXARGC 20 916 917 int kdb_parse(const char *cmdstr) 918 { 919 static char *argv[MAXARGC]; 920 static int argc; 921 static char cbuf[CMD_BUFLEN+2]; 922 char *cp; 923 char *cpp, quoted; 924 kdbtab_t *tp; 925 int i, escaped, ignore_errors = 0, check_grep = 0; 926 927 /* 928 * First tokenize the command string. 929 */ 930 cp = (char *)cmdstr; 931 932 if (KDB_FLAG(CMD_INTERRUPT)) { 933 /* Previous command was interrupted, newline must not 934 * repeat the command */ 935 KDB_FLAG_CLEAR(CMD_INTERRUPT); 936 KDB_STATE_SET(PAGER); 937 argc = 0; /* no repeat */ 938 } 939 940 if (*cp != '\n' && *cp != '\0') { 941 argc = 0; 942 cpp = cbuf; 943 while (*cp) { 944 /* skip whitespace */ 945 while (isspace(*cp)) 946 cp++; 947 if ((*cp == '\0') || (*cp == '\n') || 948 (*cp == '#' && !defcmd_in_progress)) 949 break; 950 /* special case: check for | grep pattern */ 951 if (*cp == '|') { 952 check_grep++; 953 break; 954 } 955 if (cpp >= cbuf + CMD_BUFLEN) { 956 kdb_printf("kdb_parse: command buffer " 957 "overflow, command ignored\n%s\n", 958 cmdstr); 959 return KDB_NOTFOUND; 960 } 961 if (argc >= MAXARGC - 1) { 962 kdb_printf("kdb_parse: too many arguments, " 963 "command ignored\n%s\n", cmdstr); 964 return KDB_NOTFOUND; 965 } 966 argv[argc++] = cpp; 967 escaped = 0; 968 quoted = '\0'; 969 /* Copy to next unquoted and unescaped 970 * whitespace or '=' */ 971 while (*cp && *cp != '\n' && 972 (escaped || quoted || !isspace(*cp))) { 973 if (cpp >= cbuf + CMD_BUFLEN) 974 break; 975 if (escaped) { 976 escaped = 0; 977 *cpp++ = *cp++; 978 continue; 979 } 980 if (*cp == '\\') { 981 escaped = 1; 982 ++cp; 983 continue; 984 } 985 if (*cp == quoted) 986 quoted = '\0'; 987 else if (*cp == '\'' || *cp == '"') 988 quoted = *cp; 989 *cpp = *cp++; 990 if (*cpp == '=' && !quoted) 991 break; 992 ++cpp; 993 } 994 *cpp++ = '\0'; /* Squash a ws or '=' character */ 995 } 996 } 997 if (!argc) 998 return 0; 999 if (check_grep) 1000 parse_grep(cp); 1001 if (defcmd_in_progress) { 1002 int result = kdb_defcmd2(cmdstr, argv[0]); 1003 if (!defcmd_in_progress) { 1004 argc = 0; /* avoid repeat on endefcmd */ 1005 *(argv[0]) = '\0'; 1006 } 1007 return result; 1008 } 1009 if (argv[0][0] == '-' && argv[0][1] && 1010 (argv[0][1] < '0' || argv[0][1] > '9')) { 1011 ignore_errors = 1; 1012 ++argv[0]; 1013 } 1014 1015 for_each_kdbcmd(tp, i) { 1016 if (tp->cmd_name) { 1017 /* 1018 * If this command is allowed to be abbreviated, 1019 * check to see if this is it. 1020 */ 1021 1022 if (tp->cmd_minlen 1023 && (strlen(argv[0]) <= tp->cmd_minlen)) { 1024 if (strncmp(argv[0], 1025 tp->cmd_name, 1026 tp->cmd_minlen) == 0) { 1027 break; 1028 } 1029 } 1030 1031 if (strcmp(argv[0], tp->cmd_name) == 0) 1032 break; 1033 } 1034 } 1035 1036 /* 1037 * If we don't find a command by this name, see if the first 1038 * few characters of this match any of the known commands. 1039 * e.g., md1c20 should match md. 1040 */ 1041 if (i == kdb_max_commands) { 1042 for_each_kdbcmd(tp, i) { 1043 if (tp->cmd_name) { 1044 if (strncmp(argv[0], 1045 tp->cmd_name, 1046 strlen(tp->cmd_name)) == 0) { 1047 break; 1048 } 1049 } 1050 } 1051 } 1052 1053 if (i < kdb_max_commands) { 1054 int result; 1055 1056 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1)) 1057 return KDB_NOPERM; 1058 1059 KDB_STATE_SET(CMD); 1060 result = (*tp->cmd_func)(argc-1, (const char **)argv); 1061 if (result && ignore_errors && result > KDB_CMD_GO) 1062 result = 0; 1063 KDB_STATE_CLEAR(CMD); 1064 1065 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS) 1066 return result; 1067 1068 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0; 1069 if (argv[argc]) 1070 *(argv[argc]) = '\0'; 1071 return result; 1072 } 1073 1074 /* 1075 * If the input with which we were presented does not 1076 * map to an existing command, attempt to parse it as an 1077 * address argument and display the result. Useful for 1078 * obtaining the address of a variable, or the nearest symbol 1079 * to an address contained in a register. 1080 */ 1081 { 1082 unsigned long value; 1083 char *name = NULL; 1084 long offset; 1085 int nextarg = 0; 1086 1087 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1088 &value, &offset, &name)) { 1089 return KDB_NOTFOUND; 1090 } 1091 1092 kdb_printf("%s = ", argv[0]); 1093 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1094 kdb_printf("\n"); 1095 return 0; 1096 } 1097 } 1098 1099 1100 static int handle_ctrl_cmd(char *cmd) 1101 { 1102 #define CTRL_P 16 1103 #define CTRL_N 14 1104 1105 /* initial situation */ 1106 if (cmd_head == cmd_tail) 1107 return 0; 1108 switch (*cmd) { 1109 case CTRL_P: 1110 if (cmdptr != cmd_tail) 1111 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT; 1112 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1113 return 1; 1114 case CTRL_N: 1115 if (cmdptr != cmd_head) 1116 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1117 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1118 return 1; 1119 } 1120 return 0; 1121 } 1122 1123 /* 1124 * kdb_reboot - This function implements the 'reboot' command. Reboot 1125 * the system immediately, or loop for ever on failure. 1126 */ 1127 static int kdb_reboot(int argc, const char **argv) 1128 { 1129 emergency_restart(); 1130 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1131 while (1) 1132 cpu_relax(); 1133 /* NOTREACHED */ 1134 return 0; 1135 } 1136 1137 static void kdb_dumpregs(struct pt_regs *regs) 1138 { 1139 int old_lvl = console_loglevel; 1140 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 1141 kdb_trap_printk++; 1142 show_regs(regs); 1143 kdb_trap_printk--; 1144 kdb_printf("\n"); 1145 console_loglevel = old_lvl; 1146 } 1147 1148 static void kdb_set_current_task(struct task_struct *p) 1149 { 1150 kdb_current_task = p; 1151 1152 if (kdb_task_has_cpu(p)) { 1153 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1154 return; 1155 } 1156 kdb_current_regs = NULL; 1157 } 1158 1159 static void drop_newline(char *buf) 1160 { 1161 size_t len = strlen(buf); 1162 1163 if (len == 0) 1164 return; 1165 if (*(buf + len - 1) == '\n') 1166 *(buf + len - 1) = '\0'; 1167 } 1168 1169 /* 1170 * kdb_local - The main code for kdb. This routine is invoked on a 1171 * specific processor, it is not global. The main kdb() routine 1172 * ensures that only one processor at a time is in this routine. 1173 * This code is called with the real reason code on the first 1174 * entry to a kdb session, thereafter it is called with reason 1175 * SWITCH, even if the user goes back to the original cpu. 1176 * Inputs: 1177 * reason The reason KDB was invoked 1178 * error The hardware-defined error code 1179 * regs The exception frame at time of fault/breakpoint. 1180 * db_result Result code from the break or debug point. 1181 * Returns: 1182 * 0 KDB was invoked for an event which it wasn't responsible 1183 * 1 KDB handled the event for which it was invoked. 1184 * KDB_CMD_GO User typed 'go'. 1185 * KDB_CMD_CPU User switched to another cpu. 1186 * KDB_CMD_SS Single step. 1187 */ 1188 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1189 kdb_dbtrap_t db_result) 1190 { 1191 char *cmdbuf; 1192 int diag; 1193 struct task_struct *kdb_current = 1194 kdb_curr_task(raw_smp_processor_id()); 1195 1196 KDB_DEBUG_STATE("kdb_local 1", reason); 1197 kdb_go_count = 0; 1198 if (reason == KDB_REASON_DEBUG) { 1199 /* special case below */ 1200 } else { 1201 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ", 1202 kdb_current, kdb_current ? kdb_current->pid : 0); 1203 #if defined(CONFIG_SMP) 1204 kdb_printf("on processor %d ", raw_smp_processor_id()); 1205 #endif 1206 } 1207 1208 switch (reason) { 1209 case KDB_REASON_DEBUG: 1210 { 1211 /* 1212 * If re-entering kdb after a single step 1213 * command, don't print the message. 1214 */ 1215 switch (db_result) { 1216 case KDB_DB_BPT: 1217 kdb_printf("\nEntering kdb (0x%px, pid %d) ", 1218 kdb_current, kdb_current->pid); 1219 #if defined(CONFIG_SMP) 1220 kdb_printf("on processor %d ", raw_smp_processor_id()); 1221 #endif 1222 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1223 instruction_pointer(regs)); 1224 break; 1225 case KDB_DB_SS: 1226 break; 1227 case KDB_DB_SSBPT: 1228 KDB_DEBUG_STATE("kdb_local 4", reason); 1229 return 1; /* kdba_db_trap did the work */ 1230 default: 1231 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1232 db_result); 1233 break; 1234 } 1235 1236 } 1237 break; 1238 case KDB_REASON_ENTER: 1239 if (KDB_STATE(KEYBOARD)) 1240 kdb_printf("due to Keyboard Entry\n"); 1241 else 1242 kdb_printf("due to KDB_ENTER()\n"); 1243 break; 1244 case KDB_REASON_KEYBOARD: 1245 KDB_STATE_SET(KEYBOARD); 1246 kdb_printf("due to Keyboard Entry\n"); 1247 break; 1248 case KDB_REASON_ENTER_SLAVE: 1249 /* drop through, slaves only get released via cpu switch */ 1250 case KDB_REASON_SWITCH: 1251 kdb_printf("due to cpu switch\n"); 1252 break; 1253 case KDB_REASON_OOPS: 1254 kdb_printf("Oops: %s\n", kdb_diemsg); 1255 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1256 instruction_pointer(regs)); 1257 kdb_dumpregs(regs); 1258 break; 1259 case KDB_REASON_SYSTEM_NMI: 1260 kdb_printf("due to System NonMaskable Interrupt\n"); 1261 break; 1262 case KDB_REASON_NMI: 1263 kdb_printf("due to NonMaskable Interrupt @ " 1264 kdb_machreg_fmt "\n", 1265 instruction_pointer(regs)); 1266 break; 1267 case KDB_REASON_SSTEP: 1268 case KDB_REASON_BREAK: 1269 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1270 reason == KDB_REASON_BREAK ? 1271 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1272 /* 1273 * Determine if this breakpoint is one that we 1274 * are interested in. 1275 */ 1276 if (db_result != KDB_DB_BPT) { 1277 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1278 db_result); 1279 KDB_DEBUG_STATE("kdb_local 6", reason); 1280 return 0; /* Not for us, dismiss it */ 1281 } 1282 break; 1283 case KDB_REASON_RECURSE: 1284 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1285 instruction_pointer(regs)); 1286 break; 1287 default: 1288 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1289 KDB_DEBUG_STATE("kdb_local 8", reason); 1290 return 0; /* Not for us, dismiss it */ 1291 } 1292 1293 while (1) { 1294 /* 1295 * Initialize pager context. 1296 */ 1297 kdb_nextline = 1; 1298 KDB_STATE_CLEAR(SUPPRESS); 1299 kdb_grepping_flag = 0; 1300 /* ensure the old search does not leak into '/' commands */ 1301 kdb_grep_string[0] = '\0'; 1302 1303 cmdbuf = cmd_cur; 1304 *cmdbuf = '\0'; 1305 *(cmd_hist[cmd_head]) = '\0'; 1306 1307 do_full_getstr: 1308 /* PROMPT can only be set if we have MEM_READ permission. */ 1309 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1310 raw_smp_processor_id()); 1311 if (defcmd_in_progress) 1312 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); 1313 1314 /* 1315 * Fetch command from keyboard 1316 */ 1317 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1318 if (*cmdbuf != '\n') { 1319 if (*cmdbuf < 32) { 1320 if (cmdptr == cmd_head) { 1321 strscpy(cmd_hist[cmd_head], cmd_cur, 1322 CMD_BUFLEN); 1323 *(cmd_hist[cmd_head] + 1324 strlen(cmd_hist[cmd_head])-1) = '\0'; 1325 } 1326 if (!handle_ctrl_cmd(cmdbuf)) 1327 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1328 cmdbuf = cmd_cur; 1329 goto do_full_getstr; 1330 } else { 1331 strscpy(cmd_hist[cmd_head], cmd_cur, 1332 CMD_BUFLEN); 1333 } 1334 1335 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1336 if (cmd_head == cmd_tail) 1337 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1338 } 1339 1340 cmdptr = cmd_head; 1341 diag = kdb_parse(cmdbuf); 1342 if (diag == KDB_NOTFOUND) { 1343 drop_newline(cmdbuf); 1344 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1345 diag = 0; 1346 } 1347 if (diag == KDB_CMD_GO 1348 || diag == KDB_CMD_CPU 1349 || diag == KDB_CMD_SS 1350 || diag == KDB_CMD_KGDB) 1351 break; 1352 1353 if (diag) 1354 kdb_cmderror(diag); 1355 } 1356 KDB_DEBUG_STATE("kdb_local 9", diag); 1357 return diag; 1358 } 1359 1360 1361 /* 1362 * kdb_print_state - Print the state data for the current processor 1363 * for debugging. 1364 * Inputs: 1365 * text Identifies the debug point 1366 * value Any integer value to be printed, e.g. reason code. 1367 */ 1368 void kdb_print_state(const char *text, int value) 1369 { 1370 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1371 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1372 kdb_state); 1373 } 1374 1375 /* 1376 * kdb_main_loop - After initial setup and assignment of the 1377 * controlling cpu, all cpus are in this loop. One cpu is in 1378 * control and will issue the kdb prompt, the others will spin 1379 * until 'go' or cpu switch. 1380 * 1381 * To get a consistent view of the kernel stacks for all 1382 * processes, this routine is invoked from the main kdb code via 1383 * an architecture specific routine. kdba_main_loop is 1384 * responsible for making the kernel stacks consistent for all 1385 * processes, there should be no difference between a blocked 1386 * process and a running process as far as kdb is concerned. 1387 * Inputs: 1388 * reason The reason KDB was invoked 1389 * error The hardware-defined error code 1390 * reason2 kdb's current reason code. 1391 * Initially error but can change 1392 * according to kdb state. 1393 * db_result Result code from break or debug point. 1394 * regs The exception frame at time of fault/breakpoint. 1395 * should always be valid. 1396 * Returns: 1397 * 0 KDB was invoked for an event which it wasn't responsible 1398 * 1 KDB handled the event for which it was invoked. 1399 */ 1400 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1401 kdb_dbtrap_t db_result, struct pt_regs *regs) 1402 { 1403 int result = 1; 1404 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1405 while (1) { 1406 /* 1407 * All processors except the one that is in control 1408 * will spin here. 1409 */ 1410 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1411 while (KDB_STATE(HOLD_CPU)) { 1412 /* state KDB is turned off by kdb_cpu to see if the 1413 * other cpus are still live, each cpu in this loop 1414 * turns it back on. 1415 */ 1416 if (!KDB_STATE(KDB)) 1417 KDB_STATE_SET(KDB); 1418 } 1419 1420 KDB_STATE_CLEAR(SUPPRESS); 1421 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1422 if (KDB_STATE(LEAVING)) 1423 break; /* Another cpu said 'go' */ 1424 /* Still using kdb, this processor is in control */ 1425 result = kdb_local(reason2, error, regs, db_result); 1426 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1427 1428 if (result == KDB_CMD_CPU) 1429 break; 1430 1431 if (result == KDB_CMD_SS) { 1432 KDB_STATE_SET(DOING_SS); 1433 break; 1434 } 1435 1436 if (result == KDB_CMD_KGDB) { 1437 if (!KDB_STATE(DOING_KGDB)) 1438 kdb_printf("Entering please attach debugger " 1439 "or use $D#44+ or $3#33\n"); 1440 break; 1441 } 1442 if (result && result != 1 && result != KDB_CMD_GO) 1443 kdb_printf("\nUnexpected kdb_local return code %d\n", 1444 result); 1445 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1446 break; 1447 } 1448 if (KDB_STATE(DOING_SS)) 1449 KDB_STATE_CLEAR(SSBPT); 1450 1451 /* Clean up any keyboard devices before leaving */ 1452 kdb_kbd_cleanup_state(); 1453 1454 return result; 1455 } 1456 1457 /* 1458 * kdb_mdr - This function implements the guts of the 'mdr', memory 1459 * read command. 1460 * mdr <addr arg>,<byte count> 1461 * Inputs: 1462 * addr Start address 1463 * count Number of bytes 1464 * Returns: 1465 * Always 0. Any errors are detected and printed by kdb_getarea. 1466 */ 1467 static int kdb_mdr(unsigned long addr, unsigned int count) 1468 { 1469 unsigned char c; 1470 while (count--) { 1471 if (kdb_getarea(c, addr)) 1472 return 0; 1473 kdb_printf("%02x", c); 1474 addr++; 1475 } 1476 kdb_printf("\n"); 1477 return 0; 1478 } 1479 1480 /* 1481 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1482 * 'md8' 'mdr' and 'mds' commands. 1483 * 1484 * md|mds [<addr arg> [<line count> [<radix>]]] 1485 * mdWcN [<addr arg> [<line count> [<radix>]]] 1486 * where W = is the width (1, 2, 4 or 8) and N is the count. 1487 * for eg., md1c20 reads 20 bytes, 1 at a time. 1488 * mdr <addr arg>,<byte count> 1489 */ 1490 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1491 int symbolic, int nosect, int bytesperword, 1492 int num, int repeat, int phys) 1493 { 1494 /* print just one line of data */ 1495 kdb_symtab_t symtab; 1496 char cbuf[32]; 1497 char *c = cbuf; 1498 int i; 1499 int j; 1500 unsigned long word; 1501 1502 memset(cbuf, '\0', sizeof(cbuf)); 1503 if (phys) 1504 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1505 else 1506 kdb_printf(kdb_machreg_fmt0 " ", addr); 1507 1508 for (i = 0; i < num && repeat--; i++) { 1509 if (phys) { 1510 if (kdb_getphysword(&word, addr, bytesperword)) 1511 break; 1512 } else if (kdb_getword(&word, addr, bytesperword)) 1513 break; 1514 kdb_printf(fmtstr, word); 1515 if (symbolic) 1516 kdbnearsym(word, &symtab); 1517 else 1518 memset(&symtab, 0, sizeof(symtab)); 1519 if (symtab.sym_name) { 1520 kdb_symbol_print(word, &symtab, 0); 1521 if (!nosect) { 1522 kdb_printf("\n"); 1523 kdb_printf(" %s %s " 1524 kdb_machreg_fmt " " 1525 kdb_machreg_fmt " " 1526 kdb_machreg_fmt, symtab.mod_name, 1527 symtab.sec_name, symtab.sec_start, 1528 symtab.sym_start, symtab.sym_end); 1529 } 1530 addr += bytesperword; 1531 } else { 1532 union { 1533 u64 word; 1534 unsigned char c[8]; 1535 } wc; 1536 unsigned char *cp; 1537 #ifdef __BIG_ENDIAN 1538 cp = wc.c + 8 - bytesperword; 1539 #else 1540 cp = wc.c; 1541 #endif 1542 wc.word = word; 1543 #define printable_char(c) \ 1544 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1545 for (j = 0; j < bytesperword; j++) 1546 *c++ = printable_char(*cp++); 1547 addr += bytesperword; 1548 #undef printable_char 1549 } 1550 } 1551 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1552 " ", cbuf); 1553 } 1554 1555 static int kdb_md(int argc, const char **argv) 1556 { 1557 static unsigned long last_addr; 1558 static int last_radix, last_bytesperword, last_repeat; 1559 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1560 int nosect = 0; 1561 char fmtchar, fmtstr[64]; 1562 unsigned long addr; 1563 unsigned long word; 1564 long offset = 0; 1565 int symbolic = 0; 1566 int valid = 0; 1567 int phys = 0; 1568 int raw = 0; 1569 1570 kdbgetintenv("MDCOUNT", &mdcount); 1571 kdbgetintenv("RADIX", &radix); 1572 kdbgetintenv("BYTESPERWORD", &bytesperword); 1573 1574 /* Assume 'md <addr>' and start with environment values */ 1575 repeat = mdcount * 16 / bytesperword; 1576 1577 if (strcmp(argv[0], "mdr") == 0) { 1578 if (argc == 2 || (argc == 0 && last_addr != 0)) 1579 valid = raw = 1; 1580 else 1581 return KDB_ARGCOUNT; 1582 } else if (isdigit(argv[0][2])) { 1583 bytesperword = (int)(argv[0][2] - '0'); 1584 if (bytesperword == 0) { 1585 bytesperword = last_bytesperword; 1586 if (bytesperword == 0) 1587 bytesperword = 4; 1588 } 1589 last_bytesperword = bytesperword; 1590 repeat = mdcount * 16 / bytesperword; 1591 if (!argv[0][3]) 1592 valid = 1; 1593 else if (argv[0][3] == 'c' && argv[0][4]) { 1594 char *p; 1595 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1596 mdcount = ((repeat * bytesperword) + 15) / 16; 1597 valid = !*p; 1598 } 1599 last_repeat = repeat; 1600 } else if (strcmp(argv[0], "md") == 0) 1601 valid = 1; 1602 else if (strcmp(argv[0], "mds") == 0) 1603 valid = 1; 1604 else if (strcmp(argv[0], "mdp") == 0) { 1605 phys = valid = 1; 1606 } 1607 if (!valid) 1608 return KDB_NOTFOUND; 1609 1610 if (argc == 0) { 1611 if (last_addr == 0) 1612 return KDB_ARGCOUNT; 1613 addr = last_addr; 1614 radix = last_radix; 1615 bytesperword = last_bytesperword; 1616 repeat = last_repeat; 1617 if (raw) 1618 mdcount = repeat; 1619 else 1620 mdcount = ((repeat * bytesperword) + 15) / 16; 1621 } 1622 1623 if (argc) { 1624 unsigned long val; 1625 int diag, nextarg = 1; 1626 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1627 &offset, NULL); 1628 if (diag) 1629 return diag; 1630 if (argc > nextarg+2) 1631 return KDB_ARGCOUNT; 1632 1633 if (argc >= nextarg) { 1634 diag = kdbgetularg(argv[nextarg], &val); 1635 if (!diag) { 1636 mdcount = (int) val; 1637 if (raw) 1638 repeat = mdcount; 1639 else 1640 repeat = mdcount * 16 / bytesperword; 1641 } 1642 } 1643 if (argc >= nextarg+1) { 1644 diag = kdbgetularg(argv[nextarg+1], &val); 1645 if (!diag) 1646 radix = (int) val; 1647 } 1648 } 1649 1650 if (strcmp(argv[0], "mdr") == 0) { 1651 int ret; 1652 last_addr = addr; 1653 ret = kdb_mdr(addr, mdcount); 1654 last_addr += mdcount; 1655 last_repeat = mdcount; 1656 last_bytesperword = bytesperword; // to make REPEAT happy 1657 return ret; 1658 } 1659 1660 switch (radix) { 1661 case 10: 1662 fmtchar = 'd'; 1663 break; 1664 case 16: 1665 fmtchar = 'x'; 1666 break; 1667 case 8: 1668 fmtchar = 'o'; 1669 break; 1670 default: 1671 return KDB_BADRADIX; 1672 } 1673 1674 last_radix = radix; 1675 1676 if (bytesperword > KDB_WORD_SIZE) 1677 return KDB_BADWIDTH; 1678 1679 switch (bytesperword) { 1680 case 8: 1681 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1682 break; 1683 case 4: 1684 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1685 break; 1686 case 2: 1687 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1688 break; 1689 case 1: 1690 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1691 break; 1692 default: 1693 return KDB_BADWIDTH; 1694 } 1695 1696 last_repeat = repeat; 1697 last_bytesperword = bytesperword; 1698 1699 if (strcmp(argv[0], "mds") == 0) { 1700 symbolic = 1; 1701 /* Do not save these changes as last_*, they are temporary mds 1702 * overrides. 1703 */ 1704 bytesperword = KDB_WORD_SIZE; 1705 repeat = mdcount; 1706 kdbgetintenv("NOSECT", &nosect); 1707 } 1708 1709 /* Round address down modulo BYTESPERWORD */ 1710 1711 addr &= ~(bytesperword-1); 1712 1713 while (repeat > 0) { 1714 unsigned long a; 1715 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1716 1717 if (KDB_FLAG(CMD_INTERRUPT)) 1718 return 0; 1719 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1720 if (phys) { 1721 if (kdb_getphysword(&word, a, bytesperword) 1722 || word) 1723 break; 1724 } else if (kdb_getword(&word, a, bytesperword) || word) 1725 break; 1726 } 1727 n = min(num, repeat); 1728 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1729 num, repeat, phys); 1730 addr += bytesperword * n; 1731 repeat -= n; 1732 z = (z + num - 1) / num; 1733 if (z > 2) { 1734 int s = num * (z-2); 1735 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1736 " zero suppressed\n", 1737 addr, addr + bytesperword * s - 1); 1738 addr += bytesperword * s; 1739 repeat -= s; 1740 } 1741 } 1742 last_addr = addr; 1743 1744 return 0; 1745 } 1746 1747 /* 1748 * kdb_mm - This function implements the 'mm' command. 1749 * mm address-expression new-value 1750 * Remarks: 1751 * mm works on machine words, mmW works on bytes. 1752 */ 1753 static int kdb_mm(int argc, const char **argv) 1754 { 1755 int diag; 1756 unsigned long addr; 1757 long offset = 0; 1758 unsigned long contents; 1759 int nextarg; 1760 int width; 1761 1762 if (argv[0][2] && !isdigit(argv[0][2])) 1763 return KDB_NOTFOUND; 1764 1765 if (argc < 2) 1766 return KDB_ARGCOUNT; 1767 1768 nextarg = 1; 1769 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1770 if (diag) 1771 return diag; 1772 1773 if (nextarg > argc) 1774 return KDB_ARGCOUNT; 1775 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1776 if (diag) 1777 return diag; 1778 1779 if (nextarg != argc + 1) 1780 return KDB_ARGCOUNT; 1781 1782 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1783 diag = kdb_putword(addr, contents, width); 1784 if (diag) 1785 return diag; 1786 1787 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1788 1789 return 0; 1790 } 1791 1792 /* 1793 * kdb_go - This function implements the 'go' command. 1794 * go [address-expression] 1795 */ 1796 static int kdb_go(int argc, const char **argv) 1797 { 1798 unsigned long addr; 1799 int diag; 1800 int nextarg; 1801 long offset; 1802 1803 if (raw_smp_processor_id() != kdb_initial_cpu) { 1804 kdb_printf("go must execute on the entry cpu, " 1805 "please use \"cpu %d\" and then execute go\n", 1806 kdb_initial_cpu); 1807 return KDB_BADCPUNUM; 1808 } 1809 if (argc == 1) { 1810 nextarg = 1; 1811 diag = kdbgetaddrarg(argc, argv, &nextarg, 1812 &addr, &offset, NULL); 1813 if (diag) 1814 return diag; 1815 } else if (argc) { 1816 return KDB_ARGCOUNT; 1817 } 1818 1819 diag = KDB_CMD_GO; 1820 if (KDB_FLAG(CATASTROPHIC)) { 1821 kdb_printf("Catastrophic error detected\n"); 1822 kdb_printf("kdb_continue_catastrophic=%d, ", 1823 kdb_continue_catastrophic); 1824 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1825 kdb_printf("type go a second time if you really want " 1826 "to continue\n"); 1827 return 0; 1828 } 1829 if (kdb_continue_catastrophic == 2) { 1830 kdb_printf("forcing reboot\n"); 1831 kdb_reboot(0, NULL); 1832 } 1833 kdb_printf("attempting to continue\n"); 1834 } 1835 return diag; 1836 } 1837 1838 /* 1839 * kdb_rd - This function implements the 'rd' command. 1840 */ 1841 static int kdb_rd(int argc, const char **argv) 1842 { 1843 int len = kdb_check_regs(); 1844 #if DBG_MAX_REG_NUM > 0 1845 int i; 1846 char *rname; 1847 int rsize; 1848 u64 reg64; 1849 u32 reg32; 1850 u16 reg16; 1851 u8 reg8; 1852 1853 if (len) 1854 return len; 1855 1856 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1857 rsize = dbg_reg_def[i].size * 2; 1858 if (rsize > 16) 1859 rsize = 2; 1860 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1861 len = 0; 1862 kdb_printf("\n"); 1863 } 1864 if (len) 1865 len += kdb_printf(" "); 1866 switch(dbg_reg_def[i].size * 8) { 1867 case 8: 1868 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1869 if (!rname) 1870 break; 1871 len += kdb_printf("%s: %02x", rname, reg8); 1872 break; 1873 case 16: 1874 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1875 if (!rname) 1876 break; 1877 len += kdb_printf("%s: %04x", rname, reg16); 1878 break; 1879 case 32: 1880 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1881 if (!rname) 1882 break; 1883 len += kdb_printf("%s: %08x", rname, reg32); 1884 break; 1885 case 64: 1886 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1887 if (!rname) 1888 break; 1889 len += kdb_printf("%s: %016llx", rname, reg64); 1890 break; 1891 default: 1892 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1893 } 1894 } 1895 kdb_printf("\n"); 1896 #else 1897 if (len) 1898 return len; 1899 1900 kdb_dumpregs(kdb_current_regs); 1901 #endif 1902 return 0; 1903 } 1904 1905 /* 1906 * kdb_rm - This function implements the 'rm' (register modify) command. 1907 * rm register-name new-contents 1908 * Remarks: 1909 * Allows register modification with the same restrictions as gdb 1910 */ 1911 static int kdb_rm(int argc, const char **argv) 1912 { 1913 #if DBG_MAX_REG_NUM > 0 1914 int diag; 1915 const char *rname; 1916 int i; 1917 u64 reg64; 1918 u32 reg32; 1919 u16 reg16; 1920 u8 reg8; 1921 1922 if (argc != 2) 1923 return KDB_ARGCOUNT; 1924 /* 1925 * Allow presence or absence of leading '%' symbol. 1926 */ 1927 rname = argv[1]; 1928 if (*rname == '%') 1929 rname++; 1930 1931 diag = kdbgetu64arg(argv[2], ®64); 1932 if (diag) 1933 return diag; 1934 1935 diag = kdb_check_regs(); 1936 if (diag) 1937 return diag; 1938 1939 diag = KDB_BADREG; 1940 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1941 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1942 diag = 0; 1943 break; 1944 } 1945 } 1946 if (!diag) { 1947 switch(dbg_reg_def[i].size * 8) { 1948 case 8: 1949 reg8 = reg64; 1950 dbg_set_reg(i, ®8, kdb_current_regs); 1951 break; 1952 case 16: 1953 reg16 = reg64; 1954 dbg_set_reg(i, ®16, kdb_current_regs); 1955 break; 1956 case 32: 1957 reg32 = reg64; 1958 dbg_set_reg(i, ®32, kdb_current_regs); 1959 break; 1960 case 64: 1961 dbg_set_reg(i, ®64, kdb_current_regs); 1962 break; 1963 } 1964 } 1965 return diag; 1966 #else 1967 kdb_printf("ERROR: Register set currently not implemented\n"); 1968 return 0; 1969 #endif 1970 } 1971 1972 #if defined(CONFIG_MAGIC_SYSRQ) 1973 /* 1974 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 1975 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 1976 * sr <magic-sysrq-code> 1977 */ 1978 static int kdb_sr(int argc, const char **argv) 1979 { 1980 bool check_mask = 1981 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false); 1982 1983 if (argc != 1) 1984 return KDB_ARGCOUNT; 1985 1986 kdb_trap_printk++; 1987 __handle_sysrq(*argv[1], check_mask); 1988 kdb_trap_printk--; 1989 1990 return 0; 1991 } 1992 #endif /* CONFIG_MAGIC_SYSRQ */ 1993 1994 /* 1995 * kdb_ef - This function implements the 'regs' (display exception 1996 * frame) command. This command takes an address and expects to 1997 * find an exception frame at that address, formats and prints 1998 * it. 1999 * regs address-expression 2000 * Remarks: 2001 * Not done yet. 2002 */ 2003 static int kdb_ef(int argc, const char **argv) 2004 { 2005 int diag; 2006 unsigned long addr; 2007 long offset; 2008 int nextarg; 2009 2010 if (argc != 1) 2011 return KDB_ARGCOUNT; 2012 2013 nextarg = 1; 2014 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2015 if (diag) 2016 return diag; 2017 show_regs((struct pt_regs *)addr); 2018 return 0; 2019 } 2020 2021 #if defined(CONFIG_MODULES) 2022 /* 2023 * kdb_lsmod - This function implements the 'lsmod' command. Lists 2024 * currently loaded kernel modules. 2025 * Mostly taken from userland lsmod. 2026 */ 2027 static int kdb_lsmod(int argc, const char **argv) 2028 { 2029 struct module *mod; 2030 2031 if (argc != 0) 2032 return KDB_ARGCOUNT; 2033 2034 kdb_printf("Module Size modstruct Used by\n"); 2035 list_for_each_entry(mod, kdb_modules, list) { 2036 if (mod->state == MODULE_STATE_UNFORMED) 2037 continue; 2038 2039 kdb_printf("%-20s%8u 0x%px ", mod->name, 2040 mod->core_layout.size, (void *)mod); 2041 #ifdef CONFIG_MODULE_UNLOAD 2042 kdb_printf("%4d ", module_refcount(mod)); 2043 #endif 2044 if (mod->state == MODULE_STATE_GOING) 2045 kdb_printf(" (Unloading)"); 2046 else if (mod->state == MODULE_STATE_COMING) 2047 kdb_printf(" (Loading)"); 2048 else 2049 kdb_printf(" (Live)"); 2050 kdb_printf(" 0x%px", mod->core_layout.base); 2051 2052 #ifdef CONFIG_MODULE_UNLOAD 2053 { 2054 struct module_use *use; 2055 kdb_printf(" [ "); 2056 list_for_each_entry(use, &mod->source_list, 2057 source_list) 2058 kdb_printf("%s ", use->target->name); 2059 kdb_printf("]\n"); 2060 } 2061 #endif 2062 } 2063 2064 return 0; 2065 } 2066 2067 #endif /* CONFIG_MODULES */ 2068 2069 /* 2070 * kdb_env - This function implements the 'env' command. Display the 2071 * current environment variables. 2072 */ 2073 2074 static int kdb_env(int argc, const char **argv) 2075 { 2076 int i; 2077 2078 for (i = 0; i < __nenv; i++) { 2079 if (__env[i]) 2080 kdb_printf("%s\n", __env[i]); 2081 } 2082 2083 if (KDB_DEBUG(MASK)) 2084 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags); 2085 2086 return 0; 2087 } 2088 2089 #ifdef CONFIG_PRINTK 2090 /* 2091 * kdb_dmesg - This function implements the 'dmesg' command to display 2092 * the contents of the syslog buffer. 2093 * dmesg [lines] [adjust] 2094 */ 2095 static int kdb_dmesg(int argc, const char **argv) 2096 { 2097 int diag; 2098 int logging; 2099 int lines = 0; 2100 int adjust = 0; 2101 int n = 0; 2102 int skip = 0; 2103 struct kmsg_dumper dumper = { .active = 1 }; 2104 size_t len; 2105 char buf[201]; 2106 2107 if (argc > 2) 2108 return KDB_ARGCOUNT; 2109 if (argc) { 2110 char *cp; 2111 lines = simple_strtol(argv[1], &cp, 0); 2112 if (*cp) 2113 lines = 0; 2114 if (argc > 1) { 2115 adjust = simple_strtoul(argv[2], &cp, 0); 2116 if (*cp || adjust < 0) 2117 adjust = 0; 2118 } 2119 } 2120 2121 /* disable LOGGING if set */ 2122 diag = kdbgetintenv("LOGGING", &logging); 2123 if (!diag && logging) { 2124 const char *setargs[] = { "set", "LOGGING", "0" }; 2125 kdb_set(2, setargs); 2126 } 2127 2128 kmsg_dump_rewind_nolock(&dumper); 2129 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL)) 2130 n++; 2131 2132 if (lines < 0) { 2133 if (adjust >= n) 2134 kdb_printf("buffer only contains %d lines, nothing " 2135 "printed\n", n); 2136 else if (adjust - lines >= n) 2137 kdb_printf("buffer only contains %d lines, last %d " 2138 "lines printed\n", n, n - adjust); 2139 skip = adjust; 2140 lines = abs(lines); 2141 } else if (lines > 0) { 2142 skip = n - lines - adjust; 2143 lines = abs(lines); 2144 if (adjust >= n) { 2145 kdb_printf("buffer only contains %d lines, " 2146 "nothing printed\n", n); 2147 skip = n; 2148 } else if (skip < 0) { 2149 lines += skip; 2150 skip = 0; 2151 kdb_printf("buffer only contains %d lines, first " 2152 "%d lines printed\n", n, lines); 2153 } 2154 } else { 2155 lines = n; 2156 } 2157 2158 if (skip >= n || skip < 0) 2159 return 0; 2160 2161 kmsg_dump_rewind_nolock(&dumper); 2162 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) { 2163 if (skip) { 2164 skip--; 2165 continue; 2166 } 2167 if (!lines--) 2168 break; 2169 if (KDB_FLAG(CMD_INTERRUPT)) 2170 return 0; 2171 2172 kdb_printf("%.*s\n", (int)len - 1, buf); 2173 } 2174 2175 return 0; 2176 } 2177 #endif /* CONFIG_PRINTK */ 2178 2179 /* Make sure we balance enable/disable calls, must disable first. */ 2180 static atomic_t kdb_nmi_disabled; 2181 2182 static int kdb_disable_nmi(int argc, const char *argv[]) 2183 { 2184 if (atomic_read(&kdb_nmi_disabled)) 2185 return 0; 2186 atomic_set(&kdb_nmi_disabled, 1); 2187 arch_kgdb_ops.enable_nmi(0); 2188 return 0; 2189 } 2190 2191 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2192 { 2193 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2194 return -EINVAL; 2195 arch_kgdb_ops.enable_nmi(1); 2196 return 0; 2197 } 2198 2199 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2200 .set = kdb_param_enable_nmi, 2201 }; 2202 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2203 2204 /* 2205 * kdb_cpu - This function implements the 'cpu' command. 2206 * cpu [<cpunum>] 2207 * Returns: 2208 * KDB_CMD_CPU for success, a kdb diagnostic if error 2209 */ 2210 static void kdb_cpu_status(void) 2211 { 2212 int i, start_cpu, first_print = 1; 2213 char state, prev_state = '?'; 2214 2215 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2216 kdb_printf("Available cpus: "); 2217 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2218 if (!cpu_online(i)) { 2219 state = 'F'; /* cpu is offline */ 2220 } else if (!kgdb_info[i].enter_kgdb) { 2221 state = 'D'; /* cpu is online but unresponsive */ 2222 } else { 2223 state = ' '; /* cpu is responding to kdb */ 2224 if (kdb_task_state_char(KDB_TSK(i)) == 'I') 2225 state = 'I'; /* idle task */ 2226 } 2227 if (state != prev_state) { 2228 if (prev_state != '?') { 2229 if (!first_print) 2230 kdb_printf(", "); 2231 first_print = 0; 2232 kdb_printf("%d", start_cpu); 2233 if (start_cpu < i-1) 2234 kdb_printf("-%d", i-1); 2235 if (prev_state != ' ') 2236 kdb_printf("(%c)", prev_state); 2237 } 2238 prev_state = state; 2239 start_cpu = i; 2240 } 2241 } 2242 /* print the trailing cpus, ignoring them if they are all offline */ 2243 if (prev_state != 'F') { 2244 if (!first_print) 2245 kdb_printf(", "); 2246 kdb_printf("%d", start_cpu); 2247 if (start_cpu < i-1) 2248 kdb_printf("-%d", i-1); 2249 if (prev_state != ' ') 2250 kdb_printf("(%c)", prev_state); 2251 } 2252 kdb_printf("\n"); 2253 } 2254 2255 static int kdb_cpu(int argc, const char **argv) 2256 { 2257 unsigned long cpunum; 2258 int diag; 2259 2260 if (argc == 0) { 2261 kdb_cpu_status(); 2262 return 0; 2263 } 2264 2265 if (argc != 1) 2266 return KDB_ARGCOUNT; 2267 2268 diag = kdbgetularg(argv[1], &cpunum); 2269 if (diag) 2270 return diag; 2271 2272 /* 2273 * Validate cpunum 2274 */ 2275 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb) 2276 return KDB_BADCPUNUM; 2277 2278 dbg_switch_cpu = cpunum; 2279 2280 /* 2281 * Switch to other cpu 2282 */ 2283 return KDB_CMD_CPU; 2284 } 2285 2286 /* The user may not realize that ps/bta with no parameters does not print idle 2287 * or sleeping system daemon processes, so tell them how many were suppressed. 2288 */ 2289 void kdb_ps_suppressed(void) 2290 { 2291 int idle = 0, daemon = 0; 2292 unsigned long mask_I = kdb_task_state_string("I"), 2293 mask_M = kdb_task_state_string("M"); 2294 unsigned long cpu; 2295 const struct task_struct *p, *g; 2296 for_each_online_cpu(cpu) { 2297 p = kdb_curr_task(cpu); 2298 if (kdb_task_state(p, mask_I)) 2299 ++idle; 2300 } 2301 kdb_do_each_thread(g, p) { 2302 if (kdb_task_state(p, mask_M)) 2303 ++daemon; 2304 } kdb_while_each_thread(g, p); 2305 if (idle || daemon) { 2306 if (idle) 2307 kdb_printf("%d idle process%s (state I)%s\n", 2308 idle, idle == 1 ? "" : "es", 2309 daemon ? " and " : ""); 2310 if (daemon) 2311 kdb_printf("%d sleeping system daemon (state M) " 2312 "process%s", daemon, 2313 daemon == 1 ? "" : "es"); 2314 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2315 } 2316 } 2317 2318 /* 2319 * kdb_ps - This function implements the 'ps' command which shows a 2320 * list of the active processes. 2321 * ps [DRSTCZEUIMA] All processes, optionally filtered by state 2322 */ 2323 void kdb_ps1(const struct task_struct *p) 2324 { 2325 int cpu; 2326 unsigned long tmp; 2327 2328 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) 2329 return; 2330 2331 cpu = kdb_process_cpu(p); 2332 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n", 2333 (void *)p, p->pid, p->parent->pid, 2334 kdb_task_has_cpu(p), kdb_process_cpu(p), 2335 kdb_task_state_char(p), 2336 (void *)(&p->thread), 2337 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2338 p->comm); 2339 if (kdb_task_has_cpu(p)) { 2340 if (!KDB_TSK(cpu)) { 2341 kdb_printf(" Error: no saved data for this cpu\n"); 2342 } else { 2343 if (KDB_TSK(cpu) != p) 2344 kdb_printf(" Error: does not match running " 2345 "process table (0x%px)\n", KDB_TSK(cpu)); 2346 } 2347 } 2348 } 2349 2350 static int kdb_ps(int argc, const char **argv) 2351 { 2352 struct task_struct *g, *p; 2353 unsigned long mask, cpu; 2354 2355 if (argc == 0) 2356 kdb_ps_suppressed(); 2357 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2358 (int)(2*sizeof(void *))+2, "Task Addr", 2359 (int)(2*sizeof(void *))+2, "Thread"); 2360 mask = kdb_task_state_string(argc ? argv[1] : NULL); 2361 /* Run the active tasks first */ 2362 for_each_online_cpu(cpu) { 2363 if (KDB_FLAG(CMD_INTERRUPT)) 2364 return 0; 2365 p = kdb_curr_task(cpu); 2366 if (kdb_task_state(p, mask)) 2367 kdb_ps1(p); 2368 } 2369 kdb_printf("\n"); 2370 /* Now the real tasks */ 2371 kdb_do_each_thread(g, p) { 2372 if (KDB_FLAG(CMD_INTERRUPT)) 2373 return 0; 2374 if (kdb_task_state(p, mask)) 2375 kdb_ps1(p); 2376 } kdb_while_each_thread(g, p); 2377 2378 return 0; 2379 } 2380 2381 /* 2382 * kdb_pid - This function implements the 'pid' command which switches 2383 * the currently active process. 2384 * pid [<pid> | R] 2385 */ 2386 static int kdb_pid(int argc, const char **argv) 2387 { 2388 struct task_struct *p; 2389 unsigned long val; 2390 int diag; 2391 2392 if (argc > 1) 2393 return KDB_ARGCOUNT; 2394 2395 if (argc) { 2396 if (strcmp(argv[1], "R") == 0) { 2397 p = KDB_TSK(kdb_initial_cpu); 2398 } else { 2399 diag = kdbgetularg(argv[1], &val); 2400 if (diag) 2401 return KDB_BADINT; 2402 2403 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2404 if (!p) { 2405 kdb_printf("No task with pid=%d\n", (pid_t)val); 2406 return 0; 2407 } 2408 } 2409 kdb_set_current_task(p); 2410 } 2411 kdb_printf("KDB current process is %s(pid=%d)\n", 2412 kdb_current_task->comm, 2413 kdb_current_task->pid); 2414 2415 return 0; 2416 } 2417 2418 static int kdb_kgdb(int argc, const char **argv) 2419 { 2420 return KDB_CMD_KGDB; 2421 } 2422 2423 /* 2424 * kdb_help - This function implements the 'help' and '?' commands. 2425 */ 2426 static int kdb_help(int argc, const char **argv) 2427 { 2428 kdbtab_t *kt; 2429 int i; 2430 2431 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2432 kdb_printf("-----------------------------" 2433 "-----------------------------\n"); 2434 for_each_kdbcmd(kt, i) { 2435 char *space = ""; 2436 if (KDB_FLAG(CMD_INTERRUPT)) 2437 return 0; 2438 if (!kt->cmd_name) 2439 continue; 2440 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true)) 2441 continue; 2442 if (strlen(kt->cmd_usage) > 20) 2443 space = "\n "; 2444 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name, 2445 kt->cmd_usage, space, kt->cmd_help); 2446 } 2447 return 0; 2448 } 2449 2450 /* 2451 * kdb_kill - This function implements the 'kill' commands. 2452 */ 2453 static int kdb_kill(int argc, const char **argv) 2454 { 2455 long sig, pid; 2456 char *endp; 2457 struct task_struct *p; 2458 2459 if (argc != 2) 2460 return KDB_ARGCOUNT; 2461 2462 sig = simple_strtol(argv[1], &endp, 0); 2463 if (*endp) 2464 return KDB_BADINT; 2465 if ((sig >= 0) || !valid_signal(-sig)) { 2466 kdb_printf("Invalid signal parameter.<-signal>\n"); 2467 return 0; 2468 } 2469 sig = -sig; 2470 2471 pid = simple_strtol(argv[2], &endp, 0); 2472 if (*endp) 2473 return KDB_BADINT; 2474 if (pid <= 0) { 2475 kdb_printf("Process ID must be large than 0.\n"); 2476 return 0; 2477 } 2478 2479 /* Find the process. */ 2480 p = find_task_by_pid_ns(pid, &init_pid_ns); 2481 if (!p) { 2482 kdb_printf("The specified process isn't found.\n"); 2483 return 0; 2484 } 2485 p = p->group_leader; 2486 kdb_send_sig(p, sig); 2487 return 0; 2488 } 2489 2490 /* 2491 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2492 * I cannot call that code directly from kdb, it has an unconditional 2493 * cli()/sti() and calls routines that take locks which can stop the debugger. 2494 */ 2495 static void kdb_sysinfo(struct sysinfo *val) 2496 { 2497 u64 uptime = ktime_get_mono_fast_ns(); 2498 2499 memset(val, 0, sizeof(*val)); 2500 val->uptime = div_u64(uptime, NSEC_PER_SEC); 2501 val->loads[0] = avenrun[0]; 2502 val->loads[1] = avenrun[1]; 2503 val->loads[2] = avenrun[2]; 2504 val->procs = nr_threads-1; 2505 si_meminfo(val); 2506 2507 return; 2508 } 2509 2510 /* 2511 * kdb_summary - This function implements the 'summary' command. 2512 */ 2513 static int kdb_summary(int argc, const char **argv) 2514 { 2515 time64_t now; 2516 struct tm tm; 2517 struct sysinfo val; 2518 2519 if (argc) 2520 return KDB_ARGCOUNT; 2521 2522 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2523 kdb_printf("release %s\n", init_uts_ns.name.release); 2524 kdb_printf("version %s\n", init_uts_ns.name.version); 2525 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2526 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2527 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2528 2529 now = __ktime_get_real_seconds(); 2530 time64_to_tm(now, 0, &tm); 2531 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d " 2532 "tz_minuteswest %d\n", 2533 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, 2534 tm.tm_hour, tm.tm_min, tm.tm_sec, 2535 sys_tz.tz_minuteswest); 2536 2537 kdb_sysinfo(&val); 2538 kdb_printf("uptime "); 2539 if (val.uptime > (24*60*60)) { 2540 int days = val.uptime / (24*60*60); 2541 val.uptime %= (24*60*60); 2542 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2543 } 2544 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2545 2546 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2547 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2548 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2549 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2550 2551 /* Display in kilobytes */ 2552 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2553 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2554 "Buffers: %8lu kB\n", 2555 K(val.totalram), K(val.freeram), K(val.bufferram)); 2556 return 0; 2557 } 2558 2559 /* 2560 * kdb_per_cpu - This function implements the 'per_cpu' command. 2561 */ 2562 static int kdb_per_cpu(int argc, const char **argv) 2563 { 2564 char fmtstr[64]; 2565 int cpu, diag, nextarg = 1; 2566 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2567 2568 if (argc < 1 || argc > 3) 2569 return KDB_ARGCOUNT; 2570 2571 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2572 if (diag) 2573 return diag; 2574 2575 if (argc >= 2) { 2576 diag = kdbgetularg(argv[2], &bytesperword); 2577 if (diag) 2578 return diag; 2579 } 2580 if (!bytesperword) 2581 bytesperword = KDB_WORD_SIZE; 2582 else if (bytesperword > KDB_WORD_SIZE) 2583 return KDB_BADWIDTH; 2584 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2585 if (argc >= 3) { 2586 diag = kdbgetularg(argv[3], &whichcpu); 2587 if (diag) 2588 return diag; 2589 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) { 2590 kdb_printf("cpu %ld is not online\n", whichcpu); 2591 return KDB_BADCPUNUM; 2592 } 2593 } 2594 2595 /* Most architectures use __per_cpu_offset[cpu], some use 2596 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2597 */ 2598 #ifdef __per_cpu_offset 2599 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2600 #else 2601 #ifdef CONFIG_SMP 2602 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2603 #else 2604 #define KDB_PCU(cpu) 0 2605 #endif 2606 #endif 2607 for_each_online_cpu(cpu) { 2608 if (KDB_FLAG(CMD_INTERRUPT)) 2609 return 0; 2610 2611 if (whichcpu != ~0UL && whichcpu != cpu) 2612 continue; 2613 addr = symaddr + KDB_PCU(cpu); 2614 diag = kdb_getword(&val, addr, bytesperword); 2615 if (diag) { 2616 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2617 "read, diag=%d\n", cpu, addr, diag); 2618 continue; 2619 } 2620 kdb_printf("%5d ", cpu); 2621 kdb_md_line(fmtstr, addr, 2622 bytesperword == KDB_WORD_SIZE, 2623 1, bytesperword, 1, 1, 0); 2624 } 2625 #undef KDB_PCU 2626 return 0; 2627 } 2628 2629 /* 2630 * display help for the use of cmd | grep pattern 2631 */ 2632 static int kdb_grep_help(int argc, const char **argv) 2633 { 2634 kdb_printf("Usage of cmd args | grep pattern:\n"); 2635 kdb_printf(" Any command's output may be filtered through an "); 2636 kdb_printf("emulated 'pipe'.\n"); 2637 kdb_printf(" 'grep' is just a key word.\n"); 2638 kdb_printf(" The pattern may include a very limited set of " 2639 "metacharacters:\n"); 2640 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2641 kdb_printf(" And if there are spaces in the pattern, you may " 2642 "quote it:\n"); 2643 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2644 " or \"^pat tern$\"\n"); 2645 return 0; 2646 } 2647 2648 /* 2649 * kdb_register_flags - This function is used to register a kernel 2650 * debugger command. 2651 * Inputs: 2652 * cmd Command name 2653 * func Function to execute the command 2654 * usage A simple usage string showing arguments 2655 * help A simple help string describing command 2656 * repeat Does the command auto repeat on enter? 2657 * Returns: 2658 * zero for success, one if a duplicate command. 2659 */ 2660 #define kdb_command_extend 50 /* arbitrary */ 2661 int kdb_register_flags(char *cmd, 2662 kdb_func_t func, 2663 char *usage, 2664 char *help, 2665 short minlen, 2666 kdb_cmdflags_t flags) 2667 { 2668 int i; 2669 kdbtab_t *kp; 2670 2671 /* 2672 * Brute force method to determine duplicates 2673 */ 2674 for_each_kdbcmd(kp, i) { 2675 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2676 kdb_printf("Duplicate kdb command registered: " 2677 "%s, func %px help %s\n", cmd, func, help); 2678 return 1; 2679 } 2680 } 2681 2682 /* 2683 * Insert command into first available location in table 2684 */ 2685 for_each_kdbcmd(kp, i) { 2686 if (kp->cmd_name == NULL) 2687 break; 2688 } 2689 2690 if (i >= kdb_max_commands) { 2691 kdbtab_t *new = kmalloc_array(kdb_max_commands - 2692 KDB_BASE_CMD_MAX + 2693 kdb_command_extend, 2694 sizeof(*new), 2695 GFP_KDB); 2696 if (!new) { 2697 kdb_printf("Could not allocate new kdb_command " 2698 "table\n"); 2699 return 1; 2700 } 2701 if (kdb_commands) { 2702 memcpy(new, kdb_commands, 2703 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new)); 2704 kfree(kdb_commands); 2705 } 2706 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0, 2707 kdb_command_extend * sizeof(*new)); 2708 kdb_commands = new; 2709 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX; 2710 kdb_max_commands += kdb_command_extend; 2711 } 2712 2713 kp->cmd_name = cmd; 2714 kp->cmd_func = func; 2715 kp->cmd_usage = usage; 2716 kp->cmd_help = help; 2717 kp->cmd_minlen = minlen; 2718 kp->cmd_flags = flags; 2719 2720 return 0; 2721 } 2722 EXPORT_SYMBOL_GPL(kdb_register_flags); 2723 2724 2725 /* 2726 * kdb_register - Compatibility register function for commands that do 2727 * not need to specify a repeat state. Equivalent to 2728 * kdb_register_flags with flags set to 0. 2729 * Inputs: 2730 * cmd Command name 2731 * func Function to execute the command 2732 * usage A simple usage string showing arguments 2733 * help A simple help string describing command 2734 * Returns: 2735 * zero for success, one if a duplicate command. 2736 */ 2737 int kdb_register(char *cmd, 2738 kdb_func_t func, 2739 char *usage, 2740 char *help, 2741 short minlen) 2742 { 2743 return kdb_register_flags(cmd, func, usage, help, minlen, 0); 2744 } 2745 EXPORT_SYMBOL_GPL(kdb_register); 2746 2747 /* 2748 * kdb_unregister - This function is used to unregister a kernel 2749 * debugger command. It is generally called when a module which 2750 * implements kdb commands is unloaded. 2751 * Inputs: 2752 * cmd Command name 2753 * Returns: 2754 * zero for success, one command not registered. 2755 */ 2756 int kdb_unregister(char *cmd) 2757 { 2758 int i; 2759 kdbtab_t *kp; 2760 2761 /* 2762 * find the command. 2763 */ 2764 for_each_kdbcmd(kp, i) { 2765 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2766 kp->cmd_name = NULL; 2767 return 0; 2768 } 2769 } 2770 2771 /* Couldn't find it. */ 2772 return 1; 2773 } 2774 EXPORT_SYMBOL_GPL(kdb_unregister); 2775 2776 /* Initialize the kdb command table. */ 2777 static void __init kdb_inittab(void) 2778 { 2779 int i; 2780 kdbtab_t *kp; 2781 2782 for_each_kdbcmd(kp, i) 2783 kp->cmd_name = NULL; 2784 2785 kdb_register_flags("md", kdb_md, "<vaddr>", 2786 "Display Memory Contents, also mdWcN, e.g. md8c1", 1, 2787 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2788 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>", 2789 "Display Raw Memory", 0, 2790 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2791 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>", 2792 "Display Physical Memory", 0, 2793 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2794 kdb_register_flags("mds", kdb_md, "<vaddr>", 2795 "Display Memory Symbolically", 0, 2796 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2797 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>", 2798 "Modify Memory Contents", 0, 2799 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS); 2800 kdb_register_flags("go", kdb_go, "[<vaddr>]", 2801 "Continue Execution", 1, 2802 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS); 2803 kdb_register_flags("rd", kdb_rd, "", 2804 "Display Registers", 0, 2805 KDB_ENABLE_REG_READ); 2806 kdb_register_flags("rm", kdb_rm, "<reg> <contents>", 2807 "Modify Registers", 0, 2808 KDB_ENABLE_REG_WRITE); 2809 kdb_register_flags("ef", kdb_ef, "<vaddr>", 2810 "Display exception frame", 0, 2811 KDB_ENABLE_MEM_READ); 2812 kdb_register_flags("bt", kdb_bt, "[<vaddr>]", 2813 "Stack traceback", 1, 2814 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS); 2815 kdb_register_flags("btp", kdb_bt, "<pid>", 2816 "Display stack for process <pid>", 0, 2817 KDB_ENABLE_INSPECT); 2818 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]", 2819 "Backtrace all processes matching state flag", 0, 2820 KDB_ENABLE_INSPECT); 2821 kdb_register_flags("btc", kdb_bt, "", 2822 "Backtrace current process on each cpu", 0, 2823 KDB_ENABLE_INSPECT); 2824 kdb_register_flags("btt", kdb_bt, "<vaddr>", 2825 "Backtrace process given its struct task address", 0, 2826 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS); 2827 kdb_register_flags("env", kdb_env, "", 2828 "Show environment variables", 0, 2829 KDB_ENABLE_ALWAYS_SAFE); 2830 kdb_register_flags("set", kdb_set, "", 2831 "Set environment variables", 0, 2832 KDB_ENABLE_ALWAYS_SAFE); 2833 kdb_register_flags("help", kdb_help, "", 2834 "Display Help Message", 1, 2835 KDB_ENABLE_ALWAYS_SAFE); 2836 kdb_register_flags("?", kdb_help, "", 2837 "Display Help Message", 0, 2838 KDB_ENABLE_ALWAYS_SAFE); 2839 kdb_register_flags("cpu", kdb_cpu, "<cpunum>", 2840 "Switch to new cpu", 0, 2841 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS); 2842 kdb_register_flags("kgdb", kdb_kgdb, "", 2843 "Enter kgdb mode", 0, 0); 2844 kdb_register_flags("ps", kdb_ps, "[<flags>|A]", 2845 "Display active task list", 0, 2846 KDB_ENABLE_INSPECT); 2847 kdb_register_flags("pid", kdb_pid, "<pidnum>", 2848 "Switch to another task", 0, 2849 KDB_ENABLE_INSPECT); 2850 kdb_register_flags("reboot", kdb_reboot, "", 2851 "Reboot the machine immediately", 0, 2852 KDB_ENABLE_REBOOT); 2853 #if defined(CONFIG_MODULES) 2854 kdb_register_flags("lsmod", kdb_lsmod, "", 2855 "List loaded kernel modules", 0, 2856 KDB_ENABLE_INSPECT); 2857 #endif 2858 #if defined(CONFIG_MAGIC_SYSRQ) 2859 kdb_register_flags("sr", kdb_sr, "<key>", 2860 "Magic SysRq key", 0, 2861 KDB_ENABLE_ALWAYS_SAFE); 2862 #endif 2863 #if defined(CONFIG_PRINTK) 2864 kdb_register_flags("dmesg", kdb_dmesg, "[lines]", 2865 "Display syslog buffer", 0, 2866 KDB_ENABLE_ALWAYS_SAFE); 2867 #endif 2868 if (arch_kgdb_ops.enable_nmi) { 2869 kdb_register_flags("disable_nmi", kdb_disable_nmi, "", 2870 "Disable NMI entry to KDB", 0, 2871 KDB_ENABLE_ALWAYS_SAFE); 2872 } 2873 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"", 2874 "Define a set of commands, down to endefcmd", 0, 2875 KDB_ENABLE_ALWAYS_SAFE); 2876 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>", 2877 "Send a signal to a process", 0, 2878 KDB_ENABLE_SIGNAL); 2879 kdb_register_flags("summary", kdb_summary, "", 2880 "Summarize the system", 4, 2881 KDB_ENABLE_ALWAYS_SAFE); 2882 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]", 2883 "Display per_cpu variables", 3, 2884 KDB_ENABLE_MEM_READ); 2885 kdb_register_flags("grephelp", kdb_grep_help, "", 2886 "Display help on | grep", 0, 2887 KDB_ENABLE_ALWAYS_SAFE); 2888 } 2889 2890 /* Execute any commands defined in kdb_cmds. */ 2891 static void __init kdb_cmd_init(void) 2892 { 2893 int i, diag; 2894 for (i = 0; kdb_cmds[i]; ++i) { 2895 diag = kdb_parse(kdb_cmds[i]); 2896 if (diag) 2897 kdb_printf("kdb command %s failed, kdb diag %d\n", 2898 kdb_cmds[i], diag); 2899 } 2900 if (defcmd_in_progress) { 2901 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2902 kdb_parse("endefcmd"); 2903 } 2904 } 2905 2906 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2907 void __init kdb_init(int lvl) 2908 { 2909 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2910 int i; 2911 2912 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2913 return; 2914 for (i = kdb_init_lvl; i < lvl; i++) { 2915 switch (i) { 2916 case KDB_NOT_INITIALIZED: 2917 kdb_inittab(); /* Initialize Command Table */ 2918 kdb_initbptab(); /* Initialize Breakpoints */ 2919 break; 2920 case KDB_INIT_EARLY: 2921 kdb_cmd_init(); /* Build kdb_cmds tables */ 2922 break; 2923 } 2924 } 2925 kdb_init_lvl = lvl; 2926 } 2927