1 /* 2 * Kernel Debugger Architecture Independent Main Code 3 * 4 * This file is subject to the terms and conditions of the GNU General Public 5 * License. See the file "COPYING" in the main directory of this archive 6 * for more details. 7 * 8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved. 9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com> 10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation. 11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved. 12 */ 13 14 #include <linux/ctype.h> 15 #include <linux/types.h> 16 #include <linux/string.h> 17 #include <linux/kernel.h> 18 #include <linux/kmsg_dump.h> 19 #include <linux/reboot.h> 20 #include <linux/sched.h> 21 #include <linux/sched/loadavg.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sysrq.h> 25 #include <linux/smp.h> 26 #include <linux/utsname.h> 27 #include <linux/vmalloc.h> 28 #include <linux/atomic.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/mm.h> 32 #include <linux/init.h> 33 #include <linux/kallsyms.h> 34 #include <linux/kgdb.h> 35 #include <linux/kdb.h> 36 #include <linux/notifier.h> 37 #include <linux/interrupt.h> 38 #include <linux/delay.h> 39 #include <linux/nmi.h> 40 #include <linux/time.h> 41 #include <linux/ptrace.h> 42 #include <linux/sysctl.h> 43 #include <linux/cpu.h> 44 #include <linux/kdebug.h> 45 #include <linux/proc_fs.h> 46 #include <linux/uaccess.h> 47 #include <linux/slab.h> 48 #include "kdb_private.h" 49 50 #undef MODULE_PARAM_PREFIX 51 #define MODULE_PARAM_PREFIX "kdb." 52 53 static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE; 54 module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600); 55 56 char kdb_grep_string[KDB_GREP_STRLEN]; 57 int kdb_grepping_flag; 58 EXPORT_SYMBOL(kdb_grepping_flag); 59 int kdb_grep_leading; 60 int kdb_grep_trailing; 61 62 /* 63 * Kernel debugger state flags 64 */ 65 int kdb_flags; 66 67 /* 68 * kdb_lock protects updates to kdb_initial_cpu. Used to 69 * single thread processors through the kernel debugger. 70 */ 71 int kdb_initial_cpu = -1; /* cpu number that owns kdb */ 72 int kdb_nextline = 1; 73 int kdb_state; /* General KDB state */ 74 75 struct task_struct *kdb_current_task; 76 EXPORT_SYMBOL(kdb_current_task); 77 struct pt_regs *kdb_current_regs; 78 79 const char *kdb_diemsg; 80 static int kdb_go_count; 81 #ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC 82 static unsigned int kdb_continue_catastrophic = 83 CONFIG_KDB_CONTINUE_CATASTROPHIC; 84 #else 85 static unsigned int kdb_continue_catastrophic; 86 #endif 87 88 /* kdb_commands describes the available commands. */ 89 static kdbtab_t *kdb_commands; 90 #define KDB_BASE_CMD_MAX 50 91 static int kdb_max_commands = KDB_BASE_CMD_MAX; 92 static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX]; 93 #define for_each_kdbcmd(cmd, num) \ 94 for ((cmd) = kdb_base_commands, (num) = 0; \ 95 num < kdb_max_commands; \ 96 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++) 97 98 typedef struct _kdbmsg { 99 int km_diag; /* kdb diagnostic */ 100 char *km_msg; /* Corresponding message text */ 101 } kdbmsg_t; 102 103 #define KDBMSG(msgnum, text) \ 104 { KDB_##msgnum, text } 105 106 static kdbmsg_t kdbmsgs[] = { 107 KDBMSG(NOTFOUND, "Command Not Found"), 108 KDBMSG(ARGCOUNT, "Improper argument count, see usage."), 109 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, " 110 "8 is only allowed on 64 bit systems"), 111 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"), 112 KDBMSG(NOTENV, "Cannot find environment variable"), 113 KDBMSG(NOENVVALUE, "Environment variable should have value"), 114 KDBMSG(NOTIMP, "Command not implemented"), 115 KDBMSG(ENVFULL, "Environment full"), 116 KDBMSG(ENVBUFFULL, "Environment buffer full"), 117 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"), 118 #ifdef CONFIG_CPU_XSCALE 119 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"), 120 #else 121 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"), 122 #endif 123 KDBMSG(DUPBPT, "Duplicate breakpoint address"), 124 KDBMSG(BPTNOTFOUND, "Breakpoint not found"), 125 KDBMSG(BADMODE, "Invalid IDMODE"), 126 KDBMSG(BADINT, "Illegal numeric value"), 127 KDBMSG(INVADDRFMT, "Invalid symbolic address format"), 128 KDBMSG(BADREG, "Invalid register name"), 129 KDBMSG(BADCPUNUM, "Invalid cpu number"), 130 KDBMSG(BADLENGTH, "Invalid length field"), 131 KDBMSG(NOBP, "No Breakpoint exists"), 132 KDBMSG(BADADDR, "Invalid address"), 133 KDBMSG(NOPERM, "Permission denied"), 134 }; 135 #undef KDBMSG 136 137 static const int __nkdb_err = ARRAY_SIZE(kdbmsgs); 138 139 140 /* 141 * Initial environment. This is all kept static and local to 142 * this file. We don't want to rely on the memory allocation 143 * mechanisms in the kernel, so we use a very limited allocate-only 144 * heap for new and altered environment variables. The entire 145 * environment is limited to a fixed number of entries (add more 146 * to __env[] if required) and a fixed amount of heap (add more to 147 * KDB_ENVBUFSIZE if required). 148 */ 149 150 static char *__env[] = { 151 #if defined(CONFIG_SMP) 152 "PROMPT=[%d]kdb> ", 153 #else 154 "PROMPT=kdb> ", 155 #endif 156 "MOREPROMPT=more> ", 157 "RADIX=16", 158 "MDCOUNT=8", /* lines of md output */ 159 KDB_PLATFORM_ENV, 160 "DTABCOUNT=30", 161 "NOSECT=1", 162 (char *)0, 163 (char *)0, 164 (char *)0, 165 (char *)0, 166 (char *)0, 167 (char *)0, 168 (char *)0, 169 (char *)0, 170 (char *)0, 171 (char *)0, 172 (char *)0, 173 (char *)0, 174 (char *)0, 175 (char *)0, 176 (char *)0, 177 (char *)0, 178 (char *)0, 179 (char *)0, 180 (char *)0, 181 (char *)0, 182 (char *)0, 183 (char *)0, 184 (char *)0, 185 (char *)0, 186 }; 187 188 static const int __nenv = ARRAY_SIZE(__env); 189 190 struct task_struct *kdb_curr_task(int cpu) 191 { 192 struct task_struct *p = curr_task(cpu); 193 #ifdef _TIF_MCA_INIT 194 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu)) 195 p = krp->p; 196 #endif 197 return p; 198 } 199 200 /* 201 * Check whether the flags of the current command and the permissions 202 * of the kdb console has allow a command to be run. 203 */ 204 static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions, 205 bool no_args) 206 { 207 /* permissions comes from userspace so needs massaging slightly */ 208 permissions &= KDB_ENABLE_MASK; 209 permissions |= KDB_ENABLE_ALWAYS_SAFE; 210 211 /* some commands change group when launched with no arguments */ 212 if (no_args) 213 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT; 214 215 flags |= KDB_ENABLE_ALL; 216 217 return permissions & flags; 218 } 219 220 /* 221 * kdbgetenv - This function will return the character string value of 222 * an environment variable. 223 * Parameters: 224 * match A character string representing an environment variable. 225 * Returns: 226 * NULL No environment variable matches 'match' 227 * char* Pointer to string value of environment variable. 228 */ 229 char *kdbgetenv(const char *match) 230 { 231 char **ep = __env; 232 int matchlen = strlen(match); 233 int i; 234 235 for (i = 0; i < __nenv; i++) { 236 char *e = *ep++; 237 238 if (!e) 239 continue; 240 241 if ((strncmp(match, e, matchlen) == 0) 242 && ((e[matchlen] == '\0') 243 || (e[matchlen] == '='))) { 244 char *cp = strchr(e, '='); 245 return cp ? ++cp : ""; 246 } 247 } 248 return NULL; 249 } 250 251 /* 252 * kdballocenv - This function is used to allocate bytes for 253 * environment entries. 254 * Parameters: 255 * match A character string representing a numeric value 256 * Outputs: 257 * *value the unsigned long representation of the env variable 'match' 258 * Returns: 259 * Zero on success, a kdb diagnostic on failure. 260 * Remarks: 261 * We use a static environment buffer (envbuffer) to hold the values 262 * of dynamically generated environment variables (see kdb_set). Buffer 263 * space once allocated is never free'd, so over time, the amount of space 264 * (currently 512 bytes) will be exhausted if env variables are changed 265 * frequently. 266 */ 267 static char *kdballocenv(size_t bytes) 268 { 269 #define KDB_ENVBUFSIZE 512 270 static char envbuffer[KDB_ENVBUFSIZE]; 271 static int envbufsize; 272 char *ep = NULL; 273 274 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) { 275 ep = &envbuffer[envbufsize]; 276 envbufsize += bytes; 277 } 278 return ep; 279 } 280 281 /* 282 * kdbgetulenv - This function will return the value of an unsigned 283 * long-valued environment variable. 284 * Parameters: 285 * match A character string representing a numeric value 286 * Outputs: 287 * *value the unsigned long represntation of the env variable 'match' 288 * Returns: 289 * Zero on success, a kdb diagnostic on failure. 290 */ 291 static int kdbgetulenv(const char *match, unsigned long *value) 292 { 293 char *ep; 294 295 ep = kdbgetenv(match); 296 if (!ep) 297 return KDB_NOTENV; 298 if (strlen(ep) == 0) 299 return KDB_NOENVVALUE; 300 301 *value = simple_strtoul(ep, NULL, 0); 302 303 return 0; 304 } 305 306 /* 307 * kdbgetintenv - This function will return the value of an 308 * integer-valued environment variable. 309 * Parameters: 310 * match A character string representing an integer-valued env variable 311 * Outputs: 312 * *value the integer representation of the environment variable 'match' 313 * Returns: 314 * Zero on success, a kdb diagnostic on failure. 315 */ 316 int kdbgetintenv(const char *match, int *value) 317 { 318 unsigned long val; 319 int diag; 320 321 diag = kdbgetulenv(match, &val); 322 if (!diag) 323 *value = (int) val; 324 return diag; 325 } 326 327 /* 328 * kdbgetularg - This function will convert a numeric string into an 329 * unsigned long value. 330 * Parameters: 331 * arg A character string representing a numeric value 332 * Outputs: 333 * *value the unsigned long represntation of arg. 334 * Returns: 335 * Zero on success, a kdb diagnostic on failure. 336 */ 337 int kdbgetularg(const char *arg, unsigned long *value) 338 { 339 char *endp; 340 unsigned long val; 341 342 val = simple_strtoul(arg, &endp, 0); 343 344 if (endp == arg) { 345 /* 346 * Also try base 16, for us folks too lazy to type the 347 * leading 0x... 348 */ 349 val = simple_strtoul(arg, &endp, 16); 350 if (endp == arg) 351 return KDB_BADINT; 352 } 353 354 *value = val; 355 356 return 0; 357 } 358 359 int kdbgetu64arg(const char *arg, u64 *value) 360 { 361 char *endp; 362 u64 val; 363 364 val = simple_strtoull(arg, &endp, 0); 365 366 if (endp == arg) { 367 368 val = simple_strtoull(arg, &endp, 16); 369 if (endp == arg) 370 return KDB_BADINT; 371 } 372 373 *value = val; 374 375 return 0; 376 } 377 378 /* 379 * kdb_set - This function implements the 'set' command. Alter an 380 * existing environment variable or create a new one. 381 */ 382 int kdb_set(int argc, const char **argv) 383 { 384 int i; 385 char *ep; 386 size_t varlen, vallen; 387 388 /* 389 * we can be invoked two ways: 390 * set var=value argv[1]="var", argv[2]="value" 391 * set var = value argv[1]="var", argv[2]="=", argv[3]="value" 392 * - if the latter, shift 'em down. 393 */ 394 if (argc == 3) { 395 argv[2] = argv[3]; 396 argc--; 397 } 398 399 if (argc != 2) 400 return KDB_ARGCOUNT; 401 402 /* 403 * Check for internal variables 404 */ 405 if (strcmp(argv[1], "KDBDEBUG") == 0) { 406 unsigned int debugflags; 407 char *cp; 408 409 debugflags = simple_strtoul(argv[2], &cp, 0); 410 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) { 411 kdb_printf("kdb: illegal debug flags '%s'\n", 412 argv[2]); 413 return 0; 414 } 415 kdb_flags = (kdb_flags & 416 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT)) 417 | (debugflags << KDB_DEBUG_FLAG_SHIFT); 418 419 return 0; 420 } 421 422 /* 423 * Tokenizer squashed the '=' sign. argv[1] is variable 424 * name, argv[2] = value. 425 */ 426 varlen = strlen(argv[1]); 427 vallen = strlen(argv[2]); 428 ep = kdballocenv(varlen + vallen + 2); 429 if (ep == (char *)0) 430 return KDB_ENVBUFFULL; 431 432 sprintf(ep, "%s=%s", argv[1], argv[2]); 433 434 ep[varlen+vallen+1] = '\0'; 435 436 for (i = 0; i < __nenv; i++) { 437 if (__env[i] 438 && ((strncmp(__env[i], argv[1], varlen) == 0) 439 && ((__env[i][varlen] == '\0') 440 || (__env[i][varlen] == '=')))) { 441 __env[i] = ep; 442 return 0; 443 } 444 } 445 446 /* 447 * Wasn't existing variable. Fit into slot. 448 */ 449 for (i = 0; i < __nenv-1; i++) { 450 if (__env[i] == (char *)0) { 451 __env[i] = ep; 452 return 0; 453 } 454 } 455 456 return KDB_ENVFULL; 457 } 458 459 static int kdb_check_regs(void) 460 { 461 if (!kdb_current_regs) { 462 kdb_printf("No current kdb registers." 463 " You may need to select another task\n"); 464 return KDB_BADREG; 465 } 466 return 0; 467 } 468 469 /* 470 * kdbgetaddrarg - This function is responsible for parsing an 471 * address-expression and returning the value of the expression, 472 * symbol name, and offset to the caller. 473 * 474 * The argument may consist of a numeric value (decimal or 475 * hexidecimal), a symbol name, a register name (preceded by the 476 * percent sign), an environment variable with a numeric value 477 * (preceded by a dollar sign) or a simple arithmetic expression 478 * consisting of a symbol name, +/-, and a numeric constant value 479 * (offset). 480 * Parameters: 481 * argc - count of arguments in argv 482 * argv - argument vector 483 * *nextarg - index to next unparsed argument in argv[] 484 * regs - Register state at time of KDB entry 485 * Outputs: 486 * *value - receives the value of the address-expression 487 * *offset - receives the offset specified, if any 488 * *name - receives the symbol name, if any 489 * *nextarg - index to next unparsed argument in argv[] 490 * Returns: 491 * zero is returned on success, a kdb diagnostic code is 492 * returned on error. 493 */ 494 int kdbgetaddrarg(int argc, const char **argv, int *nextarg, 495 unsigned long *value, long *offset, 496 char **name) 497 { 498 unsigned long addr; 499 unsigned long off = 0; 500 int positive; 501 int diag; 502 int found = 0; 503 char *symname; 504 char symbol = '\0'; 505 char *cp; 506 kdb_symtab_t symtab; 507 508 /* 509 * If the enable flags prohibit both arbitrary memory access 510 * and flow control then there are no reasonable grounds to 511 * provide symbol lookup. 512 */ 513 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL, 514 kdb_cmd_enabled, false)) 515 return KDB_NOPERM; 516 517 /* 518 * Process arguments which follow the following syntax: 519 * 520 * symbol | numeric-address [+/- numeric-offset] 521 * %register 522 * $environment-variable 523 */ 524 525 if (*nextarg > argc) 526 return KDB_ARGCOUNT; 527 528 symname = (char *)argv[*nextarg]; 529 530 /* 531 * If there is no whitespace between the symbol 532 * or address and the '+' or '-' symbols, we 533 * remember the character and replace it with a 534 * null so the symbol/value can be properly parsed 535 */ 536 cp = strpbrk(symname, "+-"); 537 if (cp != NULL) { 538 symbol = *cp; 539 *cp++ = '\0'; 540 } 541 542 if (symname[0] == '$') { 543 diag = kdbgetulenv(&symname[1], &addr); 544 if (diag) 545 return diag; 546 } else if (symname[0] == '%') { 547 diag = kdb_check_regs(); 548 if (diag) 549 return diag; 550 /* Implement register values with % at a later time as it is 551 * arch optional. 552 */ 553 return KDB_NOTIMP; 554 } else { 555 found = kdbgetsymval(symname, &symtab); 556 if (found) { 557 addr = symtab.sym_start; 558 } else { 559 diag = kdbgetularg(argv[*nextarg], &addr); 560 if (diag) 561 return diag; 562 } 563 } 564 565 if (!found) 566 found = kdbnearsym(addr, &symtab); 567 568 (*nextarg)++; 569 570 if (name) 571 *name = symname; 572 if (value) 573 *value = addr; 574 if (offset && name && *name) 575 *offset = addr - symtab.sym_start; 576 577 if ((*nextarg > argc) 578 && (symbol == '\0')) 579 return 0; 580 581 /* 582 * check for +/- and offset 583 */ 584 585 if (symbol == '\0') { 586 if ((argv[*nextarg][0] != '+') 587 && (argv[*nextarg][0] != '-')) { 588 /* 589 * Not our argument. Return. 590 */ 591 return 0; 592 } else { 593 positive = (argv[*nextarg][0] == '+'); 594 (*nextarg)++; 595 } 596 } else 597 positive = (symbol == '+'); 598 599 /* 600 * Now there must be an offset! 601 */ 602 if ((*nextarg > argc) 603 && (symbol == '\0')) { 604 return KDB_INVADDRFMT; 605 } 606 607 if (!symbol) { 608 cp = (char *)argv[*nextarg]; 609 (*nextarg)++; 610 } 611 612 diag = kdbgetularg(cp, &off); 613 if (diag) 614 return diag; 615 616 if (!positive) 617 off = -off; 618 619 if (offset) 620 *offset += off; 621 622 if (value) 623 *value += off; 624 625 return 0; 626 } 627 628 static void kdb_cmderror(int diag) 629 { 630 int i; 631 632 if (diag >= 0) { 633 kdb_printf("no error detected (diagnostic is %d)\n", diag); 634 return; 635 } 636 637 for (i = 0; i < __nkdb_err; i++) { 638 if (kdbmsgs[i].km_diag == diag) { 639 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg); 640 return; 641 } 642 } 643 644 kdb_printf("Unknown diag %d\n", -diag); 645 } 646 647 /* 648 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd' 649 * command which defines one command as a set of other commands, 650 * terminated by endefcmd. kdb_defcmd processes the initial 651 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for 652 * the following commands until 'endefcmd'. 653 * Inputs: 654 * argc argument count 655 * argv argument vector 656 * Returns: 657 * zero for success, a kdb diagnostic if error 658 */ 659 struct defcmd_set { 660 int count; 661 int usable; 662 char *name; 663 char *usage; 664 char *help; 665 char **command; 666 }; 667 static struct defcmd_set *defcmd_set; 668 static int defcmd_set_count; 669 static int defcmd_in_progress; 670 671 /* Forward references */ 672 static int kdb_exec_defcmd(int argc, const char **argv); 673 674 static int kdb_defcmd2(const char *cmdstr, const char *argv0) 675 { 676 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1; 677 char **save_command = s->command; 678 if (strcmp(argv0, "endefcmd") == 0) { 679 defcmd_in_progress = 0; 680 if (!s->count) 681 s->usable = 0; 682 if (s->usable) 683 /* macros are always safe because when executed each 684 * internal command re-enters kdb_parse() and is 685 * safety checked individually. 686 */ 687 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage, 688 s->help, 0, 689 KDB_ENABLE_ALWAYS_SAFE); 690 return 0; 691 } 692 if (!s->usable) 693 return KDB_NOTIMP; 694 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB); 695 if (!s->command) { 696 kdb_printf("Could not allocate new kdb_defcmd table for %s\n", 697 cmdstr); 698 s->usable = 0; 699 return KDB_NOTIMP; 700 } 701 memcpy(s->command, save_command, s->count * sizeof(*(s->command))); 702 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB); 703 kfree(save_command); 704 return 0; 705 } 706 707 static int kdb_defcmd(int argc, const char **argv) 708 { 709 struct defcmd_set *save_defcmd_set = defcmd_set, *s; 710 if (defcmd_in_progress) { 711 kdb_printf("kdb: nested defcmd detected, assuming missing " 712 "endefcmd\n"); 713 kdb_defcmd2("endefcmd", "endefcmd"); 714 } 715 if (argc == 0) { 716 int i; 717 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) { 718 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name, 719 s->usage, s->help); 720 for (i = 0; i < s->count; ++i) 721 kdb_printf("%s", s->command[i]); 722 kdb_printf("endefcmd\n"); 723 } 724 return 0; 725 } 726 if (argc != 3) 727 return KDB_ARGCOUNT; 728 if (in_dbg_master()) { 729 kdb_printf("Command only available during kdb_init()\n"); 730 return KDB_NOTIMP; 731 } 732 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set), 733 GFP_KDB); 734 if (!defcmd_set) 735 goto fail_defcmd; 736 memcpy(defcmd_set, save_defcmd_set, 737 defcmd_set_count * sizeof(*defcmd_set)); 738 s = defcmd_set + defcmd_set_count; 739 memset(s, 0, sizeof(*s)); 740 s->usable = 1; 741 s->name = kdb_strdup(argv[1], GFP_KDB); 742 if (!s->name) 743 goto fail_name; 744 s->usage = kdb_strdup(argv[2], GFP_KDB); 745 if (!s->usage) 746 goto fail_usage; 747 s->help = kdb_strdup(argv[3], GFP_KDB); 748 if (!s->help) 749 goto fail_help; 750 if (s->usage[0] == '"') { 751 strcpy(s->usage, argv[2]+1); 752 s->usage[strlen(s->usage)-1] = '\0'; 753 } 754 if (s->help[0] == '"') { 755 strcpy(s->help, argv[3]+1); 756 s->help[strlen(s->help)-1] = '\0'; 757 } 758 ++defcmd_set_count; 759 defcmd_in_progress = 1; 760 kfree(save_defcmd_set); 761 return 0; 762 fail_help: 763 kfree(s->usage); 764 fail_usage: 765 kfree(s->name); 766 fail_name: 767 kfree(defcmd_set); 768 fail_defcmd: 769 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]); 770 defcmd_set = save_defcmd_set; 771 return KDB_NOTIMP; 772 } 773 774 /* 775 * kdb_exec_defcmd - Execute the set of commands associated with this 776 * defcmd name. 777 * Inputs: 778 * argc argument count 779 * argv argument vector 780 * Returns: 781 * zero for success, a kdb diagnostic if error 782 */ 783 static int kdb_exec_defcmd(int argc, const char **argv) 784 { 785 int i, ret; 786 struct defcmd_set *s; 787 if (argc != 0) 788 return KDB_ARGCOUNT; 789 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) { 790 if (strcmp(s->name, argv[0]) == 0) 791 break; 792 } 793 if (i == defcmd_set_count) { 794 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n", 795 argv[0]); 796 return KDB_NOTIMP; 797 } 798 for (i = 0; i < s->count; ++i) { 799 /* Recursive use of kdb_parse, do not use argv after 800 * this point */ 801 argv = NULL; 802 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]); 803 ret = kdb_parse(s->command[i]); 804 if (ret) 805 return ret; 806 } 807 return 0; 808 } 809 810 /* Command history */ 811 #define KDB_CMD_HISTORY_COUNT 32 812 #define CMD_BUFLEN 200 /* kdb_printf: max printline 813 * size == 256 */ 814 static unsigned int cmd_head, cmd_tail; 815 static unsigned int cmdptr; 816 static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN]; 817 static char cmd_cur[CMD_BUFLEN]; 818 819 /* 820 * The "str" argument may point to something like | grep xyz 821 */ 822 static void parse_grep(const char *str) 823 { 824 int len; 825 char *cp = (char *)str, *cp2; 826 827 /* sanity check: we should have been called with the \ first */ 828 if (*cp != '|') 829 return; 830 cp++; 831 while (isspace(*cp)) 832 cp++; 833 if (strncmp(cp, "grep ", 5)) { 834 kdb_printf("invalid 'pipe', see grephelp\n"); 835 return; 836 } 837 cp += 5; 838 while (isspace(*cp)) 839 cp++; 840 cp2 = strchr(cp, '\n'); 841 if (cp2) 842 *cp2 = '\0'; /* remove the trailing newline */ 843 len = strlen(cp); 844 if (len == 0) { 845 kdb_printf("invalid 'pipe', see grephelp\n"); 846 return; 847 } 848 /* now cp points to a nonzero length search string */ 849 if (*cp == '"') { 850 /* allow it be "x y z" by removing the "'s - there must 851 be two of them */ 852 cp++; 853 cp2 = strchr(cp, '"'); 854 if (!cp2) { 855 kdb_printf("invalid quoted string, see grephelp\n"); 856 return; 857 } 858 *cp2 = '\0'; /* end the string where the 2nd " was */ 859 } 860 kdb_grep_leading = 0; 861 if (*cp == '^') { 862 kdb_grep_leading = 1; 863 cp++; 864 } 865 len = strlen(cp); 866 kdb_grep_trailing = 0; 867 if (*(cp+len-1) == '$') { 868 kdb_grep_trailing = 1; 869 *(cp+len-1) = '\0'; 870 } 871 len = strlen(cp); 872 if (!len) 873 return; 874 if (len >= KDB_GREP_STRLEN) { 875 kdb_printf("search string too long\n"); 876 return; 877 } 878 strcpy(kdb_grep_string, cp); 879 kdb_grepping_flag++; 880 return; 881 } 882 883 /* 884 * kdb_parse - Parse the command line, search the command table for a 885 * matching command and invoke the command function. This 886 * function may be called recursively, if it is, the second call 887 * will overwrite argv and cbuf. It is the caller's 888 * responsibility to save their argv if they recursively call 889 * kdb_parse(). 890 * Parameters: 891 * cmdstr The input command line to be parsed. 892 * regs The registers at the time kdb was entered. 893 * Returns: 894 * Zero for success, a kdb diagnostic if failure. 895 * Remarks: 896 * Limited to 20 tokens. 897 * 898 * Real rudimentary tokenization. Basically only whitespace 899 * is considered a token delimeter (but special consideration 900 * is taken of the '=' sign as used by the 'set' command). 901 * 902 * The algorithm used to tokenize the input string relies on 903 * there being at least one whitespace (or otherwise useless) 904 * character between tokens as the character immediately following 905 * the token is altered in-place to a null-byte to terminate the 906 * token string. 907 */ 908 909 #define MAXARGC 20 910 911 int kdb_parse(const char *cmdstr) 912 { 913 static char *argv[MAXARGC]; 914 static int argc; 915 static char cbuf[CMD_BUFLEN+2]; 916 char *cp; 917 char *cpp, quoted; 918 kdbtab_t *tp; 919 int i, escaped, ignore_errors = 0, check_grep = 0; 920 921 /* 922 * First tokenize the command string. 923 */ 924 cp = (char *)cmdstr; 925 926 if (KDB_FLAG(CMD_INTERRUPT)) { 927 /* Previous command was interrupted, newline must not 928 * repeat the command */ 929 KDB_FLAG_CLEAR(CMD_INTERRUPT); 930 KDB_STATE_SET(PAGER); 931 argc = 0; /* no repeat */ 932 } 933 934 if (*cp != '\n' && *cp != '\0') { 935 argc = 0; 936 cpp = cbuf; 937 while (*cp) { 938 /* skip whitespace */ 939 while (isspace(*cp)) 940 cp++; 941 if ((*cp == '\0') || (*cp == '\n') || 942 (*cp == '#' && !defcmd_in_progress)) 943 break; 944 /* special case: check for | grep pattern */ 945 if (*cp == '|') { 946 check_grep++; 947 break; 948 } 949 if (cpp >= cbuf + CMD_BUFLEN) { 950 kdb_printf("kdb_parse: command buffer " 951 "overflow, command ignored\n%s\n", 952 cmdstr); 953 return KDB_NOTFOUND; 954 } 955 if (argc >= MAXARGC - 1) { 956 kdb_printf("kdb_parse: too many arguments, " 957 "command ignored\n%s\n", cmdstr); 958 return KDB_NOTFOUND; 959 } 960 argv[argc++] = cpp; 961 escaped = 0; 962 quoted = '\0'; 963 /* Copy to next unquoted and unescaped 964 * whitespace or '=' */ 965 while (*cp && *cp != '\n' && 966 (escaped || quoted || !isspace(*cp))) { 967 if (cpp >= cbuf + CMD_BUFLEN) 968 break; 969 if (escaped) { 970 escaped = 0; 971 *cpp++ = *cp++; 972 continue; 973 } 974 if (*cp == '\\') { 975 escaped = 1; 976 ++cp; 977 continue; 978 } 979 if (*cp == quoted) 980 quoted = '\0'; 981 else if (*cp == '\'' || *cp == '"') 982 quoted = *cp; 983 *cpp = *cp++; 984 if (*cpp == '=' && !quoted) 985 break; 986 ++cpp; 987 } 988 *cpp++ = '\0'; /* Squash a ws or '=' character */ 989 } 990 } 991 if (!argc) 992 return 0; 993 if (check_grep) 994 parse_grep(cp); 995 if (defcmd_in_progress) { 996 int result = kdb_defcmd2(cmdstr, argv[0]); 997 if (!defcmd_in_progress) { 998 argc = 0; /* avoid repeat on endefcmd */ 999 *(argv[0]) = '\0'; 1000 } 1001 return result; 1002 } 1003 if (argv[0][0] == '-' && argv[0][1] && 1004 (argv[0][1] < '0' || argv[0][1] > '9')) { 1005 ignore_errors = 1; 1006 ++argv[0]; 1007 } 1008 1009 for_each_kdbcmd(tp, i) { 1010 if (tp->cmd_name) { 1011 /* 1012 * If this command is allowed to be abbreviated, 1013 * check to see if this is it. 1014 */ 1015 1016 if (tp->cmd_minlen 1017 && (strlen(argv[0]) <= tp->cmd_minlen)) { 1018 if (strncmp(argv[0], 1019 tp->cmd_name, 1020 tp->cmd_minlen) == 0) { 1021 break; 1022 } 1023 } 1024 1025 if (strcmp(argv[0], tp->cmd_name) == 0) 1026 break; 1027 } 1028 } 1029 1030 /* 1031 * If we don't find a command by this name, see if the first 1032 * few characters of this match any of the known commands. 1033 * e.g., md1c20 should match md. 1034 */ 1035 if (i == kdb_max_commands) { 1036 for_each_kdbcmd(tp, i) { 1037 if (tp->cmd_name) { 1038 if (strncmp(argv[0], 1039 tp->cmd_name, 1040 strlen(tp->cmd_name)) == 0) { 1041 break; 1042 } 1043 } 1044 } 1045 } 1046 1047 if (i < kdb_max_commands) { 1048 int result; 1049 1050 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1)) 1051 return KDB_NOPERM; 1052 1053 KDB_STATE_SET(CMD); 1054 result = (*tp->cmd_func)(argc-1, (const char **)argv); 1055 if (result && ignore_errors && result > KDB_CMD_GO) 1056 result = 0; 1057 KDB_STATE_CLEAR(CMD); 1058 1059 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS) 1060 return result; 1061 1062 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0; 1063 if (argv[argc]) 1064 *(argv[argc]) = '\0'; 1065 return result; 1066 } 1067 1068 /* 1069 * If the input with which we were presented does not 1070 * map to an existing command, attempt to parse it as an 1071 * address argument and display the result. Useful for 1072 * obtaining the address of a variable, or the nearest symbol 1073 * to an address contained in a register. 1074 */ 1075 { 1076 unsigned long value; 1077 char *name = NULL; 1078 long offset; 1079 int nextarg = 0; 1080 1081 if (kdbgetaddrarg(0, (const char **)argv, &nextarg, 1082 &value, &offset, &name)) { 1083 return KDB_NOTFOUND; 1084 } 1085 1086 kdb_printf("%s = ", argv[0]); 1087 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT); 1088 kdb_printf("\n"); 1089 return 0; 1090 } 1091 } 1092 1093 1094 static int handle_ctrl_cmd(char *cmd) 1095 { 1096 #define CTRL_P 16 1097 #define CTRL_N 14 1098 1099 /* initial situation */ 1100 if (cmd_head == cmd_tail) 1101 return 0; 1102 switch (*cmd) { 1103 case CTRL_P: 1104 if (cmdptr != cmd_tail) 1105 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT; 1106 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1107 return 1; 1108 case CTRL_N: 1109 if (cmdptr != cmd_head) 1110 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT; 1111 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN); 1112 return 1; 1113 } 1114 return 0; 1115 } 1116 1117 /* 1118 * kdb_reboot - This function implements the 'reboot' command. Reboot 1119 * the system immediately, or loop for ever on failure. 1120 */ 1121 static int kdb_reboot(int argc, const char **argv) 1122 { 1123 emergency_restart(); 1124 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n"); 1125 while (1) 1126 cpu_relax(); 1127 /* NOTREACHED */ 1128 return 0; 1129 } 1130 1131 static void kdb_dumpregs(struct pt_regs *regs) 1132 { 1133 int old_lvl = console_loglevel; 1134 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH; 1135 kdb_trap_printk++; 1136 show_regs(regs); 1137 kdb_trap_printk--; 1138 kdb_printf("\n"); 1139 console_loglevel = old_lvl; 1140 } 1141 1142 void kdb_set_current_task(struct task_struct *p) 1143 { 1144 kdb_current_task = p; 1145 1146 if (kdb_task_has_cpu(p)) { 1147 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p)); 1148 return; 1149 } 1150 kdb_current_regs = NULL; 1151 } 1152 1153 static void drop_newline(char *buf) 1154 { 1155 size_t len = strlen(buf); 1156 1157 if (len == 0) 1158 return; 1159 if (*(buf + len - 1) == '\n') 1160 *(buf + len - 1) = '\0'; 1161 } 1162 1163 /* 1164 * kdb_local - The main code for kdb. This routine is invoked on a 1165 * specific processor, it is not global. The main kdb() routine 1166 * ensures that only one processor at a time is in this routine. 1167 * This code is called with the real reason code on the first 1168 * entry to a kdb session, thereafter it is called with reason 1169 * SWITCH, even if the user goes back to the original cpu. 1170 * Inputs: 1171 * reason The reason KDB was invoked 1172 * error The hardware-defined error code 1173 * regs The exception frame at time of fault/breakpoint. 1174 * db_result Result code from the break or debug point. 1175 * Returns: 1176 * 0 KDB was invoked for an event which it wasn't responsible 1177 * 1 KDB handled the event for which it was invoked. 1178 * KDB_CMD_GO User typed 'go'. 1179 * KDB_CMD_CPU User switched to another cpu. 1180 * KDB_CMD_SS Single step. 1181 */ 1182 static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs, 1183 kdb_dbtrap_t db_result) 1184 { 1185 char *cmdbuf; 1186 int diag; 1187 struct task_struct *kdb_current = 1188 kdb_curr_task(raw_smp_processor_id()); 1189 1190 KDB_DEBUG_STATE("kdb_local 1", reason); 1191 kdb_go_count = 0; 1192 if (reason == KDB_REASON_DEBUG) { 1193 /* special case below */ 1194 } else { 1195 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ", 1196 kdb_current, kdb_current ? kdb_current->pid : 0); 1197 #if defined(CONFIG_SMP) 1198 kdb_printf("on processor %d ", raw_smp_processor_id()); 1199 #endif 1200 } 1201 1202 switch (reason) { 1203 case KDB_REASON_DEBUG: 1204 { 1205 /* 1206 * If re-entering kdb after a single step 1207 * command, don't print the message. 1208 */ 1209 switch (db_result) { 1210 case KDB_DB_BPT: 1211 kdb_printf("\nEntering kdb (0x%p, pid %d) ", 1212 kdb_current, kdb_current->pid); 1213 #if defined(CONFIG_SMP) 1214 kdb_printf("on processor %d ", raw_smp_processor_id()); 1215 #endif 1216 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n", 1217 instruction_pointer(regs)); 1218 break; 1219 case KDB_DB_SS: 1220 break; 1221 case KDB_DB_SSBPT: 1222 KDB_DEBUG_STATE("kdb_local 4", reason); 1223 return 1; /* kdba_db_trap did the work */ 1224 default: 1225 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n", 1226 db_result); 1227 break; 1228 } 1229 1230 } 1231 break; 1232 case KDB_REASON_ENTER: 1233 if (KDB_STATE(KEYBOARD)) 1234 kdb_printf("due to Keyboard Entry\n"); 1235 else 1236 kdb_printf("due to KDB_ENTER()\n"); 1237 break; 1238 case KDB_REASON_KEYBOARD: 1239 KDB_STATE_SET(KEYBOARD); 1240 kdb_printf("due to Keyboard Entry\n"); 1241 break; 1242 case KDB_REASON_ENTER_SLAVE: 1243 /* drop through, slaves only get released via cpu switch */ 1244 case KDB_REASON_SWITCH: 1245 kdb_printf("due to cpu switch\n"); 1246 break; 1247 case KDB_REASON_OOPS: 1248 kdb_printf("Oops: %s\n", kdb_diemsg); 1249 kdb_printf("due to oops @ " kdb_machreg_fmt "\n", 1250 instruction_pointer(regs)); 1251 kdb_dumpregs(regs); 1252 break; 1253 case KDB_REASON_SYSTEM_NMI: 1254 kdb_printf("due to System NonMaskable Interrupt\n"); 1255 break; 1256 case KDB_REASON_NMI: 1257 kdb_printf("due to NonMaskable Interrupt @ " 1258 kdb_machreg_fmt "\n", 1259 instruction_pointer(regs)); 1260 break; 1261 case KDB_REASON_SSTEP: 1262 case KDB_REASON_BREAK: 1263 kdb_printf("due to %s @ " kdb_machreg_fmt "\n", 1264 reason == KDB_REASON_BREAK ? 1265 "Breakpoint" : "SS trap", instruction_pointer(regs)); 1266 /* 1267 * Determine if this breakpoint is one that we 1268 * are interested in. 1269 */ 1270 if (db_result != KDB_DB_BPT) { 1271 kdb_printf("kdb: error return from kdba_bp_trap: %d\n", 1272 db_result); 1273 KDB_DEBUG_STATE("kdb_local 6", reason); 1274 return 0; /* Not for us, dismiss it */ 1275 } 1276 break; 1277 case KDB_REASON_RECURSE: 1278 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n", 1279 instruction_pointer(regs)); 1280 break; 1281 default: 1282 kdb_printf("kdb: unexpected reason code: %d\n", reason); 1283 KDB_DEBUG_STATE("kdb_local 8", reason); 1284 return 0; /* Not for us, dismiss it */ 1285 } 1286 1287 while (1) { 1288 /* 1289 * Initialize pager context. 1290 */ 1291 kdb_nextline = 1; 1292 KDB_STATE_CLEAR(SUPPRESS); 1293 kdb_grepping_flag = 0; 1294 /* ensure the old search does not leak into '/' commands */ 1295 kdb_grep_string[0] = '\0'; 1296 1297 cmdbuf = cmd_cur; 1298 *cmdbuf = '\0'; 1299 *(cmd_hist[cmd_head]) = '\0'; 1300 1301 do_full_getstr: 1302 #if defined(CONFIG_SMP) 1303 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"), 1304 raw_smp_processor_id()); 1305 #else 1306 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT")); 1307 #endif 1308 if (defcmd_in_progress) 1309 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN); 1310 1311 /* 1312 * Fetch command from keyboard 1313 */ 1314 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str); 1315 if (*cmdbuf != '\n') { 1316 if (*cmdbuf < 32) { 1317 if (cmdptr == cmd_head) { 1318 strncpy(cmd_hist[cmd_head], cmd_cur, 1319 CMD_BUFLEN); 1320 *(cmd_hist[cmd_head] + 1321 strlen(cmd_hist[cmd_head])-1) = '\0'; 1322 } 1323 if (!handle_ctrl_cmd(cmdbuf)) 1324 *(cmd_cur+strlen(cmd_cur)-1) = '\0'; 1325 cmdbuf = cmd_cur; 1326 goto do_full_getstr; 1327 } else { 1328 strncpy(cmd_hist[cmd_head], cmd_cur, 1329 CMD_BUFLEN); 1330 } 1331 1332 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT; 1333 if (cmd_head == cmd_tail) 1334 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT; 1335 } 1336 1337 cmdptr = cmd_head; 1338 diag = kdb_parse(cmdbuf); 1339 if (diag == KDB_NOTFOUND) { 1340 drop_newline(cmdbuf); 1341 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf); 1342 diag = 0; 1343 } 1344 if (diag == KDB_CMD_GO 1345 || diag == KDB_CMD_CPU 1346 || diag == KDB_CMD_SS 1347 || diag == KDB_CMD_KGDB) 1348 break; 1349 1350 if (diag) 1351 kdb_cmderror(diag); 1352 } 1353 KDB_DEBUG_STATE("kdb_local 9", diag); 1354 return diag; 1355 } 1356 1357 1358 /* 1359 * kdb_print_state - Print the state data for the current processor 1360 * for debugging. 1361 * Inputs: 1362 * text Identifies the debug point 1363 * value Any integer value to be printed, e.g. reason code. 1364 */ 1365 void kdb_print_state(const char *text, int value) 1366 { 1367 kdb_printf("state: %s cpu %d value %d initial %d state %x\n", 1368 text, raw_smp_processor_id(), value, kdb_initial_cpu, 1369 kdb_state); 1370 } 1371 1372 /* 1373 * kdb_main_loop - After initial setup and assignment of the 1374 * controlling cpu, all cpus are in this loop. One cpu is in 1375 * control and will issue the kdb prompt, the others will spin 1376 * until 'go' or cpu switch. 1377 * 1378 * To get a consistent view of the kernel stacks for all 1379 * processes, this routine is invoked from the main kdb code via 1380 * an architecture specific routine. kdba_main_loop is 1381 * responsible for making the kernel stacks consistent for all 1382 * processes, there should be no difference between a blocked 1383 * process and a running process as far as kdb is concerned. 1384 * Inputs: 1385 * reason The reason KDB was invoked 1386 * error The hardware-defined error code 1387 * reason2 kdb's current reason code. 1388 * Initially error but can change 1389 * according to kdb state. 1390 * db_result Result code from break or debug point. 1391 * regs The exception frame at time of fault/breakpoint. 1392 * should always be valid. 1393 * Returns: 1394 * 0 KDB was invoked for an event which it wasn't responsible 1395 * 1 KDB handled the event for which it was invoked. 1396 */ 1397 int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error, 1398 kdb_dbtrap_t db_result, struct pt_regs *regs) 1399 { 1400 int result = 1; 1401 /* Stay in kdb() until 'go', 'ss[b]' or an error */ 1402 while (1) { 1403 /* 1404 * All processors except the one that is in control 1405 * will spin here. 1406 */ 1407 KDB_DEBUG_STATE("kdb_main_loop 1", reason); 1408 while (KDB_STATE(HOLD_CPU)) { 1409 /* state KDB is turned off by kdb_cpu to see if the 1410 * other cpus are still live, each cpu in this loop 1411 * turns it back on. 1412 */ 1413 if (!KDB_STATE(KDB)) 1414 KDB_STATE_SET(KDB); 1415 } 1416 1417 KDB_STATE_CLEAR(SUPPRESS); 1418 KDB_DEBUG_STATE("kdb_main_loop 2", reason); 1419 if (KDB_STATE(LEAVING)) 1420 break; /* Another cpu said 'go' */ 1421 /* Still using kdb, this processor is in control */ 1422 result = kdb_local(reason2, error, regs, db_result); 1423 KDB_DEBUG_STATE("kdb_main_loop 3", result); 1424 1425 if (result == KDB_CMD_CPU) 1426 break; 1427 1428 if (result == KDB_CMD_SS) { 1429 KDB_STATE_SET(DOING_SS); 1430 break; 1431 } 1432 1433 if (result == KDB_CMD_KGDB) { 1434 if (!KDB_STATE(DOING_KGDB)) 1435 kdb_printf("Entering please attach debugger " 1436 "or use $D#44+ or $3#33\n"); 1437 break; 1438 } 1439 if (result && result != 1 && result != KDB_CMD_GO) 1440 kdb_printf("\nUnexpected kdb_local return code %d\n", 1441 result); 1442 KDB_DEBUG_STATE("kdb_main_loop 4", reason); 1443 break; 1444 } 1445 if (KDB_STATE(DOING_SS)) 1446 KDB_STATE_CLEAR(SSBPT); 1447 1448 /* Clean up any keyboard devices before leaving */ 1449 kdb_kbd_cleanup_state(); 1450 1451 return result; 1452 } 1453 1454 /* 1455 * kdb_mdr - This function implements the guts of the 'mdr', memory 1456 * read command. 1457 * mdr <addr arg>,<byte count> 1458 * Inputs: 1459 * addr Start address 1460 * count Number of bytes 1461 * Returns: 1462 * Always 0. Any errors are detected and printed by kdb_getarea. 1463 */ 1464 static int kdb_mdr(unsigned long addr, unsigned int count) 1465 { 1466 unsigned char c; 1467 while (count--) { 1468 if (kdb_getarea(c, addr)) 1469 return 0; 1470 kdb_printf("%02x", c); 1471 addr++; 1472 } 1473 kdb_printf("\n"); 1474 return 0; 1475 } 1476 1477 /* 1478 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4', 1479 * 'md8' 'mdr' and 'mds' commands. 1480 * 1481 * md|mds [<addr arg> [<line count> [<radix>]]] 1482 * mdWcN [<addr arg> [<line count> [<radix>]]] 1483 * where W = is the width (1, 2, 4 or 8) and N is the count. 1484 * for eg., md1c20 reads 20 bytes, 1 at a time. 1485 * mdr <addr arg>,<byte count> 1486 */ 1487 static void kdb_md_line(const char *fmtstr, unsigned long addr, 1488 int symbolic, int nosect, int bytesperword, 1489 int num, int repeat, int phys) 1490 { 1491 /* print just one line of data */ 1492 kdb_symtab_t symtab; 1493 char cbuf[32]; 1494 char *c = cbuf; 1495 int i; 1496 unsigned long word; 1497 1498 memset(cbuf, '\0', sizeof(cbuf)); 1499 if (phys) 1500 kdb_printf("phys " kdb_machreg_fmt0 " ", addr); 1501 else 1502 kdb_printf(kdb_machreg_fmt0 " ", addr); 1503 1504 for (i = 0; i < num && repeat--; i++) { 1505 if (phys) { 1506 if (kdb_getphysword(&word, addr, bytesperword)) 1507 break; 1508 } else if (kdb_getword(&word, addr, bytesperword)) 1509 break; 1510 kdb_printf(fmtstr, word); 1511 if (symbolic) 1512 kdbnearsym(word, &symtab); 1513 else 1514 memset(&symtab, 0, sizeof(symtab)); 1515 if (symtab.sym_name) { 1516 kdb_symbol_print(word, &symtab, 0); 1517 if (!nosect) { 1518 kdb_printf("\n"); 1519 kdb_printf(" %s %s " 1520 kdb_machreg_fmt " " 1521 kdb_machreg_fmt " " 1522 kdb_machreg_fmt, symtab.mod_name, 1523 symtab.sec_name, symtab.sec_start, 1524 symtab.sym_start, symtab.sym_end); 1525 } 1526 addr += bytesperword; 1527 } else { 1528 union { 1529 u64 word; 1530 unsigned char c[8]; 1531 } wc; 1532 unsigned char *cp; 1533 #ifdef __BIG_ENDIAN 1534 cp = wc.c + 8 - bytesperword; 1535 #else 1536 cp = wc.c; 1537 #endif 1538 wc.word = word; 1539 #define printable_char(c) \ 1540 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; }) 1541 switch (bytesperword) { 1542 case 8: 1543 *c++ = printable_char(*cp++); 1544 *c++ = printable_char(*cp++); 1545 *c++ = printable_char(*cp++); 1546 *c++ = printable_char(*cp++); 1547 addr += 4; 1548 case 4: 1549 *c++ = printable_char(*cp++); 1550 *c++ = printable_char(*cp++); 1551 addr += 2; 1552 case 2: 1553 *c++ = printable_char(*cp++); 1554 addr++; 1555 case 1: 1556 *c++ = printable_char(*cp++); 1557 addr++; 1558 break; 1559 } 1560 #undef printable_char 1561 } 1562 } 1563 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1), 1564 " ", cbuf); 1565 } 1566 1567 static int kdb_md(int argc, const char **argv) 1568 { 1569 static unsigned long last_addr; 1570 static int last_radix, last_bytesperword, last_repeat; 1571 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat; 1572 int nosect = 0; 1573 char fmtchar, fmtstr[64]; 1574 unsigned long addr; 1575 unsigned long word; 1576 long offset = 0; 1577 int symbolic = 0; 1578 int valid = 0; 1579 int phys = 0; 1580 int raw = 0; 1581 1582 kdbgetintenv("MDCOUNT", &mdcount); 1583 kdbgetintenv("RADIX", &radix); 1584 kdbgetintenv("BYTESPERWORD", &bytesperword); 1585 1586 /* Assume 'md <addr>' and start with environment values */ 1587 repeat = mdcount * 16 / bytesperword; 1588 1589 if (strcmp(argv[0], "mdr") == 0) { 1590 if (argc == 2 || (argc == 0 && last_addr != 0)) 1591 valid = raw = 1; 1592 else 1593 return KDB_ARGCOUNT; 1594 } else if (isdigit(argv[0][2])) { 1595 bytesperword = (int)(argv[0][2] - '0'); 1596 if (bytesperword == 0) { 1597 bytesperword = last_bytesperword; 1598 if (bytesperword == 0) 1599 bytesperword = 4; 1600 } 1601 last_bytesperword = bytesperword; 1602 repeat = mdcount * 16 / bytesperword; 1603 if (!argv[0][3]) 1604 valid = 1; 1605 else if (argv[0][3] == 'c' && argv[0][4]) { 1606 char *p; 1607 repeat = simple_strtoul(argv[0] + 4, &p, 10); 1608 mdcount = ((repeat * bytesperword) + 15) / 16; 1609 valid = !*p; 1610 } 1611 last_repeat = repeat; 1612 } else if (strcmp(argv[0], "md") == 0) 1613 valid = 1; 1614 else if (strcmp(argv[0], "mds") == 0) 1615 valid = 1; 1616 else if (strcmp(argv[0], "mdp") == 0) { 1617 phys = valid = 1; 1618 } 1619 if (!valid) 1620 return KDB_NOTFOUND; 1621 1622 if (argc == 0) { 1623 if (last_addr == 0) 1624 return KDB_ARGCOUNT; 1625 addr = last_addr; 1626 radix = last_radix; 1627 bytesperword = last_bytesperword; 1628 repeat = last_repeat; 1629 if (raw) 1630 mdcount = repeat; 1631 else 1632 mdcount = ((repeat * bytesperword) + 15) / 16; 1633 } 1634 1635 if (argc) { 1636 unsigned long val; 1637 int diag, nextarg = 1; 1638 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, 1639 &offset, NULL); 1640 if (diag) 1641 return diag; 1642 if (argc > nextarg+2) 1643 return KDB_ARGCOUNT; 1644 1645 if (argc >= nextarg) { 1646 diag = kdbgetularg(argv[nextarg], &val); 1647 if (!diag) { 1648 mdcount = (int) val; 1649 if (raw) 1650 repeat = mdcount; 1651 else 1652 repeat = mdcount * 16 / bytesperword; 1653 } 1654 } 1655 if (argc >= nextarg+1) { 1656 diag = kdbgetularg(argv[nextarg+1], &val); 1657 if (!diag) 1658 radix = (int) val; 1659 } 1660 } 1661 1662 if (strcmp(argv[0], "mdr") == 0) { 1663 int ret; 1664 last_addr = addr; 1665 ret = kdb_mdr(addr, mdcount); 1666 last_addr += mdcount; 1667 last_repeat = mdcount; 1668 last_bytesperword = bytesperword; // to make REPEAT happy 1669 return ret; 1670 } 1671 1672 switch (radix) { 1673 case 10: 1674 fmtchar = 'd'; 1675 break; 1676 case 16: 1677 fmtchar = 'x'; 1678 break; 1679 case 8: 1680 fmtchar = 'o'; 1681 break; 1682 default: 1683 return KDB_BADRADIX; 1684 } 1685 1686 last_radix = radix; 1687 1688 if (bytesperword > KDB_WORD_SIZE) 1689 return KDB_BADWIDTH; 1690 1691 switch (bytesperword) { 1692 case 8: 1693 sprintf(fmtstr, "%%16.16l%c ", fmtchar); 1694 break; 1695 case 4: 1696 sprintf(fmtstr, "%%8.8l%c ", fmtchar); 1697 break; 1698 case 2: 1699 sprintf(fmtstr, "%%4.4l%c ", fmtchar); 1700 break; 1701 case 1: 1702 sprintf(fmtstr, "%%2.2l%c ", fmtchar); 1703 break; 1704 default: 1705 return KDB_BADWIDTH; 1706 } 1707 1708 last_repeat = repeat; 1709 last_bytesperword = bytesperword; 1710 1711 if (strcmp(argv[0], "mds") == 0) { 1712 symbolic = 1; 1713 /* Do not save these changes as last_*, they are temporary mds 1714 * overrides. 1715 */ 1716 bytesperword = KDB_WORD_SIZE; 1717 repeat = mdcount; 1718 kdbgetintenv("NOSECT", &nosect); 1719 } 1720 1721 /* Round address down modulo BYTESPERWORD */ 1722 1723 addr &= ~(bytesperword-1); 1724 1725 while (repeat > 0) { 1726 unsigned long a; 1727 int n, z, num = (symbolic ? 1 : (16 / bytesperword)); 1728 1729 if (KDB_FLAG(CMD_INTERRUPT)) 1730 return 0; 1731 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) { 1732 if (phys) { 1733 if (kdb_getphysword(&word, a, bytesperword) 1734 || word) 1735 break; 1736 } else if (kdb_getword(&word, a, bytesperword) || word) 1737 break; 1738 } 1739 n = min(num, repeat); 1740 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword, 1741 num, repeat, phys); 1742 addr += bytesperword * n; 1743 repeat -= n; 1744 z = (z + num - 1) / num; 1745 if (z > 2) { 1746 int s = num * (z-2); 1747 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0 1748 " zero suppressed\n", 1749 addr, addr + bytesperword * s - 1); 1750 addr += bytesperword * s; 1751 repeat -= s; 1752 } 1753 } 1754 last_addr = addr; 1755 1756 return 0; 1757 } 1758 1759 /* 1760 * kdb_mm - This function implements the 'mm' command. 1761 * mm address-expression new-value 1762 * Remarks: 1763 * mm works on machine words, mmW works on bytes. 1764 */ 1765 static int kdb_mm(int argc, const char **argv) 1766 { 1767 int diag; 1768 unsigned long addr; 1769 long offset = 0; 1770 unsigned long contents; 1771 int nextarg; 1772 int width; 1773 1774 if (argv[0][2] && !isdigit(argv[0][2])) 1775 return KDB_NOTFOUND; 1776 1777 if (argc < 2) 1778 return KDB_ARGCOUNT; 1779 1780 nextarg = 1; 1781 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 1782 if (diag) 1783 return diag; 1784 1785 if (nextarg > argc) 1786 return KDB_ARGCOUNT; 1787 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL); 1788 if (diag) 1789 return diag; 1790 1791 if (nextarg != argc + 1) 1792 return KDB_ARGCOUNT; 1793 1794 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE); 1795 diag = kdb_putword(addr, contents, width); 1796 if (diag) 1797 return diag; 1798 1799 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents); 1800 1801 return 0; 1802 } 1803 1804 /* 1805 * kdb_go - This function implements the 'go' command. 1806 * go [address-expression] 1807 */ 1808 static int kdb_go(int argc, const char **argv) 1809 { 1810 unsigned long addr; 1811 int diag; 1812 int nextarg; 1813 long offset; 1814 1815 if (raw_smp_processor_id() != kdb_initial_cpu) { 1816 kdb_printf("go must execute on the entry cpu, " 1817 "please use \"cpu %d\" and then execute go\n", 1818 kdb_initial_cpu); 1819 return KDB_BADCPUNUM; 1820 } 1821 if (argc == 1) { 1822 nextarg = 1; 1823 diag = kdbgetaddrarg(argc, argv, &nextarg, 1824 &addr, &offset, NULL); 1825 if (diag) 1826 return diag; 1827 } else if (argc) { 1828 return KDB_ARGCOUNT; 1829 } 1830 1831 diag = KDB_CMD_GO; 1832 if (KDB_FLAG(CATASTROPHIC)) { 1833 kdb_printf("Catastrophic error detected\n"); 1834 kdb_printf("kdb_continue_catastrophic=%d, ", 1835 kdb_continue_catastrophic); 1836 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) { 1837 kdb_printf("type go a second time if you really want " 1838 "to continue\n"); 1839 return 0; 1840 } 1841 if (kdb_continue_catastrophic == 2) { 1842 kdb_printf("forcing reboot\n"); 1843 kdb_reboot(0, NULL); 1844 } 1845 kdb_printf("attempting to continue\n"); 1846 } 1847 return diag; 1848 } 1849 1850 /* 1851 * kdb_rd - This function implements the 'rd' command. 1852 */ 1853 static int kdb_rd(int argc, const char **argv) 1854 { 1855 int len = kdb_check_regs(); 1856 #if DBG_MAX_REG_NUM > 0 1857 int i; 1858 char *rname; 1859 int rsize; 1860 u64 reg64; 1861 u32 reg32; 1862 u16 reg16; 1863 u8 reg8; 1864 1865 if (len) 1866 return len; 1867 1868 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1869 rsize = dbg_reg_def[i].size * 2; 1870 if (rsize > 16) 1871 rsize = 2; 1872 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) { 1873 len = 0; 1874 kdb_printf("\n"); 1875 } 1876 if (len) 1877 len += kdb_printf(" "); 1878 switch(dbg_reg_def[i].size * 8) { 1879 case 8: 1880 rname = dbg_get_reg(i, ®8, kdb_current_regs); 1881 if (!rname) 1882 break; 1883 len += kdb_printf("%s: %02x", rname, reg8); 1884 break; 1885 case 16: 1886 rname = dbg_get_reg(i, ®16, kdb_current_regs); 1887 if (!rname) 1888 break; 1889 len += kdb_printf("%s: %04x", rname, reg16); 1890 break; 1891 case 32: 1892 rname = dbg_get_reg(i, ®32, kdb_current_regs); 1893 if (!rname) 1894 break; 1895 len += kdb_printf("%s: %08x", rname, reg32); 1896 break; 1897 case 64: 1898 rname = dbg_get_reg(i, ®64, kdb_current_regs); 1899 if (!rname) 1900 break; 1901 len += kdb_printf("%s: %016llx", rname, reg64); 1902 break; 1903 default: 1904 len += kdb_printf("%s: ??", dbg_reg_def[i].name); 1905 } 1906 } 1907 kdb_printf("\n"); 1908 #else 1909 if (len) 1910 return len; 1911 1912 kdb_dumpregs(kdb_current_regs); 1913 #endif 1914 return 0; 1915 } 1916 1917 /* 1918 * kdb_rm - This function implements the 'rm' (register modify) command. 1919 * rm register-name new-contents 1920 * Remarks: 1921 * Allows register modification with the same restrictions as gdb 1922 */ 1923 static int kdb_rm(int argc, const char **argv) 1924 { 1925 #if DBG_MAX_REG_NUM > 0 1926 int diag; 1927 const char *rname; 1928 int i; 1929 u64 reg64; 1930 u32 reg32; 1931 u16 reg16; 1932 u8 reg8; 1933 1934 if (argc != 2) 1935 return KDB_ARGCOUNT; 1936 /* 1937 * Allow presence or absence of leading '%' symbol. 1938 */ 1939 rname = argv[1]; 1940 if (*rname == '%') 1941 rname++; 1942 1943 diag = kdbgetu64arg(argv[2], ®64); 1944 if (diag) 1945 return diag; 1946 1947 diag = kdb_check_regs(); 1948 if (diag) 1949 return diag; 1950 1951 diag = KDB_BADREG; 1952 for (i = 0; i < DBG_MAX_REG_NUM; i++) { 1953 if (strcmp(rname, dbg_reg_def[i].name) == 0) { 1954 diag = 0; 1955 break; 1956 } 1957 } 1958 if (!diag) { 1959 switch(dbg_reg_def[i].size * 8) { 1960 case 8: 1961 reg8 = reg64; 1962 dbg_set_reg(i, ®8, kdb_current_regs); 1963 break; 1964 case 16: 1965 reg16 = reg64; 1966 dbg_set_reg(i, ®16, kdb_current_regs); 1967 break; 1968 case 32: 1969 reg32 = reg64; 1970 dbg_set_reg(i, ®32, kdb_current_regs); 1971 break; 1972 case 64: 1973 dbg_set_reg(i, ®64, kdb_current_regs); 1974 break; 1975 } 1976 } 1977 return diag; 1978 #else 1979 kdb_printf("ERROR: Register set currently not implemented\n"); 1980 return 0; 1981 #endif 1982 } 1983 1984 #if defined(CONFIG_MAGIC_SYSRQ) 1985 /* 1986 * kdb_sr - This function implements the 'sr' (SYSRQ key) command 1987 * which interfaces to the soi-disant MAGIC SYSRQ functionality. 1988 * sr <magic-sysrq-code> 1989 */ 1990 static int kdb_sr(int argc, const char **argv) 1991 { 1992 bool check_mask = 1993 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false); 1994 1995 if (argc != 1) 1996 return KDB_ARGCOUNT; 1997 1998 kdb_trap_printk++; 1999 __handle_sysrq(*argv[1], check_mask); 2000 kdb_trap_printk--; 2001 2002 return 0; 2003 } 2004 #endif /* CONFIG_MAGIC_SYSRQ */ 2005 2006 /* 2007 * kdb_ef - This function implements the 'regs' (display exception 2008 * frame) command. This command takes an address and expects to 2009 * find an exception frame at that address, formats and prints 2010 * it. 2011 * regs address-expression 2012 * Remarks: 2013 * Not done yet. 2014 */ 2015 static int kdb_ef(int argc, const char **argv) 2016 { 2017 int diag; 2018 unsigned long addr; 2019 long offset; 2020 int nextarg; 2021 2022 if (argc != 1) 2023 return KDB_ARGCOUNT; 2024 2025 nextarg = 1; 2026 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL); 2027 if (diag) 2028 return diag; 2029 show_regs((struct pt_regs *)addr); 2030 return 0; 2031 } 2032 2033 #if defined(CONFIG_MODULES) 2034 /* 2035 * kdb_lsmod - This function implements the 'lsmod' command. Lists 2036 * currently loaded kernel modules. 2037 * Mostly taken from userland lsmod. 2038 */ 2039 static int kdb_lsmod(int argc, const char **argv) 2040 { 2041 struct module *mod; 2042 2043 if (argc != 0) 2044 return KDB_ARGCOUNT; 2045 2046 kdb_printf("Module Size modstruct Used by\n"); 2047 list_for_each_entry(mod, kdb_modules, list) { 2048 if (mod->state == MODULE_STATE_UNFORMED) 2049 continue; 2050 2051 kdb_printf("%-20s%8u 0x%p ", mod->name, 2052 mod->core_layout.size, (void *)mod); 2053 #ifdef CONFIG_MODULE_UNLOAD 2054 kdb_printf("%4d ", module_refcount(mod)); 2055 #endif 2056 if (mod->state == MODULE_STATE_GOING) 2057 kdb_printf(" (Unloading)"); 2058 else if (mod->state == MODULE_STATE_COMING) 2059 kdb_printf(" (Loading)"); 2060 else 2061 kdb_printf(" (Live)"); 2062 kdb_printf(" 0x%p", mod->core_layout.base); 2063 2064 #ifdef CONFIG_MODULE_UNLOAD 2065 { 2066 struct module_use *use; 2067 kdb_printf(" [ "); 2068 list_for_each_entry(use, &mod->source_list, 2069 source_list) 2070 kdb_printf("%s ", use->target->name); 2071 kdb_printf("]\n"); 2072 } 2073 #endif 2074 } 2075 2076 return 0; 2077 } 2078 2079 #endif /* CONFIG_MODULES */ 2080 2081 /* 2082 * kdb_env - This function implements the 'env' command. Display the 2083 * current environment variables. 2084 */ 2085 2086 static int kdb_env(int argc, const char **argv) 2087 { 2088 int i; 2089 2090 for (i = 0; i < __nenv; i++) { 2091 if (__env[i]) 2092 kdb_printf("%s\n", __env[i]); 2093 } 2094 2095 if (KDB_DEBUG(MASK)) 2096 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags); 2097 2098 return 0; 2099 } 2100 2101 #ifdef CONFIG_PRINTK 2102 /* 2103 * kdb_dmesg - This function implements the 'dmesg' command to display 2104 * the contents of the syslog buffer. 2105 * dmesg [lines] [adjust] 2106 */ 2107 static int kdb_dmesg(int argc, const char **argv) 2108 { 2109 int diag; 2110 int logging; 2111 int lines = 0; 2112 int adjust = 0; 2113 int n = 0; 2114 int skip = 0; 2115 struct kmsg_dumper dumper = { .active = 1 }; 2116 size_t len; 2117 char buf[201]; 2118 2119 if (argc > 2) 2120 return KDB_ARGCOUNT; 2121 if (argc) { 2122 char *cp; 2123 lines = simple_strtol(argv[1], &cp, 0); 2124 if (*cp) 2125 lines = 0; 2126 if (argc > 1) { 2127 adjust = simple_strtoul(argv[2], &cp, 0); 2128 if (*cp || adjust < 0) 2129 adjust = 0; 2130 } 2131 } 2132 2133 /* disable LOGGING if set */ 2134 diag = kdbgetintenv("LOGGING", &logging); 2135 if (!diag && logging) { 2136 const char *setargs[] = { "set", "LOGGING", "0" }; 2137 kdb_set(2, setargs); 2138 } 2139 2140 kmsg_dump_rewind_nolock(&dumper); 2141 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL)) 2142 n++; 2143 2144 if (lines < 0) { 2145 if (adjust >= n) 2146 kdb_printf("buffer only contains %d lines, nothing " 2147 "printed\n", n); 2148 else if (adjust - lines >= n) 2149 kdb_printf("buffer only contains %d lines, last %d " 2150 "lines printed\n", n, n - adjust); 2151 skip = adjust; 2152 lines = abs(lines); 2153 } else if (lines > 0) { 2154 skip = n - lines - adjust; 2155 lines = abs(lines); 2156 if (adjust >= n) { 2157 kdb_printf("buffer only contains %d lines, " 2158 "nothing printed\n", n); 2159 skip = n; 2160 } else if (skip < 0) { 2161 lines += skip; 2162 skip = 0; 2163 kdb_printf("buffer only contains %d lines, first " 2164 "%d lines printed\n", n, lines); 2165 } 2166 } else { 2167 lines = n; 2168 } 2169 2170 if (skip >= n || skip < 0) 2171 return 0; 2172 2173 kmsg_dump_rewind_nolock(&dumper); 2174 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) { 2175 if (skip) { 2176 skip--; 2177 continue; 2178 } 2179 if (!lines--) 2180 break; 2181 if (KDB_FLAG(CMD_INTERRUPT)) 2182 return 0; 2183 2184 kdb_printf("%.*s\n", (int)len - 1, buf); 2185 } 2186 2187 return 0; 2188 } 2189 #endif /* CONFIG_PRINTK */ 2190 2191 /* Make sure we balance enable/disable calls, must disable first. */ 2192 static atomic_t kdb_nmi_disabled; 2193 2194 static int kdb_disable_nmi(int argc, const char *argv[]) 2195 { 2196 if (atomic_read(&kdb_nmi_disabled)) 2197 return 0; 2198 atomic_set(&kdb_nmi_disabled, 1); 2199 arch_kgdb_ops.enable_nmi(0); 2200 return 0; 2201 } 2202 2203 static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp) 2204 { 2205 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0)) 2206 return -EINVAL; 2207 arch_kgdb_ops.enable_nmi(1); 2208 return 0; 2209 } 2210 2211 static const struct kernel_param_ops kdb_param_ops_enable_nmi = { 2212 .set = kdb_param_enable_nmi, 2213 }; 2214 module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600); 2215 2216 /* 2217 * kdb_cpu - This function implements the 'cpu' command. 2218 * cpu [<cpunum>] 2219 * Returns: 2220 * KDB_CMD_CPU for success, a kdb diagnostic if error 2221 */ 2222 static void kdb_cpu_status(void) 2223 { 2224 int i, start_cpu, first_print = 1; 2225 char state, prev_state = '?'; 2226 2227 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id()); 2228 kdb_printf("Available cpus: "); 2229 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) { 2230 if (!cpu_online(i)) { 2231 state = 'F'; /* cpu is offline */ 2232 } else if (!kgdb_info[i].enter_kgdb) { 2233 state = 'D'; /* cpu is online but unresponsive */ 2234 } else { 2235 state = ' '; /* cpu is responding to kdb */ 2236 if (kdb_task_state_char(KDB_TSK(i)) == 'I') 2237 state = 'I'; /* idle task */ 2238 } 2239 if (state != prev_state) { 2240 if (prev_state != '?') { 2241 if (!first_print) 2242 kdb_printf(", "); 2243 first_print = 0; 2244 kdb_printf("%d", start_cpu); 2245 if (start_cpu < i-1) 2246 kdb_printf("-%d", i-1); 2247 if (prev_state != ' ') 2248 kdb_printf("(%c)", prev_state); 2249 } 2250 prev_state = state; 2251 start_cpu = i; 2252 } 2253 } 2254 /* print the trailing cpus, ignoring them if they are all offline */ 2255 if (prev_state != 'F') { 2256 if (!first_print) 2257 kdb_printf(", "); 2258 kdb_printf("%d", start_cpu); 2259 if (start_cpu < i-1) 2260 kdb_printf("-%d", i-1); 2261 if (prev_state != ' ') 2262 kdb_printf("(%c)", prev_state); 2263 } 2264 kdb_printf("\n"); 2265 } 2266 2267 static int kdb_cpu(int argc, const char **argv) 2268 { 2269 unsigned long cpunum; 2270 int diag; 2271 2272 if (argc == 0) { 2273 kdb_cpu_status(); 2274 return 0; 2275 } 2276 2277 if (argc != 1) 2278 return KDB_ARGCOUNT; 2279 2280 diag = kdbgetularg(argv[1], &cpunum); 2281 if (diag) 2282 return diag; 2283 2284 /* 2285 * Validate cpunum 2286 */ 2287 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb) 2288 return KDB_BADCPUNUM; 2289 2290 dbg_switch_cpu = cpunum; 2291 2292 /* 2293 * Switch to other cpu 2294 */ 2295 return KDB_CMD_CPU; 2296 } 2297 2298 /* The user may not realize that ps/bta with no parameters does not print idle 2299 * or sleeping system daemon processes, so tell them how many were suppressed. 2300 */ 2301 void kdb_ps_suppressed(void) 2302 { 2303 int idle = 0, daemon = 0; 2304 unsigned long mask_I = kdb_task_state_string("I"), 2305 mask_M = kdb_task_state_string("M"); 2306 unsigned long cpu; 2307 const struct task_struct *p, *g; 2308 for_each_online_cpu(cpu) { 2309 p = kdb_curr_task(cpu); 2310 if (kdb_task_state(p, mask_I)) 2311 ++idle; 2312 } 2313 kdb_do_each_thread(g, p) { 2314 if (kdb_task_state(p, mask_M)) 2315 ++daemon; 2316 } kdb_while_each_thread(g, p); 2317 if (idle || daemon) { 2318 if (idle) 2319 kdb_printf("%d idle process%s (state I)%s\n", 2320 idle, idle == 1 ? "" : "es", 2321 daemon ? " and " : ""); 2322 if (daemon) 2323 kdb_printf("%d sleeping system daemon (state M) " 2324 "process%s", daemon, 2325 daemon == 1 ? "" : "es"); 2326 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n"); 2327 } 2328 } 2329 2330 /* 2331 * kdb_ps - This function implements the 'ps' command which shows a 2332 * list of the active processes. 2333 * ps [DRSTCZEUIMA] All processes, optionally filtered by state 2334 */ 2335 void kdb_ps1(const struct task_struct *p) 2336 { 2337 int cpu; 2338 unsigned long tmp; 2339 2340 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long))) 2341 return; 2342 2343 cpu = kdb_process_cpu(p); 2344 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n", 2345 (void *)p, p->pid, p->parent->pid, 2346 kdb_task_has_cpu(p), kdb_process_cpu(p), 2347 kdb_task_state_char(p), 2348 (void *)(&p->thread), 2349 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ', 2350 p->comm); 2351 if (kdb_task_has_cpu(p)) { 2352 if (!KDB_TSK(cpu)) { 2353 kdb_printf(" Error: no saved data for this cpu\n"); 2354 } else { 2355 if (KDB_TSK(cpu) != p) 2356 kdb_printf(" Error: does not match running " 2357 "process table (0x%p)\n", KDB_TSK(cpu)); 2358 } 2359 } 2360 } 2361 2362 static int kdb_ps(int argc, const char **argv) 2363 { 2364 struct task_struct *g, *p; 2365 unsigned long mask, cpu; 2366 2367 if (argc == 0) 2368 kdb_ps_suppressed(); 2369 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n", 2370 (int)(2*sizeof(void *))+2, "Task Addr", 2371 (int)(2*sizeof(void *))+2, "Thread"); 2372 mask = kdb_task_state_string(argc ? argv[1] : NULL); 2373 /* Run the active tasks first */ 2374 for_each_online_cpu(cpu) { 2375 if (KDB_FLAG(CMD_INTERRUPT)) 2376 return 0; 2377 p = kdb_curr_task(cpu); 2378 if (kdb_task_state(p, mask)) 2379 kdb_ps1(p); 2380 } 2381 kdb_printf("\n"); 2382 /* Now the real tasks */ 2383 kdb_do_each_thread(g, p) { 2384 if (KDB_FLAG(CMD_INTERRUPT)) 2385 return 0; 2386 if (kdb_task_state(p, mask)) 2387 kdb_ps1(p); 2388 } kdb_while_each_thread(g, p); 2389 2390 return 0; 2391 } 2392 2393 /* 2394 * kdb_pid - This function implements the 'pid' command which switches 2395 * the currently active process. 2396 * pid [<pid> | R] 2397 */ 2398 static int kdb_pid(int argc, const char **argv) 2399 { 2400 struct task_struct *p; 2401 unsigned long val; 2402 int diag; 2403 2404 if (argc > 1) 2405 return KDB_ARGCOUNT; 2406 2407 if (argc) { 2408 if (strcmp(argv[1], "R") == 0) { 2409 p = KDB_TSK(kdb_initial_cpu); 2410 } else { 2411 diag = kdbgetularg(argv[1], &val); 2412 if (diag) 2413 return KDB_BADINT; 2414 2415 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns); 2416 if (!p) { 2417 kdb_printf("No task with pid=%d\n", (pid_t)val); 2418 return 0; 2419 } 2420 } 2421 kdb_set_current_task(p); 2422 } 2423 kdb_printf("KDB current process is %s(pid=%d)\n", 2424 kdb_current_task->comm, 2425 kdb_current_task->pid); 2426 2427 return 0; 2428 } 2429 2430 static int kdb_kgdb(int argc, const char **argv) 2431 { 2432 return KDB_CMD_KGDB; 2433 } 2434 2435 /* 2436 * kdb_help - This function implements the 'help' and '?' commands. 2437 */ 2438 static int kdb_help(int argc, const char **argv) 2439 { 2440 kdbtab_t *kt; 2441 int i; 2442 2443 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description"); 2444 kdb_printf("-----------------------------" 2445 "-----------------------------\n"); 2446 for_each_kdbcmd(kt, i) { 2447 char *space = ""; 2448 if (KDB_FLAG(CMD_INTERRUPT)) 2449 return 0; 2450 if (!kt->cmd_name) 2451 continue; 2452 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true)) 2453 continue; 2454 if (strlen(kt->cmd_usage) > 20) 2455 space = "\n "; 2456 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name, 2457 kt->cmd_usage, space, kt->cmd_help); 2458 } 2459 return 0; 2460 } 2461 2462 /* 2463 * kdb_kill - This function implements the 'kill' commands. 2464 */ 2465 static int kdb_kill(int argc, const char **argv) 2466 { 2467 long sig, pid; 2468 char *endp; 2469 struct task_struct *p; 2470 2471 if (argc != 2) 2472 return KDB_ARGCOUNT; 2473 2474 sig = simple_strtol(argv[1], &endp, 0); 2475 if (*endp) 2476 return KDB_BADINT; 2477 if ((sig >= 0) || !valid_signal(-sig)) { 2478 kdb_printf("Invalid signal parameter.<-signal>\n"); 2479 return 0; 2480 } 2481 sig = -sig; 2482 2483 pid = simple_strtol(argv[2], &endp, 0); 2484 if (*endp) 2485 return KDB_BADINT; 2486 if (pid <= 0) { 2487 kdb_printf("Process ID must be large than 0.\n"); 2488 return 0; 2489 } 2490 2491 /* Find the process. */ 2492 p = find_task_by_pid_ns(pid, &init_pid_ns); 2493 if (!p) { 2494 kdb_printf("The specified process isn't found.\n"); 2495 return 0; 2496 } 2497 p = p->group_leader; 2498 kdb_send_sig(p, sig); 2499 return 0; 2500 } 2501 2502 /* 2503 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo(). 2504 * I cannot call that code directly from kdb, it has an unconditional 2505 * cli()/sti() and calls routines that take locks which can stop the debugger. 2506 */ 2507 static void kdb_sysinfo(struct sysinfo *val) 2508 { 2509 u64 uptime = ktime_get_mono_fast_ns(); 2510 2511 memset(val, 0, sizeof(*val)); 2512 val->uptime = div_u64(uptime, NSEC_PER_SEC); 2513 val->loads[0] = avenrun[0]; 2514 val->loads[1] = avenrun[1]; 2515 val->loads[2] = avenrun[2]; 2516 val->procs = nr_threads-1; 2517 si_meminfo(val); 2518 2519 return; 2520 } 2521 2522 /* 2523 * kdb_summary - This function implements the 'summary' command. 2524 */ 2525 static int kdb_summary(int argc, const char **argv) 2526 { 2527 time64_t now; 2528 struct tm tm; 2529 struct sysinfo val; 2530 2531 if (argc) 2532 return KDB_ARGCOUNT; 2533 2534 kdb_printf("sysname %s\n", init_uts_ns.name.sysname); 2535 kdb_printf("release %s\n", init_uts_ns.name.release); 2536 kdb_printf("version %s\n", init_uts_ns.name.version); 2537 kdb_printf("machine %s\n", init_uts_ns.name.machine); 2538 kdb_printf("nodename %s\n", init_uts_ns.name.nodename); 2539 kdb_printf("domainname %s\n", init_uts_ns.name.domainname); 2540 kdb_printf("ccversion %s\n", __stringify(CCVERSION)); 2541 2542 now = __ktime_get_real_seconds(); 2543 time64_to_tm(now, 0, &tm); 2544 kdb_printf("date %04ld-%02d-%02d %02d:%02d:%02d " 2545 "tz_minuteswest %d\n", 2546 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday, 2547 tm.tm_hour, tm.tm_min, tm.tm_sec, 2548 sys_tz.tz_minuteswest); 2549 2550 kdb_sysinfo(&val); 2551 kdb_printf("uptime "); 2552 if (val.uptime > (24*60*60)) { 2553 int days = val.uptime / (24*60*60); 2554 val.uptime %= (24*60*60); 2555 kdb_printf("%d day%s ", days, days == 1 ? "" : "s"); 2556 } 2557 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60); 2558 2559 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n", 2560 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]), 2561 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]), 2562 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2])); 2563 2564 /* Display in kilobytes */ 2565 #define K(x) ((x) << (PAGE_SHIFT - 10)) 2566 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n" 2567 "Buffers: %8lu kB\n", 2568 K(val.totalram), K(val.freeram), K(val.bufferram)); 2569 return 0; 2570 } 2571 2572 /* 2573 * kdb_per_cpu - This function implements the 'per_cpu' command. 2574 */ 2575 static int kdb_per_cpu(int argc, const char **argv) 2576 { 2577 char fmtstr[64]; 2578 int cpu, diag, nextarg = 1; 2579 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL; 2580 2581 if (argc < 1 || argc > 3) 2582 return KDB_ARGCOUNT; 2583 2584 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL); 2585 if (diag) 2586 return diag; 2587 2588 if (argc >= 2) { 2589 diag = kdbgetularg(argv[2], &bytesperword); 2590 if (diag) 2591 return diag; 2592 } 2593 if (!bytesperword) 2594 bytesperword = KDB_WORD_SIZE; 2595 else if (bytesperword > KDB_WORD_SIZE) 2596 return KDB_BADWIDTH; 2597 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword)); 2598 if (argc >= 3) { 2599 diag = kdbgetularg(argv[3], &whichcpu); 2600 if (diag) 2601 return diag; 2602 if (!cpu_online(whichcpu)) { 2603 kdb_printf("cpu %ld is not online\n", whichcpu); 2604 return KDB_BADCPUNUM; 2605 } 2606 } 2607 2608 /* Most architectures use __per_cpu_offset[cpu], some use 2609 * __per_cpu_offset(cpu), smp has no __per_cpu_offset. 2610 */ 2611 #ifdef __per_cpu_offset 2612 #define KDB_PCU(cpu) __per_cpu_offset(cpu) 2613 #else 2614 #ifdef CONFIG_SMP 2615 #define KDB_PCU(cpu) __per_cpu_offset[cpu] 2616 #else 2617 #define KDB_PCU(cpu) 0 2618 #endif 2619 #endif 2620 for_each_online_cpu(cpu) { 2621 if (KDB_FLAG(CMD_INTERRUPT)) 2622 return 0; 2623 2624 if (whichcpu != ~0UL && whichcpu != cpu) 2625 continue; 2626 addr = symaddr + KDB_PCU(cpu); 2627 diag = kdb_getword(&val, addr, bytesperword); 2628 if (diag) { 2629 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to " 2630 "read, diag=%d\n", cpu, addr, diag); 2631 continue; 2632 } 2633 kdb_printf("%5d ", cpu); 2634 kdb_md_line(fmtstr, addr, 2635 bytesperword == KDB_WORD_SIZE, 2636 1, bytesperword, 1, 1, 0); 2637 } 2638 #undef KDB_PCU 2639 return 0; 2640 } 2641 2642 /* 2643 * display help for the use of cmd | grep pattern 2644 */ 2645 static int kdb_grep_help(int argc, const char **argv) 2646 { 2647 kdb_printf("Usage of cmd args | grep pattern:\n"); 2648 kdb_printf(" Any command's output may be filtered through an "); 2649 kdb_printf("emulated 'pipe'.\n"); 2650 kdb_printf(" 'grep' is just a key word.\n"); 2651 kdb_printf(" The pattern may include a very limited set of " 2652 "metacharacters:\n"); 2653 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n"); 2654 kdb_printf(" And if there are spaces in the pattern, you may " 2655 "quote it:\n"); 2656 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\"" 2657 " or \"^pat tern$\"\n"); 2658 return 0; 2659 } 2660 2661 /* 2662 * kdb_register_flags - This function is used to register a kernel 2663 * debugger command. 2664 * Inputs: 2665 * cmd Command name 2666 * func Function to execute the command 2667 * usage A simple usage string showing arguments 2668 * help A simple help string describing command 2669 * repeat Does the command auto repeat on enter? 2670 * Returns: 2671 * zero for success, one if a duplicate command. 2672 */ 2673 #define kdb_command_extend 50 /* arbitrary */ 2674 int kdb_register_flags(char *cmd, 2675 kdb_func_t func, 2676 char *usage, 2677 char *help, 2678 short minlen, 2679 kdb_cmdflags_t flags) 2680 { 2681 int i; 2682 kdbtab_t *kp; 2683 2684 /* 2685 * Brute force method to determine duplicates 2686 */ 2687 for_each_kdbcmd(kp, i) { 2688 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2689 kdb_printf("Duplicate kdb command registered: " 2690 "%s, func %p help %s\n", cmd, func, help); 2691 return 1; 2692 } 2693 } 2694 2695 /* 2696 * Insert command into first available location in table 2697 */ 2698 for_each_kdbcmd(kp, i) { 2699 if (kp->cmd_name == NULL) 2700 break; 2701 } 2702 2703 if (i >= kdb_max_commands) { 2704 kdbtab_t *new = kmalloc_array(kdb_max_commands - 2705 KDB_BASE_CMD_MAX + 2706 kdb_command_extend, 2707 sizeof(*new), 2708 GFP_KDB); 2709 if (!new) { 2710 kdb_printf("Could not allocate new kdb_command " 2711 "table\n"); 2712 return 1; 2713 } 2714 if (kdb_commands) { 2715 memcpy(new, kdb_commands, 2716 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new)); 2717 kfree(kdb_commands); 2718 } 2719 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0, 2720 kdb_command_extend * sizeof(*new)); 2721 kdb_commands = new; 2722 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX; 2723 kdb_max_commands += kdb_command_extend; 2724 } 2725 2726 kp->cmd_name = cmd; 2727 kp->cmd_func = func; 2728 kp->cmd_usage = usage; 2729 kp->cmd_help = help; 2730 kp->cmd_minlen = minlen; 2731 kp->cmd_flags = flags; 2732 2733 return 0; 2734 } 2735 EXPORT_SYMBOL_GPL(kdb_register_flags); 2736 2737 2738 /* 2739 * kdb_register - Compatibility register function for commands that do 2740 * not need to specify a repeat state. Equivalent to 2741 * kdb_register_flags with flags set to 0. 2742 * Inputs: 2743 * cmd Command name 2744 * func Function to execute the command 2745 * usage A simple usage string showing arguments 2746 * help A simple help string describing command 2747 * Returns: 2748 * zero for success, one if a duplicate command. 2749 */ 2750 int kdb_register(char *cmd, 2751 kdb_func_t func, 2752 char *usage, 2753 char *help, 2754 short minlen) 2755 { 2756 return kdb_register_flags(cmd, func, usage, help, minlen, 0); 2757 } 2758 EXPORT_SYMBOL_GPL(kdb_register); 2759 2760 /* 2761 * kdb_unregister - This function is used to unregister a kernel 2762 * debugger command. It is generally called when a module which 2763 * implements kdb commands is unloaded. 2764 * Inputs: 2765 * cmd Command name 2766 * Returns: 2767 * zero for success, one command not registered. 2768 */ 2769 int kdb_unregister(char *cmd) 2770 { 2771 int i; 2772 kdbtab_t *kp; 2773 2774 /* 2775 * find the command. 2776 */ 2777 for_each_kdbcmd(kp, i) { 2778 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) { 2779 kp->cmd_name = NULL; 2780 return 0; 2781 } 2782 } 2783 2784 /* Couldn't find it. */ 2785 return 1; 2786 } 2787 EXPORT_SYMBOL_GPL(kdb_unregister); 2788 2789 /* Initialize the kdb command table. */ 2790 static void __init kdb_inittab(void) 2791 { 2792 int i; 2793 kdbtab_t *kp; 2794 2795 for_each_kdbcmd(kp, i) 2796 kp->cmd_name = NULL; 2797 2798 kdb_register_flags("md", kdb_md, "<vaddr>", 2799 "Display Memory Contents, also mdWcN, e.g. md8c1", 1, 2800 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2801 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>", 2802 "Display Raw Memory", 0, 2803 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2804 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>", 2805 "Display Physical Memory", 0, 2806 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2807 kdb_register_flags("mds", kdb_md, "<vaddr>", 2808 "Display Memory Symbolically", 0, 2809 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS); 2810 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>", 2811 "Modify Memory Contents", 0, 2812 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS); 2813 kdb_register_flags("go", kdb_go, "[<vaddr>]", 2814 "Continue Execution", 1, 2815 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS); 2816 kdb_register_flags("rd", kdb_rd, "", 2817 "Display Registers", 0, 2818 KDB_ENABLE_REG_READ); 2819 kdb_register_flags("rm", kdb_rm, "<reg> <contents>", 2820 "Modify Registers", 0, 2821 KDB_ENABLE_REG_WRITE); 2822 kdb_register_flags("ef", kdb_ef, "<vaddr>", 2823 "Display exception frame", 0, 2824 KDB_ENABLE_MEM_READ); 2825 kdb_register_flags("bt", kdb_bt, "[<vaddr>]", 2826 "Stack traceback", 1, 2827 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS); 2828 kdb_register_flags("btp", kdb_bt, "<pid>", 2829 "Display stack for process <pid>", 0, 2830 KDB_ENABLE_INSPECT); 2831 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]", 2832 "Backtrace all processes matching state flag", 0, 2833 KDB_ENABLE_INSPECT); 2834 kdb_register_flags("btc", kdb_bt, "", 2835 "Backtrace current process on each cpu", 0, 2836 KDB_ENABLE_INSPECT); 2837 kdb_register_flags("btt", kdb_bt, "<vaddr>", 2838 "Backtrace process given its struct task address", 0, 2839 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS); 2840 kdb_register_flags("env", kdb_env, "", 2841 "Show environment variables", 0, 2842 KDB_ENABLE_ALWAYS_SAFE); 2843 kdb_register_flags("set", kdb_set, "", 2844 "Set environment variables", 0, 2845 KDB_ENABLE_ALWAYS_SAFE); 2846 kdb_register_flags("help", kdb_help, "", 2847 "Display Help Message", 1, 2848 KDB_ENABLE_ALWAYS_SAFE); 2849 kdb_register_flags("?", kdb_help, "", 2850 "Display Help Message", 0, 2851 KDB_ENABLE_ALWAYS_SAFE); 2852 kdb_register_flags("cpu", kdb_cpu, "<cpunum>", 2853 "Switch to new cpu", 0, 2854 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS); 2855 kdb_register_flags("kgdb", kdb_kgdb, "", 2856 "Enter kgdb mode", 0, 0); 2857 kdb_register_flags("ps", kdb_ps, "[<flags>|A]", 2858 "Display active task list", 0, 2859 KDB_ENABLE_INSPECT); 2860 kdb_register_flags("pid", kdb_pid, "<pidnum>", 2861 "Switch to another task", 0, 2862 KDB_ENABLE_INSPECT); 2863 kdb_register_flags("reboot", kdb_reboot, "", 2864 "Reboot the machine immediately", 0, 2865 KDB_ENABLE_REBOOT); 2866 #if defined(CONFIG_MODULES) 2867 kdb_register_flags("lsmod", kdb_lsmod, "", 2868 "List loaded kernel modules", 0, 2869 KDB_ENABLE_INSPECT); 2870 #endif 2871 #if defined(CONFIG_MAGIC_SYSRQ) 2872 kdb_register_flags("sr", kdb_sr, "<key>", 2873 "Magic SysRq key", 0, 2874 KDB_ENABLE_ALWAYS_SAFE); 2875 #endif 2876 #if defined(CONFIG_PRINTK) 2877 kdb_register_flags("dmesg", kdb_dmesg, "[lines]", 2878 "Display syslog buffer", 0, 2879 KDB_ENABLE_ALWAYS_SAFE); 2880 #endif 2881 if (arch_kgdb_ops.enable_nmi) { 2882 kdb_register_flags("disable_nmi", kdb_disable_nmi, "", 2883 "Disable NMI entry to KDB", 0, 2884 KDB_ENABLE_ALWAYS_SAFE); 2885 } 2886 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"", 2887 "Define a set of commands, down to endefcmd", 0, 2888 KDB_ENABLE_ALWAYS_SAFE); 2889 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>", 2890 "Send a signal to a process", 0, 2891 KDB_ENABLE_SIGNAL); 2892 kdb_register_flags("summary", kdb_summary, "", 2893 "Summarize the system", 4, 2894 KDB_ENABLE_ALWAYS_SAFE); 2895 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]", 2896 "Display per_cpu variables", 3, 2897 KDB_ENABLE_MEM_READ); 2898 kdb_register_flags("grephelp", kdb_grep_help, "", 2899 "Display help on | grep", 0, 2900 KDB_ENABLE_ALWAYS_SAFE); 2901 } 2902 2903 /* Execute any commands defined in kdb_cmds. */ 2904 static void __init kdb_cmd_init(void) 2905 { 2906 int i, diag; 2907 for (i = 0; kdb_cmds[i]; ++i) { 2908 diag = kdb_parse(kdb_cmds[i]); 2909 if (diag) 2910 kdb_printf("kdb command %s failed, kdb diag %d\n", 2911 kdb_cmds[i], diag); 2912 } 2913 if (defcmd_in_progress) { 2914 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n"); 2915 kdb_parse("endefcmd"); 2916 } 2917 } 2918 2919 /* Initialize kdb_printf, breakpoint tables and kdb state */ 2920 void __init kdb_init(int lvl) 2921 { 2922 static int kdb_init_lvl = KDB_NOT_INITIALIZED; 2923 int i; 2924 2925 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl) 2926 return; 2927 for (i = kdb_init_lvl; i < lvl; i++) { 2928 switch (i) { 2929 case KDB_NOT_INITIALIZED: 2930 kdb_inittab(); /* Initialize Command Table */ 2931 kdb_initbptab(); /* Initialize Breakpoints */ 2932 break; 2933 case KDB_INIT_EARLY: 2934 kdb_cmd_init(); /* Build kdb_cmds tables */ 2935 break; 2936 } 2937 } 2938 kdb_init_lvl = lvl; 2939 } 2940