xref: /openbmc/linux/kernel/debug/debug_core.c (revision 87fcfa7b7fe6bf819033fe827a27f710e38639b5)
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
10  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( jason.wessel@windriver.com )
18  *  George Anzinger <george@mvista.com>
19  *  Anurekh Saxena (anurekh.saxena@timesys.com)
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <dave@gcom.com>,
24  * Tigran Aivazian <tigran@sco.com>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 
31 #define pr_fmt(fmt) "KGDB: " fmt
32 
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
59 
60 #include <asm/cacheflush.h>
61 #include <asm/byteorder.h>
62 #include <linux/atomic.h>
63 
64 #include "debug_core.h"
65 
66 static int kgdb_break_asap;
67 
68 struct debuggerinfo_struct kgdb_info[NR_CPUS];
69 
70 /**
71  * kgdb_connected - Is a host GDB connected to us?
72  */
73 int				kgdb_connected;
74 EXPORT_SYMBOL_GPL(kgdb_connected);
75 
76 /* All the KGDB handlers are installed */
77 int			kgdb_io_module_registered;
78 
79 /* Guard for recursive entry */
80 static int			exception_level;
81 
82 struct kgdb_io		*dbg_io_ops;
83 static DEFINE_SPINLOCK(kgdb_registration_lock);
84 
85 /* Action for the reboot notifiter, a global allow kdb to change it */
86 static int kgdbreboot;
87 /* kgdb console driver is loaded */
88 static int kgdb_con_registered;
89 /* determine if kgdb console output should be used */
90 static int kgdb_use_con;
91 /* Flag for alternate operations for early debugging */
92 bool dbg_is_early = true;
93 /* Next cpu to become the master debug core */
94 int dbg_switch_cpu;
95 
96 /* Use kdb or gdbserver mode */
97 int dbg_kdb_mode = 1;
98 
99 static int __init opt_kgdb_con(char *str)
100 {
101 	kgdb_use_con = 1;
102 	return 0;
103 }
104 
105 early_param("kgdbcon", opt_kgdb_con);
106 
107 module_param(kgdb_use_con, int, 0644);
108 module_param(kgdbreboot, int, 0644);
109 
110 /*
111  * Holds information about breakpoints in a kernel. These breakpoints are
112  * added and removed by gdb.
113  */
114 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
115 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
116 };
117 
118 /*
119  * The CPU# of the active CPU, or -1 if none:
120  */
121 atomic_t			kgdb_active = ATOMIC_INIT(-1);
122 EXPORT_SYMBOL_GPL(kgdb_active);
123 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
124 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
125 
126 /*
127  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
128  * bootup code (which might not have percpu set up yet):
129  */
130 static atomic_t			masters_in_kgdb;
131 static atomic_t			slaves_in_kgdb;
132 static atomic_t			kgdb_break_tasklet_var;
133 atomic_t			kgdb_setting_breakpoint;
134 
135 struct task_struct		*kgdb_usethread;
136 struct task_struct		*kgdb_contthread;
137 
138 int				kgdb_single_step;
139 static pid_t			kgdb_sstep_pid;
140 
141 /* to keep track of the CPU which is doing the single stepping*/
142 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
143 
144 /*
145  * If you are debugging a problem where roundup (the collection of
146  * all other CPUs) is a problem [this should be extremely rare],
147  * then use the nokgdbroundup option to avoid roundup. In that case
148  * the other CPUs might interfere with your debugging context, so
149  * use this with care:
150  */
151 static int kgdb_do_roundup = 1;
152 
153 static int __init opt_nokgdbroundup(char *str)
154 {
155 	kgdb_do_roundup = 0;
156 
157 	return 0;
158 }
159 
160 early_param("nokgdbroundup", opt_nokgdbroundup);
161 
162 /*
163  * Finally, some KGDB code :-)
164  */
165 
166 /*
167  * Weak aliases for breakpoint management,
168  * can be overriden by architectures when needed:
169  */
170 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
171 {
172 	int err;
173 
174 	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
175 				BREAK_INSTR_SIZE);
176 	if (err)
177 		return err;
178 	err = probe_kernel_write((char *)bpt->bpt_addr,
179 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
180 	return err;
181 }
182 
183 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
184 {
185 	return probe_kernel_write((char *)bpt->bpt_addr,
186 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
187 }
188 
189 int __weak kgdb_validate_break_address(unsigned long addr)
190 {
191 	struct kgdb_bkpt tmp;
192 	int err;
193 	/* Validate setting the breakpoint and then removing it.  If the
194 	 * remove fails, the kernel needs to emit a bad message because we
195 	 * are deep trouble not being able to put things back the way we
196 	 * found them.
197 	 */
198 	tmp.bpt_addr = addr;
199 	err = kgdb_arch_set_breakpoint(&tmp);
200 	if (err)
201 		return err;
202 	err = kgdb_arch_remove_breakpoint(&tmp);
203 	if (err)
204 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
205 		       addr);
206 	return err;
207 }
208 
209 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
210 {
211 	return instruction_pointer(regs);
212 }
213 
214 int __weak kgdb_arch_init(void)
215 {
216 	return 0;
217 }
218 
219 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
220 {
221 	return 0;
222 }
223 
224 #ifdef CONFIG_SMP
225 
226 /*
227  * Default (weak) implementation for kgdb_roundup_cpus
228  */
229 
230 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
231 
232 void __weak kgdb_call_nmi_hook(void *ignored)
233 {
234 	/*
235 	 * NOTE: get_irq_regs() is supposed to get the registers from
236 	 * before the IPI interrupt happened and so is supposed to
237 	 * show where the processor was.  In some situations it's
238 	 * possible we might be called without an IPI, so it might be
239 	 * safer to figure out how to make kgdb_breakpoint() work
240 	 * properly here.
241 	 */
242 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
243 }
244 
245 void __weak kgdb_roundup_cpus(void)
246 {
247 	call_single_data_t *csd;
248 	int this_cpu = raw_smp_processor_id();
249 	int cpu;
250 	int ret;
251 
252 	for_each_online_cpu(cpu) {
253 		/* No need to roundup ourselves */
254 		if (cpu == this_cpu)
255 			continue;
256 
257 		csd = &per_cpu(kgdb_roundup_csd, cpu);
258 
259 		/*
260 		 * If it didn't round up last time, don't try again
261 		 * since smp_call_function_single_async() will block.
262 		 *
263 		 * If rounding_up is false then we know that the
264 		 * previous call must have at least started and that
265 		 * means smp_call_function_single_async() won't block.
266 		 */
267 		if (kgdb_info[cpu].rounding_up)
268 			continue;
269 		kgdb_info[cpu].rounding_up = true;
270 
271 		csd->func = kgdb_call_nmi_hook;
272 		ret = smp_call_function_single_async(cpu, csd);
273 		if (ret)
274 			kgdb_info[cpu].rounding_up = false;
275 	}
276 }
277 
278 #endif
279 
280 /*
281  * Some architectures need cache flushes when we set/clear a
282  * breakpoint:
283  */
284 static void kgdb_flush_swbreak_addr(unsigned long addr)
285 {
286 	if (!CACHE_FLUSH_IS_SAFE)
287 		return;
288 
289 	if (current->mm) {
290 		int i;
291 
292 		for (i = 0; i < VMACACHE_SIZE; i++) {
293 			if (!current->vmacache.vmas[i])
294 				continue;
295 			flush_cache_range(current->vmacache.vmas[i],
296 					  addr, addr + BREAK_INSTR_SIZE);
297 		}
298 	}
299 
300 	/* Force flush instruction cache if it was outside the mm */
301 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
302 }
303 
304 /*
305  * SW breakpoint management:
306  */
307 int dbg_activate_sw_breakpoints(void)
308 {
309 	int error;
310 	int ret = 0;
311 	int i;
312 
313 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
314 		if (kgdb_break[i].state != BP_SET)
315 			continue;
316 
317 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
318 		if (error) {
319 			ret = error;
320 			pr_info("BP install failed: %lx\n",
321 				kgdb_break[i].bpt_addr);
322 			continue;
323 		}
324 
325 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
326 		kgdb_break[i].state = BP_ACTIVE;
327 	}
328 	return ret;
329 }
330 
331 int dbg_set_sw_break(unsigned long addr)
332 {
333 	int err = kgdb_validate_break_address(addr);
334 	int breakno = -1;
335 	int i;
336 
337 	if (err)
338 		return err;
339 
340 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
341 		if ((kgdb_break[i].state == BP_SET) &&
342 					(kgdb_break[i].bpt_addr == addr))
343 			return -EEXIST;
344 	}
345 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
346 		if (kgdb_break[i].state == BP_REMOVED &&
347 					kgdb_break[i].bpt_addr == addr) {
348 			breakno = i;
349 			break;
350 		}
351 	}
352 
353 	if (breakno == -1) {
354 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
355 			if (kgdb_break[i].state == BP_UNDEFINED) {
356 				breakno = i;
357 				break;
358 			}
359 		}
360 	}
361 
362 	if (breakno == -1)
363 		return -E2BIG;
364 
365 	kgdb_break[breakno].state = BP_SET;
366 	kgdb_break[breakno].type = BP_BREAKPOINT;
367 	kgdb_break[breakno].bpt_addr = addr;
368 
369 	return 0;
370 }
371 
372 int dbg_deactivate_sw_breakpoints(void)
373 {
374 	int error;
375 	int ret = 0;
376 	int i;
377 
378 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
379 		if (kgdb_break[i].state != BP_ACTIVE)
380 			continue;
381 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
382 		if (error) {
383 			pr_info("BP remove failed: %lx\n",
384 				kgdb_break[i].bpt_addr);
385 			ret = error;
386 		}
387 
388 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
389 		kgdb_break[i].state = BP_SET;
390 	}
391 	return ret;
392 }
393 
394 int dbg_remove_sw_break(unsigned long addr)
395 {
396 	int i;
397 
398 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
399 		if ((kgdb_break[i].state == BP_SET) &&
400 				(kgdb_break[i].bpt_addr == addr)) {
401 			kgdb_break[i].state = BP_REMOVED;
402 			return 0;
403 		}
404 	}
405 	return -ENOENT;
406 }
407 
408 int kgdb_isremovedbreak(unsigned long addr)
409 {
410 	int i;
411 
412 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
413 		if ((kgdb_break[i].state == BP_REMOVED) &&
414 					(kgdb_break[i].bpt_addr == addr))
415 			return 1;
416 	}
417 	return 0;
418 }
419 
420 int dbg_remove_all_break(void)
421 {
422 	int error;
423 	int i;
424 
425 	/* Clear memory breakpoints. */
426 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
427 		if (kgdb_break[i].state != BP_ACTIVE)
428 			goto setundefined;
429 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
430 		if (error)
431 			pr_err("breakpoint remove failed: %lx\n",
432 			       kgdb_break[i].bpt_addr);
433 setundefined:
434 		kgdb_break[i].state = BP_UNDEFINED;
435 	}
436 
437 	/* Clear hardware breakpoints. */
438 	if (arch_kgdb_ops.remove_all_hw_break)
439 		arch_kgdb_ops.remove_all_hw_break();
440 
441 	return 0;
442 }
443 
444 #ifdef CONFIG_KGDB_KDB
445 void kdb_dump_stack_on_cpu(int cpu)
446 {
447 	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
448 		dump_stack();
449 		return;
450 	}
451 
452 	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
453 		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
454 			   cpu);
455 		return;
456 	}
457 
458 	/*
459 	 * In general, architectures don't support dumping the stack of a
460 	 * "running" process that's not the current one.  From the point of
461 	 * view of the Linux, kernel processes that are looping in the kgdb
462 	 * slave loop are still "running".  There's also no API (that actually
463 	 * works across all architectures) that can do a stack crawl based
464 	 * on registers passed as a parameter.
465 	 *
466 	 * Solve this conundrum by asking slave CPUs to do the backtrace
467 	 * themselves.
468 	 */
469 	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
470 	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
471 		cpu_relax();
472 }
473 #endif
474 
475 /*
476  * Return true if there is a valid kgdb I/O module.  Also if no
477  * debugger is attached a message can be printed to the console about
478  * waiting for the debugger to attach.
479  *
480  * The print_wait argument is only to be true when called from inside
481  * the core kgdb_handle_exception, because it will wait for the
482  * debugger to attach.
483  */
484 static int kgdb_io_ready(int print_wait)
485 {
486 	if (!dbg_io_ops)
487 		return 0;
488 	if (kgdb_connected)
489 		return 1;
490 	if (atomic_read(&kgdb_setting_breakpoint))
491 		return 1;
492 	if (print_wait) {
493 #ifdef CONFIG_KGDB_KDB
494 		if (!dbg_kdb_mode)
495 			pr_crit("waiting... or $3#33 for KDB\n");
496 #else
497 		pr_crit("Waiting for remote debugger\n");
498 #endif
499 	}
500 	return 1;
501 }
502 
503 static int kgdb_reenter_check(struct kgdb_state *ks)
504 {
505 	unsigned long addr;
506 
507 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
508 		return 0;
509 
510 	/* Panic on recursive debugger calls: */
511 	exception_level++;
512 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
513 	dbg_deactivate_sw_breakpoints();
514 
515 	/*
516 	 * If the break point removed ok at the place exception
517 	 * occurred, try to recover and print a warning to the end
518 	 * user because the user planted a breakpoint in a place that
519 	 * KGDB needs in order to function.
520 	 */
521 	if (dbg_remove_sw_break(addr) == 0) {
522 		exception_level = 0;
523 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
524 		dbg_activate_sw_breakpoints();
525 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
526 		WARN_ON_ONCE(1);
527 
528 		return 1;
529 	}
530 	dbg_remove_all_break();
531 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
532 
533 	if (exception_level > 1) {
534 		dump_stack();
535 		panic("Recursive entry to debugger");
536 	}
537 
538 	pr_crit("re-enter exception: ALL breakpoints killed\n");
539 #ifdef CONFIG_KGDB_KDB
540 	/* Allow kdb to debug itself one level */
541 	return 0;
542 #endif
543 	dump_stack();
544 	panic("Recursive entry to debugger");
545 
546 	return 1;
547 }
548 
549 static void dbg_touch_watchdogs(void)
550 {
551 	touch_softlockup_watchdog_sync();
552 	clocksource_touch_watchdog();
553 	rcu_cpu_stall_reset();
554 }
555 
556 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
557 		int exception_state)
558 {
559 	unsigned long flags;
560 	int sstep_tries = 100;
561 	int error;
562 	int cpu;
563 	int trace_on = 0;
564 	int online_cpus = num_online_cpus();
565 	u64 time_left;
566 
567 	kgdb_info[ks->cpu].enter_kgdb++;
568 	kgdb_info[ks->cpu].exception_state |= exception_state;
569 
570 	if (exception_state == DCPU_WANT_MASTER)
571 		atomic_inc(&masters_in_kgdb);
572 	else
573 		atomic_inc(&slaves_in_kgdb);
574 
575 	if (arch_kgdb_ops.disable_hw_break)
576 		arch_kgdb_ops.disable_hw_break(regs);
577 
578 acquirelock:
579 	/*
580 	 * Interrupts will be restored by the 'trap return' code, except when
581 	 * single stepping.
582 	 */
583 	local_irq_save(flags);
584 
585 	cpu = ks->cpu;
586 	kgdb_info[cpu].debuggerinfo = regs;
587 	kgdb_info[cpu].task = current;
588 	kgdb_info[cpu].ret_state = 0;
589 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
590 
591 	/* Make sure the above info reaches the primary CPU */
592 	smp_mb();
593 
594 	if (exception_level == 1) {
595 		if (raw_spin_trylock(&dbg_master_lock))
596 			atomic_xchg(&kgdb_active, cpu);
597 		goto cpu_master_loop;
598 	}
599 
600 	/*
601 	 * CPU will loop if it is a slave or request to become a kgdb
602 	 * master cpu and acquire the kgdb_active lock:
603 	 */
604 	while (1) {
605 cpu_loop:
606 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
607 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
608 			goto cpu_master_loop;
609 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
610 			if (raw_spin_trylock(&dbg_master_lock)) {
611 				atomic_xchg(&kgdb_active, cpu);
612 				break;
613 			}
614 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
615 			dump_stack();
616 			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
617 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
618 			if (!raw_spin_is_locked(&dbg_slave_lock))
619 				goto return_normal;
620 		} else {
621 return_normal:
622 			/* Return to normal operation by executing any
623 			 * hw breakpoint fixup.
624 			 */
625 			if (arch_kgdb_ops.correct_hw_break)
626 				arch_kgdb_ops.correct_hw_break();
627 			if (trace_on)
628 				tracing_on();
629 			kgdb_info[cpu].debuggerinfo = NULL;
630 			kgdb_info[cpu].task = NULL;
631 			kgdb_info[cpu].exception_state &=
632 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
633 			kgdb_info[cpu].enter_kgdb--;
634 			smp_mb__before_atomic();
635 			atomic_dec(&slaves_in_kgdb);
636 			dbg_touch_watchdogs();
637 			local_irq_restore(flags);
638 			return 0;
639 		}
640 		cpu_relax();
641 	}
642 
643 	/*
644 	 * For single stepping, try to only enter on the processor
645 	 * that was single stepping.  To guard against a deadlock, the
646 	 * kernel will only try for the value of sstep_tries before
647 	 * giving up and continuing on.
648 	 */
649 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
650 	    (kgdb_info[cpu].task &&
651 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
652 		atomic_set(&kgdb_active, -1);
653 		raw_spin_unlock(&dbg_master_lock);
654 		dbg_touch_watchdogs();
655 		local_irq_restore(flags);
656 
657 		goto acquirelock;
658 	}
659 
660 	if (!kgdb_io_ready(1)) {
661 		kgdb_info[cpu].ret_state = 1;
662 		goto kgdb_restore; /* No I/O connection, resume the system */
663 	}
664 
665 	/*
666 	 * Don't enter if we have hit a removed breakpoint.
667 	 */
668 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
669 		goto kgdb_restore;
670 
671 	/* Call the I/O driver's pre_exception routine */
672 	if (dbg_io_ops->pre_exception)
673 		dbg_io_ops->pre_exception();
674 
675 	/*
676 	 * Get the passive CPU lock which will hold all the non-primary
677 	 * CPU in a spin state while the debugger is active
678 	 */
679 	if (!kgdb_single_step)
680 		raw_spin_lock(&dbg_slave_lock);
681 
682 #ifdef CONFIG_SMP
683 	/* If send_ready set, slaves are already waiting */
684 	if (ks->send_ready)
685 		atomic_set(ks->send_ready, 1);
686 
687 	/* Signal the other CPUs to enter kgdb_wait() */
688 	else if ((!kgdb_single_step) && kgdb_do_roundup)
689 		kgdb_roundup_cpus();
690 #endif
691 
692 	/*
693 	 * Wait for the other CPUs to be notified and be waiting for us:
694 	 */
695 	time_left = MSEC_PER_SEC;
696 	while (kgdb_do_roundup && --time_left &&
697 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
698 		   online_cpus)
699 		udelay(1000);
700 	if (!time_left)
701 		pr_crit("Timed out waiting for secondary CPUs.\n");
702 
703 	/*
704 	 * At this point the primary processor is completely
705 	 * in the debugger and all secondary CPUs are quiescent
706 	 */
707 	dbg_deactivate_sw_breakpoints();
708 	kgdb_single_step = 0;
709 	kgdb_contthread = current;
710 	exception_level = 0;
711 	trace_on = tracing_is_on();
712 	if (trace_on)
713 		tracing_off();
714 
715 	while (1) {
716 cpu_master_loop:
717 		if (dbg_kdb_mode) {
718 			kgdb_connected = 1;
719 			error = kdb_stub(ks);
720 			if (error == -1)
721 				continue;
722 			kgdb_connected = 0;
723 		} else {
724 			error = gdb_serial_stub(ks);
725 		}
726 
727 		if (error == DBG_PASS_EVENT) {
728 			dbg_kdb_mode = !dbg_kdb_mode;
729 		} else if (error == DBG_SWITCH_CPU_EVENT) {
730 			kgdb_info[dbg_switch_cpu].exception_state |=
731 				DCPU_NEXT_MASTER;
732 			goto cpu_loop;
733 		} else {
734 			kgdb_info[cpu].ret_state = error;
735 			break;
736 		}
737 	}
738 
739 	/* Call the I/O driver's post_exception routine */
740 	if (dbg_io_ops->post_exception)
741 		dbg_io_ops->post_exception();
742 
743 	if (!kgdb_single_step) {
744 		raw_spin_unlock(&dbg_slave_lock);
745 		/* Wait till all the CPUs have quit from the debugger. */
746 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
747 			cpu_relax();
748 	}
749 
750 kgdb_restore:
751 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
752 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
753 		if (kgdb_info[sstep_cpu].task)
754 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
755 		else
756 			kgdb_sstep_pid = 0;
757 	}
758 	if (arch_kgdb_ops.correct_hw_break)
759 		arch_kgdb_ops.correct_hw_break();
760 	if (trace_on)
761 		tracing_on();
762 
763 	kgdb_info[cpu].debuggerinfo = NULL;
764 	kgdb_info[cpu].task = NULL;
765 	kgdb_info[cpu].exception_state &=
766 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
767 	kgdb_info[cpu].enter_kgdb--;
768 	smp_mb__before_atomic();
769 	atomic_dec(&masters_in_kgdb);
770 	/* Free kgdb_active */
771 	atomic_set(&kgdb_active, -1);
772 	raw_spin_unlock(&dbg_master_lock);
773 	dbg_touch_watchdogs();
774 	local_irq_restore(flags);
775 
776 	return kgdb_info[cpu].ret_state;
777 }
778 
779 /*
780  * kgdb_handle_exception() - main entry point from a kernel exception
781  *
782  * Locking hierarchy:
783  *	interface locks, if any (begin_session)
784  *	kgdb lock (kgdb_active)
785  */
786 int
787 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
788 {
789 	struct kgdb_state kgdb_var;
790 	struct kgdb_state *ks = &kgdb_var;
791 	int ret = 0;
792 
793 	if (arch_kgdb_ops.enable_nmi)
794 		arch_kgdb_ops.enable_nmi(0);
795 	/*
796 	 * Avoid entering the debugger if we were triggered due to an oops
797 	 * but panic_timeout indicates the system should automatically
798 	 * reboot on panic. We don't want to get stuck waiting for input
799 	 * on such systems, especially if its "just" an oops.
800 	 */
801 	if (signo != SIGTRAP && panic_timeout)
802 		return 1;
803 
804 	memset(ks, 0, sizeof(struct kgdb_state));
805 	ks->cpu			= raw_smp_processor_id();
806 	ks->ex_vector		= evector;
807 	ks->signo		= signo;
808 	ks->err_code		= ecode;
809 	ks->linux_regs		= regs;
810 
811 	if (kgdb_reenter_check(ks))
812 		goto out; /* Ouch, double exception ! */
813 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
814 		goto out;
815 
816 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
817 out:
818 	if (arch_kgdb_ops.enable_nmi)
819 		arch_kgdb_ops.enable_nmi(1);
820 	return ret;
821 }
822 
823 /*
824  * GDB places a breakpoint at this function to know dynamically loaded objects.
825  */
826 static int module_event(struct notifier_block *self, unsigned long val,
827 	void *data)
828 {
829 	return 0;
830 }
831 
832 static struct notifier_block dbg_module_load_nb = {
833 	.notifier_call	= module_event,
834 };
835 
836 int kgdb_nmicallback(int cpu, void *regs)
837 {
838 #ifdef CONFIG_SMP
839 	struct kgdb_state kgdb_var;
840 	struct kgdb_state *ks = &kgdb_var;
841 
842 	kgdb_info[cpu].rounding_up = false;
843 
844 	memset(ks, 0, sizeof(struct kgdb_state));
845 	ks->cpu			= cpu;
846 	ks->linux_regs		= regs;
847 
848 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
849 			raw_spin_is_locked(&dbg_master_lock)) {
850 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
851 		return 0;
852 	}
853 #endif
854 	return 1;
855 }
856 
857 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
858 							atomic_t *send_ready)
859 {
860 #ifdef CONFIG_SMP
861 	if (!kgdb_io_ready(0) || !send_ready)
862 		return 1;
863 
864 	if (kgdb_info[cpu].enter_kgdb == 0) {
865 		struct kgdb_state kgdb_var;
866 		struct kgdb_state *ks = &kgdb_var;
867 
868 		memset(ks, 0, sizeof(struct kgdb_state));
869 		ks->cpu			= cpu;
870 		ks->ex_vector		= trapnr;
871 		ks->signo		= SIGTRAP;
872 		ks->err_code		= err_code;
873 		ks->linux_regs		= regs;
874 		ks->send_ready		= send_ready;
875 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
876 		return 0;
877 	}
878 #endif
879 	return 1;
880 }
881 
882 static void kgdb_console_write(struct console *co, const char *s,
883    unsigned count)
884 {
885 	unsigned long flags;
886 
887 	/* If we're debugging, or KGDB has not connected, don't try
888 	 * and print. */
889 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
890 		return;
891 
892 	local_irq_save(flags);
893 	gdbstub_msg_write(s, count);
894 	local_irq_restore(flags);
895 }
896 
897 static struct console kgdbcons = {
898 	.name		= "kgdb",
899 	.write		= kgdb_console_write,
900 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
901 	.index		= -1,
902 };
903 
904 #ifdef CONFIG_MAGIC_SYSRQ
905 static void sysrq_handle_dbg(int key)
906 {
907 	if (!dbg_io_ops) {
908 		pr_crit("ERROR: No KGDB I/O module available\n");
909 		return;
910 	}
911 	if (!kgdb_connected) {
912 #ifdef CONFIG_KGDB_KDB
913 		if (!dbg_kdb_mode)
914 			pr_crit("KGDB or $3#33 for KDB\n");
915 #else
916 		pr_crit("Entering KGDB\n");
917 #endif
918 	}
919 
920 	kgdb_breakpoint();
921 }
922 
923 static struct sysrq_key_op sysrq_dbg_op = {
924 	.handler	= sysrq_handle_dbg,
925 	.help_msg	= "debug(g)",
926 	.action_msg	= "DEBUG",
927 };
928 #endif
929 
930 void kgdb_panic(const char *msg)
931 {
932 	if (!kgdb_io_module_registered)
933 		return;
934 
935 	/*
936 	 * We don't want to get stuck waiting for input from user if
937 	 * "panic_timeout" indicates the system should automatically
938 	 * reboot on panic.
939 	 */
940 	if (panic_timeout)
941 		return;
942 
943 	if (dbg_kdb_mode)
944 		kdb_printf("PANIC: %s\n", msg);
945 
946 	kgdb_breakpoint();
947 }
948 
949 void __weak kgdb_arch_late(void)
950 {
951 }
952 
953 void __init dbg_late_init(void)
954 {
955 	dbg_is_early = false;
956 	if (kgdb_io_module_registered)
957 		kgdb_arch_late();
958 	kdb_init(KDB_INIT_FULL);
959 }
960 
961 static int
962 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
963 {
964 	/*
965 	 * Take the following action on reboot notify depending on value:
966 	 *    1 == Enter debugger
967 	 *    0 == [the default] detatch debug client
968 	 *   -1 == Do nothing... and use this until the board resets
969 	 */
970 	switch (kgdbreboot) {
971 	case 1:
972 		kgdb_breakpoint();
973 	case -1:
974 		goto done;
975 	}
976 	if (!dbg_kdb_mode)
977 		gdbstub_exit(code);
978 done:
979 	return NOTIFY_DONE;
980 }
981 
982 static struct notifier_block dbg_reboot_notifier = {
983 	.notifier_call		= dbg_notify_reboot,
984 	.next			= NULL,
985 	.priority		= INT_MAX,
986 };
987 
988 static void kgdb_register_callbacks(void)
989 {
990 	if (!kgdb_io_module_registered) {
991 		kgdb_io_module_registered = 1;
992 		kgdb_arch_init();
993 		if (!dbg_is_early)
994 			kgdb_arch_late();
995 		register_module_notifier(&dbg_module_load_nb);
996 		register_reboot_notifier(&dbg_reboot_notifier);
997 #ifdef CONFIG_MAGIC_SYSRQ
998 		register_sysrq_key('g', &sysrq_dbg_op);
999 #endif
1000 		if (kgdb_use_con && !kgdb_con_registered) {
1001 			register_console(&kgdbcons);
1002 			kgdb_con_registered = 1;
1003 		}
1004 	}
1005 }
1006 
1007 static void kgdb_unregister_callbacks(void)
1008 {
1009 	/*
1010 	 * When this routine is called KGDB should unregister from
1011 	 * handlers and clean up, making sure it is not handling any
1012 	 * break exceptions at the time.
1013 	 */
1014 	if (kgdb_io_module_registered) {
1015 		kgdb_io_module_registered = 0;
1016 		unregister_reboot_notifier(&dbg_reboot_notifier);
1017 		unregister_module_notifier(&dbg_module_load_nb);
1018 		kgdb_arch_exit();
1019 #ifdef CONFIG_MAGIC_SYSRQ
1020 		unregister_sysrq_key('g', &sysrq_dbg_op);
1021 #endif
1022 		if (kgdb_con_registered) {
1023 			unregister_console(&kgdbcons);
1024 			kgdb_con_registered = 0;
1025 		}
1026 	}
1027 }
1028 
1029 /*
1030  * There are times a tasklet needs to be used vs a compiled in
1031  * break point so as to cause an exception outside a kgdb I/O module,
1032  * such as is the case with kgdboe, where calling a breakpoint in the
1033  * I/O driver itself would be fatal.
1034  */
1035 static void kgdb_tasklet_bpt(unsigned long ing)
1036 {
1037 	kgdb_breakpoint();
1038 	atomic_set(&kgdb_break_tasklet_var, 0);
1039 }
1040 
1041 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0);
1042 
1043 void kgdb_schedule_breakpoint(void)
1044 {
1045 	if (atomic_read(&kgdb_break_tasklet_var) ||
1046 		atomic_read(&kgdb_active) != -1 ||
1047 		atomic_read(&kgdb_setting_breakpoint))
1048 		return;
1049 	atomic_inc(&kgdb_break_tasklet_var);
1050 	tasklet_schedule(&kgdb_tasklet_breakpoint);
1051 }
1052 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1053 
1054 static void kgdb_initial_breakpoint(void)
1055 {
1056 	kgdb_break_asap = 0;
1057 
1058 	pr_crit("Waiting for connection from remote gdb...\n");
1059 	kgdb_breakpoint();
1060 }
1061 
1062 /**
1063  *	kgdb_register_io_module - register KGDB IO module
1064  *	@new_dbg_io_ops: the io ops vector
1065  *
1066  *	Register it with the KGDB core.
1067  */
1068 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1069 {
1070 	int err;
1071 
1072 	spin_lock(&kgdb_registration_lock);
1073 
1074 	if (dbg_io_ops) {
1075 		spin_unlock(&kgdb_registration_lock);
1076 
1077 		pr_err("Another I/O driver is already registered with KGDB\n");
1078 		return -EBUSY;
1079 	}
1080 
1081 	if (new_dbg_io_ops->init) {
1082 		err = new_dbg_io_ops->init();
1083 		if (err) {
1084 			spin_unlock(&kgdb_registration_lock);
1085 			return err;
1086 		}
1087 	}
1088 
1089 	dbg_io_ops = new_dbg_io_ops;
1090 
1091 	spin_unlock(&kgdb_registration_lock);
1092 
1093 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1094 
1095 	/* Arm KGDB now. */
1096 	kgdb_register_callbacks();
1097 
1098 	if (kgdb_break_asap)
1099 		kgdb_initial_breakpoint();
1100 
1101 	return 0;
1102 }
1103 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1104 
1105 /**
1106  *	kkgdb_unregister_io_module - unregister KGDB IO module
1107  *	@old_dbg_io_ops: the io ops vector
1108  *
1109  *	Unregister it with the KGDB core.
1110  */
1111 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1112 {
1113 	BUG_ON(kgdb_connected);
1114 
1115 	/*
1116 	 * KGDB is no longer able to communicate out, so
1117 	 * unregister our callbacks and reset state.
1118 	 */
1119 	kgdb_unregister_callbacks();
1120 
1121 	spin_lock(&kgdb_registration_lock);
1122 
1123 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1124 	dbg_io_ops = NULL;
1125 
1126 	spin_unlock(&kgdb_registration_lock);
1127 
1128 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1129 		old_dbg_io_ops->name);
1130 }
1131 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1132 
1133 int dbg_io_get_char(void)
1134 {
1135 	int ret = dbg_io_ops->read_char();
1136 	if (ret == NO_POLL_CHAR)
1137 		return -1;
1138 	if (!dbg_kdb_mode)
1139 		return ret;
1140 	if (ret == 127)
1141 		return 8;
1142 	return ret;
1143 }
1144 
1145 /**
1146  * kgdb_breakpoint - generate breakpoint exception
1147  *
1148  * This function will generate a breakpoint exception.  It is used at the
1149  * beginning of a program to sync up with a debugger and can be used
1150  * otherwise as a quick means to stop program execution and "break" into
1151  * the debugger.
1152  */
1153 noinline void kgdb_breakpoint(void)
1154 {
1155 	atomic_inc(&kgdb_setting_breakpoint);
1156 	wmb(); /* Sync point before breakpoint */
1157 	arch_kgdb_breakpoint();
1158 	wmb(); /* Sync point after breakpoint */
1159 	atomic_dec(&kgdb_setting_breakpoint);
1160 }
1161 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1162 
1163 static int __init opt_kgdb_wait(char *str)
1164 {
1165 	kgdb_break_asap = 1;
1166 
1167 	kdb_init(KDB_INIT_EARLY);
1168 	if (kgdb_io_module_registered)
1169 		kgdb_initial_breakpoint();
1170 
1171 	return 0;
1172 }
1173 
1174 early_param("kgdbwait", opt_kgdb_wait);
1175