xref: /openbmc/linux/kernel/debug/debug_core.c (revision 8730046c)
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
10  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( jason.wessel@windriver.com )
18  *  George Anzinger <george@mvista.com>
19  *  Anurekh Saxena (anurekh.saxena@timesys.com)
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <dave@gcom.com>,
24  * Tigran Aivazian <tigran@sco.com>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 
31 #define pr_fmt(fmt) "KGDB: " fmt
32 
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/pid.h>
53 #include <linux/smp.h>
54 #include <linux/mm.h>
55 #include <linux/vmacache.h>
56 #include <linux/rcupdate.h>
57 
58 #include <asm/cacheflush.h>
59 #include <asm/byteorder.h>
60 #include <linux/atomic.h>
61 
62 #include "debug_core.h"
63 
64 static int kgdb_break_asap;
65 
66 struct debuggerinfo_struct kgdb_info[NR_CPUS];
67 
68 /**
69  * kgdb_connected - Is a host GDB connected to us?
70  */
71 int				kgdb_connected;
72 EXPORT_SYMBOL_GPL(kgdb_connected);
73 
74 /* All the KGDB handlers are installed */
75 int			kgdb_io_module_registered;
76 
77 /* Guard for recursive entry */
78 static int			exception_level;
79 
80 struct kgdb_io		*dbg_io_ops;
81 static DEFINE_SPINLOCK(kgdb_registration_lock);
82 
83 /* Action for the reboot notifiter, a global allow kdb to change it */
84 static int kgdbreboot;
85 /* kgdb console driver is loaded */
86 static int kgdb_con_registered;
87 /* determine if kgdb console output should be used */
88 static int kgdb_use_con;
89 /* Flag for alternate operations for early debugging */
90 bool dbg_is_early = true;
91 /* Next cpu to become the master debug core */
92 int dbg_switch_cpu;
93 
94 /* Use kdb or gdbserver mode */
95 int dbg_kdb_mode = 1;
96 
97 static int __init opt_kgdb_con(char *str)
98 {
99 	kgdb_use_con = 1;
100 	return 0;
101 }
102 
103 early_param("kgdbcon", opt_kgdb_con);
104 
105 module_param(kgdb_use_con, int, 0644);
106 module_param(kgdbreboot, int, 0644);
107 
108 /*
109  * Holds information about breakpoints in a kernel. These breakpoints are
110  * added and removed by gdb.
111  */
112 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
113 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
114 };
115 
116 /*
117  * The CPU# of the active CPU, or -1 if none:
118  */
119 atomic_t			kgdb_active = ATOMIC_INIT(-1);
120 EXPORT_SYMBOL_GPL(kgdb_active);
121 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
122 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
123 
124 /*
125  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
126  * bootup code (which might not have percpu set up yet):
127  */
128 static atomic_t			masters_in_kgdb;
129 static atomic_t			slaves_in_kgdb;
130 static atomic_t			kgdb_break_tasklet_var;
131 atomic_t			kgdb_setting_breakpoint;
132 
133 struct task_struct		*kgdb_usethread;
134 struct task_struct		*kgdb_contthread;
135 
136 int				kgdb_single_step;
137 static pid_t			kgdb_sstep_pid;
138 
139 /* to keep track of the CPU which is doing the single stepping*/
140 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
141 
142 /*
143  * If you are debugging a problem where roundup (the collection of
144  * all other CPUs) is a problem [this should be extremely rare],
145  * then use the nokgdbroundup option to avoid roundup. In that case
146  * the other CPUs might interfere with your debugging context, so
147  * use this with care:
148  */
149 static int kgdb_do_roundup = 1;
150 
151 static int __init opt_nokgdbroundup(char *str)
152 {
153 	kgdb_do_roundup = 0;
154 
155 	return 0;
156 }
157 
158 early_param("nokgdbroundup", opt_nokgdbroundup);
159 
160 /*
161  * Finally, some KGDB code :-)
162  */
163 
164 /*
165  * Weak aliases for breakpoint management,
166  * can be overriden by architectures when needed:
167  */
168 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
169 {
170 	int err;
171 
172 	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
173 				BREAK_INSTR_SIZE);
174 	if (err)
175 		return err;
176 	err = probe_kernel_write((char *)bpt->bpt_addr,
177 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
178 	return err;
179 }
180 
181 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
182 {
183 	return probe_kernel_write((char *)bpt->bpt_addr,
184 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
185 }
186 
187 int __weak kgdb_validate_break_address(unsigned long addr)
188 {
189 	struct kgdb_bkpt tmp;
190 	int err;
191 	/* Validate setting the breakpoint and then removing it.  If the
192 	 * remove fails, the kernel needs to emit a bad message because we
193 	 * are deep trouble not being able to put things back the way we
194 	 * found them.
195 	 */
196 	tmp.bpt_addr = addr;
197 	err = kgdb_arch_set_breakpoint(&tmp);
198 	if (err)
199 		return err;
200 	err = kgdb_arch_remove_breakpoint(&tmp);
201 	if (err)
202 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
203 		       addr);
204 	return err;
205 }
206 
207 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
208 {
209 	return instruction_pointer(regs);
210 }
211 
212 int __weak kgdb_arch_init(void)
213 {
214 	return 0;
215 }
216 
217 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
218 {
219 	return 0;
220 }
221 
222 /*
223  * Some architectures need cache flushes when we set/clear a
224  * breakpoint:
225  */
226 static void kgdb_flush_swbreak_addr(unsigned long addr)
227 {
228 	if (!CACHE_FLUSH_IS_SAFE)
229 		return;
230 
231 	if (current->mm) {
232 		int i;
233 
234 		for (i = 0; i < VMACACHE_SIZE; i++) {
235 			if (!current->vmacache[i])
236 				continue;
237 			flush_cache_range(current->vmacache[i],
238 					  addr, addr + BREAK_INSTR_SIZE);
239 		}
240 	}
241 
242 	/* Force flush instruction cache if it was outside the mm */
243 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
244 }
245 
246 /*
247  * SW breakpoint management:
248  */
249 int dbg_activate_sw_breakpoints(void)
250 {
251 	int error;
252 	int ret = 0;
253 	int i;
254 
255 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
256 		if (kgdb_break[i].state != BP_SET)
257 			continue;
258 
259 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
260 		if (error) {
261 			ret = error;
262 			pr_info("BP install failed: %lx\n",
263 				kgdb_break[i].bpt_addr);
264 			continue;
265 		}
266 
267 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
268 		kgdb_break[i].state = BP_ACTIVE;
269 	}
270 	return ret;
271 }
272 
273 int dbg_set_sw_break(unsigned long addr)
274 {
275 	int err = kgdb_validate_break_address(addr);
276 	int breakno = -1;
277 	int i;
278 
279 	if (err)
280 		return err;
281 
282 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
283 		if ((kgdb_break[i].state == BP_SET) &&
284 					(kgdb_break[i].bpt_addr == addr))
285 			return -EEXIST;
286 	}
287 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
288 		if (kgdb_break[i].state == BP_REMOVED &&
289 					kgdb_break[i].bpt_addr == addr) {
290 			breakno = i;
291 			break;
292 		}
293 	}
294 
295 	if (breakno == -1) {
296 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
297 			if (kgdb_break[i].state == BP_UNDEFINED) {
298 				breakno = i;
299 				break;
300 			}
301 		}
302 	}
303 
304 	if (breakno == -1)
305 		return -E2BIG;
306 
307 	kgdb_break[breakno].state = BP_SET;
308 	kgdb_break[breakno].type = BP_BREAKPOINT;
309 	kgdb_break[breakno].bpt_addr = addr;
310 
311 	return 0;
312 }
313 
314 int dbg_deactivate_sw_breakpoints(void)
315 {
316 	int error;
317 	int ret = 0;
318 	int i;
319 
320 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
321 		if (kgdb_break[i].state != BP_ACTIVE)
322 			continue;
323 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
324 		if (error) {
325 			pr_info("BP remove failed: %lx\n",
326 				kgdb_break[i].bpt_addr);
327 			ret = error;
328 		}
329 
330 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
331 		kgdb_break[i].state = BP_SET;
332 	}
333 	return ret;
334 }
335 
336 int dbg_remove_sw_break(unsigned long addr)
337 {
338 	int i;
339 
340 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
341 		if ((kgdb_break[i].state == BP_SET) &&
342 				(kgdb_break[i].bpt_addr == addr)) {
343 			kgdb_break[i].state = BP_REMOVED;
344 			return 0;
345 		}
346 	}
347 	return -ENOENT;
348 }
349 
350 int kgdb_isremovedbreak(unsigned long addr)
351 {
352 	int i;
353 
354 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
355 		if ((kgdb_break[i].state == BP_REMOVED) &&
356 					(kgdb_break[i].bpt_addr == addr))
357 			return 1;
358 	}
359 	return 0;
360 }
361 
362 int dbg_remove_all_break(void)
363 {
364 	int error;
365 	int i;
366 
367 	/* Clear memory breakpoints. */
368 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
369 		if (kgdb_break[i].state != BP_ACTIVE)
370 			goto setundefined;
371 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
372 		if (error)
373 			pr_err("breakpoint remove failed: %lx\n",
374 			       kgdb_break[i].bpt_addr);
375 setundefined:
376 		kgdb_break[i].state = BP_UNDEFINED;
377 	}
378 
379 	/* Clear hardware breakpoints. */
380 	if (arch_kgdb_ops.remove_all_hw_break)
381 		arch_kgdb_ops.remove_all_hw_break();
382 
383 	return 0;
384 }
385 
386 /*
387  * Return true if there is a valid kgdb I/O module.  Also if no
388  * debugger is attached a message can be printed to the console about
389  * waiting for the debugger to attach.
390  *
391  * The print_wait argument is only to be true when called from inside
392  * the core kgdb_handle_exception, because it will wait for the
393  * debugger to attach.
394  */
395 static int kgdb_io_ready(int print_wait)
396 {
397 	if (!dbg_io_ops)
398 		return 0;
399 	if (kgdb_connected)
400 		return 1;
401 	if (atomic_read(&kgdb_setting_breakpoint))
402 		return 1;
403 	if (print_wait) {
404 #ifdef CONFIG_KGDB_KDB
405 		if (!dbg_kdb_mode)
406 			pr_crit("waiting... or $3#33 for KDB\n");
407 #else
408 		pr_crit("Waiting for remote debugger\n");
409 #endif
410 	}
411 	return 1;
412 }
413 
414 static int kgdb_reenter_check(struct kgdb_state *ks)
415 {
416 	unsigned long addr;
417 
418 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
419 		return 0;
420 
421 	/* Panic on recursive debugger calls: */
422 	exception_level++;
423 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
424 	dbg_deactivate_sw_breakpoints();
425 
426 	/*
427 	 * If the break point removed ok at the place exception
428 	 * occurred, try to recover and print a warning to the end
429 	 * user because the user planted a breakpoint in a place that
430 	 * KGDB needs in order to function.
431 	 */
432 	if (dbg_remove_sw_break(addr) == 0) {
433 		exception_level = 0;
434 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
435 		dbg_activate_sw_breakpoints();
436 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
437 		WARN_ON_ONCE(1);
438 
439 		return 1;
440 	}
441 	dbg_remove_all_break();
442 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
443 
444 	if (exception_level > 1) {
445 		dump_stack();
446 		panic("Recursive entry to debugger");
447 	}
448 
449 	pr_crit("re-enter exception: ALL breakpoints killed\n");
450 #ifdef CONFIG_KGDB_KDB
451 	/* Allow kdb to debug itself one level */
452 	return 0;
453 #endif
454 	dump_stack();
455 	panic("Recursive entry to debugger");
456 
457 	return 1;
458 }
459 
460 static void dbg_touch_watchdogs(void)
461 {
462 	touch_softlockup_watchdog_sync();
463 	clocksource_touch_watchdog();
464 	rcu_cpu_stall_reset();
465 }
466 
467 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
468 		int exception_state)
469 {
470 	unsigned long flags;
471 	int sstep_tries = 100;
472 	int error;
473 	int cpu;
474 	int trace_on = 0;
475 	int online_cpus = num_online_cpus();
476 	u64 time_left;
477 
478 	kgdb_info[ks->cpu].enter_kgdb++;
479 	kgdb_info[ks->cpu].exception_state |= exception_state;
480 
481 	if (exception_state == DCPU_WANT_MASTER)
482 		atomic_inc(&masters_in_kgdb);
483 	else
484 		atomic_inc(&slaves_in_kgdb);
485 
486 	if (arch_kgdb_ops.disable_hw_break)
487 		arch_kgdb_ops.disable_hw_break(regs);
488 
489 acquirelock:
490 	/*
491 	 * Interrupts will be restored by the 'trap return' code, except when
492 	 * single stepping.
493 	 */
494 	local_irq_save(flags);
495 
496 	cpu = ks->cpu;
497 	kgdb_info[cpu].debuggerinfo = regs;
498 	kgdb_info[cpu].task = current;
499 	kgdb_info[cpu].ret_state = 0;
500 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
501 
502 	/* Make sure the above info reaches the primary CPU */
503 	smp_mb();
504 
505 	if (exception_level == 1) {
506 		if (raw_spin_trylock(&dbg_master_lock))
507 			atomic_xchg(&kgdb_active, cpu);
508 		goto cpu_master_loop;
509 	}
510 
511 	/*
512 	 * CPU will loop if it is a slave or request to become a kgdb
513 	 * master cpu and acquire the kgdb_active lock:
514 	 */
515 	while (1) {
516 cpu_loop:
517 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
518 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
519 			goto cpu_master_loop;
520 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
521 			if (raw_spin_trylock(&dbg_master_lock)) {
522 				atomic_xchg(&kgdb_active, cpu);
523 				break;
524 			}
525 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
526 			if (!raw_spin_is_locked(&dbg_slave_lock))
527 				goto return_normal;
528 		} else {
529 return_normal:
530 			/* Return to normal operation by executing any
531 			 * hw breakpoint fixup.
532 			 */
533 			if (arch_kgdb_ops.correct_hw_break)
534 				arch_kgdb_ops.correct_hw_break();
535 			if (trace_on)
536 				tracing_on();
537 			kgdb_info[cpu].exception_state &=
538 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
539 			kgdb_info[cpu].enter_kgdb--;
540 			smp_mb__before_atomic();
541 			atomic_dec(&slaves_in_kgdb);
542 			dbg_touch_watchdogs();
543 			local_irq_restore(flags);
544 			return 0;
545 		}
546 		cpu_relax();
547 	}
548 
549 	/*
550 	 * For single stepping, try to only enter on the processor
551 	 * that was single stepping.  To guard against a deadlock, the
552 	 * kernel will only try for the value of sstep_tries before
553 	 * giving up and continuing on.
554 	 */
555 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
556 	    (kgdb_info[cpu].task &&
557 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
558 		atomic_set(&kgdb_active, -1);
559 		raw_spin_unlock(&dbg_master_lock);
560 		dbg_touch_watchdogs();
561 		local_irq_restore(flags);
562 
563 		goto acquirelock;
564 	}
565 
566 	if (!kgdb_io_ready(1)) {
567 		kgdb_info[cpu].ret_state = 1;
568 		goto kgdb_restore; /* No I/O connection, resume the system */
569 	}
570 
571 	/*
572 	 * Don't enter if we have hit a removed breakpoint.
573 	 */
574 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
575 		goto kgdb_restore;
576 
577 	/* Call the I/O driver's pre_exception routine */
578 	if (dbg_io_ops->pre_exception)
579 		dbg_io_ops->pre_exception();
580 
581 	/*
582 	 * Get the passive CPU lock which will hold all the non-primary
583 	 * CPU in a spin state while the debugger is active
584 	 */
585 	if (!kgdb_single_step)
586 		raw_spin_lock(&dbg_slave_lock);
587 
588 #ifdef CONFIG_SMP
589 	/* If send_ready set, slaves are already waiting */
590 	if (ks->send_ready)
591 		atomic_set(ks->send_ready, 1);
592 
593 	/* Signal the other CPUs to enter kgdb_wait() */
594 	else if ((!kgdb_single_step) && kgdb_do_roundup)
595 		kgdb_roundup_cpus(flags);
596 #endif
597 
598 	/*
599 	 * Wait for the other CPUs to be notified and be waiting for us:
600 	 */
601 	time_left = MSEC_PER_SEC;
602 	while (kgdb_do_roundup && --time_left &&
603 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
604 		   online_cpus)
605 		udelay(1000);
606 	if (!time_left)
607 		pr_crit("Timed out waiting for secondary CPUs.\n");
608 
609 	/*
610 	 * At this point the primary processor is completely
611 	 * in the debugger and all secondary CPUs are quiescent
612 	 */
613 	dbg_deactivate_sw_breakpoints();
614 	kgdb_single_step = 0;
615 	kgdb_contthread = current;
616 	exception_level = 0;
617 	trace_on = tracing_is_on();
618 	if (trace_on)
619 		tracing_off();
620 
621 	while (1) {
622 cpu_master_loop:
623 		if (dbg_kdb_mode) {
624 			kgdb_connected = 1;
625 			error = kdb_stub(ks);
626 			if (error == -1)
627 				continue;
628 			kgdb_connected = 0;
629 		} else {
630 			error = gdb_serial_stub(ks);
631 		}
632 
633 		if (error == DBG_PASS_EVENT) {
634 			dbg_kdb_mode = !dbg_kdb_mode;
635 		} else if (error == DBG_SWITCH_CPU_EVENT) {
636 			kgdb_info[dbg_switch_cpu].exception_state |=
637 				DCPU_NEXT_MASTER;
638 			goto cpu_loop;
639 		} else {
640 			kgdb_info[cpu].ret_state = error;
641 			break;
642 		}
643 	}
644 
645 	/* Call the I/O driver's post_exception routine */
646 	if (dbg_io_ops->post_exception)
647 		dbg_io_ops->post_exception();
648 
649 	if (!kgdb_single_step) {
650 		raw_spin_unlock(&dbg_slave_lock);
651 		/* Wait till all the CPUs have quit from the debugger. */
652 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
653 			cpu_relax();
654 	}
655 
656 kgdb_restore:
657 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
658 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
659 		if (kgdb_info[sstep_cpu].task)
660 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
661 		else
662 			kgdb_sstep_pid = 0;
663 	}
664 	if (arch_kgdb_ops.correct_hw_break)
665 		arch_kgdb_ops.correct_hw_break();
666 	if (trace_on)
667 		tracing_on();
668 
669 	kgdb_info[cpu].exception_state &=
670 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
671 	kgdb_info[cpu].enter_kgdb--;
672 	smp_mb__before_atomic();
673 	atomic_dec(&masters_in_kgdb);
674 	/* Free kgdb_active */
675 	atomic_set(&kgdb_active, -1);
676 	raw_spin_unlock(&dbg_master_lock);
677 	dbg_touch_watchdogs();
678 	local_irq_restore(flags);
679 
680 	return kgdb_info[cpu].ret_state;
681 }
682 
683 /*
684  * kgdb_handle_exception() - main entry point from a kernel exception
685  *
686  * Locking hierarchy:
687  *	interface locks, if any (begin_session)
688  *	kgdb lock (kgdb_active)
689  */
690 int
691 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
692 {
693 	struct kgdb_state kgdb_var;
694 	struct kgdb_state *ks = &kgdb_var;
695 	int ret = 0;
696 
697 	if (arch_kgdb_ops.enable_nmi)
698 		arch_kgdb_ops.enable_nmi(0);
699 	/*
700 	 * Avoid entering the debugger if we were triggered due to an oops
701 	 * but panic_timeout indicates the system should automatically
702 	 * reboot on panic. We don't want to get stuck waiting for input
703 	 * on such systems, especially if its "just" an oops.
704 	 */
705 	if (signo != SIGTRAP && panic_timeout)
706 		return 1;
707 
708 	memset(ks, 0, sizeof(struct kgdb_state));
709 	ks->cpu			= raw_smp_processor_id();
710 	ks->ex_vector		= evector;
711 	ks->signo		= signo;
712 	ks->err_code		= ecode;
713 	ks->linux_regs		= regs;
714 
715 	if (kgdb_reenter_check(ks))
716 		goto out; /* Ouch, double exception ! */
717 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
718 		goto out;
719 
720 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
721 out:
722 	if (arch_kgdb_ops.enable_nmi)
723 		arch_kgdb_ops.enable_nmi(1);
724 	return ret;
725 }
726 
727 /*
728  * GDB places a breakpoint at this function to know dynamically
729  * loaded objects. It's not defined static so that only one instance with this
730  * name exists in the kernel.
731  */
732 
733 static int module_event(struct notifier_block *self, unsigned long val,
734 	void *data)
735 {
736 	return 0;
737 }
738 
739 static struct notifier_block dbg_module_load_nb = {
740 	.notifier_call	= module_event,
741 };
742 
743 int kgdb_nmicallback(int cpu, void *regs)
744 {
745 #ifdef CONFIG_SMP
746 	struct kgdb_state kgdb_var;
747 	struct kgdb_state *ks = &kgdb_var;
748 
749 	memset(ks, 0, sizeof(struct kgdb_state));
750 	ks->cpu			= cpu;
751 	ks->linux_regs		= regs;
752 
753 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
754 			raw_spin_is_locked(&dbg_master_lock)) {
755 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
756 		return 0;
757 	}
758 #endif
759 	return 1;
760 }
761 
762 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
763 							atomic_t *send_ready)
764 {
765 #ifdef CONFIG_SMP
766 	if (!kgdb_io_ready(0) || !send_ready)
767 		return 1;
768 
769 	if (kgdb_info[cpu].enter_kgdb == 0) {
770 		struct kgdb_state kgdb_var;
771 		struct kgdb_state *ks = &kgdb_var;
772 
773 		memset(ks, 0, sizeof(struct kgdb_state));
774 		ks->cpu			= cpu;
775 		ks->ex_vector		= trapnr;
776 		ks->signo		= SIGTRAP;
777 		ks->err_code		= err_code;
778 		ks->linux_regs		= regs;
779 		ks->send_ready		= send_ready;
780 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
781 		return 0;
782 	}
783 #endif
784 	return 1;
785 }
786 
787 static void kgdb_console_write(struct console *co, const char *s,
788    unsigned count)
789 {
790 	unsigned long flags;
791 
792 	/* If we're debugging, or KGDB has not connected, don't try
793 	 * and print. */
794 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
795 		return;
796 
797 	local_irq_save(flags);
798 	gdbstub_msg_write(s, count);
799 	local_irq_restore(flags);
800 }
801 
802 static struct console kgdbcons = {
803 	.name		= "kgdb",
804 	.write		= kgdb_console_write,
805 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
806 	.index		= -1,
807 };
808 
809 #ifdef CONFIG_MAGIC_SYSRQ
810 static void sysrq_handle_dbg(int key)
811 {
812 	if (!dbg_io_ops) {
813 		pr_crit("ERROR: No KGDB I/O module available\n");
814 		return;
815 	}
816 	if (!kgdb_connected) {
817 #ifdef CONFIG_KGDB_KDB
818 		if (!dbg_kdb_mode)
819 			pr_crit("KGDB or $3#33 for KDB\n");
820 #else
821 		pr_crit("Entering KGDB\n");
822 #endif
823 	}
824 
825 	kgdb_breakpoint();
826 }
827 
828 static struct sysrq_key_op sysrq_dbg_op = {
829 	.handler	= sysrq_handle_dbg,
830 	.help_msg	= "debug(g)",
831 	.action_msg	= "DEBUG",
832 };
833 #endif
834 
835 static int kgdb_panic_event(struct notifier_block *self,
836 			    unsigned long val,
837 			    void *data)
838 {
839 	/*
840 	 * Avoid entering the debugger if we were triggered due to a panic
841 	 * We don't want to get stuck waiting for input from user in such case.
842 	 * panic_timeout indicates the system should automatically
843 	 * reboot on panic.
844 	 */
845 	if (panic_timeout)
846 		return NOTIFY_DONE;
847 
848 	if (dbg_kdb_mode)
849 		kdb_printf("PANIC: %s\n", (char *)data);
850 	kgdb_breakpoint();
851 	return NOTIFY_DONE;
852 }
853 
854 static struct notifier_block kgdb_panic_event_nb = {
855        .notifier_call	= kgdb_panic_event,
856        .priority	= INT_MAX,
857 };
858 
859 void __weak kgdb_arch_late(void)
860 {
861 }
862 
863 void __init dbg_late_init(void)
864 {
865 	dbg_is_early = false;
866 	if (kgdb_io_module_registered)
867 		kgdb_arch_late();
868 	kdb_init(KDB_INIT_FULL);
869 }
870 
871 static int
872 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
873 {
874 	/*
875 	 * Take the following action on reboot notify depending on value:
876 	 *    1 == Enter debugger
877 	 *    0 == [the default] detatch debug client
878 	 *   -1 == Do nothing... and use this until the board resets
879 	 */
880 	switch (kgdbreboot) {
881 	case 1:
882 		kgdb_breakpoint();
883 	case -1:
884 		goto done;
885 	}
886 	if (!dbg_kdb_mode)
887 		gdbstub_exit(code);
888 done:
889 	return NOTIFY_DONE;
890 }
891 
892 static struct notifier_block dbg_reboot_notifier = {
893 	.notifier_call		= dbg_notify_reboot,
894 	.next			= NULL,
895 	.priority		= INT_MAX,
896 };
897 
898 static void kgdb_register_callbacks(void)
899 {
900 	if (!kgdb_io_module_registered) {
901 		kgdb_io_module_registered = 1;
902 		kgdb_arch_init();
903 		if (!dbg_is_early)
904 			kgdb_arch_late();
905 		register_module_notifier(&dbg_module_load_nb);
906 		register_reboot_notifier(&dbg_reboot_notifier);
907 		atomic_notifier_chain_register(&panic_notifier_list,
908 					       &kgdb_panic_event_nb);
909 #ifdef CONFIG_MAGIC_SYSRQ
910 		register_sysrq_key('g', &sysrq_dbg_op);
911 #endif
912 		if (kgdb_use_con && !kgdb_con_registered) {
913 			register_console(&kgdbcons);
914 			kgdb_con_registered = 1;
915 		}
916 	}
917 }
918 
919 static void kgdb_unregister_callbacks(void)
920 {
921 	/*
922 	 * When this routine is called KGDB should unregister from the
923 	 * panic handler and clean up, making sure it is not handling any
924 	 * break exceptions at the time.
925 	 */
926 	if (kgdb_io_module_registered) {
927 		kgdb_io_module_registered = 0;
928 		unregister_reboot_notifier(&dbg_reboot_notifier);
929 		unregister_module_notifier(&dbg_module_load_nb);
930 		atomic_notifier_chain_unregister(&panic_notifier_list,
931 					       &kgdb_panic_event_nb);
932 		kgdb_arch_exit();
933 #ifdef CONFIG_MAGIC_SYSRQ
934 		unregister_sysrq_key('g', &sysrq_dbg_op);
935 #endif
936 		if (kgdb_con_registered) {
937 			unregister_console(&kgdbcons);
938 			kgdb_con_registered = 0;
939 		}
940 	}
941 }
942 
943 /*
944  * There are times a tasklet needs to be used vs a compiled in
945  * break point so as to cause an exception outside a kgdb I/O module,
946  * such as is the case with kgdboe, where calling a breakpoint in the
947  * I/O driver itself would be fatal.
948  */
949 static void kgdb_tasklet_bpt(unsigned long ing)
950 {
951 	kgdb_breakpoint();
952 	atomic_set(&kgdb_break_tasklet_var, 0);
953 }
954 
955 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0);
956 
957 void kgdb_schedule_breakpoint(void)
958 {
959 	if (atomic_read(&kgdb_break_tasklet_var) ||
960 		atomic_read(&kgdb_active) != -1 ||
961 		atomic_read(&kgdb_setting_breakpoint))
962 		return;
963 	atomic_inc(&kgdb_break_tasklet_var);
964 	tasklet_schedule(&kgdb_tasklet_breakpoint);
965 }
966 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
967 
968 static void kgdb_initial_breakpoint(void)
969 {
970 	kgdb_break_asap = 0;
971 
972 	pr_crit("Waiting for connection from remote gdb...\n");
973 	kgdb_breakpoint();
974 }
975 
976 /**
977  *	kgdb_register_io_module - register KGDB IO module
978  *	@new_dbg_io_ops: the io ops vector
979  *
980  *	Register it with the KGDB core.
981  */
982 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
983 {
984 	int err;
985 
986 	spin_lock(&kgdb_registration_lock);
987 
988 	if (dbg_io_ops) {
989 		spin_unlock(&kgdb_registration_lock);
990 
991 		pr_err("Another I/O driver is already registered with KGDB\n");
992 		return -EBUSY;
993 	}
994 
995 	if (new_dbg_io_ops->init) {
996 		err = new_dbg_io_ops->init();
997 		if (err) {
998 			spin_unlock(&kgdb_registration_lock);
999 			return err;
1000 		}
1001 	}
1002 
1003 	dbg_io_ops = new_dbg_io_ops;
1004 
1005 	spin_unlock(&kgdb_registration_lock);
1006 
1007 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1008 
1009 	/* Arm KGDB now. */
1010 	kgdb_register_callbacks();
1011 
1012 	if (kgdb_break_asap)
1013 		kgdb_initial_breakpoint();
1014 
1015 	return 0;
1016 }
1017 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1018 
1019 /**
1020  *	kkgdb_unregister_io_module - unregister KGDB IO module
1021  *	@old_dbg_io_ops: the io ops vector
1022  *
1023  *	Unregister it with the KGDB core.
1024  */
1025 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1026 {
1027 	BUG_ON(kgdb_connected);
1028 
1029 	/*
1030 	 * KGDB is no longer able to communicate out, so
1031 	 * unregister our callbacks and reset state.
1032 	 */
1033 	kgdb_unregister_callbacks();
1034 
1035 	spin_lock(&kgdb_registration_lock);
1036 
1037 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1038 	dbg_io_ops = NULL;
1039 
1040 	spin_unlock(&kgdb_registration_lock);
1041 
1042 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1043 		old_dbg_io_ops->name);
1044 }
1045 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1046 
1047 int dbg_io_get_char(void)
1048 {
1049 	int ret = dbg_io_ops->read_char();
1050 	if (ret == NO_POLL_CHAR)
1051 		return -1;
1052 	if (!dbg_kdb_mode)
1053 		return ret;
1054 	if (ret == 127)
1055 		return 8;
1056 	return ret;
1057 }
1058 
1059 /**
1060  * kgdb_breakpoint - generate breakpoint exception
1061  *
1062  * This function will generate a breakpoint exception.  It is used at the
1063  * beginning of a program to sync up with a debugger and can be used
1064  * otherwise as a quick means to stop program execution and "break" into
1065  * the debugger.
1066  */
1067 noinline void kgdb_breakpoint(void)
1068 {
1069 	atomic_inc(&kgdb_setting_breakpoint);
1070 	wmb(); /* Sync point before breakpoint */
1071 	arch_kgdb_breakpoint();
1072 	wmb(); /* Sync point after breakpoint */
1073 	atomic_dec(&kgdb_setting_breakpoint);
1074 }
1075 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1076 
1077 static int __init opt_kgdb_wait(char *str)
1078 {
1079 	kgdb_break_asap = 1;
1080 
1081 	kdb_init(KDB_INIT_EARLY);
1082 	if (kgdb_io_module_registered)
1083 		kgdb_initial_breakpoint();
1084 
1085 	return 0;
1086 }
1087 
1088 early_param("kgdbwait", opt_kgdb_wait);
1089