xref: /openbmc/linux/kernel/debug/debug_core.c (revision 83bf6fb8b076c72fe42e7d0fab5a5c98b5e2a11a)
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
10  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( jason.wessel@windriver.com )
18  *  George Anzinger <george@mvista.com>
19  *  Anurekh Saxena (anurekh.saxena@timesys.com)
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <dave@gcom.com>,
24  * Tigran Aivazian <tigran@sco.com>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 
31 #define pr_fmt(fmt) "KGDB: " fmt
32 
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
59 
60 #include <asm/cacheflush.h>
61 #include <asm/byteorder.h>
62 #include <linux/atomic.h>
63 
64 #include "debug_core.h"
65 
66 static int kgdb_break_asap;
67 
68 struct debuggerinfo_struct kgdb_info[NR_CPUS];
69 
70 /* kgdb_connected - Is a host GDB connected to us? */
71 int				kgdb_connected;
72 EXPORT_SYMBOL_GPL(kgdb_connected);
73 
74 /* All the KGDB handlers are installed */
75 int			kgdb_io_module_registered;
76 
77 /* Guard for recursive entry */
78 static int			exception_level;
79 
80 struct kgdb_io		*dbg_io_ops;
81 static DEFINE_SPINLOCK(kgdb_registration_lock);
82 
83 /* Action for the reboot notifier, a global allow kdb to change it */
84 static int kgdbreboot;
85 /* kgdb console driver is loaded */
86 static int kgdb_con_registered;
87 /* determine if kgdb console output should be used */
88 static int kgdb_use_con;
89 /* Flag for alternate operations for early debugging */
90 bool dbg_is_early = true;
91 /* Next cpu to become the master debug core */
92 int dbg_switch_cpu;
93 
94 /* Use kdb or gdbserver mode */
95 int dbg_kdb_mode = 1;
96 
97 module_param(kgdb_use_con, int, 0644);
98 module_param(kgdbreboot, int, 0644);
99 
100 /*
101  * Holds information about breakpoints in a kernel. These breakpoints are
102  * added and removed by gdb.
103  */
104 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
105 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
106 };
107 
108 /*
109  * The CPU# of the active CPU, or -1 if none:
110  */
111 atomic_t			kgdb_active = ATOMIC_INIT(-1);
112 EXPORT_SYMBOL_GPL(kgdb_active);
113 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
114 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
115 
116 /*
117  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
118  * bootup code (which might not have percpu set up yet):
119  */
120 static atomic_t			masters_in_kgdb;
121 static atomic_t			slaves_in_kgdb;
122 atomic_t			kgdb_setting_breakpoint;
123 
124 struct task_struct		*kgdb_usethread;
125 struct task_struct		*kgdb_contthread;
126 
127 int				kgdb_single_step;
128 static pid_t			kgdb_sstep_pid;
129 
130 /* to keep track of the CPU which is doing the single stepping*/
131 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
132 
133 /*
134  * If you are debugging a problem where roundup (the collection of
135  * all other CPUs) is a problem [this should be extremely rare],
136  * then use the nokgdbroundup option to avoid roundup. In that case
137  * the other CPUs might interfere with your debugging context, so
138  * use this with care:
139  */
140 static int kgdb_do_roundup = 1;
141 
142 static int __init opt_nokgdbroundup(char *str)
143 {
144 	kgdb_do_roundup = 0;
145 
146 	return 0;
147 }
148 
149 early_param("nokgdbroundup", opt_nokgdbroundup);
150 
151 /*
152  * Finally, some KGDB code :-)
153  */
154 
155 /*
156  * Weak aliases for breakpoint management,
157  * can be overridden by architectures when needed:
158  */
159 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
160 {
161 	int err;
162 
163 	err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
164 				BREAK_INSTR_SIZE);
165 	if (err)
166 		return err;
167 	err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
168 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
169 	return err;
170 }
171 NOKPROBE_SYMBOL(kgdb_arch_set_breakpoint);
172 
173 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
174 {
175 	return copy_to_kernel_nofault((char *)bpt->bpt_addr,
176 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
177 }
178 NOKPROBE_SYMBOL(kgdb_arch_remove_breakpoint);
179 
180 int __weak kgdb_validate_break_address(unsigned long addr)
181 {
182 	struct kgdb_bkpt tmp;
183 	int err;
184 
185 	if (kgdb_within_blocklist(addr))
186 		return -EINVAL;
187 
188 	/* Validate setting the breakpoint and then removing it.  If the
189 	 * remove fails, the kernel needs to emit a bad message because we
190 	 * are deep trouble not being able to put things back the way we
191 	 * found them.
192 	 */
193 	tmp.bpt_addr = addr;
194 	err = kgdb_arch_set_breakpoint(&tmp);
195 	if (err)
196 		return err;
197 	err = kgdb_arch_remove_breakpoint(&tmp);
198 	if (err)
199 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
200 		       addr);
201 	return err;
202 }
203 
204 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
205 {
206 	return instruction_pointer(regs);
207 }
208 NOKPROBE_SYMBOL(kgdb_arch_pc);
209 
210 int __weak kgdb_arch_init(void)
211 {
212 	return 0;
213 }
214 
215 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
216 {
217 	return 0;
218 }
219 NOKPROBE_SYMBOL(kgdb_skipexception);
220 
221 #ifdef CONFIG_SMP
222 
223 /*
224  * Default (weak) implementation for kgdb_roundup_cpus
225  */
226 
227 void __weak kgdb_call_nmi_hook(void *ignored)
228 {
229 	/*
230 	 * NOTE: get_irq_regs() is supposed to get the registers from
231 	 * before the IPI interrupt happened and so is supposed to
232 	 * show where the processor was.  In some situations it's
233 	 * possible we might be called without an IPI, so it might be
234 	 * safer to figure out how to make kgdb_breakpoint() work
235 	 * properly here.
236 	 */
237 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
238 }
239 NOKPROBE_SYMBOL(kgdb_call_nmi_hook);
240 
241 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd) =
242 	CSD_INIT(kgdb_call_nmi_hook, NULL);
243 
244 void __weak kgdb_roundup_cpus(void)
245 {
246 	call_single_data_t *csd;
247 	int this_cpu = raw_smp_processor_id();
248 	int cpu;
249 	int ret;
250 
251 	for_each_online_cpu(cpu) {
252 		/* No need to roundup ourselves */
253 		if (cpu == this_cpu)
254 			continue;
255 
256 		csd = &per_cpu(kgdb_roundup_csd, cpu);
257 
258 		/*
259 		 * If it didn't round up last time, don't try again
260 		 * since smp_call_function_single_async() will block.
261 		 *
262 		 * If rounding_up is false then we know that the
263 		 * previous call must have at least started and that
264 		 * means smp_call_function_single_async() won't block.
265 		 */
266 		if (kgdb_info[cpu].rounding_up)
267 			continue;
268 		kgdb_info[cpu].rounding_up = true;
269 
270 		ret = smp_call_function_single_async(cpu, csd);
271 		if (ret)
272 			kgdb_info[cpu].rounding_up = false;
273 	}
274 }
275 NOKPROBE_SYMBOL(kgdb_roundup_cpus);
276 
277 #endif
278 
279 /*
280  * Some architectures need cache flushes when we set/clear a
281  * breakpoint:
282  */
283 static void kgdb_flush_swbreak_addr(unsigned long addr)
284 {
285 	if (!CACHE_FLUSH_IS_SAFE)
286 		return;
287 
288 	if (current->mm) {
289 		int i;
290 
291 		for (i = 0; i < VMACACHE_SIZE; i++) {
292 			if (!current->vmacache.vmas[i])
293 				continue;
294 			flush_cache_range(current->vmacache.vmas[i],
295 					  addr, addr + BREAK_INSTR_SIZE);
296 		}
297 	}
298 
299 	/* Force flush instruction cache if it was outside the mm */
300 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
301 }
302 NOKPROBE_SYMBOL(kgdb_flush_swbreak_addr);
303 
304 /*
305  * SW breakpoint management:
306  */
307 int dbg_activate_sw_breakpoints(void)
308 {
309 	int error;
310 	int ret = 0;
311 	int i;
312 
313 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
314 		if (kgdb_break[i].state != BP_SET)
315 			continue;
316 
317 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
318 		if (error) {
319 			ret = error;
320 			pr_info("BP install failed: %lx\n",
321 				kgdb_break[i].bpt_addr);
322 			continue;
323 		}
324 
325 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
326 		kgdb_break[i].state = BP_ACTIVE;
327 	}
328 	return ret;
329 }
330 NOKPROBE_SYMBOL(dbg_activate_sw_breakpoints);
331 
332 int dbg_set_sw_break(unsigned long addr)
333 {
334 	int err = kgdb_validate_break_address(addr);
335 	int breakno = -1;
336 	int i;
337 
338 	if (err)
339 		return err;
340 
341 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
342 		if ((kgdb_break[i].state == BP_SET) &&
343 					(kgdb_break[i].bpt_addr == addr))
344 			return -EEXIST;
345 	}
346 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
347 		if (kgdb_break[i].state == BP_REMOVED &&
348 					kgdb_break[i].bpt_addr == addr) {
349 			breakno = i;
350 			break;
351 		}
352 	}
353 
354 	if (breakno == -1) {
355 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
356 			if (kgdb_break[i].state == BP_UNDEFINED) {
357 				breakno = i;
358 				break;
359 			}
360 		}
361 	}
362 
363 	if (breakno == -1)
364 		return -E2BIG;
365 
366 	kgdb_break[breakno].state = BP_SET;
367 	kgdb_break[breakno].type = BP_BREAKPOINT;
368 	kgdb_break[breakno].bpt_addr = addr;
369 
370 	return 0;
371 }
372 
373 int dbg_deactivate_sw_breakpoints(void)
374 {
375 	int error;
376 	int ret = 0;
377 	int i;
378 
379 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
380 		if (kgdb_break[i].state != BP_ACTIVE)
381 			continue;
382 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
383 		if (error) {
384 			pr_info("BP remove failed: %lx\n",
385 				kgdb_break[i].bpt_addr);
386 			ret = error;
387 		}
388 
389 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
390 		kgdb_break[i].state = BP_SET;
391 	}
392 	return ret;
393 }
394 NOKPROBE_SYMBOL(dbg_deactivate_sw_breakpoints);
395 
396 int dbg_remove_sw_break(unsigned long addr)
397 {
398 	int i;
399 
400 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
401 		if ((kgdb_break[i].state == BP_SET) &&
402 				(kgdb_break[i].bpt_addr == addr)) {
403 			kgdb_break[i].state = BP_REMOVED;
404 			return 0;
405 		}
406 	}
407 	return -ENOENT;
408 }
409 
410 int kgdb_isremovedbreak(unsigned long addr)
411 {
412 	int i;
413 
414 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
415 		if ((kgdb_break[i].state == BP_REMOVED) &&
416 					(kgdb_break[i].bpt_addr == addr))
417 			return 1;
418 	}
419 	return 0;
420 }
421 
422 int kgdb_has_hit_break(unsigned long addr)
423 {
424 	int i;
425 
426 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
427 		if (kgdb_break[i].state == BP_ACTIVE &&
428 		    kgdb_break[i].bpt_addr == addr)
429 			return 1;
430 	}
431 	return 0;
432 }
433 
434 int dbg_remove_all_break(void)
435 {
436 	int error;
437 	int i;
438 
439 	/* Clear memory breakpoints. */
440 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
441 		if (kgdb_break[i].state != BP_ACTIVE)
442 			goto setundefined;
443 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
444 		if (error)
445 			pr_err("breakpoint remove failed: %lx\n",
446 			       kgdb_break[i].bpt_addr);
447 setundefined:
448 		kgdb_break[i].state = BP_UNDEFINED;
449 	}
450 
451 	/* Clear hardware breakpoints. */
452 	if (arch_kgdb_ops.remove_all_hw_break)
453 		arch_kgdb_ops.remove_all_hw_break();
454 
455 	return 0;
456 }
457 
458 #ifdef CONFIG_KGDB_KDB
459 void kdb_dump_stack_on_cpu(int cpu)
460 {
461 	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
462 		dump_stack();
463 		return;
464 	}
465 
466 	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
467 		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
468 			   cpu);
469 		return;
470 	}
471 
472 	/*
473 	 * In general, architectures don't support dumping the stack of a
474 	 * "running" process that's not the current one.  From the point of
475 	 * view of the Linux, kernel processes that are looping in the kgdb
476 	 * slave loop are still "running".  There's also no API (that actually
477 	 * works across all architectures) that can do a stack crawl based
478 	 * on registers passed as a parameter.
479 	 *
480 	 * Solve this conundrum by asking slave CPUs to do the backtrace
481 	 * themselves.
482 	 */
483 	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
484 	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
485 		cpu_relax();
486 }
487 #endif
488 
489 /*
490  * Return true if there is a valid kgdb I/O module.  Also if no
491  * debugger is attached a message can be printed to the console about
492  * waiting for the debugger to attach.
493  *
494  * The print_wait argument is only to be true when called from inside
495  * the core kgdb_handle_exception, because it will wait for the
496  * debugger to attach.
497  */
498 static int kgdb_io_ready(int print_wait)
499 {
500 	if (!dbg_io_ops)
501 		return 0;
502 	if (kgdb_connected)
503 		return 1;
504 	if (atomic_read(&kgdb_setting_breakpoint))
505 		return 1;
506 	if (print_wait) {
507 #ifdef CONFIG_KGDB_KDB
508 		if (!dbg_kdb_mode)
509 			pr_crit("waiting... or $3#33 for KDB\n");
510 #else
511 		pr_crit("Waiting for remote debugger\n");
512 #endif
513 	}
514 	return 1;
515 }
516 NOKPROBE_SYMBOL(kgdb_io_ready);
517 
518 static int kgdb_reenter_check(struct kgdb_state *ks)
519 {
520 	unsigned long addr;
521 
522 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
523 		return 0;
524 
525 	/* Panic on recursive debugger calls: */
526 	exception_level++;
527 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
528 	dbg_deactivate_sw_breakpoints();
529 
530 	/*
531 	 * If the break point removed ok at the place exception
532 	 * occurred, try to recover and print a warning to the end
533 	 * user because the user planted a breakpoint in a place that
534 	 * KGDB needs in order to function.
535 	 */
536 	if (dbg_remove_sw_break(addr) == 0) {
537 		exception_level = 0;
538 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
539 		dbg_activate_sw_breakpoints();
540 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
541 		WARN_ON_ONCE(1);
542 
543 		return 1;
544 	}
545 	dbg_remove_all_break();
546 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
547 
548 	if (exception_level > 1) {
549 		dump_stack();
550 		kgdb_io_module_registered = false;
551 		panic("Recursive entry to debugger");
552 	}
553 
554 	pr_crit("re-enter exception: ALL breakpoints killed\n");
555 #ifdef CONFIG_KGDB_KDB
556 	/* Allow kdb to debug itself one level */
557 	return 0;
558 #endif
559 	dump_stack();
560 	panic("Recursive entry to debugger");
561 
562 	return 1;
563 }
564 NOKPROBE_SYMBOL(kgdb_reenter_check);
565 
566 static void dbg_touch_watchdogs(void)
567 {
568 	touch_softlockup_watchdog_sync();
569 	clocksource_touch_watchdog();
570 	rcu_cpu_stall_reset();
571 }
572 NOKPROBE_SYMBOL(dbg_touch_watchdogs);
573 
574 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
575 		int exception_state)
576 {
577 	unsigned long flags;
578 	int sstep_tries = 100;
579 	int error;
580 	int cpu;
581 	int trace_on = 0;
582 	int online_cpus = num_online_cpus();
583 	u64 time_left;
584 
585 	kgdb_info[ks->cpu].enter_kgdb++;
586 	kgdb_info[ks->cpu].exception_state |= exception_state;
587 
588 	if (exception_state == DCPU_WANT_MASTER)
589 		atomic_inc(&masters_in_kgdb);
590 	else
591 		atomic_inc(&slaves_in_kgdb);
592 
593 	if (arch_kgdb_ops.disable_hw_break)
594 		arch_kgdb_ops.disable_hw_break(regs);
595 
596 acquirelock:
597 	rcu_read_lock();
598 	/*
599 	 * Interrupts will be restored by the 'trap return' code, except when
600 	 * single stepping.
601 	 */
602 	local_irq_save(flags);
603 
604 	cpu = ks->cpu;
605 	kgdb_info[cpu].debuggerinfo = regs;
606 	kgdb_info[cpu].task = current;
607 	kgdb_info[cpu].ret_state = 0;
608 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
609 
610 	/* Make sure the above info reaches the primary CPU */
611 	smp_mb();
612 
613 	if (exception_level == 1) {
614 		if (raw_spin_trylock(&dbg_master_lock))
615 			atomic_xchg(&kgdb_active, cpu);
616 		goto cpu_master_loop;
617 	}
618 
619 	/*
620 	 * CPU will loop if it is a slave or request to become a kgdb
621 	 * master cpu and acquire the kgdb_active lock:
622 	 */
623 	while (1) {
624 cpu_loop:
625 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
626 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
627 			goto cpu_master_loop;
628 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
629 			if (raw_spin_trylock(&dbg_master_lock)) {
630 				atomic_xchg(&kgdb_active, cpu);
631 				break;
632 			}
633 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
634 			dump_stack();
635 			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
636 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
637 			if (!raw_spin_is_locked(&dbg_slave_lock))
638 				goto return_normal;
639 		} else {
640 return_normal:
641 			/* Return to normal operation by executing any
642 			 * hw breakpoint fixup.
643 			 */
644 			if (arch_kgdb_ops.correct_hw_break)
645 				arch_kgdb_ops.correct_hw_break();
646 			if (trace_on)
647 				tracing_on();
648 			kgdb_info[cpu].debuggerinfo = NULL;
649 			kgdb_info[cpu].task = NULL;
650 			kgdb_info[cpu].exception_state &=
651 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
652 			kgdb_info[cpu].enter_kgdb--;
653 			smp_mb__before_atomic();
654 			atomic_dec(&slaves_in_kgdb);
655 			dbg_touch_watchdogs();
656 			local_irq_restore(flags);
657 			rcu_read_unlock();
658 			return 0;
659 		}
660 		cpu_relax();
661 	}
662 
663 	/*
664 	 * For single stepping, try to only enter on the processor
665 	 * that was single stepping.  To guard against a deadlock, the
666 	 * kernel will only try for the value of sstep_tries before
667 	 * giving up and continuing on.
668 	 */
669 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
670 	    (kgdb_info[cpu].task &&
671 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
672 		atomic_set(&kgdb_active, -1);
673 		raw_spin_unlock(&dbg_master_lock);
674 		dbg_touch_watchdogs();
675 		local_irq_restore(flags);
676 		rcu_read_unlock();
677 
678 		goto acquirelock;
679 	}
680 
681 	if (!kgdb_io_ready(1)) {
682 		kgdb_info[cpu].ret_state = 1;
683 		goto kgdb_restore; /* No I/O connection, resume the system */
684 	}
685 
686 	/*
687 	 * Don't enter if we have hit a removed breakpoint.
688 	 */
689 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
690 		goto kgdb_restore;
691 
692 	atomic_inc(&ignore_console_lock_warning);
693 
694 	/* Call the I/O driver's pre_exception routine */
695 	if (dbg_io_ops->pre_exception)
696 		dbg_io_ops->pre_exception();
697 
698 	/*
699 	 * Get the passive CPU lock which will hold all the non-primary
700 	 * CPU in a spin state while the debugger is active
701 	 */
702 	if (!kgdb_single_step)
703 		raw_spin_lock(&dbg_slave_lock);
704 
705 #ifdef CONFIG_SMP
706 	/* If send_ready set, slaves are already waiting */
707 	if (ks->send_ready)
708 		atomic_set(ks->send_ready, 1);
709 
710 	/* Signal the other CPUs to enter kgdb_wait() */
711 	else if ((!kgdb_single_step) && kgdb_do_roundup)
712 		kgdb_roundup_cpus();
713 #endif
714 
715 	/*
716 	 * Wait for the other CPUs to be notified and be waiting for us:
717 	 */
718 	time_left = MSEC_PER_SEC;
719 	while (kgdb_do_roundup && --time_left &&
720 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
721 		   online_cpus)
722 		udelay(1000);
723 	if (!time_left)
724 		pr_crit("Timed out waiting for secondary CPUs.\n");
725 
726 	/*
727 	 * At this point the primary processor is completely
728 	 * in the debugger and all secondary CPUs are quiescent
729 	 */
730 	dbg_deactivate_sw_breakpoints();
731 	kgdb_single_step = 0;
732 	kgdb_contthread = current;
733 	exception_level = 0;
734 	trace_on = tracing_is_on();
735 	if (trace_on)
736 		tracing_off();
737 
738 	while (1) {
739 cpu_master_loop:
740 		if (dbg_kdb_mode) {
741 			kgdb_connected = 1;
742 			error = kdb_stub(ks);
743 			if (error == -1)
744 				continue;
745 			kgdb_connected = 0;
746 		} else {
747 			error = gdb_serial_stub(ks);
748 		}
749 
750 		if (error == DBG_PASS_EVENT) {
751 			dbg_kdb_mode = !dbg_kdb_mode;
752 		} else if (error == DBG_SWITCH_CPU_EVENT) {
753 			kgdb_info[dbg_switch_cpu].exception_state |=
754 				DCPU_NEXT_MASTER;
755 			goto cpu_loop;
756 		} else {
757 			kgdb_info[cpu].ret_state = error;
758 			break;
759 		}
760 	}
761 
762 	dbg_activate_sw_breakpoints();
763 
764 	/* Call the I/O driver's post_exception routine */
765 	if (dbg_io_ops->post_exception)
766 		dbg_io_ops->post_exception();
767 
768 	atomic_dec(&ignore_console_lock_warning);
769 
770 	if (!kgdb_single_step) {
771 		raw_spin_unlock(&dbg_slave_lock);
772 		/* Wait till all the CPUs have quit from the debugger. */
773 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
774 			cpu_relax();
775 	}
776 
777 kgdb_restore:
778 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
779 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
780 		if (kgdb_info[sstep_cpu].task)
781 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
782 		else
783 			kgdb_sstep_pid = 0;
784 	}
785 	if (arch_kgdb_ops.correct_hw_break)
786 		arch_kgdb_ops.correct_hw_break();
787 	if (trace_on)
788 		tracing_on();
789 
790 	kgdb_info[cpu].debuggerinfo = NULL;
791 	kgdb_info[cpu].task = NULL;
792 	kgdb_info[cpu].exception_state &=
793 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
794 	kgdb_info[cpu].enter_kgdb--;
795 	smp_mb__before_atomic();
796 	atomic_dec(&masters_in_kgdb);
797 	/* Free kgdb_active */
798 	atomic_set(&kgdb_active, -1);
799 	raw_spin_unlock(&dbg_master_lock);
800 	dbg_touch_watchdogs();
801 	local_irq_restore(flags);
802 	rcu_read_unlock();
803 
804 	return kgdb_info[cpu].ret_state;
805 }
806 NOKPROBE_SYMBOL(kgdb_cpu_enter);
807 
808 /*
809  * kgdb_handle_exception() - main entry point from a kernel exception
810  *
811  * Locking hierarchy:
812  *	interface locks, if any (begin_session)
813  *	kgdb lock (kgdb_active)
814  */
815 int
816 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
817 {
818 	struct kgdb_state kgdb_var;
819 	struct kgdb_state *ks = &kgdb_var;
820 	int ret = 0;
821 
822 	if (arch_kgdb_ops.enable_nmi)
823 		arch_kgdb_ops.enable_nmi(0);
824 	/*
825 	 * Avoid entering the debugger if we were triggered due to an oops
826 	 * but panic_timeout indicates the system should automatically
827 	 * reboot on panic. We don't want to get stuck waiting for input
828 	 * on such systems, especially if its "just" an oops.
829 	 */
830 	if (signo != SIGTRAP && panic_timeout)
831 		return 1;
832 
833 	memset(ks, 0, sizeof(struct kgdb_state));
834 	ks->cpu			= raw_smp_processor_id();
835 	ks->ex_vector		= evector;
836 	ks->signo		= signo;
837 	ks->err_code		= ecode;
838 	ks->linux_regs		= regs;
839 
840 	if (kgdb_reenter_check(ks))
841 		goto out; /* Ouch, double exception ! */
842 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
843 		goto out;
844 
845 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
846 out:
847 	if (arch_kgdb_ops.enable_nmi)
848 		arch_kgdb_ops.enable_nmi(1);
849 	return ret;
850 }
851 NOKPROBE_SYMBOL(kgdb_handle_exception);
852 
853 /*
854  * GDB places a breakpoint at this function to know dynamically loaded objects.
855  */
856 static int module_event(struct notifier_block *self, unsigned long val,
857 	void *data)
858 {
859 	return 0;
860 }
861 
862 static struct notifier_block dbg_module_load_nb = {
863 	.notifier_call	= module_event,
864 };
865 
866 int kgdb_nmicallback(int cpu, void *regs)
867 {
868 #ifdef CONFIG_SMP
869 	struct kgdb_state kgdb_var;
870 	struct kgdb_state *ks = &kgdb_var;
871 
872 	kgdb_info[cpu].rounding_up = false;
873 
874 	memset(ks, 0, sizeof(struct kgdb_state));
875 	ks->cpu			= cpu;
876 	ks->linux_regs		= regs;
877 
878 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
879 			raw_spin_is_locked(&dbg_master_lock)) {
880 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
881 		return 0;
882 	}
883 #endif
884 	return 1;
885 }
886 NOKPROBE_SYMBOL(kgdb_nmicallback);
887 
888 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
889 							atomic_t *send_ready)
890 {
891 #ifdef CONFIG_SMP
892 	if (!kgdb_io_ready(0) || !send_ready)
893 		return 1;
894 
895 	if (kgdb_info[cpu].enter_kgdb == 0) {
896 		struct kgdb_state kgdb_var;
897 		struct kgdb_state *ks = &kgdb_var;
898 
899 		memset(ks, 0, sizeof(struct kgdb_state));
900 		ks->cpu			= cpu;
901 		ks->ex_vector		= trapnr;
902 		ks->signo		= SIGTRAP;
903 		ks->err_code		= err_code;
904 		ks->linux_regs		= regs;
905 		ks->send_ready		= send_ready;
906 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
907 		return 0;
908 	}
909 #endif
910 	return 1;
911 }
912 NOKPROBE_SYMBOL(kgdb_nmicallin);
913 
914 static void kgdb_console_write(struct console *co, const char *s,
915    unsigned count)
916 {
917 	unsigned long flags;
918 
919 	/* If we're debugging, or KGDB has not connected, don't try
920 	 * and print. */
921 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
922 		return;
923 
924 	local_irq_save(flags);
925 	gdbstub_msg_write(s, count);
926 	local_irq_restore(flags);
927 }
928 
929 static struct console kgdbcons = {
930 	.name		= "kgdb",
931 	.write		= kgdb_console_write,
932 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
933 	.index		= -1,
934 };
935 
936 static int __init opt_kgdb_con(char *str)
937 {
938 	kgdb_use_con = 1;
939 
940 	if (kgdb_io_module_registered && !kgdb_con_registered) {
941 		register_console(&kgdbcons);
942 		kgdb_con_registered = 1;
943 	}
944 
945 	return 0;
946 }
947 
948 early_param("kgdbcon", opt_kgdb_con);
949 
950 #ifdef CONFIG_MAGIC_SYSRQ
951 static void sysrq_handle_dbg(int key)
952 {
953 	if (!dbg_io_ops) {
954 		pr_crit("ERROR: No KGDB I/O module available\n");
955 		return;
956 	}
957 	if (!kgdb_connected) {
958 #ifdef CONFIG_KGDB_KDB
959 		if (!dbg_kdb_mode)
960 			pr_crit("KGDB or $3#33 for KDB\n");
961 #else
962 		pr_crit("Entering KGDB\n");
963 #endif
964 	}
965 
966 	kgdb_breakpoint();
967 }
968 
969 static const struct sysrq_key_op sysrq_dbg_op = {
970 	.handler	= sysrq_handle_dbg,
971 	.help_msg	= "debug(g)",
972 	.action_msg	= "DEBUG",
973 };
974 #endif
975 
976 void kgdb_panic(const char *msg)
977 {
978 	if (!kgdb_io_module_registered)
979 		return;
980 
981 	/*
982 	 * We don't want to get stuck waiting for input from user if
983 	 * "panic_timeout" indicates the system should automatically
984 	 * reboot on panic.
985 	 */
986 	if (panic_timeout)
987 		return;
988 
989 	if (dbg_kdb_mode)
990 		kdb_printf("PANIC: %s\n", msg);
991 
992 	kgdb_breakpoint();
993 }
994 
995 static void kgdb_initial_breakpoint(void)
996 {
997 	kgdb_break_asap = 0;
998 
999 	pr_crit("Waiting for connection from remote gdb...\n");
1000 	kgdb_breakpoint();
1001 }
1002 
1003 void __weak kgdb_arch_late(void)
1004 {
1005 }
1006 
1007 void __init dbg_late_init(void)
1008 {
1009 	dbg_is_early = false;
1010 	if (kgdb_io_module_registered)
1011 		kgdb_arch_late();
1012 	kdb_init(KDB_INIT_FULL);
1013 
1014 	if (kgdb_io_module_registered && kgdb_break_asap)
1015 		kgdb_initial_breakpoint();
1016 }
1017 
1018 static int
1019 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
1020 {
1021 	/*
1022 	 * Take the following action on reboot notify depending on value:
1023 	 *    1 == Enter debugger
1024 	 *    0 == [the default] detatch debug client
1025 	 *   -1 == Do nothing... and use this until the board resets
1026 	 */
1027 	switch (kgdbreboot) {
1028 	case 1:
1029 		kgdb_breakpoint();
1030 	case -1:
1031 		goto done;
1032 	}
1033 	if (!dbg_kdb_mode)
1034 		gdbstub_exit(code);
1035 done:
1036 	return NOTIFY_DONE;
1037 }
1038 
1039 static struct notifier_block dbg_reboot_notifier = {
1040 	.notifier_call		= dbg_notify_reboot,
1041 	.next			= NULL,
1042 	.priority		= INT_MAX,
1043 };
1044 
1045 static void kgdb_register_callbacks(void)
1046 {
1047 	if (!kgdb_io_module_registered) {
1048 		kgdb_io_module_registered = 1;
1049 		kgdb_arch_init();
1050 		if (!dbg_is_early)
1051 			kgdb_arch_late();
1052 		register_module_notifier(&dbg_module_load_nb);
1053 		register_reboot_notifier(&dbg_reboot_notifier);
1054 #ifdef CONFIG_MAGIC_SYSRQ
1055 		register_sysrq_key('g', &sysrq_dbg_op);
1056 #endif
1057 		if (kgdb_use_con && !kgdb_con_registered) {
1058 			register_console(&kgdbcons);
1059 			kgdb_con_registered = 1;
1060 		}
1061 	}
1062 }
1063 
1064 static void kgdb_unregister_callbacks(void)
1065 {
1066 	/*
1067 	 * When this routine is called KGDB should unregister from
1068 	 * handlers and clean up, making sure it is not handling any
1069 	 * break exceptions at the time.
1070 	 */
1071 	if (kgdb_io_module_registered) {
1072 		kgdb_io_module_registered = 0;
1073 		unregister_reboot_notifier(&dbg_reboot_notifier);
1074 		unregister_module_notifier(&dbg_module_load_nb);
1075 		kgdb_arch_exit();
1076 #ifdef CONFIG_MAGIC_SYSRQ
1077 		unregister_sysrq_key('g', &sysrq_dbg_op);
1078 #endif
1079 		if (kgdb_con_registered) {
1080 			unregister_console(&kgdbcons);
1081 			kgdb_con_registered = 0;
1082 		}
1083 	}
1084 }
1085 
1086 /**
1087  *	kgdb_register_io_module - register KGDB IO module
1088  *	@new_dbg_io_ops: the io ops vector
1089  *
1090  *	Register it with the KGDB core.
1091  */
1092 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1093 {
1094 	struct kgdb_io *old_dbg_io_ops;
1095 	int err;
1096 
1097 	spin_lock(&kgdb_registration_lock);
1098 
1099 	old_dbg_io_ops = dbg_io_ops;
1100 	if (old_dbg_io_ops) {
1101 		if (!old_dbg_io_ops->deinit) {
1102 			spin_unlock(&kgdb_registration_lock);
1103 
1104 			pr_err("KGDB I/O driver %s can't replace %s.\n",
1105 				new_dbg_io_ops->name, old_dbg_io_ops->name);
1106 			return -EBUSY;
1107 		}
1108 		pr_info("Replacing I/O driver %s with %s\n",
1109 			old_dbg_io_ops->name, new_dbg_io_ops->name);
1110 	}
1111 
1112 	if (new_dbg_io_ops->init) {
1113 		err = new_dbg_io_ops->init();
1114 		if (err) {
1115 			spin_unlock(&kgdb_registration_lock);
1116 			return err;
1117 		}
1118 	}
1119 
1120 	dbg_io_ops = new_dbg_io_ops;
1121 
1122 	spin_unlock(&kgdb_registration_lock);
1123 
1124 	if (old_dbg_io_ops) {
1125 		old_dbg_io_ops->deinit();
1126 		return 0;
1127 	}
1128 
1129 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1130 
1131 	/* Arm KGDB now. */
1132 	kgdb_register_callbacks();
1133 
1134 	if (kgdb_break_asap &&
1135 	    (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1136 		kgdb_initial_breakpoint();
1137 
1138 	return 0;
1139 }
1140 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1141 
1142 /**
1143  *	kgdb_unregister_io_module - unregister KGDB IO module
1144  *	@old_dbg_io_ops: the io ops vector
1145  *
1146  *	Unregister it with the KGDB core.
1147  */
1148 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1149 {
1150 	BUG_ON(kgdb_connected);
1151 
1152 	/*
1153 	 * KGDB is no longer able to communicate out, so
1154 	 * unregister our callbacks and reset state.
1155 	 */
1156 	kgdb_unregister_callbacks();
1157 
1158 	spin_lock(&kgdb_registration_lock);
1159 
1160 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1161 	dbg_io_ops = NULL;
1162 
1163 	spin_unlock(&kgdb_registration_lock);
1164 
1165 	if (old_dbg_io_ops->deinit)
1166 		old_dbg_io_ops->deinit();
1167 
1168 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1169 		old_dbg_io_ops->name);
1170 }
1171 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1172 
1173 int dbg_io_get_char(void)
1174 {
1175 	int ret = dbg_io_ops->read_char();
1176 	if (ret == NO_POLL_CHAR)
1177 		return -1;
1178 	if (!dbg_kdb_mode)
1179 		return ret;
1180 	if (ret == 127)
1181 		return 8;
1182 	return ret;
1183 }
1184 
1185 /**
1186  * kgdb_breakpoint - generate breakpoint exception
1187  *
1188  * This function will generate a breakpoint exception.  It is used at the
1189  * beginning of a program to sync up with a debugger and can be used
1190  * otherwise as a quick means to stop program execution and "break" into
1191  * the debugger.
1192  */
1193 noinline void kgdb_breakpoint(void)
1194 {
1195 	atomic_inc(&kgdb_setting_breakpoint);
1196 	wmb(); /* Sync point before breakpoint */
1197 	arch_kgdb_breakpoint();
1198 	wmb(); /* Sync point after breakpoint */
1199 	atomic_dec(&kgdb_setting_breakpoint);
1200 }
1201 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1202 
1203 static int __init opt_kgdb_wait(char *str)
1204 {
1205 	kgdb_break_asap = 1;
1206 
1207 	kdb_init(KDB_INIT_EARLY);
1208 	if (kgdb_io_module_registered &&
1209 	    IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1210 		kgdb_initial_breakpoint();
1211 
1212 	return 0;
1213 }
1214 
1215 early_param("kgdbwait", opt_kgdb_wait);
1216