xref: /openbmc/linux/kernel/debug/debug_core.c (revision 74be2d3b)
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
10  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( jason.wessel@windriver.com )
18  *  George Anzinger <george@mvista.com>
19  *  Anurekh Saxena (anurekh.saxena@timesys.com)
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <dave@gcom.com>,
24  * Tigran Aivazian <tigran@sco.com>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 
31 #define pr_fmt(fmt) "KGDB: " fmt
32 
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
59 
60 #include <asm/cacheflush.h>
61 #include <asm/byteorder.h>
62 #include <linux/atomic.h>
63 
64 #include "debug_core.h"
65 
66 static int kgdb_break_asap;
67 
68 struct debuggerinfo_struct kgdb_info[NR_CPUS];
69 
70 /* kgdb_connected - Is a host GDB connected to us? */
71 int				kgdb_connected;
72 EXPORT_SYMBOL_GPL(kgdb_connected);
73 
74 /* All the KGDB handlers are installed */
75 int			kgdb_io_module_registered;
76 
77 /* Guard for recursive entry */
78 static int			exception_level;
79 
80 struct kgdb_io		*dbg_io_ops;
81 static DEFINE_SPINLOCK(kgdb_registration_lock);
82 
83 /* Action for the reboot notifiter, a global allow kdb to change it */
84 static int kgdbreboot;
85 /* kgdb console driver is loaded */
86 static int kgdb_con_registered;
87 /* determine if kgdb console output should be used */
88 static int kgdb_use_con;
89 /* Flag for alternate operations for early debugging */
90 bool dbg_is_early = true;
91 /* Next cpu to become the master debug core */
92 int dbg_switch_cpu;
93 
94 /* Use kdb or gdbserver mode */
95 int dbg_kdb_mode = 1;
96 
97 static int __init opt_kgdb_con(char *str)
98 {
99 	kgdb_use_con = 1;
100 	return 0;
101 }
102 
103 early_param("kgdbcon", opt_kgdb_con);
104 
105 module_param(kgdb_use_con, int, 0644);
106 module_param(kgdbreboot, int, 0644);
107 
108 /*
109  * Holds information about breakpoints in a kernel. These breakpoints are
110  * added and removed by gdb.
111  */
112 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
113 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
114 };
115 
116 /*
117  * The CPU# of the active CPU, or -1 if none:
118  */
119 atomic_t			kgdb_active = ATOMIC_INIT(-1);
120 EXPORT_SYMBOL_GPL(kgdb_active);
121 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
122 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
123 
124 /*
125  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
126  * bootup code (which might not have percpu set up yet):
127  */
128 static atomic_t			masters_in_kgdb;
129 static atomic_t			slaves_in_kgdb;
130 static atomic_t			kgdb_break_tasklet_var;
131 atomic_t			kgdb_setting_breakpoint;
132 
133 struct task_struct		*kgdb_usethread;
134 struct task_struct		*kgdb_contthread;
135 
136 int				kgdb_single_step;
137 static pid_t			kgdb_sstep_pid;
138 
139 /* to keep track of the CPU which is doing the single stepping*/
140 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
141 
142 /*
143  * If you are debugging a problem where roundup (the collection of
144  * all other CPUs) is a problem [this should be extremely rare],
145  * then use the nokgdbroundup option to avoid roundup. In that case
146  * the other CPUs might interfere with your debugging context, so
147  * use this with care:
148  */
149 static int kgdb_do_roundup = 1;
150 
151 static int __init opt_nokgdbroundup(char *str)
152 {
153 	kgdb_do_roundup = 0;
154 
155 	return 0;
156 }
157 
158 early_param("nokgdbroundup", opt_nokgdbroundup);
159 
160 /*
161  * Finally, some KGDB code :-)
162  */
163 
164 /*
165  * Weak aliases for breakpoint management,
166  * can be overriden by architectures when needed:
167  */
168 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
169 {
170 	int err;
171 
172 	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
173 				BREAK_INSTR_SIZE);
174 	if (err)
175 		return err;
176 	err = probe_kernel_write((char *)bpt->bpt_addr,
177 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
178 	return err;
179 }
180 
181 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
182 {
183 	return probe_kernel_write((char *)bpt->bpt_addr,
184 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
185 }
186 
187 int __weak kgdb_validate_break_address(unsigned long addr)
188 {
189 	struct kgdb_bkpt tmp;
190 	int err;
191 	/* Validate setting the breakpoint and then removing it.  If the
192 	 * remove fails, the kernel needs to emit a bad message because we
193 	 * are deep trouble not being able to put things back the way we
194 	 * found them.
195 	 */
196 	tmp.bpt_addr = addr;
197 	err = kgdb_arch_set_breakpoint(&tmp);
198 	if (err)
199 		return err;
200 	err = kgdb_arch_remove_breakpoint(&tmp);
201 	if (err)
202 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
203 		       addr);
204 	return err;
205 }
206 
207 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
208 {
209 	return instruction_pointer(regs);
210 }
211 
212 int __weak kgdb_arch_init(void)
213 {
214 	return 0;
215 }
216 
217 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
218 {
219 	return 0;
220 }
221 
222 #ifdef CONFIG_SMP
223 
224 /*
225  * Default (weak) implementation for kgdb_roundup_cpus
226  */
227 
228 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
229 
230 void __weak kgdb_call_nmi_hook(void *ignored)
231 {
232 	/*
233 	 * NOTE: get_irq_regs() is supposed to get the registers from
234 	 * before the IPI interrupt happened and so is supposed to
235 	 * show where the processor was.  In some situations it's
236 	 * possible we might be called without an IPI, so it might be
237 	 * safer to figure out how to make kgdb_breakpoint() work
238 	 * properly here.
239 	 */
240 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
241 }
242 
243 void __weak kgdb_roundup_cpus(void)
244 {
245 	call_single_data_t *csd;
246 	int this_cpu = raw_smp_processor_id();
247 	int cpu;
248 	int ret;
249 
250 	for_each_online_cpu(cpu) {
251 		/* No need to roundup ourselves */
252 		if (cpu == this_cpu)
253 			continue;
254 
255 		csd = &per_cpu(kgdb_roundup_csd, cpu);
256 
257 		/*
258 		 * If it didn't round up last time, don't try again
259 		 * since smp_call_function_single_async() will block.
260 		 *
261 		 * If rounding_up is false then we know that the
262 		 * previous call must have at least started and that
263 		 * means smp_call_function_single_async() won't block.
264 		 */
265 		if (kgdb_info[cpu].rounding_up)
266 			continue;
267 		kgdb_info[cpu].rounding_up = true;
268 
269 		csd->func = kgdb_call_nmi_hook;
270 		ret = smp_call_function_single_async(cpu, csd);
271 		if (ret)
272 			kgdb_info[cpu].rounding_up = false;
273 	}
274 }
275 
276 #endif
277 
278 /*
279  * Some architectures need cache flushes when we set/clear a
280  * breakpoint:
281  */
282 static void kgdb_flush_swbreak_addr(unsigned long addr)
283 {
284 	if (!CACHE_FLUSH_IS_SAFE)
285 		return;
286 
287 	if (current->mm) {
288 		int i;
289 
290 		for (i = 0; i < VMACACHE_SIZE; i++) {
291 			if (!current->vmacache.vmas[i])
292 				continue;
293 			flush_cache_range(current->vmacache.vmas[i],
294 					  addr, addr + BREAK_INSTR_SIZE);
295 		}
296 	}
297 
298 	/* Force flush instruction cache if it was outside the mm */
299 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
300 }
301 
302 /*
303  * SW breakpoint management:
304  */
305 int dbg_activate_sw_breakpoints(void)
306 {
307 	int error;
308 	int ret = 0;
309 	int i;
310 
311 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
312 		if (kgdb_break[i].state != BP_SET)
313 			continue;
314 
315 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
316 		if (error) {
317 			ret = error;
318 			pr_info("BP install failed: %lx\n",
319 				kgdb_break[i].bpt_addr);
320 			continue;
321 		}
322 
323 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
324 		kgdb_break[i].state = BP_ACTIVE;
325 	}
326 	return ret;
327 }
328 
329 int dbg_set_sw_break(unsigned long addr)
330 {
331 	int err = kgdb_validate_break_address(addr);
332 	int breakno = -1;
333 	int i;
334 
335 	if (err)
336 		return err;
337 
338 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
339 		if ((kgdb_break[i].state == BP_SET) &&
340 					(kgdb_break[i].bpt_addr == addr))
341 			return -EEXIST;
342 	}
343 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
344 		if (kgdb_break[i].state == BP_REMOVED &&
345 					kgdb_break[i].bpt_addr == addr) {
346 			breakno = i;
347 			break;
348 		}
349 	}
350 
351 	if (breakno == -1) {
352 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
353 			if (kgdb_break[i].state == BP_UNDEFINED) {
354 				breakno = i;
355 				break;
356 			}
357 		}
358 	}
359 
360 	if (breakno == -1)
361 		return -E2BIG;
362 
363 	kgdb_break[breakno].state = BP_SET;
364 	kgdb_break[breakno].type = BP_BREAKPOINT;
365 	kgdb_break[breakno].bpt_addr = addr;
366 
367 	return 0;
368 }
369 
370 int dbg_deactivate_sw_breakpoints(void)
371 {
372 	int error;
373 	int ret = 0;
374 	int i;
375 
376 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
377 		if (kgdb_break[i].state != BP_ACTIVE)
378 			continue;
379 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
380 		if (error) {
381 			pr_info("BP remove failed: %lx\n",
382 				kgdb_break[i].bpt_addr);
383 			ret = error;
384 		}
385 
386 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
387 		kgdb_break[i].state = BP_SET;
388 	}
389 	return ret;
390 }
391 
392 int dbg_remove_sw_break(unsigned long addr)
393 {
394 	int i;
395 
396 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
397 		if ((kgdb_break[i].state == BP_SET) &&
398 				(kgdb_break[i].bpt_addr == addr)) {
399 			kgdb_break[i].state = BP_REMOVED;
400 			return 0;
401 		}
402 	}
403 	return -ENOENT;
404 }
405 
406 int kgdb_isremovedbreak(unsigned long addr)
407 {
408 	int i;
409 
410 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
411 		if ((kgdb_break[i].state == BP_REMOVED) &&
412 					(kgdb_break[i].bpt_addr == addr))
413 			return 1;
414 	}
415 	return 0;
416 }
417 
418 int kgdb_has_hit_break(unsigned long addr)
419 {
420 	int i;
421 
422 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
423 		if (kgdb_break[i].state == BP_ACTIVE &&
424 		    kgdb_break[i].bpt_addr == addr)
425 			return 1;
426 	}
427 	return 0;
428 }
429 
430 int dbg_remove_all_break(void)
431 {
432 	int error;
433 	int i;
434 
435 	/* Clear memory breakpoints. */
436 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
437 		if (kgdb_break[i].state != BP_ACTIVE)
438 			goto setundefined;
439 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
440 		if (error)
441 			pr_err("breakpoint remove failed: %lx\n",
442 			       kgdb_break[i].bpt_addr);
443 setundefined:
444 		kgdb_break[i].state = BP_UNDEFINED;
445 	}
446 
447 	/* Clear hardware breakpoints. */
448 	if (arch_kgdb_ops.remove_all_hw_break)
449 		arch_kgdb_ops.remove_all_hw_break();
450 
451 	return 0;
452 }
453 
454 #ifdef CONFIG_KGDB_KDB
455 void kdb_dump_stack_on_cpu(int cpu)
456 {
457 	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
458 		dump_stack();
459 		return;
460 	}
461 
462 	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
463 		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
464 			   cpu);
465 		return;
466 	}
467 
468 	/*
469 	 * In general, architectures don't support dumping the stack of a
470 	 * "running" process that's not the current one.  From the point of
471 	 * view of the Linux, kernel processes that are looping in the kgdb
472 	 * slave loop are still "running".  There's also no API (that actually
473 	 * works across all architectures) that can do a stack crawl based
474 	 * on registers passed as a parameter.
475 	 *
476 	 * Solve this conundrum by asking slave CPUs to do the backtrace
477 	 * themselves.
478 	 */
479 	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
480 	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
481 		cpu_relax();
482 }
483 #endif
484 
485 /*
486  * Return true if there is a valid kgdb I/O module.  Also if no
487  * debugger is attached a message can be printed to the console about
488  * waiting for the debugger to attach.
489  *
490  * The print_wait argument is only to be true when called from inside
491  * the core kgdb_handle_exception, because it will wait for the
492  * debugger to attach.
493  */
494 static int kgdb_io_ready(int print_wait)
495 {
496 	if (!dbg_io_ops)
497 		return 0;
498 	if (kgdb_connected)
499 		return 1;
500 	if (atomic_read(&kgdb_setting_breakpoint))
501 		return 1;
502 	if (print_wait) {
503 #ifdef CONFIG_KGDB_KDB
504 		if (!dbg_kdb_mode)
505 			pr_crit("waiting... or $3#33 for KDB\n");
506 #else
507 		pr_crit("Waiting for remote debugger\n");
508 #endif
509 	}
510 	return 1;
511 }
512 
513 static int kgdb_reenter_check(struct kgdb_state *ks)
514 {
515 	unsigned long addr;
516 
517 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
518 		return 0;
519 
520 	/* Panic on recursive debugger calls: */
521 	exception_level++;
522 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
523 	dbg_deactivate_sw_breakpoints();
524 
525 	/*
526 	 * If the break point removed ok at the place exception
527 	 * occurred, try to recover and print a warning to the end
528 	 * user because the user planted a breakpoint in a place that
529 	 * KGDB needs in order to function.
530 	 */
531 	if (dbg_remove_sw_break(addr) == 0) {
532 		exception_level = 0;
533 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
534 		dbg_activate_sw_breakpoints();
535 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
536 		WARN_ON_ONCE(1);
537 
538 		return 1;
539 	}
540 	dbg_remove_all_break();
541 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
542 
543 	if (exception_level > 1) {
544 		dump_stack();
545 		kgdb_io_module_registered = false;
546 		panic("Recursive entry to debugger");
547 	}
548 
549 	pr_crit("re-enter exception: ALL breakpoints killed\n");
550 #ifdef CONFIG_KGDB_KDB
551 	/* Allow kdb to debug itself one level */
552 	return 0;
553 #endif
554 	dump_stack();
555 	panic("Recursive entry to debugger");
556 
557 	return 1;
558 }
559 
560 static void dbg_touch_watchdogs(void)
561 {
562 	touch_softlockup_watchdog_sync();
563 	clocksource_touch_watchdog();
564 	rcu_cpu_stall_reset();
565 }
566 
567 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
568 		int exception_state)
569 {
570 	unsigned long flags;
571 	int sstep_tries = 100;
572 	int error;
573 	int cpu;
574 	int trace_on = 0;
575 	int online_cpus = num_online_cpus();
576 	u64 time_left;
577 
578 	kgdb_info[ks->cpu].enter_kgdb++;
579 	kgdb_info[ks->cpu].exception_state |= exception_state;
580 
581 	if (exception_state == DCPU_WANT_MASTER)
582 		atomic_inc(&masters_in_kgdb);
583 	else
584 		atomic_inc(&slaves_in_kgdb);
585 
586 	if (arch_kgdb_ops.disable_hw_break)
587 		arch_kgdb_ops.disable_hw_break(regs);
588 
589 acquirelock:
590 	/*
591 	 * Interrupts will be restored by the 'trap return' code, except when
592 	 * single stepping.
593 	 */
594 	local_irq_save(flags);
595 
596 	cpu = ks->cpu;
597 	kgdb_info[cpu].debuggerinfo = regs;
598 	kgdb_info[cpu].task = current;
599 	kgdb_info[cpu].ret_state = 0;
600 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
601 
602 	/* Make sure the above info reaches the primary CPU */
603 	smp_mb();
604 
605 	if (exception_level == 1) {
606 		if (raw_spin_trylock(&dbg_master_lock))
607 			atomic_xchg(&kgdb_active, cpu);
608 		goto cpu_master_loop;
609 	}
610 
611 	/*
612 	 * CPU will loop if it is a slave or request to become a kgdb
613 	 * master cpu and acquire the kgdb_active lock:
614 	 */
615 	while (1) {
616 cpu_loop:
617 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
618 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
619 			goto cpu_master_loop;
620 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
621 			if (raw_spin_trylock(&dbg_master_lock)) {
622 				atomic_xchg(&kgdb_active, cpu);
623 				break;
624 			}
625 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
626 			dump_stack();
627 			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
628 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
629 			if (!raw_spin_is_locked(&dbg_slave_lock))
630 				goto return_normal;
631 		} else {
632 return_normal:
633 			/* Return to normal operation by executing any
634 			 * hw breakpoint fixup.
635 			 */
636 			if (arch_kgdb_ops.correct_hw_break)
637 				arch_kgdb_ops.correct_hw_break();
638 			if (trace_on)
639 				tracing_on();
640 			kgdb_info[cpu].debuggerinfo = NULL;
641 			kgdb_info[cpu].task = NULL;
642 			kgdb_info[cpu].exception_state &=
643 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
644 			kgdb_info[cpu].enter_kgdb--;
645 			smp_mb__before_atomic();
646 			atomic_dec(&slaves_in_kgdb);
647 			dbg_touch_watchdogs();
648 			local_irq_restore(flags);
649 			return 0;
650 		}
651 		cpu_relax();
652 	}
653 
654 	/*
655 	 * For single stepping, try to only enter on the processor
656 	 * that was single stepping.  To guard against a deadlock, the
657 	 * kernel will only try for the value of sstep_tries before
658 	 * giving up and continuing on.
659 	 */
660 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
661 	    (kgdb_info[cpu].task &&
662 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
663 		atomic_set(&kgdb_active, -1);
664 		raw_spin_unlock(&dbg_master_lock);
665 		dbg_touch_watchdogs();
666 		local_irq_restore(flags);
667 
668 		goto acquirelock;
669 	}
670 
671 	if (!kgdb_io_ready(1)) {
672 		kgdb_info[cpu].ret_state = 1;
673 		goto kgdb_restore; /* No I/O connection, resume the system */
674 	}
675 
676 	/*
677 	 * Don't enter if we have hit a removed breakpoint.
678 	 */
679 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
680 		goto kgdb_restore;
681 
682 	atomic_inc(&ignore_console_lock_warning);
683 
684 	/* Call the I/O driver's pre_exception routine */
685 	if (dbg_io_ops->pre_exception)
686 		dbg_io_ops->pre_exception();
687 
688 	/*
689 	 * Get the passive CPU lock which will hold all the non-primary
690 	 * CPU in a spin state while the debugger is active
691 	 */
692 	if (!kgdb_single_step)
693 		raw_spin_lock(&dbg_slave_lock);
694 
695 #ifdef CONFIG_SMP
696 	/* If send_ready set, slaves are already waiting */
697 	if (ks->send_ready)
698 		atomic_set(ks->send_ready, 1);
699 
700 	/* Signal the other CPUs to enter kgdb_wait() */
701 	else if ((!kgdb_single_step) && kgdb_do_roundup)
702 		kgdb_roundup_cpus();
703 #endif
704 
705 	/*
706 	 * Wait for the other CPUs to be notified and be waiting for us:
707 	 */
708 	time_left = MSEC_PER_SEC;
709 	while (kgdb_do_roundup && --time_left &&
710 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
711 		   online_cpus)
712 		udelay(1000);
713 	if (!time_left)
714 		pr_crit("Timed out waiting for secondary CPUs.\n");
715 
716 	/*
717 	 * At this point the primary processor is completely
718 	 * in the debugger and all secondary CPUs are quiescent
719 	 */
720 	dbg_deactivate_sw_breakpoints();
721 	kgdb_single_step = 0;
722 	kgdb_contthread = current;
723 	exception_level = 0;
724 	trace_on = tracing_is_on();
725 	if (trace_on)
726 		tracing_off();
727 
728 	while (1) {
729 cpu_master_loop:
730 		if (dbg_kdb_mode) {
731 			kgdb_connected = 1;
732 			error = kdb_stub(ks);
733 			if (error == -1)
734 				continue;
735 			kgdb_connected = 0;
736 		} else {
737 			error = gdb_serial_stub(ks);
738 		}
739 
740 		if (error == DBG_PASS_EVENT) {
741 			dbg_kdb_mode = !dbg_kdb_mode;
742 		} else if (error == DBG_SWITCH_CPU_EVENT) {
743 			kgdb_info[dbg_switch_cpu].exception_state |=
744 				DCPU_NEXT_MASTER;
745 			goto cpu_loop;
746 		} else {
747 			kgdb_info[cpu].ret_state = error;
748 			break;
749 		}
750 	}
751 
752 	/* Call the I/O driver's post_exception routine */
753 	if (dbg_io_ops->post_exception)
754 		dbg_io_ops->post_exception();
755 
756 	atomic_dec(&ignore_console_lock_warning);
757 
758 	if (!kgdb_single_step) {
759 		raw_spin_unlock(&dbg_slave_lock);
760 		/* Wait till all the CPUs have quit from the debugger. */
761 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
762 			cpu_relax();
763 	}
764 
765 kgdb_restore:
766 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
767 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
768 		if (kgdb_info[sstep_cpu].task)
769 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
770 		else
771 			kgdb_sstep_pid = 0;
772 	}
773 	if (arch_kgdb_ops.correct_hw_break)
774 		arch_kgdb_ops.correct_hw_break();
775 	if (trace_on)
776 		tracing_on();
777 
778 	kgdb_info[cpu].debuggerinfo = NULL;
779 	kgdb_info[cpu].task = NULL;
780 	kgdb_info[cpu].exception_state &=
781 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
782 	kgdb_info[cpu].enter_kgdb--;
783 	smp_mb__before_atomic();
784 	atomic_dec(&masters_in_kgdb);
785 	/* Free kgdb_active */
786 	atomic_set(&kgdb_active, -1);
787 	raw_spin_unlock(&dbg_master_lock);
788 	dbg_touch_watchdogs();
789 	local_irq_restore(flags);
790 
791 	return kgdb_info[cpu].ret_state;
792 }
793 
794 /*
795  * kgdb_handle_exception() - main entry point from a kernel exception
796  *
797  * Locking hierarchy:
798  *	interface locks, if any (begin_session)
799  *	kgdb lock (kgdb_active)
800  */
801 int
802 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
803 {
804 	struct kgdb_state kgdb_var;
805 	struct kgdb_state *ks = &kgdb_var;
806 	int ret = 0;
807 
808 	if (arch_kgdb_ops.enable_nmi)
809 		arch_kgdb_ops.enable_nmi(0);
810 	/*
811 	 * Avoid entering the debugger if we were triggered due to an oops
812 	 * but panic_timeout indicates the system should automatically
813 	 * reboot on panic. We don't want to get stuck waiting for input
814 	 * on such systems, especially if its "just" an oops.
815 	 */
816 	if (signo != SIGTRAP && panic_timeout)
817 		return 1;
818 
819 	memset(ks, 0, sizeof(struct kgdb_state));
820 	ks->cpu			= raw_smp_processor_id();
821 	ks->ex_vector		= evector;
822 	ks->signo		= signo;
823 	ks->err_code		= ecode;
824 	ks->linux_regs		= regs;
825 
826 	if (kgdb_reenter_check(ks))
827 		goto out; /* Ouch, double exception ! */
828 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
829 		goto out;
830 
831 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
832 out:
833 	if (arch_kgdb_ops.enable_nmi)
834 		arch_kgdb_ops.enable_nmi(1);
835 	return ret;
836 }
837 
838 /*
839  * GDB places a breakpoint at this function to know dynamically loaded objects.
840  */
841 static int module_event(struct notifier_block *self, unsigned long val,
842 	void *data)
843 {
844 	return 0;
845 }
846 
847 static struct notifier_block dbg_module_load_nb = {
848 	.notifier_call	= module_event,
849 };
850 
851 int kgdb_nmicallback(int cpu, void *regs)
852 {
853 #ifdef CONFIG_SMP
854 	struct kgdb_state kgdb_var;
855 	struct kgdb_state *ks = &kgdb_var;
856 
857 	kgdb_info[cpu].rounding_up = false;
858 
859 	memset(ks, 0, sizeof(struct kgdb_state));
860 	ks->cpu			= cpu;
861 	ks->linux_regs		= regs;
862 
863 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
864 			raw_spin_is_locked(&dbg_master_lock)) {
865 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
866 		return 0;
867 	}
868 #endif
869 	return 1;
870 }
871 
872 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
873 							atomic_t *send_ready)
874 {
875 #ifdef CONFIG_SMP
876 	if (!kgdb_io_ready(0) || !send_ready)
877 		return 1;
878 
879 	if (kgdb_info[cpu].enter_kgdb == 0) {
880 		struct kgdb_state kgdb_var;
881 		struct kgdb_state *ks = &kgdb_var;
882 
883 		memset(ks, 0, sizeof(struct kgdb_state));
884 		ks->cpu			= cpu;
885 		ks->ex_vector		= trapnr;
886 		ks->signo		= SIGTRAP;
887 		ks->err_code		= err_code;
888 		ks->linux_regs		= regs;
889 		ks->send_ready		= send_ready;
890 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
891 		return 0;
892 	}
893 #endif
894 	return 1;
895 }
896 
897 static void kgdb_console_write(struct console *co, const char *s,
898    unsigned count)
899 {
900 	unsigned long flags;
901 
902 	/* If we're debugging, or KGDB has not connected, don't try
903 	 * and print. */
904 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
905 		return;
906 
907 	local_irq_save(flags);
908 	gdbstub_msg_write(s, count);
909 	local_irq_restore(flags);
910 }
911 
912 static struct console kgdbcons = {
913 	.name		= "kgdb",
914 	.write		= kgdb_console_write,
915 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
916 	.index		= -1,
917 };
918 
919 #ifdef CONFIG_MAGIC_SYSRQ
920 static void sysrq_handle_dbg(int key)
921 {
922 	if (!dbg_io_ops) {
923 		pr_crit("ERROR: No KGDB I/O module available\n");
924 		return;
925 	}
926 	if (!kgdb_connected) {
927 #ifdef CONFIG_KGDB_KDB
928 		if (!dbg_kdb_mode)
929 			pr_crit("KGDB or $3#33 for KDB\n");
930 #else
931 		pr_crit("Entering KGDB\n");
932 #endif
933 	}
934 
935 	kgdb_breakpoint();
936 }
937 
938 static const struct sysrq_key_op sysrq_dbg_op = {
939 	.handler	= sysrq_handle_dbg,
940 	.help_msg	= "debug(g)",
941 	.action_msg	= "DEBUG",
942 };
943 #endif
944 
945 void kgdb_panic(const char *msg)
946 {
947 	if (!kgdb_io_module_registered)
948 		return;
949 
950 	/*
951 	 * We don't want to get stuck waiting for input from user if
952 	 * "panic_timeout" indicates the system should automatically
953 	 * reboot on panic.
954 	 */
955 	if (panic_timeout)
956 		return;
957 
958 	if (dbg_kdb_mode)
959 		kdb_printf("PANIC: %s\n", msg);
960 
961 	kgdb_breakpoint();
962 }
963 
964 static void kgdb_initial_breakpoint(void)
965 {
966 	kgdb_break_asap = 0;
967 
968 	pr_crit("Waiting for connection from remote gdb...\n");
969 	kgdb_breakpoint();
970 }
971 
972 void __weak kgdb_arch_late(void)
973 {
974 }
975 
976 void __init dbg_late_init(void)
977 {
978 	dbg_is_early = false;
979 	if (kgdb_io_module_registered)
980 		kgdb_arch_late();
981 	kdb_init(KDB_INIT_FULL);
982 
983 	if (kgdb_io_module_registered && kgdb_break_asap)
984 		kgdb_initial_breakpoint();
985 }
986 
987 static int
988 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
989 {
990 	/*
991 	 * Take the following action on reboot notify depending on value:
992 	 *    1 == Enter debugger
993 	 *    0 == [the default] detatch debug client
994 	 *   -1 == Do nothing... and use this until the board resets
995 	 */
996 	switch (kgdbreboot) {
997 	case 1:
998 		kgdb_breakpoint();
999 	case -1:
1000 		goto done;
1001 	}
1002 	if (!dbg_kdb_mode)
1003 		gdbstub_exit(code);
1004 done:
1005 	return NOTIFY_DONE;
1006 }
1007 
1008 static struct notifier_block dbg_reboot_notifier = {
1009 	.notifier_call		= dbg_notify_reboot,
1010 	.next			= NULL,
1011 	.priority		= INT_MAX,
1012 };
1013 
1014 static void kgdb_register_callbacks(void)
1015 {
1016 	if (!kgdb_io_module_registered) {
1017 		kgdb_io_module_registered = 1;
1018 		kgdb_arch_init();
1019 		if (!dbg_is_early)
1020 			kgdb_arch_late();
1021 		register_module_notifier(&dbg_module_load_nb);
1022 		register_reboot_notifier(&dbg_reboot_notifier);
1023 #ifdef CONFIG_MAGIC_SYSRQ
1024 		register_sysrq_key('g', &sysrq_dbg_op);
1025 #endif
1026 		if (kgdb_use_con && !kgdb_con_registered) {
1027 			register_console(&kgdbcons);
1028 			kgdb_con_registered = 1;
1029 		}
1030 	}
1031 }
1032 
1033 static void kgdb_unregister_callbacks(void)
1034 {
1035 	/*
1036 	 * When this routine is called KGDB should unregister from
1037 	 * handlers and clean up, making sure it is not handling any
1038 	 * break exceptions at the time.
1039 	 */
1040 	if (kgdb_io_module_registered) {
1041 		kgdb_io_module_registered = 0;
1042 		unregister_reboot_notifier(&dbg_reboot_notifier);
1043 		unregister_module_notifier(&dbg_module_load_nb);
1044 		kgdb_arch_exit();
1045 #ifdef CONFIG_MAGIC_SYSRQ
1046 		unregister_sysrq_key('g', &sysrq_dbg_op);
1047 #endif
1048 		if (kgdb_con_registered) {
1049 			unregister_console(&kgdbcons);
1050 			kgdb_con_registered = 0;
1051 		}
1052 	}
1053 }
1054 
1055 /*
1056  * There are times a tasklet needs to be used vs a compiled in
1057  * break point so as to cause an exception outside a kgdb I/O module,
1058  * such as is the case with kgdboe, where calling a breakpoint in the
1059  * I/O driver itself would be fatal.
1060  */
1061 static void kgdb_tasklet_bpt(unsigned long ing)
1062 {
1063 	kgdb_breakpoint();
1064 	atomic_set(&kgdb_break_tasklet_var, 0);
1065 }
1066 
1067 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0);
1068 
1069 void kgdb_schedule_breakpoint(void)
1070 {
1071 	if (atomic_read(&kgdb_break_tasklet_var) ||
1072 		atomic_read(&kgdb_active) != -1 ||
1073 		atomic_read(&kgdb_setting_breakpoint))
1074 		return;
1075 	atomic_inc(&kgdb_break_tasklet_var);
1076 	tasklet_schedule(&kgdb_tasklet_breakpoint);
1077 }
1078 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1079 
1080 /**
1081  *	kgdb_register_io_module - register KGDB IO module
1082  *	@new_dbg_io_ops: the io ops vector
1083  *
1084  *	Register it with the KGDB core.
1085  */
1086 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1087 {
1088 	struct kgdb_io *old_dbg_io_ops;
1089 	int err;
1090 
1091 	spin_lock(&kgdb_registration_lock);
1092 
1093 	old_dbg_io_ops = dbg_io_ops;
1094 	if (old_dbg_io_ops) {
1095 		if (!old_dbg_io_ops->deinit) {
1096 			spin_unlock(&kgdb_registration_lock);
1097 
1098 			pr_err("KGDB I/O driver %s can't replace %s.\n",
1099 				new_dbg_io_ops->name, old_dbg_io_ops->name);
1100 			return -EBUSY;
1101 		}
1102 		pr_info("Replacing I/O driver %s with %s\n",
1103 			old_dbg_io_ops->name, new_dbg_io_ops->name);
1104 	}
1105 
1106 	if (new_dbg_io_ops->init) {
1107 		err = new_dbg_io_ops->init();
1108 		if (err) {
1109 			spin_unlock(&kgdb_registration_lock);
1110 			return err;
1111 		}
1112 	}
1113 
1114 	dbg_io_ops = new_dbg_io_ops;
1115 
1116 	spin_unlock(&kgdb_registration_lock);
1117 
1118 	if (old_dbg_io_ops) {
1119 		old_dbg_io_ops->deinit();
1120 		return 0;
1121 	}
1122 
1123 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1124 
1125 	/* Arm KGDB now. */
1126 	kgdb_register_callbacks();
1127 
1128 	if (kgdb_break_asap &&
1129 	    (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1130 		kgdb_initial_breakpoint();
1131 
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1135 
1136 /**
1137  *	kkgdb_unregister_io_module - unregister KGDB IO module
1138  *	@old_dbg_io_ops: the io ops vector
1139  *
1140  *	Unregister it with the KGDB core.
1141  */
1142 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1143 {
1144 	BUG_ON(kgdb_connected);
1145 
1146 	/*
1147 	 * KGDB is no longer able to communicate out, so
1148 	 * unregister our callbacks and reset state.
1149 	 */
1150 	kgdb_unregister_callbacks();
1151 
1152 	spin_lock(&kgdb_registration_lock);
1153 
1154 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1155 	dbg_io_ops = NULL;
1156 
1157 	spin_unlock(&kgdb_registration_lock);
1158 
1159 	if (old_dbg_io_ops->deinit)
1160 		old_dbg_io_ops->deinit();
1161 
1162 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1163 		old_dbg_io_ops->name);
1164 }
1165 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1166 
1167 int dbg_io_get_char(void)
1168 {
1169 	int ret = dbg_io_ops->read_char();
1170 	if (ret == NO_POLL_CHAR)
1171 		return -1;
1172 	if (!dbg_kdb_mode)
1173 		return ret;
1174 	if (ret == 127)
1175 		return 8;
1176 	return ret;
1177 }
1178 
1179 /**
1180  * kgdb_breakpoint - generate breakpoint exception
1181  *
1182  * This function will generate a breakpoint exception.  It is used at the
1183  * beginning of a program to sync up with a debugger and can be used
1184  * otherwise as a quick means to stop program execution and "break" into
1185  * the debugger.
1186  */
1187 noinline void kgdb_breakpoint(void)
1188 {
1189 	atomic_inc(&kgdb_setting_breakpoint);
1190 	wmb(); /* Sync point before breakpoint */
1191 	arch_kgdb_breakpoint();
1192 	wmb(); /* Sync point after breakpoint */
1193 	atomic_dec(&kgdb_setting_breakpoint);
1194 }
1195 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1196 
1197 static int __init opt_kgdb_wait(char *str)
1198 {
1199 	kgdb_break_asap = 1;
1200 
1201 	kdb_init(KDB_INIT_EARLY);
1202 	if (kgdb_io_module_registered &&
1203 	    IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1204 		kgdb_initial_breakpoint();
1205 
1206 	return 0;
1207 }
1208 
1209 early_param("kgdbwait", opt_kgdb_wait);
1210