xref: /openbmc/linux/kernel/debug/debug_core.c (revision 547840bd)
1 /*
2  * Kernel Debug Core
3  *
4  * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5  *
6  * Copyright (C) 2000-2001 VERITAS Software Corporation.
7  * Copyright (C) 2002-2004 Timesys Corporation
8  * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9  * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
10  * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11  * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12  * Copyright (C) 2005-2009 Wind River Systems, Inc.
13  * Copyright (C) 2007 MontaVista Software, Inc.
14  * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15  *
16  * Contributors at various stages not listed above:
17  *  Jason Wessel ( jason.wessel@windriver.com )
18  *  George Anzinger <george@mvista.com>
19  *  Anurekh Saxena (anurekh.saxena@timesys.com)
20  *  Lake Stevens Instrument Division (Glenn Engel)
21  *  Jim Kingdon, Cygnus Support.
22  *
23  * Original KGDB stub: David Grothe <dave@gcom.com>,
24  * Tigran Aivazian <tigran@sco.com>
25  *
26  * This file is licensed under the terms of the GNU General Public License
27  * version 2. This program is licensed "as is" without any warranty of any
28  * kind, whether express or implied.
29  */
30 
31 #define pr_fmt(fmt) "KGDB: " fmt
32 
33 #include <linux/pid_namespace.h>
34 #include <linux/clocksource.h>
35 #include <linux/serial_core.h>
36 #include <linux/interrupt.h>
37 #include <linux/spinlock.h>
38 #include <linux/console.h>
39 #include <linux/threads.h>
40 #include <linux/uaccess.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/ptrace.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/sched.h>
47 #include <linux/sysrq.h>
48 #include <linux/reboot.h>
49 #include <linux/init.h>
50 #include <linux/kgdb.h>
51 #include <linux/kdb.h>
52 #include <linux/nmi.h>
53 #include <linux/pid.h>
54 #include <linux/smp.h>
55 #include <linux/mm.h>
56 #include <linux/vmacache.h>
57 #include <linux/rcupdate.h>
58 #include <linux/irq.h>
59 
60 #include <asm/cacheflush.h>
61 #include <asm/byteorder.h>
62 #include <linux/atomic.h>
63 
64 #include "debug_core.h"
65 
66 static int kgdb_break_asap;
67 
68 struct debuggerinfo_struct kgdb_info[NR_CPUS];
69 
70 /* kgdb_connected - Is a host GDB connected to us? */
71 int				kgdb_connected;
72 EXPORT_SYMBOL_GPL(kgdb_connected);
73 
74 /* All the KGDB handlers are installed */
75 int			kgdb_io_module_registered;
76 
77 /* Guard for recursive entry */
78 static int			exception_level;
79 
80 struct kgdb_io		*dbg_io_ops;
81 static DEFINE_SPINLOCK(kgdb_registration_lock);
82 
83 /* Action for the reboot notifiter, a global allow kdb to change it */
84 static int kgdbreboot;
85 /* kgdb console driver is loaded */
86 static int kgdb_con_registered;
87 /* determine if kgdb console output should be used */
88 static int kgdb_use_con;
89 /* Flag for alternate operations for early debugging */
90 bool dbg_is_early = true;
91 /* Next cpu to become the master debug core */
92 int dbg_switch_cpu;
93 
94 /* Use kdb or gdbserver mode */
95 int dbg_kdb_mode = 1;
96 
97 static int __init opt_kgdb_con(char *str)
98 {
99 	kgdb_use_con = 1;
100 	return 0;
101 }
102 
103 early_param("kgdbcon", opt_kgdb_con);
104 
105 module_param(kgdb_use_con, int, 0644);
106 module_param(kgdbreboot, int, 0644);
107 
108 /*
109  * Holds information about breakpoints in a kernel. These breakpoints are
110  * added and removed by gdb.
111  */
112 static struct kgdb_bkpt		kgdb_break[KGDB_MAX_BREAKPOINTS] = {
113 	[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
114 };
115 
116 /*
117  * The CPU# of the active CPU, or -1 if none:
118  */
119 atomic_t			kgdb_active = ATOMIC_INIT(-1);
120 EXPORT_SYMBOL_GPL(kgdb_active);
121 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
122 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
123 
124 /*
125  * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
126  * bootup code (which might not have percpu set up yet):
127  */
128 static atomic_t			masters_in_kgdb;
129 static atomic_t			slaves_in_kgdb;
130 static atomic_t			kgdb_break_tasklet_var;
131 atomic_t			kgdb_setting_breakpoint;
132 
133 struct task_struct		*kgdb_usethread;
134 struct task_struct		*kgdb_contthread;
135 
136 int				kgdb_single_step;
137 static pid_t			kgdb_sstep_pid;
138 
139 /* to keep track of the CPU which is doing the single stepping*/
140 atomic_t			kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
141 
142 /*
143  * If you are debugging a problem where roundup (the collection of
144  * all other CPUs) is a problem [this should be extremely rare],
145  * then use the nokgdbroundup option to avoid roundup. In that case
146  * the other CPUs might interfere with your debugging context, so
147  * use this with care:
148  */
149 static int kgdb_do_roundup = 1;
150 
151 static int __init opt_nokgdbroundup(char *str)
152 {
153 	kgdb_do_roundup = 0;
154 
155 	return 0;
156 }
157 
158 early_param("nokgdbroundup", opt_nokgdbroundup);
159 
160 /*
161  * Finally, some KGDB code :-)
162  */
163 
164 /*
165  * Weak aliases for breakpoint management,
166  * can be overriden by architectures when needed:
167  */
168 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
169 {
170 	int err;
171 
172 	err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr,
173 				BREAK_INSTR_SIZE);
174 	if (err)
175 		return err;
176 	err = probe_kernel_write((char *)bpt->bpt_addr,
177 				 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
178 	return err;
179 }
180 
181 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
182 {
183 	return probe_kernel_write((char *)bpt->bpt_addr,
184 				  (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
185 }
186 
187 int __weak kgdb_validate_break_address(unsigned long addr)
188 {
189 	struct kgdb_bkpt tmp;
190 	int err;
191 	/* Validate setting the breakpoint and then removing it.  If the
192 	 * remove fails, the kernel needs to emit a bad message because we
193 	 * are deep trouble not being able to put things back the way we
194 	 * found them.
195 	 */
196 	tmp.bpt_addr = addr;
197 	err = kgdb_arch_set_breakpoint(&tmp);
198 	if (err)
199 		return err;
200 	err = kgdb_arch_remove_breakpoint(&tmp);
201 	if (err)
202 		pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
203 		       addr);
204 	return err;
205 }
206 
207 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
208 {
209 	return instruction_pointer(regs);
210 }
211 
212 int __weak kgdb_arch_init(void)
213 {
214 	return 0;
215 }
216 
217 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
218 {
219 	return 0;
220 }
221 
222 #ifdef CONFIG_SMP
223 
224 /*
225  * Default (weak) implementation for kgdb_roundup_cpus
226  */
227 
228 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd);
229 
230 void __weak kgdb_call_nmi_hook(void *ignored)
231 {
232 	/*
233 	 * NOTE: get_irq_regs() is supposed to get the registers from
234 	 * before the IPI interrupt happened and so is supposed to
235 	 * show where the processor was.  In some situations it's
236 	 * possible we might be called without an IPI, so it might be
237 	 * safer to figure out how to make kgdb_breakpoint() work
238 	 * properly here.
239 	 */
240 	kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
241 }
242 
243 void __weak kgdb_roundup_cpus(void)
244 {
245 	call_single_data_t *csd;
246 	int this_cpu = raw_smp_processor_id();
247 	int cpu;
248 	int ret;
249 
250 	for_each_online_cpu(cpu) {
251 		/* No need to roundup ourselves */
252 		if (cpu == this_cpu)
253 			continue;
254 
255 		csd = &per_cpu(kgdb_roundup_csd, cpu);
256 
257 		/*
258 		 * If it didn't round up last time, don't try again
259 		 * since smp_call_function_single_async() will block.
260 		 *
261 		 * If rounding_up is false then we know that the
262 		 * previous call must have at least started and that
263 		 * means smp_call_function_single_async() won't block.
264 		 */
265 		if (kgdb_info[cpu].rounding_up)
266 			continue;
267 		kgdb_info[cpu].rounding_up = true;
268 
269 		csd->func = kgdb_call_nmi_hook;
270 		ret = smp_call_function_single_async(cpu, csd);
271 		if (ret)
272 			kgdb_info[cpu].rounding_up = false;
273 	}
274 }
275 
276 #endif
277 
278 /*
279  * Some architectures need cache flushes when we set/clear a
280  * breakpoint:
281  */
282 static void kgdb_flush_swbreak_addr(unsigned long addr)
283 {
284 	if (!CACHE_FLUSH_IS_SAFE)
285 		return;
286 
287 	if (current->mm) {
288 		int i;
289 
290 		for (i = 0; i < VMACACHE_SIZE; i++) {
291 			if (!current->vmacache.vmas[i])
292 				continue;
293 			flush_cache_range(current->vmacache.vmas[i],
294 					  addr, addr + BREAK_INSTR_SIZE);
295 		}
296 	}
297 
298 	/* Force flush instruction cache if it was outside the mm */
299 	flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
300 }
301 
302 /*
303  * SW breakpoint management:
304  */
305 int dbg_activate_sw_breakpoints(void)
306 {
307 	int error;
308 	int ret = 0;
309 	int i;
310 
311 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
312 		if (kgdb_break[i].state != BP_SET)
313 			continue;
314 
315 		error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
316 		if (error) {
317 			ret = error;
318 			pr_info("BP install failed: %lx\n",
319 				kgdb_break[i].bpt_addr);
320 			continue;
321 		}
322 
323 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
324 		kgdb_break[i].state = BP_ACTIVE;
325 	}
326 	return ret;
327 }
328 
329 int dbg_set_sw_break(unsigned long addr)
330 {
331 	int err = kgdb_validate_break_address(addr);
332 	int breakno = -1;
333 	int i;
334 
335 	if (err)
336 		return err;
337 
338 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
339 		if ((kgdb_break[i].state == BP_SET) &&
340 					(kgdb_break[i].bpt_addr == addr))
341 			return -EEXIST;
342 	}
343 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
344 		if (kgdb_break[i].state == BP_REMOVED &&
345 					kgdb_break[i].bpt_addr == addr) {
346 			breakno = i;
347 			break;
348 		}
349 	}
350 
351 	if (breakno == -1) {
352 		for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
353 			if (kgdb_break[i].state == BP_UNDEFINED) {
354 				breakno = i;
355 				break;
356 			}
357 		}
358 	}
359 
360 	if (breakno == -1)
361 		return -E2BIG;
362 
363 	kgdb_break[breakno].state = BP_SET;
364 	kgdb_break[breakno].type = BP_BREAKPOINT;
365 	kgdb_break[breakno].bpt_addr = addr;
366 
367 	return 0;
368 }
369 
370 int dbg_deactivate_sw_breakpoints(void)
371 {
372 	int error;
373 	int ret = 0;
374 	int i;
375 
376 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
377 		if (kgdb_break[i].state != BP_ACTIVE)
378 			continue;
379 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
380 		if (error) {
381 			pr_info("BP remove failed: %lx\n",
382 				kgdb_break[i].bpt_addr);
383 			ret = error;
384 		}
385 
386 		kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
387 		kgdb_break[i].state = BP_SET;
388 	}
389 	return ret;
390 }
391 
392 int dbg_remove_sw_break(unsigned long addr)
393 {
394 	int i;
395 
396 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
397 		if ((kgdb_break[i].state == BP_SET) &&
398 				(kgdb_break[i].bpt_addr == addr)) {
399 			kgdb_break[i].state = BP_REMOVED;
400 			return 0;
401 		}
402 	}
403 	return -ENOENT;
404 }
405 
406 int kgdb_isremovedbreak(unsigned long addr)
407 {
408 	int i;
409 
410 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
411 		if ((kgdb_break[i].state == BP_REMOVED) &&
412 					(kgdb_break[i].bpt_addr == addr))
413 			return 1;
414 	}
415 	return 0;
416 }
417 
418 int dbg_remove_all_break(void)
419 {
420 	int error;
421 	int i;
422 
423 	/* Clear memory breakpoints. */
424 	for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
425 		if (kgdb_break[i].state != BP_ACTIVE)
426 			goto setundefined;
427 		error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
428 		if (error)
429 			pr_err("breakpoint remove failed: %lx\n",
430 			       kgdb_break[i].bpt_addr);
431 setundefined:
432 		kgdb_break[i].state = BP_UNDEFINED;
433 	}
434 
435 	/* Clear hardware breakpoints. */
436 	if (arch_kgdb_ops.remove_all_hw_break)
437 		arch_kgdb_ops.remove_all_hw_break();
438 
439 	return 0;
440 }
441 
442 #ifdef CONFIG_KGDB_KDB
443 void kdb_dump_stack_on_cpu(int cpu)
444 {
445 	if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
446 		dump_stack();
447 		return;
448 	}
449 
450 	if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
451 		kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
452 			   cpu);
453 		return;
454 	}
455 
456 	/*
457 	 * In general, architectures don't support dumping the stack of a
458 	 * "running" process that's not the current one.  From the point of
459 	 * view of the Linux, kernel processes that are looping in the kgdb
460 	 * slave loop are still "running".  There's also no API (that actually
461 	 * works across all architectures) that can do a stack crawl based
462 	 * on registers passed as a parameter.
463 	 *
464 	 * Solve this conundrum by asking slave CPUs to do the backtrace
465 	 * themselves.
466 	 */
467 	kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
468 	while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
469 		cpu_relax();
470 }
471 #endif
472 
473 /*
474  * Return true if there is a valid kgdb I/O module.  Also if no
475  * debugger is attached a message can be printed to the console about
476  * waiting for the debugger to attach.
477  *
478  * The print_wait argument is only to be true when called from inside
479  * the core kgdb_handle_exception, because it will wait for the
480  * debugger to attach.
481  */
482 static int kgdb_io_ready(int print_wait)
483 {
484 	if (!dbg_io_ops)
485 		return 0;
486 	if (kgdb_connected)
487 		return 1;
488 	if (atomic_read(&kgdb_setting_breakpoint))
489 		return 1;
490 	if (print_wait) {
491 #ifdef CONFIG_KGDB_KDB
492 		if (!dbg_kdb_mode)
493 			pr_crit("waiting... or $3#33 for KDB\n");
494 #else
495 		pr_crit("Waiting for remote debugger\n");
496 #endif
497 	}
498 	return 1;
499 }
500 
501 static int kgdb_reenter_check(struct kgdb_state *ks)
502 {
503 	unsigned long addr;
504 
505 	if (atomic_read(&kgdb_active) != raw_smp_processor_id())
506 		return 0;
507 
508 	/* Panic on recursive debugger calls: */
509 	exception_level++;
510 	addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
511 	dbg_deactivate_sw_breakpoints();
512 
513 	/*
514 	 * If the break point removed ok at the place exception
515 	 * occurred, try to recover and print a warning to the end
516 	 * user because the user planted a breakpoint in a place that
517 	 * KGDB needs in order to function.
518 	 */
519 	if (dbg_remove_sw_break(addr) == 0) {
520 		exception_level = 0;
521 		kgdb_skipexception(ks->ex_vector, ks->linux_regs);
522 		dbg_activate_sw_breakpoints();
523 		pr_crit("re-enter error: breakpoint removed %lx\n", addr);
524 		WARN_ON_ONCE(1);
525 
526 		return 1;
527 	}
528 	dbg_remove_all_break();
529 	kgdb_skipexception(ks->ex_vector, ks->linux_regs);
530 
531 	if (exception_level > 1) {
532 		dump_stack();
533 		kgdb_io_module_registered = false;
534 		panic("Recursive entry to debugger");
535 	}
536 
537 	pr_crit("re-enter exception: ALL breakpoints killed\n");
538 #ifdef CONFIG_KGDB_KDB
539 	/* Allow kdb to debug itself one level */
540 	return 0;
541 #endif
542 	dump_stack();
543 	panic("Recursive entry to debugger");
544 
545 	return 1;
546 }
547 
548 static void dbg_touch_watchdogs(void)
549 {
550 	touch_softlockup_watchdog_sync();
551 	clocksource_touch_watchdog();
552 	rcu_cpu_stall_reset();
553 }
554 
555 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
556 		int exception_state)
557 {
558 	unsigned long flags;
559 	int sstep_tries = 100;
560 	int error;
561 	int cpu;
562 	int trace_on = 0;
563 	int online_cpus = num_online_cpus();
564 	u64 time_left;
565 
566 	kgdb_info[ks->cpu].enter_kgdb++;
567 	kgdb_info[ks->cpu].exception_state |= exception_state;
568 
569 	if (exception_state == DCPU_WANT_MASTER)
570 		atomic_inc(&masters_in_kgdb);
571 	else
572 		atomic_inc(&slaves_in_kgdb);
573 
574 	if (arch_kgdb_ops.disable_hw_break)
575 		arch_kgdb_ops.disable_hw_break(regs);
576 
577 acquirelock:
578 	/*
579 	 * Interrupts will be restored by the 'trap return' code, except when
580 	 * single stepping.
581 	 */
582 	local_irq_save(flags);
583 
584 	cpu = ks->cpu;
585 	kgdb_info[cpu].debuggerinfo = regs;
586 	kgdb_info[cpu].task = current;
587 	kgdb_info[cpu].ret_state = 0;
588 	kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
589 
590 	/* Make sure the above info reaches the primary CPU */
591 	smp_mb();
592 
593 	if (exception_level == 1) {
594 		if (raw_spin_trylock(&dbg_master_lock))
595 			atomic_xchg(&kgdb_active, cpu);
596 		goto cpu_master_loop;
597 	}
598 
599 	/*
600 	 * CPU will loop if it is a slave or request to become a kgdb
601 	 * master cpu and acquire the kgdb_active lock:
602 	 */
603 	while (1) {
604 cpu_loop:
605 		if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
606 			kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
607 			goto cpu_master_loop;
608 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
609 			if (raw_spin_trylock(&dbg_master_lock)) {
610 				atomic_xchg(&kgdb_active, cpu);
611 				break;
612 			}
613 		} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
614 			dump_stack();
615 			kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
616 		} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
617 			if (!raw_spin_is_locked(&dbg_slave_lock))
618 				goto return_normal;
619 		} else {
620 return_normal:
621 			/* Return to normal operation by executing any
622 			 * hw breakpoint fixup.
623 			 */
624 			if (arch_kgdb_ops.correct_hw_break)
625 				arch_kgdb_ops.correct_hw_break();
626 			if (trace_on)
627 				tracing_on();
628 			kgdb_info[cpu].debuggerinfo = NULL;
629 			kgdb_info[cpu].task = NULL;
630 			kgdb_info[cpu].exception_state &=
631 				~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
632 			kgdb_info[cpu].enter_kgdb--;
633 			smp_mb__before_atomic();
634 			atomic_dec(&slaves_in_kgdb);
635 			dbg_touch_watchdogs();
636 			local_irq_restore(flags);
637 			return 0;
638 		}
639 		cpu_relax();
640 	}
641 
642 	/*
643 	 * For single stepping, try to only enter on the processor
644 	 * that was single stepping.  To guard against a deadlock, the
645 	 * kernel will only try for the value of sstep_tries before
646 	 * giving up and continuing on.
647 	 */
648 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
649 	    (kgdb_info[cpu].task &&
650 	     kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
651 		atomic_set(&kgdb_active, -1);
652 		raw_spin_unlock(&dbg_master_lock);
653 		dbg_touch_watchdogs();
654 		local_irq_restore(flags);
655 
656 		goto acquirelock;
657 	}
658 
659 	if (!kgdb_io_ready(1)) {
660 		kgdb_info[cpu].ret_state = 1;
661 		goto kgdb_restore; /* No I/O connection, resume the system */
662 	}
663 
664 	/*
665 	 * Don't enter if we have hit a removed breakpoint.
666 	 */
667 	if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
668 		goto kgdb_restore;
669 
670 	atomic_inc(&ignore_console_lock_warning);
671 
672 	/* Call the I/O driver's pre_exception routine */
673 	if (dbg_io_ops->pre_exception)
674 		dbg_io_ops->pre_exception();
675 
676 	/*
677 	 * Get the passive CPU lock which will hold all the non-primary
678 	 * CPU in a spin state while the debugger is active
679 	 */
680 	if (!kgdb_single_step)
681 		raw_spin_lock(&dbg_slave_lock);
682 
683 #ifdef CONFIG_SMP
684 	/* If send_ready set, slaves are already waiting */
685 	if (ks->send_ready)
686 		atomic_set(ks->send_ready, 1);
687 
688 	/* Signal the other CPUs to enter kgdb_wait() */
689 	else if ((!kgdb_single_step) && kgdb_do_roundup)
690 		kgdb_roundup_cpus();
691 #endif
692 
693 	/*
694 	 * Wait for the other CPUs to be notified and be waiting for us:
695 	 */
696 	time_left = MSEC_PER_SEC;
697 	while (kgdb_do_roundup && --time_left &&
698 	       (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
699 		   online_cpus)
700 		udelay(1000);
701 	if (!time_left)
702 		pr_crit("Timed out waiting for secondary CPUs.\n");
703 
704 	/*
705 	 * At this point the primary processor is completely
706 	 * in the debugger and all secondary CPUs are quiescent
707 	 */
708 	dbg_deactivate_sw_breakpoints();
709 	kgdb_single_step = 0;
710 	kgdb_contthread = current;
711 	exception_level = 0;
712 	trace_on = tracing_is_on();
713 	if (trace_on)
714 		tracing_off();
715 
716 	while (1) {
717 cpu_master_loop:
718 		if (dbg_kdb_mode) {
719 			kgdb_connected = 1;
720 			error = kdb_stub(ks);
721 			if (error == -1)
722 				continue;
723 			kgdb_connected = 0;
724 		} else {
725 			error = gdb_serial_stub(ks);
726 		}
727 
728 		if (error == DBG_PASS_EVENT) {
729 			dbg_kdb_mode = !dbg_kdb_mode;
730 		} else if (error == DBG_SWITCH_CPU_EVENT) {
731 			kgdb_info[dbg_switch_cpu].exception_state |=
732 				DCPU_NEXT_MASTER;
733 			goto cpu_loop;
734 		} else {
735 			kgdb_info[cpu].ret_state = error;
736 			break;
737 		}
738 	}
739 
740 	/* Call the I/O driver's post_exception routine */
741 	if (dbg_io_ops->post_exception)
742 		dbg_io_ops->post_exception();
743 
744 	atomic_dec(&ignore_console_lock_warning);
745 
746 	if (!kgdb_single_step) {
747 		raw_spin_unlock(&dbg_slave_lock);
748 		/* Wait till all the CPUs have quit from the debugger. */
749 		while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
750 			cpu_relax();
751 	}
752 
753 kgdb_restore:
754 	if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
755 		int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
756 		if (kgdb_info[sstep_cpu].task)
757 			kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
758 		else
759 			kgdb_sstep_pid = 0;
760 	}
761 	if (arch_kgdb_ops.correct_hw_break)
762 		arch_kgdb_ops.correct_hw_break();
763 	if (trace_on)
764 		tracing_on();
765 
766 	kgdb_info[cpu].debuggerinfo = NULL;
767 	kgdb_info[cpu].task = NULL;
768 	kgdb_info[cpu].exception_state &=
769 		~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
770 	kgdb_info[cpu].enter_kgdb--;
771 	smp_mb__before_atomic();
772 	atomic_dec(&masters_in_kgdb);
773 	/* Free kgdb_active */
774 	atomic_set(&kgdb_active, -1);
775 	raw_spin_unlock(&dbg_master_lock);
776 	dbg_touch_watchdogs();
777 	local_irq_restore(flags);
778 
779 	return kgdb_info[cpu].ret_state;
780 }
781 
782 /*
783  * kgdb_handle_exception() - main entry point from a kernel exception
784  *
785  * Locking hierarchy:
786  *	interface locks, if any (begin_session)
787  *	kgdb lock (kgdb_active)
788  */
789 int
790 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
791 {
792 	struct kgdb_state kgdb_var;
793 	struct kgdb_state *ks = &kgdb_var;
794 	int ret = 0;
795 
796 	if (arch_kgdb_ops.enable_nmi)
797 		arch_kgdb_ops.enable_nmi(0);
798 	/*
799 	 * Avoid entering the debugger if we were triggered due to an oops
800 	 * but panic_timeout indicates the system should automatically
801 	 * reboot on panic. We don't want to get stuck waiting for input
802 	 * on such systems, especially if its "just" an oops.
803 	 */
804 	if (signo != SIGTRAP && panic_timeout)
805 		return 1;
806 
807 	memset(ks, 0, sizeof(struct kgdb_state));
808 	ks->cpu			= raw_smp_processor_id();
809 	ks->ex_vector		= evector;
810 	ks->signo		= signo;
811 	ks->err_code		= ecode;
812 	ks->linux_regs		= regs;
813 
814 	if (kgdb_reenter_check(ks))
815 		goto out; /* Ouch, double exception ! */
816 	if (kgdb_info[ks->cpu].enter_kgdb != 0)
817 		goto out;
818 
819 	ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
820 out:
821 	if (arch_kgdb_ops.enable_nmi)
822 		arch_kgdb_ops.enable_nmi(1);
823 	return ret;
824 }
825 
826 /*
827  * GDB places a breakpoint at this function to know dynamically loaded objects.
828  */
829 static int module_event(struct notifier_block *self, unsigned long val,
830 	void *data)
831 {
832 	return 0;
833 }
834 
835 static struct notifier_block dbg_module_load_nb = {
836 	.notifier_call	= module_event,
837 };
838 
839 int kgdb_nmicallback(int cpu, void *regs)
840 {
841 #ifdef CONFIG_SMP
842 	struct kgdb_state kgdb_var;
843 	struct kgdb_state *ks = &kgdb_var;
844 
845 	kgdb_info[cpu].rounding_up = false;
846 
847 	memset(ks, 0, sizeof(struct kgdb_state));
848 	ks->cpu			= cpu;
849 	ks->linux_regs		= regs;
850 
851 	if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
852 			raw_spin_is_locked(&dbg_master_lock)) {
853 		kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
854 		return 0;
855 	}
856 #endif
857 	return 1;
858 }
859 
860 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
861 							atomic_t *send_ready)
862 {
863 #ifdef CONFIG_SMP
864 	if (!kgdb_io_ready(0) || !send_ready)
865 		return 1;
866 
867 	if (kgdb_info[cpu].enter_kgdb == 0) {
868 		struct kgdb_state kgdb_var;
869 		struct kgdb_state *ks = &kgdb_var;
870 
871 		memset(ks, 0, sizeof(struct kgdb_state));
872 		ks->cpu			= cpu;
873 		ks->ex_vector		= trapnr;
874 		ks->signo		= SIGTRAP;
875 		ks->err_code		= err_code;
876 		ks->linux_regs		= regs;
877 		ks->send_ready		= send_ready;
878 		kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
879 		return 0;
880 	}
881 #endif
882 	return 1;
883 }
884 
885 static void kgdb_console_write(struct console *co, const char *s,
886    unsigned count)
887 {
888 	unsigned long flags;
889 
890 	/* If we're debugging, or KGDB has not connected, don't try
891 	 * and print. */
892 	if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
893 		return;
894 
895 	local_irq_save(flags);
896 	gdbstub_msg_write(s, count);
897 	local_irq_restore(flags);
898 }
899 
900 static struct console kgdbcons = {
901 	.name		= "kgdb",
902 	.write		= kgdb_console_write,
903 	.flags		= CON_PRINTBUFFER | CON_ENABLED,
904 	.index		= -1,
905 };
906 
907 #ifdef CONFIG_MAGIC_SYSRQ
908 static void sysrq_handle_dbg(int key)
909 {
910 	if (!dbg_io_ops) {
911 		pr_crit("ERROR: No KGDB I/O module available\n");
912 		return;
913 	}
914 	if (!kgdb_connected) {
915 #ifdef CONFIG_KGDB_KDB
916 		if (!dbg_kdb_mode)
917 			pr_crit("KGDB or $3#33 for KDB\n");
918 #else
919 		pr_crit("Entering KGDB\n");
920 #endif
921 	}
922 
923 	kgdb_breakpoint();
924 }
925 
926 static struct sysrq_key_op sysrq_dbg_op = {
927 	.handler	= sysrq_handle_dbg,
928 	.help_msg	= "debug(g)",
929 	.action_msg	= "DEBUG",
930 };
931 #endif
932 
933 void kgdb_panic(const char *msg)
934 {
935 	if (!kgdb_io_module_registered)
936 		return;
937 
938 	/*
939 	 * We don't want to get stuck waiting for input from user if
940 	 * "panic_timeout" indicates the system should automatically
941 	 * reboot on panic.
942 	 */
943 	if (panic_timeout)
944 		return;
945 
946 	if (dbg_kdb_mode)
947 		kdb_printf("PANIC: %s\n", msg);
948 
949 	kgdb_breakpoint();
950 }
951 
952 static void kgdb_initial_breakpoint(void)
953 {
954 	kgdb_break_asap = 0;
955 
956 	pr_crit("Waiting for connection from remote gdb...\n");
957 	kgdb_breakpoint();
958 }
959 
960 void __weak kgdb_arch_late(void)
961 {
962 }
963 
964 void __init dbg_late_init(void)
965 {
966 	dbg_is_early = false;
967 	if (kgdb_io_module_registered)
968 		kgdb_arch_late();
969 	kdb_init(KDB_INIT_FULL);
970 
971 	if (kgdb_io_module_registered && kgdb_break_asap)
972 		kgdb_initial_breakpoint();
973 }
974 
975 static int
976 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
977 {
978 	/*
979 	 * Take the following action on reboot notify depending on value:
980 	 *    1 == Enter debugger
981 	 *    0 == [the default] detatch debug client
982 	 *   -1 == Do nothing... and use this until the board resets
983 	 */
984 	switch (kgdbreboot) {
985 	case 1:
986 		kgdb_breakpoint();
987 	case -1:
988 		goto done;
989 	}
990 	if (!dbg_kdb_mode)
991 		gdbstub_exit(code);
992 done:
993 	return NOTIFY_DONE;
994 }
995 
996 static struct notifier_block dbg_reboot_notifier = {
997 	.notifier_call		= dbg_notify_reboot,
998 	.next			= NULL,
999 	.priority		= INT_MAX,
1000 };
1001 
1002 static void kgdb_register_callbacks(void)
1003 {
1004 	if (!kgdb_io_module_registered) {
1005 		kgdb_io_module_registered = 1;
1006 		kgdb_arch_init();
1007 		if (!dbg_is_early)
1008 			kgdb_arch_late();
1009 		register_module_notifier(&dbg_module_load_nb);
1010 		register_reboot_notifier(&dbg_reboot_notifier);
1011 #ifdef CONFIG_MAGIC_SYSRQ
1012 		register_sysrq_key('g', &sysrq_dbg_op);
1013 #endif
1014 		if (kgdb_use_con && !kgdb_con_registered) {
1015 			register_console(&kgdbcons);
1016 			kgdb_con_registered = 1;
1017 		}
1018 	}
1019 }
1020 
1021 static void kgdb_unregister_callbacks(void)
1022 {
1023 	/*
1024 	 * When this routine is called KGDB should unregister from
1025 	 * handlers and clean up, making sure it is not handling any
1026 	 * break exceptions at the time.
1027 	 */
1028 	if (kgdb_io_module_registered) {
1029 		kgdb_io_module_registered = 0;
1030 		unregister_reboot_notifier(&dbg_reboot_notifier);
1031 		unregister_module_notifier(&dbg_module_load_nb);
1032 		kgdb_arch_exit();
1033 #ifdef CONFIG_MAGIC_SYSRQ
1034 		unregister_sysrq_key('g', &sysrq_dbg_op);
1035 #endif
1036 		if (kgdb_con_registered) {
1037 			unregister_console(&kgdbcons);
1038 			kgdb_con_registered = 0;
1039 		}
1040 	}
1041 }
1042 
1043 /*
1044  * There are times a tasklet needs to be used vs a compiled in
1045  * break point so as to cause an exception outside a kgdb I/O module,
1046  * such as is the case with kgdboe, where calling a breakpoint in the
1047  * I/O driver itself would be fatal.
1048  */
1049 static void kgdb_tasklet_bpt(unsigned long ing)
1050 {
1051 	kgdb_breakpoint();
1052 	atomic_set(&kgdb_break_tasklet_var, 0);
1053 }
1054 
1055 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0);
1056 
1057 void kgdb_schedule_breakpoint(void)
1058 {
1059 	if (atomic_read(&kgdb_break_tasklet_var) ||
1060 		atomic_read(&kgdb_active) != -1 ||
1061 		atomic_read(&kgdb_setting_breakpoint))
1062 		return;
1063 	atomic_inc(&kgdb_break_tasklet_var);
1064 	tasklet_schedule(&kgdb_tasklet_breakpoint);
1065 }
1066 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
1067 
1068 /**
1069  *	kgdb_register_io_module - register KGDB IO module
1070  *	@new_dbg_io_ops: the io ops vector
1071  *
1072  *	Register it with the KGDB core.
1073  */
1074 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1075 {
1076 	struct kgdb_io *old_dbg_io_ops;
1077 	int err;
1078 
1079 	spin_lock(&kgdb_registration_lock);
1080 
1081 	old_dbg_io_ops = dbg_io_ops;
1082 	if (old_dbg_io_ops) {
1083 		if (!old_dbg_io_ops->deinit) {
1084 			spin_unlock(&kgdb_registration_lock);
1085 
1086 			pr_err("KGDB I/O driver %s can't replace %s.\n",
1087 				new_dbg_io_ops->name, old_dbg_io_ops->name);
1088 			return -EBUSY;
1089 		}
1090 		pr_info("Replacing I/O driver %s with %s\n",
1091 			old_dbg_io_ops->name, new_dbg_io_ops->name);
1092 	}
1093 
1094 	if (new_dbg_io_ops->init) {
1095 		err = new_dbg_io_ops->init();
1096 		if (err) {
1097 			spin_unlock(&kgdb_registration_lock);
1098 			return err;
1099 		}
1100 	}
1101 
1102 	dbg_io_ops = new_dbg_io_ops;
1103 
1104 	spin_unlock(&kgdb_registration_lock);
1105 
1106 	if (old_dbg_io_ops) {
1107 		old_dbg_io_ops->deinit();
1108 		return 0;
1109 	}
1110 
1111 	pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1112 
1113 	/* Arm KGDB now. */
1114 	kgdb_register_callbacks();
1115 
1116 	if (kgdb_break_asap &&
1117 	    (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1118 		kgdb_initial_breakpoint();
1119 
1120 	return 0;
1121 }
1122 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1123 
1124 /**
1125  *	kkgdb_unregister_io_module - unregister KGDB IO module
1126  *	@old_dbg_io_ops: the io ops vector
1127  *
1128  *	Unregister it with the KGDB core.
1129  */
1130 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1131 {
1132 	BUG_ON(kgdb_connected);
1133 
1134 	/*
1135 	 * KGDB is no longer able to communicate out, so
1136 	 * unregister our callbacks and reset state.
1137 	 */
1138 	kgdb_unregister_callbacks();
1139 
1140 	spin_lock(&kgdb_registration_lock);
1141 
1142 	WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1143 	dbg_io_ops = NULL;
1144 
1145 	spin_unlock(&kgdb_registration_lock);
1146 
1147 	if (old_dbg_io_ops->deinit)
1148 		old_dbg_io_ops->deinit();
1149 
1150 	pr_info("Unregistered I/O driver %s, debugger disabled\n",
1151 		old_dbg_io_ops->name);
1152 }
1153 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1154 
1155 int dbg_io_get_char(void)
1156 {
1157 	int ret = dbg_io_ops->read_char();
1158 	if (ret == NO_POLL_CHAR)
1159 		return -1;
1160 	if (!dbg_kdb_mode)
1161 		return ret;
1162 	if (ret == 127)
1163 		return 8;
1164 	return ret;
1165 }
1166 
1167 /**
1168  * kgdb_breakpoint - generate breakpoint exception
1169  *
1170  * This function will generate a breakpoint exception.  It is used at the
1171  * beginning of a program to sync up with a debugger and can be used
1172  * otherwise as a quick means to stop program execution and "break" into
1173  * the debugger.
1174  */
1175 noinline void kgdb_breakpoint(void)
1176 {
1177 	atomic_inc(&kgdb_setting_breakpoint);
1178 	wmb(); /* Sync point before breakpoint */
1179 	arch_kgdb_breakpoint();
1180 	wmb(); /* Sync point after breakpoint */
1181 	atomic_dec(&kgdb_setting_breakpoint);
1182 }
1183 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1184 
1185 static int __init opt_kgdb_wait(char *str)
1186 {
1187 	kgdb_break_asap = 1;
1188 
1189 	kdb_init(KDB_INIT_EARLY);
1190 	if (kgdb_io_module_registered &&
1191 	    IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1192 		kgdb_initial_breakpoint();
1193 
1194 	return 0;
1195 }
1196 
1197 early_param("kgdbwait", opt_kgdb_wait);
1198