1 /* 2 * Kernel Debug Core 3 * 4 * Maintainer: Jason Wessel <jason.wessel@windriver.com> 5 * 6 * Copyright (C) 2000-2001 VERITAS Software Corporation. 7 * Copyright (C) 2002-2004 Timesys Corporation 8 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> 9 * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz> 10 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> 11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. 12 * Copyright (C) 2005-2009 Wind River Systems, Inc. 13 * Copyright (C) 2007 MontaVista Software, Inc. 14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 15 * 16 * Contributors at various stages not listed above: 17 * Jason Wessel ( jason.wessel@windriver.com ) 18 * George Anzinger <george@mvista.com> 19 * Anurekh Saxena (anurekh.saxena@timesys.com) 20 * Lake Stevens Instrument Division (Glenn Engel) 21 * Jim Kingdon, Cygnus Support. 22 * 23 * Original KGDB stub: David Grothe <dave@gcom.com>, 24 * Tigran Aivazian <tigran@sco.com> 25 * 26 * This file is licensed under the terms of the GNU General Public License 27 * version 2. This program is licensed "as is" without any warranty of any 28 * kind, whether express or implied. 29 */ 30 31 #define pr_fmt(fmt) "KGDB: " fmt 32 33 #include <linux/pid_namespace.h> 34 #include <linux/clocksource.h> 35 #include <linux/serial_core.h> 36 #include <linux/interrupt.h> 37 #include <linux/spinlock.h> 38 #include <linux/console.h> 39 #include <linux/threads.h> 40 #include <linux/uaccess.h> 41 #include <linux/kernel.h> 42 #include <linux/module.h> 43 #include <linux/ptrace.h> 44 #include <linux/string.h> 45 #include <linux/delay.h> 46 #include <linux/sched.h> 47 #include <linux/sysrq.h> 48 #include <linux/reboot.h> 49 #include <linux/init.h> 50 #include <linux/kgdb.h> 51 #include <linux/kdb.h> 52 #include <linux/nmi.h> 53 #include <linux/pid.h> 54 #include <linux/smp.h> 55 #include <linux/mm.h> 56 #include <linux/vmacache.h> 57 #include <linux/rcupdate.h> 58 #include <linux/irq.h> 59 60 #include <asm/cacheflush.h> 61 #include <asm/byteorder.h> 62 #include <linux/atomic.h> 63 64 #include "debug_core.h" 65 66 static int kgdb_break_asap; 67 68 struct debuggerinfo_struct kgdb_info[NR_CPUS]; 69 70 /* kgdb_connected - Is a host GDB connected to us? */ 71 int kgdb_connected; 72 EXPORT_SYMBOL_GPL(kgdb_connected); 73 74 /* All the KGDB handlers are installed */ 75 int kgdb_io_module_registered; 76 77 /* Guard for recursive entry */ 78 static int exception_level; 79 80 struct kgdb_io *dbg_io_ops; 81 static DEFINE_SPINLOCK(kgdb_registration_lock); 82 83 /* Action for the reboot notifiter, a global allow kdb to change it */ 84 static int kgdbreboot; 85 /* kgdb console driver is loaded */ 86 static int kgdb_con_registered; 87 /* determine if kgdb console output should be used */ 88 static int kgdb_use_con; 89 /* Flag for alternate operations for early debugging */ 90 bool dbg_is_early = true; 91 /* Next cpu to become the master debug core */ 92 int dbg_switch_cpu; 93 94 /* Use kdb or gdbserver mode */ 95 int dbg_kdb_mode = 1; 96 97 static int __init opt_kgdb_con(char *str) 98 { 99 kgdb_use_con = 1; 100 return 0; 101 } 102 103 early_param("kgdbcon", opt_kgdb_con); 104 105 module_param(kgdb_use_con, int, 0644); 106 module_param(kgdbreboot, int, 0644); 107 108 /* 109 * Holds information about breakpoints in a kernel. These breakpoints are 110 * added and removed by gdb. 111 */ 112 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = { 113 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED } 114 }; 115 116 /* 117 * The CPU# of the active CPU, or -1 if none: 118 */ 119 atomic_t kgdb_active = ATOMIC_INIT(-1); 120 EXPORT_SYMBOL_GPL(kgdb_active); 121 static DEFINE_RAW_SPINLOCK(dbg_master_lock); 122 static DEFINE_RAW_SPINLOCK(dbg_slave_lock); 123 124 /* 125 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early 126 * bootup code (which might not have percpu set up yet): 127 */ 128 static atomic_t masters_in_kgdb; 129 static atomic_t slaves_in_kgdb; 130 static atomic_t kgdb_break_tasklet_var; 131 atomic_t kgdb_setting_breakpoint; 132 133 struct task_struct *kgdb_usethread; 134 struct task_struct *kgdb_contthread; 135 136 int kgdb_single_step; 137 static pid_t kgdb_sstep_pid; 138 139 /* to keep track of the CPU which is doing the single stepping*/ 140 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1); 141 142 /* 143 * If you are debugging a problem where roundup (the collection of 144 * all other CPUs) is a problem [this should be extremely rare], 145 * then use the nokgdbroundup option to avoid roundup. In that case 146 * the other CPUs might interfere with your debugging context, so 147 * use this with care: 148 */ 149 static int kgdb_do_roundup = 1; 150 151 static int __init opt_nokgdbroundup(char *str) 152 { 153 kgdb_do_roundup = 0; 154 155 return 0; 156 } 157 158 early_param("nokgdbroundup", opt_nokgdbroundup); 159 160 /* 161 * Finally, some KGDB code :-) 162 */ 163 164 /* 165 * Weak aliases for breakpoint management, 166 * can be overriden by architectures when needed: 167 */ 168 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt) 169 { 170 int err; 171 172 err = probe_kernel_read(bpt->saved_instr, (char *)bpt->bpt_addr, 173 BREAK_INSTR_SIZE); 174 if (err) 175 return err; 176 err = probe_kernel_write((char *)bpt->bpt_addr, 177 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE); 178 return err; 179 } 180 181 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt) 182 { 183 return probe_kernel_write((char *)bpt->bpt_addr, 184 (char *)bpt->saved_instr, BREAK_INSTR_SIZE); 185 } 186 187 int __weak kgdb_validate_break_address(unsigned long addr) 188 { 189 struct kgdb_bkpt tmp; 190 int err; 191 /* Validate setting the breakpoint and then removing it. If the 192 * remove fails, the kernel needs to emit a bad message because we 193 * are deep trouble not being able to put things back the way we 194 * found them. 195 */ 196 tmp.bpt_addr = addr; 197 err = kgdb_arch_set_breakpoint(&tmp); 198 if (err) 199 return err; 200 err = kgdb_arch_remove_breakpoint(&tmp); 201 if (err) 202 pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n", 203 addr); 204 return err; 205 } 206 207 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs) 208 { 209 return instruction_pointer(regs); 210 } 211 212 int __weak kgdb_arch_init(void) 213 { 214 return 0; 215 } 216 217 int __weak kgdb_skipexception(int exception, struct pt_regs *regs) 218 { 219 return 0; 220 } 221 222 #ifdef CONFIG_SMP 223 224 /* 225 * Default (weak) implementation for kgdb_roundup_cpus 226 */ 227 228 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd); 229 230 void __weak kgdb_call_nmi_hook(void *ignored) 231 { 232 /* 233 * NOTE: get_irq_regs() is supposed to get the registers from 234 * before the IPI interrupt happened and so is supposed to 235 * show where the processor was. In some situations it's 236 * possible we might be called without an IPI, so it might be 237 * safer to figure out how to make kgdb_breakpoint() work 238 * properly here. 239 */ 240 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs()); 241 } 242 243 void __weak kgdb_roundup_cpus(void) 244 { 245 call_single_data_t *csd; 246 int this_cpu = raw_smp_processor_id(); 247 int cpu; 248 int ret; 249 250 for_each_online_cpu(cpu) { 251 /* No need to roundup ourselves */ 252 if (cpu == this_cpu) 253 continue; 254 255 csd = &per_cpu(kgdb_roundup_csd, cpu); 256 257 /* 258 * If it didn't round up last time, don't try again 259 * since smp_call_function_single_async() will block. 260 * 261 * If rounding_up is false then we know that the 262 * previous call must have at least started and that 263 * means smp_call_function_single_async() won't block. 264 */ 265 if (kgdb_info[cpu].rounding_up) 266 continue; 267 kgdb_info[cpu].rounding_up = true; 268 269 csd->func = kgdb_call_nmi_hook; 270 ret = smp_call_function_single_async(cpu, csd); 271 if (ret) 272 kgdb_info[cpu].rounding_up = false; 273 } 274 } 275 276 #endif 277 278 /* 279 * Some architectures need cache flushes when we set/clear a 280 * breakpoint: 281 */ 282 static void kgdb_flush_swbreak_addr(unsigned long addr) 283 { 284 if (!CACHE_FLUSH_IS_SAFE) 285 return; 286 287 if (current->mm) { 288 int i; 289 290 for (i = 0; i < VMACACHE_SIZE; i++) { 291 if (!current->vmacache.vmas[i]) 292 continue; 293 flush_cache_range(current->vmacache.vmas[i], 294 addr, addr + BREAK_INSTR_SIZE); 295 } 296 } 297 298 /* Force flush instruction cache if it was outside the mm */ 299 flush_icache_range(addr, addr + BREAK_INSTR_SIZE); 300 } 301 302 /* 303 * SW breakpoint management: 304 */ 305 int dbg_activate_sw_breakpoints(void) 306 { 307 int error; 308 int ret = 0; 309 int i; 310 311 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 312 if (kgdb_break[i].state != BP_SET) 313 continue; 314 315 error = kgdb_arch_set_breakpoint(&kgdb_break[i]); 316 if (error) { 317 ret = error; 318 pr_info("BP install failed: %lx\n", 319 kgdb_break[i].bpt_addr); 320 continue; 321 } 322 323 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr); 324 kgdb_break[i].state = BP_ACTIVE; 325 } 326 return ret; 327 } 328 329 int dbg_set_sw_break(unsigned long addr) 330 { 331 int err = kgdb_validate_break_address(addr); 332 int breakno = -1; 333 int i; 334 335 if (err) 336 return err; 337 338 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 339 if ((kgdb_break[i].state == BP_SET) && 340 (kgdb_break[i].bpt_addr == addr)) 341 return -EEXIST; 342 } 343 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 344 if (kgdb_break[i].state == BP_REMOVED && 345 kgdb_break[i].bpt_addr == addr) { 346 breakno = i; 347 break; 348 } 349 } 350 351 if (breakno == -1) { 352 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 353 if (kgdb_break[i].state == BP_UNDEFINED) { 354 breakno = i; 355 break; 356 } 357 } 358 } 359 360 if (breakno == -1) 361 return -E2BIG; 362 363 kgdb_break[breakno].state = BP_SET; 364 kgdb_break[breakno].type = BP_BREAKPOINT; 365 kgdb_break[breakno].bpt_addr = addr; 366 367 return 0; 368 } 369 370 int dbg_deactivate_sw_breakpoints(void) 371 { 372 int error; 373 int ret = 0; 374 int i; 375 376 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 377 if (kgdb_break[i].state != BP_ACTIVE) 378 continue; 379 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]); 380 if (error) { 381 pr_info("BP remove failed: %lx\n", 382 kgdb_break[i].bpt_addr); 383 ret = error; 384 } 385 386 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr); 387 kgdb_break[i].state = BP_SET; 388 } 389 return ret; 390 } 391 392 int dbg_remove_sw_break(unsigned long addr) 393 { 394 int i; 395 396 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 397 if ((kgdb_break[i].state == BP_SET) && 398 (kgdb_break[i].bpt_addr == addr)) { 399 kgdb_break[i].state = BP_REMOVED; 400 return 0; 401 } 402 } 403 return -ENOENT; 404 } 405 406 int kgdb_isremovedbreak(unsigned long addr) 407 { 408 int i; 409 410 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 411 if ((kgdb_break[i].state == BP_REMOVED) && 412 (kgdb_break[i].bpt_addr == addr)) 413 return 1; 414 } 415 return 0; 416 } 417 418 int dbg_remove_all_break(void) 419 { 420 int error; 421 int i; 422 423 /* Clear memory breakpoints. */ 424 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 425 if (kgdb_break[i].state != BP_ACTIVE) 426 goto setundefined; 427 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]); 428 if (error) 429 pr_err("breakpoint remove failed: %lx\n", 430 kgdb_break[i].bpt_addr); 431 setundefined: 432 kgdb_break[i].state = BP_UNDEFINED; 433 } 434 435 /* Clear hardware breakpoints. */ 436 if (arch_kgdb_ops.remove_all_hw_break) 437 arch_kgdb_ops.remove_all_hw_break(); 438 439 return 0; 440 } 441 442 #ifdef CONFIG_KGDB_KDB 443 void kdb_dump_stack_on_cpu(int cpu) 444 { 445 if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) { 446 dump_stack(); 447 return; 448 } 449 450 if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) { 451 kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n", 452 cpu); 453 return; 454 } 455 456 /* 457 * In general, architectures don't support dumping the stack of a 458 * "running" process that's not the current one. From the point of 459 * view of the Linux, kernel processes that are looping in the kgdb 460 * slave loop are still "running". There's also no API (that actually 461 * works across all architectures) that can do a stack crawl based 462 * on registers passed as a parameter. 463 * 464 * Solve this conundrum by asking slave CPUs to do the backtrace 465 * themselves. 466 */ 467 kgdb_info[cpu].exception_state |= DCPU_WANT_BT; 468 while (kgdb_info[cpu].exception_state & DCPU_WANT_BT) 469 cpu_relax(); 470 } 471 #endif 472 473 /* 474 * Return true if there is a valid kgdb I/O module. Also if no 475 * debugger is attached a message can be printed to the console about 476 * waiting for the debugger to attach. 477 * 478 * The print_wait argument is only to be true when called from inside 479 * the core kgdb_handle_exception, because it will wait for the 480 * debugger to attach. 481 */ 482 static int kgdb_io_ready(int print_wait) 483 { 484 if (!dbg_io_ops) 485 return 0; 486 if (kgdb_connected) 487 return 1; 488 if (atomic_read(&kgdb_setting_breakpoint)) 489 return 1; 490 if (print_wait) { 491 #ifdef CONFIG_KGDB_KDB 492 if (!dbg_kdb_mode) 493 pr_crit("waiting... or $3#33 for KDB\n"); 494 #else 495 pr_crit("Waiting for remote debugger\n"); 496 #endif 497 } 498 return 1; 499 } 500 501 static int kgdb_reenter_check(struct kgdb_state *ks) 502 { 503 unsigned long addr; 504 505 if (atomic_read(&kgdb_active) != raw_smp_processor_id()) 506 return 0; 507 508 /* Panic on recursive debugger calls: */ 509 exception_level++; 510 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); 511 dbg_deactivate_sw_breakpoints(); 512 513 /* 514 * If the break point removed ok at the place exception 515 * occurred, try to recover and print a warning to the end 516 * user because the user planted a breakpoint in a place that 517 * KGDB needs in order to function. 518 */ 519 if (dbg_remove_sw_break(addr) == 0) { 520 exception_level = 0; 521 kgdb_skipexception(ks->ex_vector, ks->linux_regs); 522 dbg_activate_sw_breakpoints(); 523 pr_crit("re-enter error: breakpoint removed %lx\n", addr); 524 WARN_ON_ONCE(1); 525 526 return 1; 527 } 528 dbg_remove_all_break(); 529 kgdb_skipexception(ks->ex_vector, ks->linux_regs); 530 531 if (exception_level > 1) { 532 dump_stack(); 533 kgdb_io_module_registered = false; 534 panic("Recursive entry to debugger"); 535 } 536 537 pr_crit("re-enter exception: ALL breakpoints killed\n"); 538 #ifdef CONFIG_KGDB_KDB 539 /* Allow kdb to debug itself one level */ 540 return 0; 541 #endif 542 dump_stack(); 543 panic("Recursive entry to debugger"); 544 545 return 1; 546 } 547 548 static void dbg_touch_watchdogs(void) 549 { 550 touch_softlockup_watchdog_sync(); 551 clocksource_touch_watchdog(); 552 rcu_cpu_stall_reset(); 553 } 554 555 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs, 556 int exception_state) 557 { 558 unsigned long flags; 559 int sstep_tries = 100; 560 int error; 561 int cpu; 562 int trace_on = 0; 563 int online_cpus = num_online_cpus(); 564 u64 time_left; 565 566 kgdb_info[ks->cpu].enter_kgdb++; 567 kgdb_info[ks->cpu].exception_state |= exception_state; 568 569 if (exception_state == DCPU_WANT_MASTER) 570 atomic_inc(&masters_in_kgdb); 571 else 572 atomic_inc(&slaves_in_kgdb); 573 574 if (arch_kgdb_ops.disable_hw_break) 575 arch_kgdb_ops.disable_hw_break(regs); 576 577 acquirelock: 578 /* 579 * Interrupts will be restored by the 'trap return' code, except when 580 * single stepping. 581 */ 582 local_irq_save(flags); 583 584 cpu = ks->cpu; 585 kgdb_info[cpu].debuggerinfo = regs; 586 kgdb_info[cpu].task = current; 587 kgdb_info[cpu].ret_state = 0; 588 kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT; 589 590 /* Make sure the above info reaches the primary CPU */ 591 smp_mb(); 592 593 if (exception_level == 1) { 594 if (raw_spin_trylock(&dbg_master_lock)) 595 atomic_xchg(&kgdb_active, cpu); 596 goto cpu_master_loop; 597 } 598 599 /* 600 * CPU will loop if it is a slave or request to become a kgdb 601 * master cpu and acquire the kgdb_active lock: 602 */ 603 while (1) { 604 cpu_loop: 605 if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) { 606 kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER; 607 goto cpu_master_loop; 608 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) { 609 if (raw_spin_trylock(&dbg_master_lock)) { 610 atomic_xchg(&kgdb_active, cpu); 611 break; 612 } 613 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) { 614 dump_stack(); 615 kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT; 616 } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) { 617 if (!raw_spin_is_locked(&dbg_slave_lock)) 618 goto return_normal; 619 } else { 620 return_normal: 621 /* Return to normal operation by executing any 622 * hw breakpoint fixup. 623 */ 624 if (arch_kgdb_ops.correct_hw_break) 625 arch_kgdb_ops.correct_hw_break(); 626 if (trace_on) 627 tracing_on(); 628 kgdb_info[cpu].debuggerinfo = NULL; 629 kgdb_info[cpu].task = NULL; 630 kgdb_info[cpu].exception_state &= 631 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE); 632 kgdb_info[cpu].enter_kgdb--; 633 smp_mb__before_atomic(); 634 atomic_dec(&slaves_in_kgdb); 635 dbg_touch_watchdogs(); 636 local_irq_restore(flags); 637 return 0; 638 } 639 cpu_relax(); 640 } 641 642 /* 643 * For single stepping, try to only enter on the processor 644 * that was single stepping. To guard against a deadlock, the 645 * kernel will only try for the value of sstep_tries before 646 * giving up and continuing on. 647 */ 648 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 && 649 (kgdb_info[cpu].task && 650 kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) { 651 atomic_set(&kgdb_active, -1); 652 raw_spin_unlock(&dbg_master_lock); 653 dbg_touch_watchdogs(); 654 local_irq_restore(flags); 655 656 goto acquirelock; 657 } 658 659 if (!kgdb_io_ready(1)) { 660 kgdb_info[cpu].ret_state = 1; 661 goto kgdb_restore; /* No I/O connection, resume the system */ 662 } 663 664 /* 665 * Don't enter if we have hit a removed breakpoint. 666 */ 667 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs)) 668 goto kgdb_restore; 669 670 atomic_inc(&ignore_console_lock_warning); 671 672 /* Call the I/O driver's pre_exception routine */ 673 if (dbg_io_ops->pre_exception) 674 dbg_io_ops->pre_exception(); 675 676 /* 677 * Get the passive CPU lock which will hold all the non-primary 678 * CPU in a spin state while the debugger is active 679 */ 680 if (!kgdb_single_step) 681 raw_spin_lock(&dbg_slave_lock); 682 683 #ifdef CONFIG_SMP 684 /* If send_ready set, slaves are already waiting */ 685 if (ks->send_ready) 686 atomic_set(ks->send_ready, 1); 687 688 /* Signal the other CPUs to enter kgdb_wait() */ 689 else if ((!kgdb_single_step) && kgdb_do_roundup) 690 kgdb_roundup_cpus(); 691 #endif 692 693 /* 694 * Wait for the other CPUs to be notified and be waiting for us: 695 */ 696 time_left = MSEC_PER_SEC; 697 while (kgdb_do_roundup && --time_left && 698 (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) != 699 online_cpus) 700 udelay(1000); 701 if (!time_left) 702 pr_crit("Timed out waiting for secondary CPUs.\n"); 703 704 /* 705 * At this point the primary processor is completely 706 * in the debugger and all secondary CPUs are quiescent 707 */ 708 dbg_deactivate_sw_breakpoints(); 709 kgdb_single_step = 0; 710 kgdb_contthread = current; 711 exception_level = 0; 712 trace_on = tracing_is_on(); 713 if (trace_on) 714 tracing_off(); 715 716 while (1) { 717 cpu_master_loop: 718 if (dbg_kdb_mode) { 719 kgdb_connected = 1; 720 error = kdb_stub(ks); 721 if (error == -1) 722 continue; 723 kgdb_connected = 0; 724 } else { 725 error = gdb_serial_stub(ks); 726 } 727 728 if (error == DBG_PASS_EVENT) { 729 dbg_kdb_mode = !dbg_kdb_mode; 730 } else if (error == DBG_SWITCH_CPU_EVENT) { 731 kgdb_info[dbg_switch_cpu].exception_state |= 732 DCPU_NEXT_MASTER; 733 goto cpu_loop; 734 } else { 735 kgdb_info[cpu].ret_state = error; 736 break; 737 } 738 } 739 740 /* Call the I/O driver's post_exception routine */ 741 if (dbg_io_ops->post_exception) 742 dbg_io_ops->post_exception(); 743 744 atomic_dec(&ignore_console_lock_warning); 745 746 if (!kgdb_single_step) { 747 raw_spin_unlock(&dbg_slave_lock); 748 /* Wait till all the CPUs have quit from the debugger. */ 749 while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb)) 750 cpu_relax(); 751 } 752 753 kgdb_restore: 754 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) { 755 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step); 756 if (kgdb_info[sstep_cpu].task) 757 kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid; 758 else 759 kgdb_sstep_pid = 0; 760 } 761 if (arch_kgdb_ops.correct_hw_break) 762 arch_kgdb_ops.correct_hw_break(); 763 if (trace_on) 764 tracing_on(); 765 766 kgdb_info[cpu].debuggerinfo = NULL; 767 kgdb_info[cpu].task = NULL; 768 kgdb_info[cpu].exception_state &= 769 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE); 770 kgdb_info[cpu].enter_kgdb--; 771 smp_mb__before_atomic(); 772 atomic_dec(&masters_in_kgdb); 773 /* Free kgdb_active */ 774 atomic_set(&kgdb_active, -1); 775 raw_spin_unlock(&dbg_master_lock); 776 dbg_touch_watchdogs(); 777 local_irq_restore(flags); 778 779 return kgdb_info[cpu].ret_state; 780 } 781 782 /* 783 * kgdb_handle_exception() - main entry point from a kernel exception 784 * 785 * Locking hierarchy: 786 * interface locks, if any (begin_session) 787 * kgdb lock (kgdb_active) 788 */ 789 int 790 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs) 791 { 792 struct kgdb_state kgdb_var; 793 struct kgdb_state *ks = &kgdb_var; 794 int ret = 0; 795 796 if (arch_kgdb_ops.enable_nmi) 797 arch_kgdb_ops.enable_nmi(0); 798 /* 799 * Avoid entering the debugger if we were triggered due to an oops 800 * but panic_timeout indicates the system should automatically 801 * reboot on panic. We don't want to get stuck waiting for input 802 * on such systems, especially if its "just" an oops. 803 */ 804 if (signo != SIGTRAP && panic_timeout) 805 return 1; 806 807 memset(ks, 0, sizeof(struct kgdb_state)); 808 ks->cpu = raw_smp_processor_id(); 809 ks->ex_vector = evector; 810 ks->signo = signo; 811 ks->err_code = ecode; 812 ks->linux_regs = regs; 813 814 if (kgdb_reenter_check(ks)) 815 goto out; /* Ouch, double exception ! */ 816 if (kgdb_info[ks->cpu].enter_kgdb != 0) 817 goto out; 818 819 ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER); 820 out: 821 if (arch_kgdb_ops.enable_nmi) 822 arch_kgdb_ops.enable_nmi(1); 823 return ret; 824 } 825 826 /* 827 * GDB places a breakpoint at this function to know dynamically loaded objects. 828 */ 829 static int module_event(struct notifier_block *self, unsigned long val, 830 void *data) 831 { 832 return 0; 833 } 834 835 static struct notifier_block dbg_module_load_nb = { 836 .notifier_call = module_event, 837 }; 838 839 int kgdb_nmicallback(int cpu, void *regs) 840 { 841 #ifdef CONFIG_SMP 842 struct kgdb_state kgdb_var; 843 struct kgdb_state *ks = &kgdb_var; 844 845 kgdb_info[cpu].rounding_up = false; 846 847 memset(ks, 0, sizeof(struct kgdb_state)); 848 ks->cpu = cpu; 849 ks->linux_regs = regs; 850 851 if (kgdb_info[ks->cpu].enter_kgdb == 0 && 852 raw_spin_is_locked(&dbg_master_lock)) { 853 kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE); 854 return 0; 855 } 856 #endif 857 return 1; 858 } 859 860 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code, 861 atomic_t *send_ready) 862 { 863 #ifdef CONFIG_SMP 864 if (!kgdb_io_ready(0) || !send_ready) 865 return 1; 866 867 if (kgdb_info[cpu].enter_kgdb == 0) { 868 struct kgdb_state kgdb_var; 869 struct kgdb_state *ks = &kgdb_var; 870 871 memset(ks, 0, sizeof(struct kgdb_state)); 872 ks->cpu = cpu; 873 ks->ex_vector = trapnr; 874 ks->signo = SIGTRAP; 875 ks->err_code = err_code; 876 ks->linux_regs = regs; 877 ks->send_ready = send_ready; 878 kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER); 879 return 0; 880 } 881 #endif 882 return 1; 883 } 884 885 static void kgdb_console_write(struct console *co, const char *s, 886 unsigned count) 887 { 888 unsigned long flags; 889 890 /* If we're debugging, or KGDB has not connected, don't try 891 * and print. */ 892 if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode) 893 return; 894 895 local_irq_save(flags); 896 gdbstub_msg_write(s, count); 897 local_irq_restore(flags); 898 } 899 900 static struct console kgdbcons = { 901 .name = "kgdb", 902 .write = kgdb_console_write, 903 .flags = CON_PRINTBUFFER | CON_ENABLED, 904 .index = -1, 905 }; 906 907 #ifdef CONFIG_MAGIC_SYSRQ 908 static void sysrq_handle_dbg(int key) 909 { 910 if (!dbg_io_ops) { 911 pr_crit("ERROR: No KGDB I/O module available\n"); 912 return; 913 } 914 if (!kgdb_connected) { 915 #ifdef CONFIG_KGDB_KDB 916 if (!dbg_kdb_mode) 917 pr_crit("KGDB or $3#33 for KDB\n"); 918 #else 919 pr_crit("Entering KGDB\n"); 920 #endif 921 } 922 923 kgdb_breakpoint(); 924 } 925 926 static struct sysrq_key_op sysrq_dbg_op = { 927 .handler = sysrq_handle_dbg, 928 .help_msg = "debug(g)", 929 .action_msg = "DEBUG", 930 }; 931 #endif 932 933 void kgdb_panic(const char *msg) 934 { 935 if (!kgdb_io_module_registered) 936 return; 937 938 /* 939 * We don't want to get stuck waiting for input from user if 940 * "panic_timeout" indicates the system should automatically 941 * reboot on panic. 942 */ 943 if (panic_timeout) 944 return; 945 946 if (dbg_kdb_mode) 947 kdb_printf("PANIC: %s\n", msg); 948 949 kgdb_breakpoint(); 950 } 951 952 static void kgdb_initial_breakpoint(void) 953 { 954 kgdb_break_asap = 0; 955 956 pr_crit("Waiting for connection from remote gdb...\n"); 957 kgdb_breakpoint(); 958 } 959 960 void __weak kgdb_arch_late(void) 961 { 962 } 963 964 void __init dbg_late_init(void) 965 { 966 dbg_is_early = false; 967 if (kgdb_io_module_registered) 968 kgdb_arch_late(); 969 kdb_init(KDB_INIT_FULL); 970 971 if (kgdb_io_module_registered && kgdb_break_asap) 972 kgdb_initial_breakpoint(); 973 } 974 975 static int 976 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x) 977 { 978 /* 979 * Take the following action on reboot notify depending on value: 980 * 1 == Enter debugger 981 * 0 == [the default] detatch debug client 982 * -1 == Do nothing... and use this until the board resets 983 */ 984 switch (kgdbreboot) { 985 case 1: 986 kgdb_breakpoint(); 987 case -1: 988 goto done; 989 } 990 if (!dbg_kdb_mode) 991 gdbstub_exit(code); 992 done: 993 return NOTIFY_DONE; 994 } 995 996 static struct notifier_block dbg_reboot_notifier = { 997 .notifier_call = dbg_notify_reboot, 998 .next = NULL, 999 .priority = INT_MAX, 1000 }; 1001 1002 static void kgdb_register_callbacks(void) 1003 { 1004 if (!kgdb_io_module_registered) { 1005 kgdb_io_module_registered = 1; 1006 kgdb_arch_init(); 1007 if (!dbg_is_early) 1008 kgdb_arch_late(); 1009 register_module_notifier(&dbg_module_load_nb); 1010 register_reboot_notifier(&dbg_reboot_notifier); 1011 #ifdef CONFIG_MAGIC_SYSRQ 1012 register_sysrq_key('g', &sysrq_dbg_op); 1013 #endif 1014 if (kgdb_use_con && !kgdb_con_registered) { 1015 register_console(&kgdbcons); 1016 kgdb_con_registered = 1; 1017 } 1018 } 1019 } 1020 1021 static void kgdb_unregister_callbacks(void) 1022 { 1023 /* 1024 * When this routine is called KGDB should unregister from 1025 * handlers and clean up, making sure it is not handling any 1026 * break exceptions at the time. 1027 */ 1028 if (kgdb_io_module_registered) { 1029 kgdb_io_module_registered = 0; 1030 unregister_reboot_notifier(&dbg_reboot_notifier); 1031 unregister_module_notifier(&dbg_module_load_nb); 1032 kgdb_arch_exit(); 1033 #ifdef CONFIG_MAGIC_SYSRQ 1034 unregister_sysrq_key('g', &sysrq_dbg_op); 1035 #endif 1036 if (kgdb_con_registered) { 1037 unregister_console(&kgdbcons); 1038 kgdb_con_registered = 0; 1039 } 1040 } 1041 } 1042 1043 /* 1044 * There are times a tasklet needs to be used vs a compiled in 1045 * break point so as to cause an exception outside a kgdb I/O module, 1046 * such as is the case with kgdboe, where calling a breakpoint in the 1047 * I/O driver itself would be fatal. 1048 */ 1049 static void kgdb_tasklet_bpt(unsigned long ing) 1050 { 1051 kgdb_breakpoint(); 1052 atomic_set(&kgdb_break_tasklet_var, 0); 1053 } 1054 1055 static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0); 1056 1057 void kgdb_schedule_breakpoint(void) 1058 { 1059 if (atomic_read(&kgdb_break_tasklet_var) || 1060 atomic_read(&kgdb_active) != -1 || 1061 atomic_read(&kgdb_setting_breakpoint)) 1062 return; 1063 atomic_inc(&kgdb_break_tasklet_var); 1064 tasklet_schedule(&kgdb_tasklet_breakpoint); 1065 } 1066 EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint); 1067 1068 /** 1069 * kgdb_register_io_module - register KGDB IO module 1070 * @new_dbg_io_ops: the io ops vector 1071 * 1072 * Register it with the KGDB core. 1073 */ 1074 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops) 1075 { 1076 struct kgdb_io *old_dbg_io_ops; 1077 int err; 1078 1079 spin_lock(&kgdb_registration_lock); 1080 1081 old_dbg_io_ops = dbg_io_ops; 1082 if (old_dbg_io_ops) { 1083 if (!old_dbg_io_ops->deinit) { 1084 spin_unlock(&kgdb_registration_lock); 1085 1086 pr_err("KGDB I/O driver %s can't replace %s.\n", 1087 new_dbg_io_ops->name, old_dbg_io_ops->name); 1088 return -EBUSY; 1089 } 1090 pr_info("Replacing I/O driver %s with %s\n", 1091 old_dbg_io_ops->name, new_dbg_io_ops->name); 1092 } 1093 1094 if (new_dbg_io_ops->init) { 1095 err = new_dbg_io_ops->init(); 1096 if (err) { 1097 spin_unlock(&kgdb_registration_lock); 1098 return err; 1099 } 1100 } 1101 1102 dbg_io_ops = new_dbg_io_ops; 1103 1104 spin_unlock(&kgdb_registration_lock); 1105 1106 if (old_dbg_io_ops) { 1107 old_dbg_io_ops->deinit(); 1108 return 0; 1109 } 1110 1111 pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name); 1112 1113 /* Arm KGDB now. */ 1114 kgdb_register_callbacks(); 1115 1116 if (kgdb_break_asap && 1117 (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))) 1118 kgdb_initial_breakpoint(); 1119 1120 return 0; 1121 } 1122 EXPORT_SYMBOL_GPL(kgdb_register_io_module); 1123 1124 /** 1125 * kkgdb_unregister_io_module - unregister KGDB IO module 1126 * @old_dbg_io_ops: the io ops vector 1127 * 1128 * Unregister it with the KGDB core. 1129 */ 1130 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops) 1131 { 1132 BUG_ON(kgdb_connected); 1133 1134 /* 1135 * KGDB is no longer able to communicate out, so 1136 * unregister our callbacks and reset state. 1137 */ 1138 kgdb_unregister_callbacks(); 1139 1140 spin_lock(&kgdb_registration_lock); 1141 1142 WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops); 1143 dbg_io_ops = NULL; 1144 1145 spin_unlock(&kgdb_registration_lock); 1146 1147 if (old_dbg_io_ops->deinit) 1148 old_dbg_io_ops->deinit(); 1149 1150 pr_info("Unregistered I/O driver %s, debugger disabled\n", 1151 old_dbg_io_ops->name); 1152 } 1153 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module); 1154 1155 int dbg_io_get_char(void) 1156 { 1157 int ret = dbg_io_ops->read_char(); 1158 if (ret == NO_POLL_CHAR) 1159 return -1; 1160 if (!dbg_kdb_mode) 1161 return ret; 1162 if (ret == 127) 1163 return 8; 1164 return ret; 1165 } 1166 1167 /** 1168 * kgdb_breakpoint - generate breakpoint exception 1169 * 1170 * This function will generate a breakpoint exception. It is used at the 1171 * beginning of a program to sync up with a debugger and can be used 1172 * otherwise as a quick means to stop program execution and "break" into 1173 * the debugger. 1174 */ 1175 noinline void kgdb_breakpoint(void) 1176 { 1177 atomic_inc(&kgdb_setting_breakpoint); 1178 wmb(); /* Sync point before breakpoint */ 1179 arch_kgdb_breakpoint(); 1180 wmb(); /* Sync point after breakpoint */ 1181 atomic_dec(&kgdb_setting_breakpoint); 1182 } 1183 EXPORT_SYMBOL_GPL(kgdb_breakpoint); 1184 1185 static int __init opt_kgdb_wait(char *str) 1186 { 1187 kgdb_break_asap = 1; 1188 1189 kdb_init(KDB_INIT_EARLY); 1190 if (kgdb_io_module_registered && 1191 IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)) 1192 kgdb_initial_breakpoint(); 1193 1194 return 0; 1195 } 1196 1197 early_param("kgdbwait", opt_kgdb_wait); 1198