1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel Debug Core 4 * 5 * Maintainer: Jason Wessel <jason.wessel@windriver.com> 6 * 7 * Copyright (C) 2000-2001 VERITAS Software Corporation. 8 * Copyright (C) 2002-2004 Timesys Corporation 9 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com> 10 * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz> 11 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org> 12 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd. 13 * Copyright (C) 2005-2009 Wind River Systems, Inc. 14 * Copyright (C) 2007 MontaVista Software, Inc. 15 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 16 * 17 * Contributors at various stages not listed above: 18 * Jason Wessel ( jason.wessel@windriver.com ) 19 * George Anzinger <george@mvista.com> 20 * Anurekh Saxena (anurekh.saxena@timesys.com) 21 * Lake Stevens Instrument Division (Glenn Engel) 22 * Jim Kingdon, Cygnus Support. 23 * 24 * Original KGDB stub: David Grothe <dave@gcom.com>, 25 * Tigran Aivazian <tigran@sco.com> 26 */ 27 28 #define pr_fmt(fmt) "KGDB: " fmt 29 30 #include <linux/pid_namespace.h> 31 #include <linux/clocksource.h> 32 #include <linux/serial_core.h> 33 #include <linux/interrupt.h> 34 #include <linux/spinlock.h> 35 #include <linux/console.h> 36 #include <linux/threads.h> 37 #include <linux/uaccess.h> 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/ptrace.h> 41 #include <linux/string.h> 42 #include <linux/delay.h> 43 #include <linux/sched.h> 44 #include <linux/sysrq.h> 45 #include <linux/reboot.h> 46 #include <linux/init.h> 47 #include <linux/kgdb.h> 48 #include <linux/kdb.h> 49 #include <linux/nmi.h> 50 #include <linux/pid.h> 51 #include <linux/smp.h> 52 #include <linux/mm.h> 53 #include <linux/vmacache.h> 54 #include <linux/rcupdate.h> 55 #include <linux/irq.h> 56 57 #include <asm/cacheflush.h> 58 #include <asm/byteorder.h> 59 #include <linux/atomic.h> 60 61 #include "debug_core.h" 62 63 static int kgdb_break_asap; 64 65 struct debuggerinfo_struct kgdb_info[NR_CPUS]; 66 67 /* kgdb_connected - Is a host GDB connected to us? */ 68 int kgdb_connected; 69 EXPORT_SYMBOL_GPL(kgdb_connected); 70 71 /* All the KGDB handlers are installed */ 72 int kgdb_io_module_registered; 73 74 /* Guard for recursive entry */ 75 static int exception_level; 76 77 struct kgdb_io *dbg_io_ops; 78 static DEFINE_SPINLOCK(kgdb_registration_lock); 79 80 /* Action for the reboot notifier, a global allow kdb to change it */ 81 static int kgdbreboot; 82 /* kgdb console driver is loaded */ 83 static int kgdb_con_registered; 84 /* determine if kgdb console output should be used */ 85 static int kgdb_use_con; 86 /* Flag for alternate operations for early debugging */ 87 bool dbg_is_early = true; 88 /* Next cpu to become the master debug core */ 89 int dbg_switch_cpu; 90 91 /* Use kdb or gdbserver mode */ 92 int dbg_kdb_mode = 1; 93 94 module_param(kgdb_use_con, int, 0644); 95 module_param(kgdbreboot, int, 0644); 96 97 /* 98 * Holds information about breakpoints in a kernel. These breakpoints are 99 * added and removed by gdb. 100 */ 101 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = { 102 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED } 103 }; 104 105 /* 106 * The CPU# of the active CPU, or -1 if none: 107 */ 108 atomic_t kgdb_active = ATOMIC_INIT(-1); 109 EXPORT_SYMBOL_GPL(kgdb_active); 110 static DEFINE_RAW_SPINLOCK(dbg_master_lock); 111 static DEFINE_RAW_SPINLOCK(dbg_slave_lock); 112 113 /* 114 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early 115 * bootup code (which might not have percpu set up yet): 116 */ 117 static atomic_t masters_in_kgdb; 118 static atomic_t slaves_in_kgdb; 119 atomic_t kgdb_setting_breakpoint; 120 121 struct task_struct *kgdb_usethread; 122 struct task_struct *kgdb_contthread; 123 124 int kgdb_single_step; 125 static pid_t kgdb_sstep_pid; 126 127 /* to keep track of the CPU which is doing the single stepping*/ 128 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1); 129 130 /* 131 * If you are debugging a problem where roundup (the collection of 132 * all other CPUs) is a problem [this should be extremely rare], 133 * then use the nokgdbroundup option to avoid roundup. In that case 134 * the other CPUs might interfere with your debugging context, so 135 * use this with care: 136 */ 137 static int kgdb_do_roundup = 1; 138 139 static int __init opt_nokgdbroundup(char *str) 140 { 141 kgdb_do_roundup = 0; 142 143 return 0; 144 } 145 146 early_param("nokgdbroundup", opt_nokgdbroundup); 147 148 /* 149 * Finally, some KGDB code :-) 150 */ 151 152 /* 153 * Weak aliases for breakpoint management, 154 * can be overridden by architectures when needed: 155 */ 156 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt) 157 { 158 int err; 159 160 err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr, 161 BREAK_INSTR_SIZE); 162 if (err) 163 return err; 164 err = copy_to_kernel_nofault((char *)bpt->bpt_addr, 165 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE); 166 return err; 167 } 168 NOKPROBE_SYMBOL(kgdb_arch_set_breakpoint); 169 170 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt) 171 { 172 return copy_to_kernel_nofault((char *)bpt->bpt_addr, 173 (char *)bpt->saved_instr, BREAK_INSTR_SIZE); 174 } 175 NOKPROBE_SYMBOL(kgdb_arch_remove_breakpoint); 176 177 int __weak kgdb_validate_break_address(unsigned long addr) 178 { 179 struct kgdb_bkpt tmp; 180 int err; 181 182 if (kgdb_within_blocklist(addr)) 183 return -EINVAL; 184 185 /* Validate setting the breakpoint and then removing it. If the 186 * remove fails, the kernel needs to emit a bad message because we 187 * are deep trouble not being able to put things back the way we 188 * found them. 189 */ 190 tmp.bpt_addr = addr; 191 err = kgdb_arch_set_breakpoint(&tmp); 192 if (err) 193 return err; 194 err = kgdb_arch_remove_breakpoint(&tmp); 195 if (err) 196 pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n", 197 addr); 198 return err; 199 } 200 201 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs) 202 { 203 return instruction_pointer(regs); 204 } 205 NOKPROBE_SYMBOL(kgdb_arch_pc); 206 207 int __weak kgdb_arch_init(void) 208 { 209 return 0; 210 } 211 212 int __weak kgdb_skipexception(int exception, struct pt_regs *regs) 213 { 214 return 0; 215 } 216 NOKPROBE_SYMBOL(kgdb_skipexception); 217 218 #ifdef CONFIG_SMP 219 220 /* 221 * Default (weak) implementation for kgdb_roundup_cpus 222 */ 223 224 void __weak kgdb_call_nmi_hook(void *ignored) 225 { 226 /* 227 * NOTE: get_irq_regs() is supposed to get the registers from 228 * before the IPI interrupt happened and so is supposed to 229 * show where the processor was. In some situations it's 230 * possible we might be called without an IPI, so it might be 231 * safer to figure out how to make kgdb_breakpoint() work 232 * properly here. 233 */ 234 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs()); 235 } 236 NOKPROBE_SYMBOL(kgdb_call_nmi_hook); 237 238 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd) = 239 CSD_INIT(kgdb_call_nmi_hook, NULL); 240 241 void __weak kgdb_roundup_cpus(void) 242 { 243 call_single_data_t *csd; 244 int this_cpu = raw_smp_processor_id(); 245 int cpu; 246 int ret; 247 248 for_each_online_cpu(cpu) { 249 /* No need to roundup ourselves */ 250 if (cpu == this_cpu) 251 continue; 252 253 csd = &per_cpu(kgdb_roundup_csd, cpu); 254 255 /* 256 * If it didn't round up last time, don't try again 257 * since smp_call_function_single_async() will block. 258 * 259 * If rounding_up is false then we know that the 260 * previous call must have at least started and that 261 * means smp_call_function_single_async() won't block. 262 */ 263 if (kgdb_info[cpu].rounding_up) 264 continue; 265 kgdb_info[cpu].rounding_up = true; 266 267 ret = smp_call_function_single_async(cpu, csd); 268 if (ret) 269 kgdb_info[cpu].rounding_up = false; 270 } 271 } 272 NOKPROBE_SYMBOL(kgdb_roundup_cpus); 273 274 #endif 275 276 /* 277 * Some architectures need cache flushes when we set/clear a 278 * breakpoint: 279 */ 280 static void kgdb_flush_swbreak_addr(unsigned long addr) 281 { 282 if (!CACHE_FLUSH_IS_SAFE) 283 return; 284 285 if (current->mm) { 286 int i; 287 288 for (i = 0; i < VMACACHE_SIZE; i++) { 289 if (!current->vmacache.vmas[i]) 290 continue; 291 flush_cache_range(current->vmacache.vmas[i], 292 addr, addr + BREAK_INSTR_SIZE); 293 } 294 } 295 296 /* Force flush instruction cache if it was outside the mm */ 297 flush_icache_range(addr, addr + BREAK_INSTR_SIZE); 298 } 299 NOKPROBE_SYMBOL(kgdb_flush_swbreak_addr); 300 301 /* 302 * SW breakpoint management: 303 */ 304 int dbg_activate_sw_breakpoints(void) 305 { 306 int error; 307 int ret = 0; 308 int i; 309 310 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 311 if (kgdb_break[i].state != BP_SET) 312 continue; 313 314 error = kgdb_arch_set_breakpoint(&kgdb_break[i]); 315 if (error) { 316 ret = error; 317 pr_info("BP install failed: %lx\n", 318 kgdb_break[i].bpt_addr); 319 continue; 320 } 321 322 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr); 323 kgdb_break[i].state = BP_ACTIVE; 324 } 325 return ret; 326 } 327 NOKPROBE_SYMBOL(dbg_activate_sw_breakpoints); 328 329 int dbg_set_sw_break(unsigned long addr) 330 { 331 int err = kgdb_validate_break_address(addr); 332 int breakno = -1; 333 int i; 334 335 if (err) 336 return err; 337 338 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 339 if ((kgdb_break[i].state == BP_SET) && 340 (kgdb_break[i].bpt_addr == addr)) 341 return -EEXIST; 342 } 343 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 344 if (kgdb_break[i].state == BP_REMOVED && 345 kgdb_break[i].bpt_addr == addr) { 346 breakno = i; 347 break; 348 } 349 } 350 351 if (breakno == -1) { 352 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 353 if (kgdb_break[i].state == BP_UNDEFINED) { 354 breakno = i; 355 break; 356 } 357 } 358 } 359 360 if (breakno == -1) 361 return -E2BIG; 362 363 kgdb_break[breakno].state = BP_SET; 364 kgdb_break[breakno].type = BP_BREAKPOINT; 365 kgdb_break[breakno].bpt_addr = addr; 366 367 return 0; 368 } 369 370 int dbg_deactivate_sw_breakpoints(void) 371 { 372 int error; 373 int ret = 0; 374 int i; 375 376 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 377 if (kgdb_break[i].state != BP_ACTIVE) 378 continue; 379 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]); 380 if (error) { 381 pr_info("BP remove failed: %lx\n", 382 kgdb_break[i].bpt_addr); 383 ret = error; 384 } 385 386 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr); 387 kgdb_break[i].state = BP_SET; 388 } 389 return ret; 390 } 391 NOKPROBE_SYMBOL(dbg_deactivate_sw_breakpoints); 392 393 int dbg_remove_sw_break(unsigned long addr) 394 { 395 int i; 396 397 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 398 if ((kgdb_break[i].state == BP_SET) && 399 (kgdb_break[i].bpt_addr == addr)) { 400 kgdb_break[i].state = BP_REMOVED; 401 return 0; 402 } 403 } 404 return -ENOENT; 405 } 406 407 int kgdb_isremovedbreak(unsigned long addr) 408 { 409 int i; 410 411 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 412 if ((kgdb_break[i].state == BP_REMOVED) && 413 (kgdb_break[i].bpt_addr == addr)) 414 return 1; 415 } 416 return 0; 417 } 418 419 int kgdb_has_hit_break(unsigned long addr) 420 { 421 int i; 422 423 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 424 if (kgdb_break[i].state == BP_ACTIVE && 425 kgdb_break[i].bpt_addr == addr) 426 return 1; 427 } 428 return 0; 429 } 430 431 int dbg_remove_all_break(void) 432 { 433 int error; 434 int i; 435 436 /* Clear memory breakpoints. */ 437 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 438 if (kgdb_break[i].state != BP_ACTIVE) 439 goto setundefined; 440 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]); 441 if (error) 442 pr_err("breakpoint remove failed: %lx\n", 443 kgdb_break[i].bpt_addr); 444 setundefined: 445 kgdb_break[i].state = BP_UNDEFINED; 446 } 447 448 /* Clear hardware breakpoints. */ 449 if (arch_kgdb_ops.remove_all_hw_break) 450 arch_kgdb_ops.remove_all_hw_break(); 451 452 return 0; 453 } 454 455 void kgdb_free_init_mem(void) 456 { 457 int i; 458 459 /* Clear init memory breakpoints. */ 460 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) { 461 if (init_section_contains((void *)kgdb_break[i].bpt_addr, 0)) 462 kgdb_break[i].state = BP_UNDEFINED; 463 } 464 } 465 466 #ifdef CONFIG_KGDB_KDB 467 void kdb_dump_stack_on_cpu(int cpu) 468 { 469 if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) { 470 dump_stack(); 471 return; 472 } 473 474 if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) { 475 kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n", 476 cpu); 477 return; 478 } 479 480 /* 481 * In general, architectures don't support dumping the stack of a 482 * "running" process that's not the current one. From the point of 483 * view of the Linux, kernel processes that are looping in the kgdb 484 * slave loop are still "running". There's also no API (that actually 485 * works across all architectures) that can do a stack crawl based 486 * on registers passed as a parameter. 487 * 488 * Solve this conundrum by asking slave CPUs to do the backtrace 489 * themselves. 490 */ 491 kgdb_info[cpu].exception_state |= DCPU_WANT_BT; 492 while (kgdb_info[cpu].exception_state & DCPU_WANT_BT) 493 cpu_relax(); 494 } 495 #endif 496 497 /* 498 * Return true if there is a valid kgdb I/O module. Also if no 499 * debugger is attached a message can be printed to the console about 500 * waiting for the debugger to attach. 501 * 502 * The print_wait argument is only to be true when called from inside 503 * the core kgdb_handle_exception, because it will wait for the 504 * debugger to attach. 505 */ 506 static int kgdb_io_ready(int print_wait) 507 { 508 if (!dbg_io_ops) 509 return 0; 510 if (kgdb_connected) 511 return 1; 512 if (atomic_read(&kgdb_setting_breakpoint)) 513 return 1; 514 if (print_wait) { 515 #ifdef CONFIG_KGDB_KDB 516 if (!dbg_kdb_mode) 517 pr_crit("waiting... or $3#33 for KDB\n"); 518 #else 519 pr_crit("Waiting for remote debugger\n"); 520 #endif 521 } 522 return 1; 523 } 524 NOKPROBE_SYMBOL(kgdb_io_ready); 525 526 static int kgdb_reenter_check(struct kgdb_state *ks) 527 { 528 unsigned long addr; 529 530 if (atomic_read(&kgdb_active) != raw_smp_processor_id()) 531 return 0; 532 533 /* Panic on recursive debugger calls: */ 534 exception_level++; 535 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs); 536 dbg_deactivate_sw_breakpoints(); 537 538 /* 539 * If the break point removed ok at the place exception 540 * occurred, try to recover and print a warning to the end 541 * user because the user planted a breakpoint in a place that 542 * KGDB needs in order to function. 543 */ 544 if (dbg_remove_sw_break(addr) == 0) { 545 exception_level = 0; 546 kgdb_skipexception(ks->ex_vector, ks->linux_regs); 547 dbg_activate_sw_breakpoints(); 548 pr_crit("re-enter error: breakpoint removed %lx\n", addr); 549 WARN_ON_ONCE(1); 550 551 return 1; 552 } 553 dbg_remove_all_break(); 554 kgdb_skipexception(ks->ex_vector, ks->linux_regs); 555 556 if (exception_level > 1) { 557 dump_stack(); 558 kgdb_io_module_registered = false; 559 panic("Recursive entry to debugger"); 560 } 561 562 pr_crit("re-enter exception: ALL breakpoints killed\n"); 563 #ifdef CONFIG_KGDB_KDB 564 /* Allow kdb to debug itself one level */ 565 return 0; 566 #endif 567 dump_stack(); 568 panic("Recursive entry to debugger"); 569 570 return 1; 571 } 572 NOKPROBE_SYMBOL(kgdb_reenter_check); 573 574 static void dbg_touch_watchdogs(void) 575 { 576 touch_softlockup_watchdog_sync(); 577 clocksource_touch_watchdog(); 578 rcu_cpu_stall_reset(); 579 } 580 NOKPROBE_SYMBOL(dbg_touch_watchdogs); 581 582 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs, 583 int exception_state) 584 { 585 unsigned long flags; 586 int sstep_tries = 100; 587 int error; 588 int cpu; 589 int trace_on = 0; 590 int online_cpus = num_online_cpus(); 591 u64 time_left; 592 593 kgdb_info[ks->cpu].enter_kgdb++; 594 kgdb_info[ks->cpu].exception_state |= exception_state; 595 596 if (exception_state == DCPU_WANT_MASTER) 597 atomic_inc(&masters_in_kgdb); 598 else 599 atomic_inc(&slaves_in_kgdb); 600 601 if (arch_kgdb_ops.disable_hw_break) 602 arch_kgdb_ops.disable_hw_break(regs); 603 604 acquirelock: 605 rcu_read_lock(); 606 /* 607 * Interrupts will be restored by the 'trap return' code, except when 608 * single stepping. 609 */ 610 local_irq_save(flags); 611 612 cpu = ks->cpu; 613 kgdb_info[cpu].debuggerinfo = regs; 614 kgdb_info[cpu].task = current; 615 kgdb_info[cpu].ret_state = 0; 616 kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT; 617 618 /* Make sure the above info reaches the primary CPU */ 619 smp_mb(); 620 621 if (exception_level == 1) { 622 if (raw_spin_trylock(&dbg_master_lock)) 623 atomic_xchg(&kgdb_active, cpu); 624 goto cpu_master_loop; 625 } 626 627 /* 628 * CPU will loop if it is a slave or request to become a kgdb 629 * master cpu and acquire the kgdb_active lock: 630 */ 631 while (1) { 632 cpu_loop: 633 if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) { 634 kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER; 635 goto cpu_master_loop; 636 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) { 637 if (raw_spin_trylock(&dbg_master_lock)) { 638 atomic_xchg(&kgdb_active, cpu); 639 break; 640 } 641 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) { 642 dump_stack(); 643 kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT; 644 } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) { 645 if (!raw_spin_is_locked(&dbg_slave_lock)) 646 goto return_normal; 647 } else { 648 return_normal: 649 /* Return to normal operation by executing any 650 * hw breakpoint fixup. 651 */ 652 if (arch_kgdb_ops.correct_hw_break) 653 arch_kgdb_ops.correct_hw_break(); 654 if (trace_on) 655 tracing_on(); 656 kgdb_info[cpu].debuggerinfo = NULL; 657 kgdb_info[cpu].task = NULL; 658 kgdb_info[cpu].exception_state &= 659 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE); 660 kgdb_info[cpu].enter_kgdb--; 661 smp_mb__before_atomic(); 662 atomic_dec(&slaves_in_kgdb); 663 dbg_touch_watchdogs(); 664 local_irq_restore(flags); 665 rcu_read_unlock(); 666 return 0; 667 } 668 cpu_relax(); 669 } 670 671 /* 672 * For single stepping, try to only enter on the processor 673 * that was single stepping. To guard against a deadlock, the 674 * kernel will only try for the value of sstep_tries before 675 * giving up and continuing on. 676 */ 677 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 && 678 (kgdb_info[cpu].task && 679 kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) { 680 atomic_set(&kgdb_active, -1); 681 raw_spin_unlock(&dbg_master_lock); 682 dbg_touch_watchdogs(); 683 local_irq_restore(flags); 684 rcu_read_unlock(); 685 686 goto acquirelock; 687 } 688 689 if (!kgdb_io_ready(1)) { 690 kgdb_info[cpu].ret_state = 1; 691 goto kgdb_restore; /* No I/O connection, resume the system */ 692 } 693 694 /* 695 * Don't enter if we have hit a removed breakpoint. 696 */ 697 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs)) 698 goto kgdb_restore; 699 700 atomic_inc(&ignore_console_lock_warning); 701 702 /* Call the I/O driver's pre_exception routine */ 703 if (dbg_io_ops->pre_exception) 704 dbg_io_ops->pre_exception(); 705 706 /* 707 * Get the passive CPU lock which will hold all the non-primary 708 * CPU in a spin state while the debugger is active 709 */ 710 if (!kgdb_single_step) 711 raw_spin_lock(&dbg_slave_lock); 712 713 #ifdef CONFIG_SMP 714 /* If send_ready set, slaves are already waiting */ 715 if (ks->send_ready) 716 atomic_set(ks->send_ready, 1); 717 718 /* Signal the other CPUs to enter kgdb_wait() */ 719 else if ((!kgdb_single_step) && kgdb_do_roundup) 720 kgdb_roundup_cpus(); 721 #endif 722 723 /* 724 * Wait for the other CPUs to be notified and be waiting for us: 725 */ 726 time_left = MSEC_PER_SEC; 727 while (kgdb_do_roundup && --time_left && 728 (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) != 729 online_cpus) 730 udelay(1000); 731 if (!time_left) 732 pr_crit("Timed out waiting for secondary CPUs.\n"); 733 734 /* 735 * At this point the primary processor is completely 736 * in the debugger and all secondary CPUs are quiescent 737 */ 738 dbg_deactivate_sw_breakpoints(); 739 kgdb_single_step = 0; 740 kgdb_contthread = current; 741 exception_level = 0; 742 trace_on = tracing_is_on(); 743 if (trace_on) 744 tracing_off(); 745 746 while (1) { 747 cpu_master_loop: 748 if (dbg_kdb_mode) { 749 kgdb_connected = 1; 750 error = kdb_stub(ks); 751 if (error == -1) 752 continue; 753 kgdb_connected = 0; 754 } else { 755 error = gdb_serial_stub(ks); 756 } 757 758 if (error == DBG_PASS_EVENT) { 759 dbg_kdb_mode = !dbg_kdb_mode; 760 } else if (error == DBG_SWITCH_CPU_EVENT) { 761 kgdb_info[dbg_switch_cpu].exception_state |= 762 DCPU_NEXT_MASTER; 763 goto cpu_loop; 764 } else { 765 kgdb_info[cpu].ret_state = error; 766 break; 767 } 768 } 769 770 dbg_activate_sw_breakpoints(); 771 772 /* Call the I/O driver's post_exception routine */ 773 if (dbg_io_ops->post_exception) 774 dbg_io_ops->post_exception(); 775 776 atomic_dec(&ignore_console_lock_warning); 777 778 if (!kgdb_single_step) { 779 raw_spin_unlock(&dbg_slave_lock); 780 /* Wait till all the CPUs have quit from the debugger. */ 781 while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb)) 782 cpu_relax(); 783 } 784 785 kgdb_restore: 786 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) { 787 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step); 788 if (kgdb_info[sstep_cpu].task) 789 kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid; 790 else 791 kgdb_sstep_pid = 0; 792 } 793 if (arch_kgdb_ops.correct_hw_break) 794 arch_kgdb_ops.correct_hw_break(); 795 if (trace_on) 796 tracing_on(); 797 798 kgdb_info[cpu].debuggerinfo = NULL; 799 kgdb_info[cpu].task = NULL; 800 kgdb_info[cpu].exception_state &= 801 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE); 802 kgdb_info[cpu].enter_kgdb--; 803 smp_mb__before_atomic(); 804 atomic_dec(&masters_in_kgdb); 805 /* Free kgdb_active */ 806 atomic_set(&kgdb_active, -1); 807 raw_spin_unlock(&dbg_master_lock); 808 dbg_touch_watchdogs(); 809 local_irq_restore(flags); 810 rcu_read_unlock(); 811 812 return kgdb_info[cpu].ret_state; 813 } 814 NOKPROBE_SYMBOL(kgdb_cpu_enter); 815 816 /* 817 * kgdb_handle_exception() - main entry point from a kernel exception 818 * 819 * Locking hierarchy: 820 * interface locks, if any (begin_session) 821 * kgdb lock (kgdb_active) 822 */ 823 int 824 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs) 825 { 826 struct kgdb_state kgdb_var; 827 struct kgdb_state *ks = &kgdb_var; 828 int ret = 0; 829 830 if (arch_kgdb_ops.enable_nmi) 831 arch_kgdb_ops.enable_nmi(0); 832 /* 833 * Avoid entering the debugger if we were triggered due to an oops 834 * but panic_timeout indicates the system should automatically 835 * reboot on panic. We don't want to get stuck waiting for input 836 * on such systems, especially if its "just" an oops. 837 */ 838 if (signo != SIGTRAP && panic_timeout) 839 return 1; 840 841 memset(ks, 0, sizeof(struct kgdb_state)); 842 ks->cpu = raw_smp_processor_id(); 843 ks->ex_vector = evector; 844 ks->signo = signo; 845 ks->err_code = ecode; 846 ks->linux_regs = regs; 847 848 if (kgdb_reenter_check(ks)) 849 goto out; /* Ouch, double exception ! */ 850 if (kgdb_info[ks->cpu].enter_kgdb != 0) 851 goto out; 852 853 ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER); 854 out: 855 if (arch_kgdb_ops.enable_nmi) 856 arch_kgdb_ops.enable_nmi(1); 857 return ret; 858 } 859 NOKPROBE_SYMBOL(kgdb_handle_exception); 860 861 /* 862 * GDB places a breakpoint at this function to know dynamically loaded objects. 863 */ 864 static int module_event(struct notifier_block *self, unsigned long val, 865 void *data) 866 { 867 return 0; 868 } 869 870 static struct notifier_block dbg_module_load_nb = { 871 .notifier_call = module_event, 872 }; 873 874 int kgdb_nmicallback(int cpu, void *regs) 875 { 876 #ifdef CONFIG_SMP 877 struct kgdb_state kgdb_var; 878 struct kgdb_state *ks = &kgdb_var; 879 880 kgdb_info[cpu].rounding_up = false; 881 882 memset(ks, 0, sizeof(struct kgdb_state)); 883 ks->cpu = cpu; 884 ks->linux_regs = regs; 885 886 if (kgdb_info[ks->cpu].enter_kgdb == 0 && 887 raw_spin_is_locked(&dbg_master_lock)) { 888 kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE); 889 return 0; 890 } 891 #endif 892 return 1; 893 } 894 NOKPROBE_SYMBOL(kgdb_nmicallback); 895 896 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code, 897 atomic_t *send_ready) 898 { 899 #ifdef CONFIG_SMP 900 if (!kgdb_io_ready(0) || !send_ready) 901 return 1; 902 903 if (kgdb_info[cpu].enter_kgdb == 0) { 904 struct kgdb_state kgdb_var; 905 struct kgdb_state *ks = &kgdb_var; 906 907 memset(ks, 0, sizeof(struct kgdb_state)); 908 ks->cpu = cpu; 909 ks->ex_vector = trapnr; 910 ks->signo = SIGTRAP; 911 ks->err_code = err_code; 912 ks->linux_regs = regs; 913 ks->send_ready = send_ready; 914 kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER); 915 return 0; 916 } 917 #endif 918 return 1; 919 } 920 NOKPROBE_SYMBOL(kgdb_nmicallin); 921 922 static void kgdb_console_write(struct console *co, const char *s, 923 unsigned count) 924 { 925 unsigned long flags; 926 927 /* If we're debugging, or KGDB has not connected, don't try 928 * and print. */ 929 if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode) 930 return; 931 932 local_irq_save(flags); 933 gdbstub_msg_write(s, count); 934 local_irq_restore(flags); 935 } 936 937 static struct console kgdbcons = { 938 .name = "kgdb", 939 .write = kgdb_console_write, 940 .flags = CON_PRINTBUFFER | CON_ENABLED, 941 .index = -1, 942 }; 943 944 static int __init opt_kgdb_con(char *str) 945 { 946 kgdb_use_con = 1; 947 948 if (kgdb_io_module_registered && !kgdb_con_registered) { 949 register_console(&kgdbcons); 950 kgdb_con_registered = 1; 951 } 952 953 return 0; 954 } 955 956 early_param("kgdbcon", opt_kgdb_con); 957 958 #ifdef CONFIG_MAGIC_SYSRQ 959 static void sysrq_handle_dbg(int key) 960 { 961 if (!dbg_io_ops) { 962 pr_crit("ERROR: No KGDB I/O module available\n"); 963 return; 964 } 965 if (!kgdb_connected) { 966 #ifdef CONFIG_KGDB_KDB 967 if (!dbg_kdb_mode) 968 pr_crit("KGDB or $3#33 for KDB\n"); 969 #else 970 pr_crit("Entering KGDB\n"); 971 #endif 972 } 973 974 kgdb_breakpoint(); 975 } 976 977 static const struct sysrq_key_op sysrq_dbg_op = { 978 .handler = sysrq_handle_dbg, 979 .help_msg = "debug(g)", 980 .action_msg = "DEBUG", 981 }; 982 #endif 983 984 void kgdb_panic(const char *msg) 985 { 986 if (!kgdb_io_module_registered) 987 return; 988 989 /* 990 * We don't want to get stuck waiting for input from user if 991 * "panic_timeout" indicates the system should automatically 992 * reboot on panic. 993 */ 994 if (panic_timeout) 995 return; 996 997 if (dbg_kdb_mode) 998 kdb_printf("PANIC: %s\n", msg); 999 1000 kgdb_breakpoint(); 1001 } 1002 1003 static void kgdb_initial_breakpoint(void) 1004 { 1005 kgdb_break_asap = 0; 1006 1007 pr_crit("Waiting for connection from remote gdb...\n"); 1008 kgdb_breakpoint(); 1009 } 1010 1011 void __weak kgdb_arch_late(void) 1012 { 1013 } 1014 1015 void __init dbg_late_init(void) 1016 { 1017 dbg_is_early = false; 1018 if (kgdb_io_module_registered) 1019 kgdb_arch_late(); 1020 kdb_init(KDB_INIT_FULL); 1021 1022 if (kgdb_io_module_registered && kgdb_break_asap) 1023 kgdb_initial_breakpoint(); 1024 } 1025 1026 static int 1027 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x) 1028 { 1029 /* 1030 * Take the following action on reboot notify depending on value: 1031 * 1 == Enter debugger 1032 * 0 == [the default] detach debug client 1033 * -1 == Do nothing... and use this until the board resets 1034 */ 1035 switch (kgdbreboot) { 1036 case 1: 1037 kgdb_breakpoint(); 1038 goto done; 1039 case -1: 1040 goto done; 1041 } 1042 if (!dbg_kdb_mode) 1043 gdbstub_exit(code); 1044 done: 1045 return NOTIFY_DONE; 1046 } 1047 1048 static struct notifier_block dbg_reboot_notifier = { 1049 .notifier_call = dbg_notify_reboot, 1050 .next = NULL, 1051 .priority = INT_MAX, 1052 }; 1053 1054 static void kgdb_register_callbacks(void) 1055 { 1056 if (!kgdb_io_module_registered) { 1057 kgdb_io_module_registered = 1; 1058 kgdb_arch_init(); 1059 if (!dbg_is_early) 1060 kgdb_arch_late(); 1061 register_module_notifier(&dbg_module_load_nb); 1062 register_reboot_notifier(&dbg_reboot_notifier); 1063 #ifdef CONFIG_MAGIC_SYSRQ 1064 register_sysrq_key('g', &sysrq_dbg_op); 1065 #endif 1066 if (kgdb_use_con && !kgdb_con_registered) { 1067 register_console(&kgdbcons); 1068 kgdb_con_registered = 1; 1069 } 1070 } 1071 } 1072 1073 static void kgdb_unregister_callbacks(void) 1074 { 1075 /* 1076 * When this routine is called KGDB should unregister from 1077 * handlers and clean up, making sure it is not handling any 1078 * break exceptions at the time. 1079 */ 1080 if (kgdb_io_module_registered) { 1081 kgdb_io_module_registered = 0; 1082 unregister_reboot_notifier(&dbg_reboot_notifier); 1083 unregister_module_notifier(&dbg_module_load_nb); 1084 kgdb_arch_exit(); 1085 #ifdef CONFIG_MAGIC_SYSRQ 1086 unregister_sysrq_key('g', &sysrq_dbg_op); 1087 #endif 1088 if (kgdb_con_registered) { 1089 unregister_console(&kgdbcons); 1090 kgdb_con_registered = 0; 1091 } 1092 } 1093 } 1094 1095 /** 1096 * kgdb_register_io_module - register KGDB IO module 1097 * @new_dbg_io_ops: the io ops vector 1098 * 1099 * Register it with the KGDB core. 1100 */ 1101 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops) 1102 { 1103 struct kgdb_io *old_dbg_io_ops; 1104 int err; 1105 1106 spin_lock(&kgdb_registration_lock); 1107 1108 old_dbg_io_ops = dbg_io_ops; 1109 if (old_dbg_io_ops) { 1110 if (!old_dbg_io_ops->deinit) { 1111 spin_unlock(&kgdb_registration_lock); 1112 1113 pr_err("KGDB I/O driver %s can't replace %s.\n", 1114 new_dbg_io_ops->name, old_dbg_io_ops->name); 1115 return -EBUSY; 1116 } 1117 pr_info("Replacing I/O driver %s with %s\n", 1118 old_dbg_io_ops->name, new_dbg_io_ops->name); 1119 } 1120 1121 if (new_dbg_io_ops->init) { 1122 err = new_dbg_io_ops->init(); 1123 if (err) { 1124 spin_unlock(&kgdb_registration_lock); 1125 return err; 1126 } 1127 } 1128 1129 dbg_io_ops = new_dbg_io_ops; 1130 1131 spin_unlock(&kgdb_registration_lock); 1132 1133 if (old_dbg_io_ops) { 1134 old_dbg_io_ops->deinit(); 1135 return 0; 1136 } 1137 1138 pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name); 1139 1140 /* Arm KGDB now. */ 1141 kgdb_register_callbacks(); 1142 1143 if (kgdb_break_asap && 1144 (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))) 1145 kgdb_initial_breakpoint(); 1146 1147 return 0; 1148 } 1149 EXPORT_SYMBOL_GPL(kgdb_register_io_module); 1150 1151 /** 1152 * kgdb_unregister_io_module - unregister KGDB IO module 1153 * @old_dbg_io_ops: the io ops vector 1154 * 1155 * Unregister it with the KGDB core. 1156 */ 1157 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops) 1158 { 1159 BUG_ON(kgdb_connected); 1160 1161 /* 1162 * KGDB is no longer able to communicate out, so 1163 * unregister our callbacks and reset state. 1164 */ 1165 kgdb_unregister_callbacks(); 1166 1167 spin_lock(&kgdb_registration_lock); 1168 1169 WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops); 1170 dbg_io_ops = NULL; 1171 1172 spin_unlock(&kgdb_registration_lock); 1173 1174 if (old_dbg_io_ops->deinit) 1175 old_dbg_io_ops->deinit(); 1176 1177 pr_info("Unregistered I/O driver %s, debugger disabled\n", 1178 old_dbg_io_ops->name); 1179 } 1180 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module); 1181 1182 int dbg_io_get_char(void) 1183 { 1184 int ret = dbg_io_ops->read_char(); 1185 if (ret == NO_POLL_CHAR) 1186 return -1; 1187 if (!dbg_kdb_mode) 1188 return ret; 1189 if (ret == 127) 1190 return 8; 1191 return ret; 1192 } 1193 1194 /** 1195 * kgdb_breakpoint - generate breakpoint exception 1196 * 1197 * This function will generate a breakpoint exception. It is used at the 1198 * beginning of a program to sync up with a debugger and can be used 1199 * otherwise as a quick means to stop program execution and "break" into 1200 * the debugger. 1201 */ 1202 noinline void kgdb_breakpoint(void) 1203 { 1204 atomic_inc(&kgdb_setting_breakpoint); 1205 wmb(); /* Sync point before breakpoint */ 1206 arch_kgdb_breakpoint(); 1207 wmb(); /* Sync point after breakpoint */ 1208 atomic_dec(&kgdb_setting_breakpoint); 1209 } 1210 EXPORT_SYMBOL_GPL(kgdb_breakpoint); 1211 1212 static int __init opt_kgdb_wait(char *str) 1213 { 1214 kgdb_break_asap = 1; 1215 1216 kdb_init(KDB_INIT_EARLY); 1217 if (kgdb_io_module_registered && 1218 IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)) 1219 kgdb_initial_breakpoint(); 1220 1221 return 0; 1222 } 1223 1224 early_param("kgdbwait", opt_kgdb_wait); 1225