1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/isolation.h> 13 #include <linux/sched/task.h> 14 #include <linux/sched/smt.h> 15 #include <linux/unistd.h> 16 #include <linux/cpu.h> 17 #include <linux/oom.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bug.h> 21 #include <linux/kthread.h> 22 #include <linux/stop_machine.h> 23 #include <linux/mutex.h> 24 #include <linux/gfp.h> 25 #include <linux/suspend.h> 26 #include <linux/lockdep.h> 27 #include <linux/tick.h> 28 #include <linux/irq.h> 29 #include <linux/nmi.h> 30 #include <linux/smpboot.h> 31 #include <linux/relay.h> 32 #include <linux/slab.h> 33 #include <linux/percpu-rwsem.h> 34 35 #include <trace/events/power.h> 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/cpuhp.h> 38 39 #include "smpboot.h" 40 41 /** 42 * cpuhp_cpu_state - Per cpu hotplug state storage 43 * @state: The current cpu state 44 * @target: The target state 45 * @thread: Pointer to the hotplug thread 46 * @should_run: Thread should execute 47 * @rollback: Perform a rollback 48 * @single: Single callback invocation 49 * @bringup: Single callback bringup or teardown selector 50 * @cb_state: The state for a single callback (install/uninstall) 51 * @result: Result of the operation 52 * @done_up: Signal completion to the issuer of the task for cpu-up 53 * @done_down: Signal completion to the issuer of the task for cpu-down 54 */ 55 struct cpuhp_cpu_state { 56 enum cpuhp_state state; 57 enum cpuhp_state target; 58 enum cpuhp_state fail; 59 #ifdef CONFIG_SMP 60 struct task_struct *thread; 61 bool should_run; 62 bool rollback; 63 bool single; 64 bool bringup; 65 struct hlist_node *node; 66 struct hlist_node *last; 67 enum cpuhp_state cb_state; 68 int result; 69 struct completion done_up; 70 struct completion done_down; 71 #endif 72 }; 73 74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 75 .fail = CPUHP_INVALID, 76 }; 77 78 #ifdef CONFIG_SMP 79 cpumask_t cpus_booted_once_mask; 80 #endif 81 82 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 83 static struct lockdep_map cpuhp_state_up_map = 84 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 85 static struct lockdep_map cpuhp_state_down_map = 86 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 87 88 89 static inline void cpuhp_lock_acquire(bool bringup) 90 { 91 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 92 } 93 94 static inline void cpuhp_lock_release(bool bringup) 95 { 96 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 97 } 98 #else 99 100 static inline void cpuhp_lock_acquire(bool bringup) { } 101 static inline void cpuhp_lock_release(bool bringup) { } 102 103 #endif 104 105 /** 106 * cpuhp_step - Hotplug state machine step 107 * @name: Name of the step 108 * @startup: Startup function of the step 109 * @teardown: Teardown function of the step 110 * @cant_stop: Bringup/teardown can't be stopped at this step 111 */ 112 struct cpuhp_step { 113 const char *name; 114 union { 115 int (*single)(unsigned int cpu); 116 int (*multi)(unsigned int cpu, 117 struct hlist_node *node); 118 } startup; 119 union { 120 int (*single)(unsigned int cpu); 121 int (*multi)(unsigned int cpu, 122 struct hlist_node *node); 123 } teardown; 124 struct hlist_head list; 125 bool cant_stop; 126 bool multi_instance; 127 }; 128 129 static DEFINE_MUTEX(cpuhp_state_mutex); 130 static struct cpuhp_step cpuhp_hp_states[]; 131 132 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 133 { 134 return cpuhp_hp_states + state; 135 } 136 137 /** 138 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 139 * @cpu: The cpu for which the callback should be invoked 140 * @state: The state to do callbacks for 141 * @bringup: True if the bringup callback should be invoked 142 * @node: For multi-instance, do a single entry callback for install/remove 143 * @lastp: For multi-instance rollback, remember how far we got 144 * 145 * Called from cpu hotplug and from the state register machinery. 146 */ 147 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 148 bool bringup, struct hlist_node *node, 149 struct hlist_node **lastp) 150 { 151 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 152 struct cpuhp_step *step = cpuhp_get_step(state); 153 int (*cbm)(unsigned int cpu, struct hlist_node *node); 154 int (*cb)(unsigned int cpu); 155 int ret, cnt; 156 157 if (st->fail == state) { 158 st->fail = CPUHP_INVALID; 159 160 if (!(bringup ? step->startup.single : step->teardown.single)) 161 return 0; 162 163 return -EAGAIN; 164 } 165 166 if (!step->multi_instance) { 167 WARN_ON_ONCE(lastp && *lastp); 168 cb = bringup ? step->startup.single : step->teardown.single; 169 if (!cb) 170 return 0; 171 trace_cpuhp_enter(cpu, st->target, state, cb); 172 ret = cb(cpu); 173 trace_cpuhp_exit(cpu, st->state, state, ret); 174 return ret; 175 } 176 cbm = bringup ? step->startup.multi : step->teardown.multi; 177 if (!cbm) 178 return 0; 179 180 /* Single invocation for instance add/remove */ 181 if (node) { 182 WARN_ON_ONCE(lastp && *lastp); 183 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 184 ret = cbm(cpu, node); 185 trace_cpuhp_exit(cpu, st->state, state, ret); 186 return ret; 187 } 188 189 /* State transition. Invoke on all instances */ 190 cnt = 0; 191 hlist_for_each(node, &step->list) { 192 if (lastp && node == *lastp) 193 break; 194 195 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 196 ret = cbm(cpu, node); 197 trace_cpuhp_exit(cpu, st->state, state, ret); 198 if (ret) { 199 if (!lastp) 200 goto err; 201 202 *lastp = node; 203 return ret; 204 } 205 cnt++; 206 } 207 if (lastp) 208 *lastp = NULL; 209 return 0; 210 err: 211 /* Rollback the instances if one failed */ 212 cbm = !bringup ? step->startup.multi : step->teardown.multi; 213 if (!cbm) 214 return ret; 215 216 hlist_for_each(node, &step->list) { 217 if (!cnt--) 218 break; 219 220 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 221 ret = cbm(cpu, node); 222 trace_cpuhp_exit(cpu, st->state, state, ret); 223 /* 224 * Rollback must not fail, 225 */ 226 WARN_ON_ONCE(ret); 227 } 228 return ret; 229 } 230 231 #ifdef CONFIG_SMP 232 static bool cpuhp_is_ap_state(enum cpuhp_state state) 233 { 234 /* 235 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 236 * purposes as that state is handled explicitly in cpu_down. 237 */ 238 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 239 } 240 241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 242 { 243 struct completion *done = bringup ? &st->done_up : &st->done_down; 244 wait_for_completion(done); 245 } 246 247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 248 { 249 struct completion *done = bringup ? &st->done_up : &st->done_down; 250 complete(done); 251 } 252 253 /* 254 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 255 */ 256 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 257 { 258 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 259 } 260 261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 262 static DEFINE_MUTEX(cpu_add_remove_lock); 263 bool cpuhp_tasks_frozen; 264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 265 266 /* 267 * The following two APIs (cpu_maps_update_begin/done) must be used when 268 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 269 */ 270 void cpu_maps_update_begin(void) 271 { 272 mutex_lock(&cpu_add_remove_lock); 273 } 274 275 void cpu_maps_update_done(void) 276 { 277 mutex_unlock(&cpu_add_remove_lock); 278 } 279 280 /* 281 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 282 * Should always be manipulated under cpu_add_remove_lock 283 */ 284 static int cpu_hotplug_disabled; 285 286 #ifdef CONFIG_HOTPLUG_CPU 287 288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 289 290 void cpus_read_lock(void) 291 { 292 percpu_down_read(&cpu_hotplug_lock); 293 } 294 EXPORT_SYMBOL_GPL(cpus_read_lock); 295 296 int cpus_read_trylock(void) 297 { 298 return percpu_down_read_trylock(&cpu_hotplug_lock); 299 } 300 EXPORT_SYMBOL_GPL(cpus_read_trylock); 301 302 void cpus_read_unlock(void) 303 { 304 percpu_up_read(&cpu_hotplug_lock); 305 } 306 EXPORT_SYMBOL_GPL(cpus_read_unlock); 307 308 void cpus_write_lock(void) 309 { 310 percpu_down_write(&cpu_hotplug_lock); 311 } 312 313 void cpus_write_unlock(void) 314 { 315 percpu_up_write(&cpu_hotplug_lock); 316 } 317 318 void lockdep_assert_cpus_held(void) 319 { 320 /* 321 * We can't have hotplug operations before userspace starts running, 322 * and some init codepaths will knowingly not take the hotplug lock. 323 * This is all valid, so mute lockdep until it makes sense to report 324 * unheld locks. 325 */ 326 if (system_state < SYSTEM_RUNNING) 327 return; 328 329 percpu_rwsem_assert_held(&cpu_hotplug_lock); 330 } 331 332 static void lockdep_acquire_cpus_lock(void) 333 { 334 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_); 335 } 336 337 static void lockdep_release_cpus_lock(void) 338 { 339 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, _THIS_IP_); 340 } 341 342 /* 343 * Wait for currently running CPU hotplug operations to complete (if any) and 344 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 345 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 346 * hotplug path before performing hotplug operations. So acquiring that lock 347 * guarantees mutual exclusion from any currently running hotplug operations. 348 */ 349 void cpu_hotplug_disable(void) 350 { 351 cpu_maps_update_begin(); 352 cpu_hotplug_disabled++; 353 cpu_maps_update_done(); 354 } 355 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 356 357 static void __cpu_hotplug_enable(void) 358 { 359 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 360 return; 361 cpu_hotplug_disabled--; 362 } 363 364 void cpu_hotplug_enable(void) 365 { 366 cpu_maps_update_begin(); 367 __cpu_hotplug_enable(); 368 cpu_maps_update_done(); 369 } 370 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 371 372 #else 373 374 static void lockdep_acquire_cpus_lock(void) 375 { 376 } 377 378 static void lockdep_release_cpus_lock(void) 379 { 380 } 381 382 #endif /* CONFIG_HOTPLUG_CPU */ 383 384 /* 385 * Architectures that need SMT-specific errata handling during SMT hotplug 386 * should override this. 387 */ 388 void __weak arch_smt_update(void) { } 389 390 #ifdef CONFIG_HOTPLUG_SMT 391 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 392 393 void __init cpu_smt_disable(bool force) 394 { 395 if (!cpu_smt_possible()) 396 return; 397 398 if (force) { 399 pr_info("SMT: Force disabled\n"); 400 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 401 } else { 402 pr_info("SMT: disabled\n"); 403 cpu_smt_control = CPU_SMT_DISABLED; 404 } 405 } 406 407 /* 408 * The decision whether SMT is supported can only be done after the full 409 * CPU identification. Called from architecture code. 410 */ 411 void __init cpu_smt_check_topology(void) 412 { 413 if (!topology_smt_supported()) 414 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 415 } 416 417 static int __init smt_cmdline_disable(char *str) 418 { 419 cpu_smt_disable(str && !strcmp(str, "force")); 420 return 0; 421 } 422 early_param("nosmt", smt_cmdline_disable); 423 424 static inline bool cpu_smt_allowed(unsigned int cpu) 425 { 426 if (cpu_smt_control == CPU_SMT_ENABLED) 427 return true; 428 429 if (topology_is_primary_thread(cpu)) 430 return true; 431 432 /* 433 * On x86 it's required to boot all logical CPUs at least once so 434 * that the init code can get a chance to set CR4.MCE on each 435 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any 436 * core will shutdown the machine. 437 */ 438 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 439 } 440 441 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 442 bool cpu_smt_possible(void) 443 { 444 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 445 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 446 } 447 EXPORT_SYMBOL_GPL(cpu_smt_possible); 448 #else 449 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 450 #endif 451 452 static inline enum cpuhp_state 453 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 454 { 455 enum cpuhp_state prev_state = st->state; 456 457 st->rollback = false; 458 st->last = NULL; 459 460 st->target = target; 461 st->single = false; 462 st->bringup = st->state < target; 463 464 return prev_state; 465 } 466 467 static inline void 468 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 469 { 470 st->rollback = true; 471 472 /* 473 * If we have st->last we need to undo partial multi_instance of this 474 * state first. Otherwise start undo at the previous state. 475 */ 476 if (!st->last) { 477 if (st->bringup) 478 st->state--; 479 else 480 st->state++; 481 } 482 483 st->target = prev_state; 484 st->bringup = !st->bringup; 485 } 486 487 /* Regular hotplug invocation of the AP hotplug thread */ 488 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 489 { 490 if (!st->single && st->state == st->target) 491 return; 492 493 st->result = 0; 494 /* 495 * Make sure the above stores are visible before should_run becomes 496 * true. Paired with the mb() above in cpuhp_thread_fun() 497 */ 498 smp_mb(); 499 st->should_run = true; 500 wake_up_process(st->thread); 501 wait_for_ap_thread(st, st->bringup); 502 } 503 504 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 505 { 506 enum cpuhp_state prev_state; 507 int ret; 508 509 prev_state = cpuhp_set_state(st, target); 510 __cpuhp_kick_ap(st); 511 if ((ret = st->result)) { 512 cpuhp_reset_state(st, prev_state); 513 __cpuhp_kick_ap(st); 514 } 515 516 return ret; 517 } 518 519 static int bringup_wait_for_ap(unsigned int cpu) 520 { 521 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 522 523 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 524 wait_for_ap_thread(st, true); 525 if (WARN_ON_ONCE((!cpu_online(cpu)))) 526 return -ECANCELED; 527 528 /* Unpark the hotplug thread of the target cpu */ 529 kthread_unpark(st->thread); 530 531 /* 532 * SMT soft disabling on X86 requires to bring the CPU out of the 533 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 534 * CPU marked itself as booted_once in notify_cpu_starting() so the 535 * cpu_smt_allowed() check will now return false if this is not the 536 * primary sibling. 537 */ 538 if (!cpu_smt_allowed(cpu)) 539 return -ECANCELED; 540 541 if (st->target <= CPUHP_AP_ONLINE_IDLE) 542 return 0; 543 544 return cpuhp_kick_ap(st, st->target); 545 } 546 547 static int bringup_cpu(unsigned int cpu) 548 { 549 struct task_struct *idle = idle_thread_get(cpu); 550 int ret; 551 552 /* 553 * Some architectures have to walk the irq descriptors to 554 * setup the vector space for the cpu which comes online. 555 * Prevent irq alloc/free across the bringup. 556 */ 557 irq_lock_sparse(); 558 559 /* Arch-specific enabling code. */ 560 ret = __cpu_up(cpu, idle); 561 irq_unlock_sparse(); 562 if (ret) 563 return ret; 564 return bringup_wait_for_ap(cpu); 565 } 566 567 /* 568 * Hotplug state machine related functions 569 */ 570 571 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 572 { 573 for (st->state--; st->state > st->target; st->state--) 574 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 575 } 576 577 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 578 { 579 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 580 return true; 581 /* 582 * When CPU hotplug is disabled, then taking the CPU down is not 583 * possible because takedown_cpu() and the architecture and 584 * subsystem specific mechanisms are not available. So the CPU 585 * which would be completely unplugged again needs to stay around 586 * in the current state. 587 */ 588 return st->state <= CPUHP_BRINGUP_CPU; 589 } 590 591 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 592 enum cpuhp_state target) 593 { 594 enum cpuhp_state prev_state = st->state; 595 int ret = 0; 596 597 while (st->state < target) { 598 st->state++; 599 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 600 if (ret) { 601 if (can_rollback_cpu(st)) { 602 st->target = prev_state; 603 undo_cpu_up(cpu, st); 604 } 605 break; 606 } 607 } 608 return ret; 609 } 610 611 /* 612 * The cpu hotplug threads manage the bringup and teardown of the cpus 613 */ 614 static void cpuhp_create(unsigned int cpu) 615 { 616 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 617 618 init_completion(&st->done_up); 619 init_completion(&st->done_down); 620 } 621 622 static int cpuhp_should_run(unsigned int cpu) 623 { 624 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 625 626 return st->should_run; 627 } 628 629 /* 630 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 631 * callbacks when a state gets [un]installed at runtime. 632 * 633 * Each invocation of this function by the smpboot thread does a single AP 634 * state callback. 635 * 636 * It has 3 modes of operation: 637 * - single: runs st->cb_state 638 * - up: runs ++st->state, while st->state < st->target 639 * - down: runs st->state--, while st->state > st->target 640 * 641 * When complete or on error, should_run is cleared and the completion is fired. 642 */ 643 static void cpuhp_thread_fun(unsigned int cpu) 644 { 645 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 646 bool bringup = st->bringup; 647 enum cpuhp_state state; 648 649 if (WARN_ON_ONCE(!st->should_run)) 650 return; 651 652 /* 653 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 654 * that if we see ->should_run we also see the rest of the state. 655 */ 656 smp_mb(); 657 658 /* 659 * The BP holds the hotplug lock, but we're now running on the AP, 660 * ensure that anybody asserting the lock is held, will actually find 661 * it so. 662 */ 663 lockdep_acquire_cpus_lock(); 664 cpuhp_lock_acquire(bringup); 665 666 if (st->single) { 667 state = st->cb_state; 668 st->should_run = false; 669 } else { 670 if (bringup) { 671 st->state++; 672 state = st->state; 673 st->should_run = (st->state < st->target); 674 WARN_ON_ONCE(st->state > st->target); 675 } else { 676 state = st->state; 677 st->state--; 678 st->should_run = (st->state > st->target); 679 WARN_ON_ONCE(st->state < st->target); 680 } 681 } 682 683 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 684 685 if (cpuhp_is_atomic_state(state)) { 686 local_irq_disable(); 687 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 688 local_irq_enable(); 689 690 /* 691 * STARTING/DYING must not fail! 692 */ 693 WARN_ON_ONCE(st->result); 694 } else { 695 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 696 } 697 698 if (st->result) { 699 /* 700 * If we fail on a rollback, we're up a creek without no 701 * paddle, no way forward, no way back. We loose, thanks for 702 * playing. 703 */ 704 WARN_ON_ONCE(st->rollback); 705 st->should_run = false; 706 } 707 708 cpuhp_lock_release(bringup); 709 lockdep_release_cpus_lock(); 710 711 if (!st->should_run) 712 complete_ap_thread(st, bringup); 713 } 714 715 /* Invoke a single callback on a remote cpu */ 716 static int 717 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 718 struct hlist_node *node) 719 { 720 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 721 int ret; 722 723 if (!cpu_online(cpu)) 724 return 0; 725 726 cpuhp_lock_acquire(false); 727 cpuhp_lock_release(false); 728 729 cpuhp_lock_acquire(true); 730 cpuhp_lock_release(true); 731 732 /* 733 * If we are up and running, use the hotplug thread. For early calls 734 * we invoke the thread function directly. 735 */ 736 if (!st->thread) 737 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 738 739 st->rollback = false; 740 st->last = NULL; 741 742 st->node = node; 743 st->bringup = bringup; 744 st->cb_state = state; 745 st->single = true; 746 747 __cpuhp_kick_ap(st); 748 749 /* 750 * If we failed and did a partial, do a rollback. 751 */ 752 if ((ret = st->result) && st->last) { 753 st->rollback = true; 754 st->bringup = !bringup; 755 756 __cpuhp_kick_ap(st); 757 } 758 759 /* 760 * Clean up the leftovers so the next hotplug operation wont use stale 761 * data. 762 */ 763 st->node = st->last = NULL; 764 return ret; 765 } 766 767 static int cpuhp_kick_ap_work(unsigned int cpu) 768 { 769 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 770 enum cpuhp_state prev_state = st->state; 771 int ret; 772 773 cpuhp_lock_acquire(false); 774 cpuhp_lock_release(false); 775 776 cpuhp_lock_acquire(true); 777 cpuhp_lock_release(true); 778 779 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 780 ret = cpuhp_kick_ap(st, st->target); 781 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 782 783 return ret; 784 } 785 786 static struct smp_hotplug_thread cpuhp_threads = { 787 .store = &cpuhp_state.thread, 788 .create = &cpuhp_create, 789 .thread_should_run = cpuhp_should_run, 790 .thread_fn = cpuhp_thread_fun, 791 .thread_comm = "cpuhp/%u", 792 .selfparking = true, 793 }; 794 795 void __init cpuhp_threads_init(void) 796 { 797 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 798 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 799 } 800 801 #ifdef CONFIG_HOTPLUG_CPU 802 /** 803 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 804 * @cpu: a CPU id 805 * 806 * This function walks all processes, finds a valid mm struct for each one and 807 * then clears a corresponding bit in mm's cpumask. While this all sounds 808 * trivial, there are various non-obvious corner cases, which this function 809 * tries to solve in a safe manner. 810 * 811 * Also note that the function uses a somewhat relaxed locking scheme, so it may 812 * be called only for an already offlined CPU. 813 */ 814 void clear_tasks_mm_cpumask(int cpu) 815 { 816 struct task_struct *p; 817 818 /* 819 * This function is called after the cpu is taken down and marked 820 * offline, so its not like new tasks will ever get this cpu set in 821 * their mm mask. -- Peter Zijlstra 822 * Thus, we may use rcu_read_lock() here, instead of grabbing 823 * full-fledged tasklist_lock. 824 */ 825 WARN_ON(cpu_online(cpu)); 826 rcu_read_lock(); 827 for_each_process(p) { 828 struct task_struct *t; 829 830 /* 831 * Main thread might exit, but other threads may still have 832 * a valid mm. Find one. 833 */ 834 t = find_lock_task_mm(p); 835 if (!t) 836 continue; 837 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 838 task_unlock(t); 839 } 840 rcu_read_unlock(); 841 } 842 843 /* Take this CPU down. */ 844 static int take_cpu_down(void *_param) 845 { 846 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 847 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 848 int err, cpu = smp_processor_id(); 849 int ret; 850 851 /* Ensure this CPU doesn't handle any more interrupts. */ 852 err = __cpu_disable(); 853 if (err < 0) 854 return err; 855 856 /* 857 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 858 * do this step again. 859 */ 860 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 861 st->state--; 862 /* Invoke the former CPU_DYING callbacks */ 863 for (; st->state > target; st->state--) { 864 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 865 /* 866 * DYING must not fail! 867 */ 868 WARN_ON_ONCE(ret); 869 } 870 871 /* Give up timekeeping duties */ 872 tick_handover_do_timer(); 873 /* Remove CPU from timer broadcasting */ 874 tick_offline_cpu(cpu); 875 /* Park the stopper thread */ 876 stop_machine_park(cpu); 877 return 0; 878 } 879 880 static int takedown_cpu(unsigned int cpu) 881 { 882 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 883 int err; 884 885 /* Park the smpboot threads */ 886 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 887 888 /* 889 * Prevent irq alloc/free while the dying cpu reorganizes the 890 * interrupt affinities. 891 */ 892 irq_lock_sparse(); 893 894 /* 895 * So now all preempt/rcu users must observe !cpu_active(). 896 */ 897 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 898 if (err) { 899 /* CPU refused to die */ 900 irq_unlock_sparse(); 901 /* Unpark the hotplug thread so we can rollback there */ 902 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 903 return err; 904 } 905 BUG_ON(cpu_online(cpu)); 906 907 /* 908 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 909 * all runnable tasks from the CPU, there's only the idle task left now 910 * that the migration thread is done doing the stop_machine thing. 911 * 912 * Wait for the stop thread to go away. 913 */ 914 wait_for_ap_thread(st, false); 915 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 916 917 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 918 irq_unlock_sparse(); 919 920 hotplug_cpu__broadcast_tick_pull(cpu); 921 /* This actually kills the CPU. */ 922 __cpu_die(cpu); 923 924 tick_cleanup_dead_cpu(cpu); 925 rcutree_migrate_callbacks(cpu); 926 return 0; 927 } 928 929 static void cpuhp_complete_idle_dead(void *arg) 930 { 931 struct cpuhp_cpu_state *st = arg; 932 933 complete_ap_thread(st, false); 934 } 935 936 void cpuhp_report_idle_dead(void) 937 { 938 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 939 940 BUG_ON(st->state != CPUHP_AP_OFFLINE); 941 rcu_report_dead(smp_processor_id()); 942 st->state = CPUHP_AP_IDLE_DEAD; 943 /* 944 * We cannot call complete after rcu_report_dead() so we delegate it 945 * to an online cpu. 946 */ 947 smp_call_function_single(cpumask_first(cpu_online_mask), 948 cpuhp_complete_idle_dead, st, 0); 949 } 950 951 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 952 { 953 for (st->state++; st->state < st->target; st->state++) 954 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 955 } 956 957 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 958 enum cpuhp_state target) 959 { 960 enum cpuhp_state prev_state = st->state; 961 int ret = 0; 962 963 for (; st->state > target; st->state--) { 964 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 965 if (ret) { 966 st->target = prev_state; 967 if (st->state < prev_state) 968 undo_cpu_down(cpu, st); 969 break; 970 } 971 } 972 return ret; 973 } 974 975 /* Requires cpu_add_remove_lock to be held */ 976 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 977 enum cpuhp_state target) 978 { 979 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 980 int prev_state, ret = 0; 981 982 if (num_online_cpus() == 1) 983 return -EBUSY; 984 985 if (!cpu_present(cpu)) 986 return -EINVAL; 987 988 cpus_write_lock(); 989 990 cpuhp_tasks_frozen = tasks_frozen; 991 992 prev_state = cpuhp_set_state(st, target); 993 /* 994 * If the current CPU state is in the range of the AP hotplug thread, 995 * then we need to kick the thread. 996 */ 997 if (st->state > CPUHP_TEARDOWN_CPU) { 998 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 999 ret = cpuhp_kick_ap_work(cpu); 1000 /* 1001 * The AP side has done the error rollback already. Just 1002 * return the error code.. 1003 */ 1004 if (ret) 1005 goto out; 1006 1007 /* 1008 * We might have stopped still in the range of the AP hotplug 1009 * thread. Nothing to do anymore. 1010 */ 1011 if (st->state > CPUHP_TEARDOWN_CPU) 1012 goto out; 1013 1014 st->target = target; 1015 } 1016 /* 1017 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1018 * to do the further cleanups. 1019 */ 1020 ret = cpuhp_down_callbacks(cpu, st, target); 1021 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) { 1022 cpuhp_reset_state(st, prev_state); 1023 __cpuhp_kick_ap(st); 1024 } 1025 1026 out: 1027 cpus_write_unlock(); 1028 /* 1029 * Do post unplug cleanup. This is still protected against 1030 * concurrent CPU hotplug via cpu_add_remove_lock. 1031 */ 1032 lockup_detector_cleanup(); 1033 arch_smt_update(); 1034 return ret; 1035 } 1036 1037 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1038 { 1039 if (cpu_hotplug_disabled) 1040 return -EBUSY; 1041 return _cpu_down(cpu, 0, target); 1042 } 1043 1044 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 1045 { 1046 int err; 1047 1048 cpu_maps_update_begin(); 1049 err = cpu_down_maps_locked(cpu, target); 1050 cpu_maps_update_done(); 1051 return err; 1052 } 1053 1054 int cpu_down(unsigned int cpu) 1055 { 1056 return do_cpu_down(cpu, CPUHP_OFFLINE); 1057 } 1058 EXPORT_SYMBOL(cpu_down); 1059 1060 #else 1061 #define takedown_cpu NULL 1062 #endif /*CONFIG_HOTPLUG_CPU*/ 1063 1064 /** 1065 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1066 * @cpu: cpu that just started 1067 * 1068 * It must be called by the arch code on the new cpu, before the new cpu 1069 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1070 */ 1071 void notify_cpu_starting(unsigned int cpu) 1072 { 1073 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1074 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1075 int ret; 1076 1077 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1078 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1079 while (st->state < target) { 1080 st->state++; 1081 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1082 /* 1083 * STARTING must not fail! 1084 */ 1085 WARN_ON_ONCE(ret); 1086 } 1087 } 1088 1089 /* 1090 * Called from the idle task. Wake up the controlling task which brings the 1091 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1092 * online bringup to the hotplug thread. 1093 */ 1094 void cpuhp_online_idle(enum cpuhp_state state) 1095 { 1096 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1097 1098 /* Happens for the boot cpu */ 1099 if (state != CPUHP_AP_ONLINE_IDLE) 1100 return; 1101 1102 /* 1103 * Unpart the stopper thread before we start the idle loop (and start 1104 * scheduling); this ensures the stopper task is always available. 1105 */ 1106 stop_machine_unpark(smp_processor_id()); 1107 1108 st->state = CPUHP_AP_ONLINE_IDLE; 1109 complete_ap_thread(st, true); 1110 } 1111 1112 /* Requires cpu_add_remove_lock to be held */ 1113 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1114 { 1115 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1116 struct task_struct *idle; 1117 int ret = 0; 1118 1119 cpus_write_lock(); 1120 1121 if (!cpu_present(cpu)) { 1122 ret = -EINVAL; 1123 goto out; 1124 } 1125 1126 /* 1127 * The caller of do_cpu_up might have raced with another 1128 * caller. Ignore it for now. 1129 */ 1130 if (st->state >= target) 1131 goto out; 1132 1133 if (st->state == CPUHP_OFFLINE) { 1134 /* Let it fail before we try to bring the cpu up */ 1135 idle = idle_thread_get(cpu); 1136 if (IS_ERR(idle)) { 1137 ret = PTR_ERR(idle); 1138 goto out; 1139 } 1140 } 1141 1142 cpuhp_tasks_frozen = tasks_frozen; 1143 1144 cpuhp_set_state(st, target); 1145 /* 1146 * If the current CPU state is in the range of the AP hotplug thread, 1147 * then we need to kick the thread once more. 1148 */ 1149 if (st->state > CPUHP_BRINGUP_CPU) { 1150 ret = cpuhp_kick_ap_work(cpu); 1151 /* 1152 * The AP side has done the error rollback already. Just 1153 * return the error code.. 1154 */ 1155 if (ret) 1156 goto out; 1157 } 1158 1159 /* 1160 * Try to reach the target state. We max out on the BP at 1161 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1162 * responsible for bringing it up to the target state. 1163 */ 1164 target = min((int)target, CPUHP_BRINGUP_CPU); 1165 ret = cpuhp_up_callbacks(cpu, st, target); 1166 out: 1167 cpus_write_unlock(); 1168 arch_smt_update(); 1169 return ret; 1170 } 1171 1172 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 1173 { 1174 int err = 0; 1175 1176 if (!cpu_possible(cpu)) { 1177 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1178 cpu); 1179 #if defined(CONFIG_IA64) 1180 pr_err("please check additional_cpus= boot parameter\n"); 1181 #endif 1182 return -EINVAL; 1183 } 1184 1185 err = try_online_node(cpu_to_node(cpu)); 1186 if (err) 1187 return err; 1188 1189 cpu_maps_update_begin(); 1190 1191 if (cpu_hotplug_disabled) { 1192 err = -EBUSY; 1193 goto out; 1194 } 1195 if (!cpu_smt_allowed(cpu)) { 1196 err = -EPERM; 1197 goto out; 1198 } 1199 1200 err = _cpu_up(cpu, 0, target); 1201 out: 1202 cpu_maps_update_done(); 1203 return err; 1204 } 1205 1206 int cpu_up(unsigned int cpu) 1207 { 1208 return do_cpu_up(cpu, CPUHP_ONLINE); 1209 } 1210 EXPORT_SYMBOL_GPL(cpu_up); 1211 1212 #ifdef CONFIG_PM_SLEEP_SMP 1213 static cpumask_var_t frozen_cpus; 1214 1215 int freeze_secondary_cpus(int primary) 1216 { 1217 int cpu, error = 0; 1218 1219 cpu_maps_update_begin(); 1220 if (primary == -1) { 1221 primary = cpumask_first(cpu_online_mask); 1222 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) 1223 primary = housekeeping_any_cpu(HK_FLAG_TIMER); 1224 } else { 1225 if (!cpu_online(primary)) 1226 primary = cpumask_first(cpu_online_mask); 1227 } 1228 1229 /* 1230 * We take down all of the non-boot CPUs in one shot to avoid races 1231 * with the userspace trying to use the CPU hotplug at the same time 1232 */ 1233 cpumask_clear(frozen_cpus); 1234 1235 pr_info("Disabling non-boot CPUs ...\n"); 1236 for_each_online_cpu(cpu) { 1237 if (cpu == primary) 1238 continue; 1239 1240 if (pm_wakeup_pending()) { 1241 pr_info("Wakeup pending. Abort CPU freeze\n"); 1242 error = -EBUSY; 1243 break; 1244 } 1245 1246 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1247 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1248 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1249 if (!error) 1250 cpumask_set_cpu(cpu, frozen_cpus); 1251 else { 1252 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1253 break; 1254 } 1255 } 1256 1257 if (!error) 1258 BUG_ON(num_online_cpus() > 1); 1259 else 1260 pr_err("Non-boot CPUs are not disabled\n"); 1261 1262 /* 1263 * Make sure the CPUs won't be enabled by someone else. We need to do 1264 * this even in case of failure as all disable_nonboot_cpus() users are 1265 * supposed to do enable_nonboot_cpus() on the failure path. 1266 */ 1267 cpu_hotplug_disabled++; 1268 1269 cpu_maps_update_done(); 1270 return error; 1271 } 1272 1273 void __weak arch_enable_nonboot_cpus_begin(void) 1274 { 1275 } 1276 1277 void __weak arch_enable_nonboot_cpus_end(void) 1278 { 1279 } 1280 1281 void enable_nonboot_cpus(void) 1282 { 1283 int cpu, error; 1284 1285 /* Allow everyone to use the CPU hotplug again */ 1286 cpu_maps_update_begin(); 1287 __cpu_hotplug_enable(); 1288 if (cpumask_empty(frozen_cpus)) 1289 goto out; 1290 1291 pr_info("Enabling non-boot CPUs ...\n"); 1292 1293 arch_enable_nonboot_cpus_begin(); 1294 1295 for_each_cpu(cpu, frozen_cpus) { 1296 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1297 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1298 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1299 if (!error) { 1300 pr_info("CPU%d is up\n", cpu); 1301 continue; 1302 } 1303 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1304 } 1305 1306 arch_enable_nonboot_cpus_end(); 1307 1308 cpumask_clear(frozen_cpus); 1309 out: 1310 cpu_maps_update_done(); 1311 } 1312 1313 static int __init alloc_frozen_cpus(void) 1314 { 1315 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1316 return -ENOMEM; 1317 return 0; 1318 } 1319 core_initcall(alloc_frozen_cpus); 1320 1321 /* 1322 * When callbacks for CPU hotplug notifications are being executed, we must 1323 * ensure that the state of the system with respect to the tasks being frozen 1324 * or not, as reported by the notification, remains unchanged *throughout the 1325 * duration* of the execution of the callbacks. 1326 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1327 * 1328 * This synchronization is implemented by mutually excluding regular CPU 1329 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1330 * Hibernate notifications. 1331 */ 1332 static int 1333 cpu_hotplug_pm_callback(struct notifier_block *nb, 1334 unsigned long action, void *ptr) 1335 { 1336 switch (action) { 1337 1338 case PM_SUSPEND_PREPARE: 1339 case PM_HIBERNATION_PREPARE: 1340 cpu_hotplug_disable(); 1341 break; 1342 1343 case PM_POST_SUSPEND: 1344 case PM_POST_HIBERNATION: 1345 cpu_hotplug_enable(); 1346 break; 1347 1348 default: 1349 return NOTIFY_DONE; 1350 } 1351 1352 return NOTIFY_OK; 1353 } 1354 1355 1356 static int __init cpu_hotplug_pm_sync_init(void) 1357 { 1358 /* 1359 * cpu_hotplug_pm_callback has higher priority than x86 1360 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1361 * to disable cpu hotplug to avoid cpu hotplug race. 1362 */ 1363 pm_notifier(cpu_hotplug_pm_callback, 0); 1364 return 0; 1365 } 1366 core_initcall(cpu_hotplug_pm_sync_init); 1367 1368 #endif /* CONFIG_PM_SLEEP_SMP */ 1369 1370 int __boot_cpu_id; 1371 1372 #endif /* CONFIG_SMP */ 1373 1374 /* Boot processor state steps */ 1375 static struct cpuhp_step cpuhp_hp_states[] = { 1376 [CPUHP_OFFLINE] = { 1377 .name = "offline", 1378 .startup.single = NULL, 1379 .teardown.single = NULL, 1380 }, 1381 #ifdef CONFIG_SMP 1382 [CPUHP_CREATE_THREADS]= { 1383 .name = "threads:prepare", 1384 .startup.single = smpboot_create_threads, 1385 .teardown.single = NULL, 1386 .cant_stop = true, 1387 }, 1388 [CPUHP_PERF_PREPARE] = { 1389 .name = "perf:prepare", 1390 .startup.single = perf_event_init_cpu, 1391 .teardown.single = perf_event_exit_cpu, 1392 }, 1393 [CPUHP_WORKQUEUE_PREP] = { 1394 .name = "workqueue:prepare", 1395 .startup.single = workqueue_prepare_cpu, 1396 .teardown.single = NULL, 1397 }, 1398 [CPUHP_HRTIMERS_PREPARE] = { 1399 .name = "hrtimers:prepare", 1400 .startup.single = hrtimers_prepare_cpu, 1401 .teardown.single = hrtimers_dead_cpu, 1402 }, 1403 [CPUHP_SMPCFD_PREPARE] = { 1404 .name = "smpcfd:prepare", 1405 .startup.single = smpcfd_prepare_cpu, 1406 .teardown.single = smpcfd_dead_cpu, 1407 }, 1408 [CPUHP_RELAY_PREPARE] = { 1409 .name = "relay:prepare", 1410 .startup.single = relay_prepare_cpu, 1411 .teardown.single = NULL, 1412 }, 1413 [CPUHP_SLAB_PREPARE] = { 1414 .name = "slab:prepare", 1415 .startup.single = slab_prepare_cpu, 1416 .teardown.single = slab_dead_cpu, 1417 }, 1418 [CPUHP_RCUTREE_PREP] = { 1419 .name = "RCU/tree:prepare", 1420 .startup.single = rcutree_prepare_cpu, 1421 .teardown.single = rcutree_dead_cpu, 1422 }, 1423 /* 1424 * On the tear-down path, timers_dead_cpu() must be invoked 1425 * before blk_mq_queue_reinit_notify() from notify_dead(), 1426 * otherwise a RCU stall occurs. 1427 */ 1428 [CPUHP_TIMERS_PREPARE] = { 1429 .name = "timers:prepare", 1430 .startup.single = timers_prepare_cpu, 1431 .teardown.single = timers_dead_cpu, 1432 }, 1433 /* Kicks the plugged cpu into life */ 1434 [CPUHP_BRINGUP_CPU] = { 1435 .name = "cpu:bringup", 1436 .startup.single = bringup_cpu, 1437 .teardown.single = NULL, 1438 .cant_stop = true, 1439 }, 1440 /* Final state before CPU kills itself */ 1441 [CPUHP_AP_IDLE_DEAD] = { 1442 .name = "idle:dead", 1443 }, 1444 /* 1445 * Last state before CPU enters the idle loop to die. Transient state 1446 * for synchronization. 1447 */ 1448 [CPUHP_AP_OFFLINE] = { 1449 .name = "ap:offline", 1450 .cant_stop = true, 1451 }, 1452 /* First state is scheduler control. Interrupts are disabled */ 1453 [CPUHP_AP_SCHED_STARTING] = { 1454 .name = "sched:starting", 1455 .startup.single = sched_cpu_starting, 1456 .teardown.single = sched_cpu_dying, 1457 }, 1458 [CPUHP_AP_RCUTREE_DYING] = { 1459 .name = "RCU/tree:dying", 1460 .startup.single = NULL, 1461 .teardown.single = rcutree_dying_cpu, 1462 }, 1463 [CPUHP_AP_SMPCFD_DYING] = { 1464 .name = "smpcfd:dying", 1465 .startup.single = NULL, 1466 .teardown.single = smpcfd_dying_cpu, 1467 }, 1468 /* Entry state on starting. Interrupts enabled from here on. Transient 1469 * state for synchronsization */ 1470 [CPUHP_AP_ONLINE] = { 1471 .name = "ap:online", 1472 }, 1473 /* 1474 * Handled on controll processor until the plugged processor manages 1475 * this itself. 1476 */ 1477 [CPUHP_TEARDOWN_CPU] = { 1478 .name = "cpu:teardown", 1479 .startup.single = NULL, 1480 .teardown.single = takedown_cpu, 1481 .cant_stop = true, 1482 }, 1483 /* Handle smpboot threads park/unpark */ 1484 [CPUHP_AP_SMPBOOT_THREADS] = { 1485 .name = "smpboot/threads:online", 1486 .startup.single = smpboot_unpark_threads, 1487 .teardown.single = smpboot_park_threads, 1488 }, 1489 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1490 .name = "irq/affinity:online", 1491 .startup.single = irq_affinity_online_cpu, 1492 .teardown.single = NULL, 1493 }, 1494 [CPUHP_AP_PERF_ONLINE] = { 1495 .name = "perf:online", 1496 .startup.single = perf_event_init_cpu, 1497 .teardown.single = perf_event_exit_cpu, 1498 }, 1499 [CPUHP_AP_WATCHDOG_ONLINE] = { 1500 .name = "lockup_detector:online", 1501 .startup.single = lockup_detector_online_cpu, 1502 .teardown.single = lockup_detector_offline_cpu, 1503 }, 1504 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1505 .name = "workqueue:online", 1506 .startup.single = workqueue_online_cpu, 1507 .teardown.single = workqueue_offline_cpu, 1508 }, 1509 [CPUHP_AP_RCUTREE_ONLINE] = { 1510 .name = "RCU/tree:online", 1511 .startup.single = rcutree_online_cpu, 1512 .teardown.single = rcutree_offline_cpu, 1513 }, 1514 #endif 1515 /* 1516 * The dynamically registered state space is here 1517 */ 1518 1519 #ifdef CONFIG_SMP 1520 /* Last state is scheduler control setting the cpu active */ 1521 [CPUHP_AP_ACTIVE] = { 1522 .name = "sched:active", 1523 .startup.single = sched_cpu_activate, 1524 .teardown.single = sched_cpu_deactivate, 1525 }, 1526 #endif 1527 1528 /* CPU is fully up and running. */ 1529 [CPUHP_ONLINE] = { 1530 .name = "online", 1531 .startup.single = NULL, 1532 .teardown.single = NULL, 1533 }, 1534 }; 1535 1536 /* Sanity check for callbacks */ 1537 static int cpuhp_cb_check(enum cpuhp_state state) 1538 { 1539 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1540 return -EINVAL; 1541 return 0; 1542 } 1543 1544 /* 1545 * Returns a free for dynamic slot assignment of the Online state. The states 1546 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1547 * by having no name assigned. 1548 */ 1549 static int cpuhp_reserve_state(enum cpuhp_state state) 1550 { 1551 enum cpuhp_state i, end; 1552 struct cpuhp_step *step; 1553 1554 switch (state) { 1555 case CPUHP_AP_ONLINE_DYN: 1556 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1557 end = CPUHP_AP_ONLINE_DYN_END; 1558 break; 1559 case CPUHP_BP_PREPARE_DYN: 1560 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1561 end = CPUHP_BP_PREPARE_DYN_END; 1562 break; 1563 default: 1564 return -EINVAL; 1565 } 1566 1567 for (i = state; i <= end; i++, step++) { 1568 if (!step->name) 1569 return i; 1570 } 1571 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1572 return -ENOSPC; 1573 } 1574 1575 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1576 int (*startup)(unsigned int cpu), 1577 int (*teardown)(unsigned int cpu), 1578 bool multi_instance) 1579 { 1580 /* (Un)Install the callbacks for further cpu hotplug operations */ 1581 struct cpuhp_step *sp; 1582 int ret = 0; 1583 1584 /* 1585 * If name is NULL, then the state gets removed. 1586 * 1587 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1588 * the first allocation from these dynamic ranges, so the removal 1589 * would trigger a new allocation and clear the wrong (already 1590 * empty) state, leaving the callbacks of the to be cleared state 1591 * dangling, which causes wreckage on the next hotplug operation. 1592 */ 1593 if (name && (state == CPUHP_AP_ONLINE_DYN || 1594 state == CPUHP_BP_PREPARE_DYN)) { 1595 ret = cpuhp_reserve_state(state); 1596 if (ret < 0) 1597 return ret; 1598 state = ret; 1599 } 1600 sp = cpuhp_get_step(state); 1601 if (name && sp->name) 1602 return -EBUSY; 1603 1604 sp->startup.single = startup; 1605 sp->teardown.single = teardown; 1606 sp->name = name; 1607 sp->multi_instance = multi_instance; 1608 INIT_HLIST_HEAD(&sp->list); 1609 return ret; 1610 } 1611 1612 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1613 { 1614 return cpuhp_get_step(state)->teardown.single; 1615 } 1616 1617 /* 1618 * Call the startup/teardown function for a step either on the AP or 1619 * on the current CPU. 1620 */ 1621 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1622 struct hlist_node *node) 1623 { 1624 struct cpuhp_step *sp = cpuhp_get_step(state); 1625 int ret; 1626 1627 /* 1628 * If there's nothing to do, we done. 1629 * Relies on the union for multi_instance. 1630 */ 1631 if ((bringup && !sp->startup.single) || 1632 (!bringup && !sp->teardown.single)) 1633 return 0; 1634 /* 1635 * The non AP bound callbacks can fail on bringup. On teardown 1636 * e.g. module removal we crash for now. 1637 */ 1638 #ifdef CONFIG_SMP 1639 if (cpuhp_is_ap_state(state)) 1640 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1641 else 1642 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1643 #else 1644 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1645 #endif 1646 BUG_ON(ret && !bringup); 1647 return ret; 1648 } 1649 1650 /* 1651 * Called from __cpuhp_setup_state on a recoverable failure. 1652 * 1653 * Note: The teardown callbacks for rollback are not allowed to fail! 1654 */ 1655 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1656 struct hlist_node *node) 1657 { 1658 int cpu; 1659 1660 /* Roll back the already executed steps on the other cpus */ 1661 for_each_present_cpu(cpu) { 1662 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1663 int cpustate = st->state; 1664 1665 if (cpu >= failedcpu) 1666 break; 1667 1668 /* Did we invoke the startup call on that cpu ? */ 1669 if (cpustate >= state) 1670 cpuhp_issue_call(cpu, state, false, node); 1671 } 1672 } 1673 1674 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1675 struct hlist_node *node, 1676 bool invoke) 1677 { 1678 struct cpuhp_step *sp; 1679 int cpu; 1680 int ret; 1681 1682 lockdep_assert_cpus_held(); 1683 1684 sp = cpuhp_get_step(state); 1685 if (sp->multi_instance == false) 1686 return -EINVAL; 1687 1688 mutex_lock(&cpuhp_state_mutex); 1689 1690 if (!invoke || !sp->startup.multi) 1691 goto add_node; 1692 1693 /* 1694 * Try to call the startup callback for each present cpu 1695 * depending on the hotplug state of the cpu. 1696 */ 1697 for_each_present_cpu(cpu) { 1698 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1699 int cpustate = st->state; 1700 1701 if (cpustate < state) 1702 continue; 1703 1704 ret = cpuhp_issue_call(cpu, state, true, node); 1705 if (ret) { 1706 if (sp->teardown.multi) 1707 cpuhp_rollback_install(cpu, state, node); 1708 goto unlock; 1709 } 1710 } 1711 add_node: 1712 ret = 0; 1713 hlist_add_head(node, &sp->list); 1714 unlock: 1715 mutex_unlock(&cpuhp_state_mutex); 1716 return ret; 1717 } 1718 1719 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1720 bool invoke) 1721 { 1722 int ret; 1723 1724 cpus_read_lock(); 1725 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1726 cpus_read_unlock(); 1727 return ret; 1728 } 1729 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1730 1731 /** 1732 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1733 * @state: The state to setup 1734 * @invoke: If true, the startup function is invoked for cpus where 1735 * cpu state >= @state 1736 * @startup: startup callback function 1737 * @teardown: teardown callback function 1738 * @multi_instance: State is set up for multiple instances which get 1739 * added afterwards. 1740 * 1741 * The caller needs to hold cpus read locked while calling this function. 1742 * Returns: 1743 * On success: 1744 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1745 * 0 for all other states 1746 * On failure: proper (negative) error code 1747 */ 1748 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1749 const char *name, bool invoke, 1750 int (*startup)(unsigned int cpu), 1751 int (*teardown)(unsigned int cpu), 1752 bool multi_instance) 1753 { 1754 int cpu, ret = 0; 1755 bool dynstate; 1756 1757 lockdep_assert_cpus_held(); 1758 1759 if (cpuhp_cb_check(state) || !name) 1760 return -EINVAL; 1761 1762 mutex_lock(&cpuhp_state_mutex); 1763 1764 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1765 multi_instance); 1766 1767 dynstate = state == CPUHP_AP_ONLINE_DYN; 1768 if (ret > 0 && dynstate) { 1769 state = ret; 1770 ret = 0; 1771 } 1772 1773 if (ret || !invoke || !startup) 1774 goto out; 1775 1776 /* 1777 * Try to call the startup callback for each present cpu 1778 * depending on the hotplug state of the cpu. 1779 */ 1780 for_each_present_cpu(cpu) { 1781 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1782 int cpustate = st->state; 1783 1784 if (cpustate < state) 1785 continue; 1786 1787 ret = cpuhp_issue_call(cpu, state, true, NULL); 1788 if (ret) { 1789 if (teardown) 1790 cpuhp_rollback_install(cpu, state, NULL); 1791 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1792 goto out; 1793 } 1794 } 1795 out: 1796 mutex_unlock(&cpuhp_state_mutex); 1797 /* 1798 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1799 * dynamically allocated state in case of success. 1800 */ 1801 if (!ret && dynstate) 1802 return state; 1803 return ret; 1804 } 1805 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1806 1807 int __cpuhp_setup_state(enum cpuhp_state state, 1808 const char *name, bool invoke, 1809 int (*startup)(unsigned int cpu), 1810 int (*teardown)(unsigned int cpu), 1811 bool multi_instance) 1812 { 1813 int ret; 1814 1815 cpus_read_lock(); 1816 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1817 teardown, multi_instance); 1818 cpus_read_unlock(); 1819 return ret; 1820 } 1821 EXPORT_SYMBOL(__cpuhp_setup_state); 1822 1823 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1824 struct hlist_node *node, bool invoke) 1825 { 1826 struct cpuhp_step *sp = cpuhp_get_step(state); 1827 int cpu; 1828 1829 BUG_ON(cpuhp_cb_check(state)); 1830 1831 if (!sp->multi_instance) 1832 return -EINVAL; 1833 1834 cpus_read_lock(); 1835 mutex_lock(&cpuhp_state_mutex); 1836 1837 if (!invoke || !cpuhp_get_teardown_cb(state)) 1838 goto remove; 1839 /* 1840 * Call the teardown callback for each present cpu depending 1841 * on the hotplug state of the cpu. This function is not 1842 * allowed to fail currently! 1843 */ 1844 for_each_present_cpu(cpu) { 1845 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1846 int cpustate = st->state; 1847 1848 if (cpustate >= state) 1849 cpuhp_issue_call(cpu, state, false, node); 1850 } 1851 1852 remove: 1853 hlist_del(node); 1854 mutex_unlock(&cpuhp_state_mutex); 1855 cpus_read_unlock(); 1856 1857 return 0; 1858 } 1859 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1860 1861 /** 1862 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1863 * @state: The state to remove 1864 * @invoke: If true, the teardown function is invoked for cpus where 1865 * cpu state >= @state 1866 * 1867 * The caller needs to hold cpus read locked while calling this function. 1868 * The teardown callback is currently not allowed to fail. Think 1869 * about module removal! 1870 */ 1871 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1872 { 1873 struct cpuhp_step *sp = cpuhp_get_step(state); 1874 int cpu; 1875 1876 BUG_ON(cpuhp_cb_check(state)); 1877 1878 lockdep_assert_cpus_held(); 1879 1880 mutex_lock(&cpuhp_state_mutex); 1881 if (sp->multi_instance) { 1882 WARN(!hlist_empty(&sp->list), 1883 "Error: Removing state %d which has instances left.\n", 1884 state); 1885 goto remove; 1886 } 1887 1888 if (!invoke || !cpuhp_get_teardown_cb(state)) 1889 goto remove; 1890 1891 /* 1892 * Call the teardown callback for each present cpu depending 1893 * on the hotplug state of the cpu. This function is not 1894 * allowed to fail currently! 1895 */ 1896 for_each_present_cpu(cpu) { 1897 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1898 int cpustate = st->state; 1899 1900 if (cpustate >= state) 1901 cpuhp_issue_call(cpu, state, false, NULL); 1902 } 1903 remove: 1904 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1905 mutex_unlock(&cpuhp_state_mutex); 1906 } 1907 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 1908 1909 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1910 { 1911 cpus_read_lock(); 1912 __cpuhp_remove_state_cpuslocked(state, invoke); 1913 cpus_read_unlock(); 1914 } 1915 EXPORT_SYMBOL(__cpuhp_remove_state); 1916 1917 #ifdef CONFIG_HOTPLUG_SMT 1918 static void cpuhp_offline_cpu_device(unsigned int cpu) 1919 { 1920 struct device *dev = get_cpu_device(cpu); 1921 1922 dev->offline = true; 1923 /* Tell user space about the state change */ 1924 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 1925 } 1926 1927 static void cpuhp_online_cpu_device(unsigned int cpu) 1928 { 1929 struct device *dev = get_cpu_device(cpu); 1930 1931 dev->offline = false; 1932 /* Tell user space about the state change */ 1933 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 1934 } 1935 1936 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 1937 { 1938 int cpu, ret = 0; 1939 1940 cpu_maps_update_begin(); 1941 for_each_online_cpu(cpu) { 1942 if (topology_is_primary_thread(cpu)) 1943 continue; 1944 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1945 if (ret) 1946 break; 1947 /* 1948 * As this needs to hold the cpu maps lock it's impossible 1949 * to call device_offline() because that ends up calling 1950 * cpu_down() which takes cpu maps lock. cpu maps lock 1951 * needs to be held as this might race against in kernel 1952 * abusers of the hotplug machinery (thermal management). 1953 * 1954 * So nothing would update device:offline state. That would 1955 * leave the sysfs entry stale and prevent onlining after 1956 * smt control has been changed to 'off' again. This is 1957 * called under the sysfs hotplug lock, so it is properly 1958 * serialized against the regular offline usage. 1959 */ 1960 cpuhp_offline_cpu_device(cpu); 1961 } 1962 if (!ret) 1963 cpu_smt_control = ctrlval; 1964 cpu_maps_update_done(); 1965 return ret; 1966 } 1967 1968 int cpuhp_smt_enable(void) 1969 { 1970 int cpu, ret = 0; 1971 1972 cpu_maps_update_begin(); 1973 cpu_smt_control = CPU_SMT_ENABLED; 1974 for_each_present_cpu(cpu) { 1975 /* Skip online CPUs and CPUs on offline nodes */ 1976 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 1977 continue; 1978 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 1979 if (ret) 1980 break; 1981 /* See comment in cpuhp_smt_disable() */ 1982 cpuhp_online_cpu_device(cpu); 1983 } 1984 cpu_maps_update_done(); 1985 return ret; 1986 } 1987 #endif 1988 1989 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1990 static ssize_t show_cpuhp_state(struct device *dev, 1991 struct device_attribute *attr, char *buf) 1992 { 1993 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1994 1995 return sprintf(buf, "%d\n", st->state); 1996 } 1997 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1998 1999 static ssize_t write_cpuhp_target(struct device *dev, 2000 struct device_attribute *attr, 2001 const char *buf, size_t count) 2002 { 2003 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2004 struct cpuhp_step *sp; 2005 int target, ret; 2006 2007 ret = kstrtoint(buf, 10, &target); 2008 if (ret) 2009 return ret; 2010 2011 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2012 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2013 return -EINVAL; 2014 #else 2015 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2016 return -EINVAL; 2017 #endif 2018 2019 ret = lock_device_hotplug_sysfs(); 2020 if (ret) 2021 return ret; 2022 2023 mutex_lock(&cpuhp_state_mutex); 2024 sp = cpuhp_get_step(target); 2025 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2026 mutex_unlock(&cpuhp_state_mutex); 2027 if (ret) 2028 goto out; 2029 2030 if (st->state < target) 2031 ret = do_cpu_up(dev->id, target); 2032 else 2033 ret = do_cpu_down(dev->id, target); 2034 out: 2035 unlock_device_hotplug(); 2036 return ret ? ret : count; 2037 } 2038 2039 static ssize_t show_cpuhp_target(struct device *dev, 2040 struct device_attribute *attr, char *buf) 2041 { 2042 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2043 2044 return sprintf(buf, "%d\n", st->target); 2045 } 2046 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 2047 2048 2049 static ssize_t write_cpuhp_fail(struct device *dev, 2050 struct device_attribute *attr, 2051 const char *buf, size_t count) 2052 { 2053 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2054 struct cpuhp_step *sp; 2055 int fail, ret; 2056 2057 ret = kstrtoint(buf, 10, &fail); 2058 if (ret) 2059 return ret; 2060 2061 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2062 return -EINVAL; 2063 2064 /* 2065 * Cannot fail STARTING/DYING callbacks. 2066 */ 2067 if (cpuhp_is_atomic_state(fail)) 2068 return -EINVAL; 2069 2070 /* 2071 * Cannot fail anything that doesn't have callbacks. 2072 */ 2073 mutex_lock(&cpuhp_state_mutex); 2074 sp = cpuhp_get_step(fail); 2075 if (!sp->startup.single && !sp->teardown.single) 2076 ret = -EINVAL; 2077 mutex_unlock(&cpuhp_state_mutex); 2078 if (ret) 2079 return ret; 2080 2081 st->fail = fail; 2082 2083 return count; 2084 } 2085 2086 static ssize_t show_cpuhp_fail(struct device *dev, 2087 struct device_attribute *attr, char *buf) 2088 { 2089 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2090 2091 return sprintf(buf, "%d\n", st->fail); 2092 } 2093 2094 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 2095 2096 static struct attribute *cpuhp_cpu_attrs[] = { 2097 &dev_attr_state.attr, 2098 &dev_attr_target.attr, 2099 &dev_attr_fail.attr, 2100 NULL 2101 }; 2102 2103 static const struct attribute_group cpuhp_cpu_attr_group = { 2104 .attrs = cpuhp_cpu_attrs, 2105 .name = "hotplug", 2106 NULL 2107 }; 2108 2109 static ssize_t show_cpuhp_states(struct device *dev, 2110 struct device_attribute *attr, char *buf) 2111 { 2112 ssize_t cur, res = 0; 2113 int i; 2114 2115 mutex_lock(&cpuhp_state_mutex); 2116 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2117 struct cpuhp_step *sp = cpuhp_get_step(i); 2118 2119 if (sp->name) { 2120 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2121 buf += cur; 2122 res += cur; 2123 } 2124 } 2125 mutex_unlock(&cpuhp_state_mutex); 2126 return res; 2127 } 2128 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2129 2130 static struct attribute *cpuhp_cpu_root_attrs[] = { 2131 &dev_attr_states.attr, 2132 NULL 2133 }; 2134 2135 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2136 .attrs = cpuhp_cpu_root_attrs, 2137 .name = "hotplug", 2138 NULL 2139 }; 2140 2141 #ifdef CONFIG_HOTPLUG_SMT 2142 2143 static ssize_t 2144 __store_smt_control(struct device *dev, struct device_attribute *attr, 2145 const char *buf, size_t count) 2146 { 2147 int ctrlval, ret; 2148 2149 if (sysfs_streq(buf, "on")) 2150 ctrlval = CPU_SMT_ENABLED; 2151 else if (sysfs_streq(buf, "off")) 2152 ctrlval = CPU_SMT_DISABLED; 2153 else if (sysfs_streq(buf, "forceoff")) 2154 ctrlval = CPU_SMT_FORCE_DISABLED; 2155 else 2156 return -EINVAL; 2157 2158 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2159 return -EPERM; 2160 2161 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2162 return -ENODEV; 2163 2164 ret = lock_device_hotplug_sysfs(); 2165 if (ret) 2166 return ret; 2167 2168 if (ctrlval != cpu_smt_control) { 2169 switch (ctrlval) { 2170 case CPU_SMT_ENABLED: 2171 ret = cpuhp_smt_enable(); 2172 break; 2173 case CPU_SMT_DISABLED: 2174 case CPU_SMT_FORCE_DISABLED: 2175 ret = cpuhp_smt_disable(ctrlval); 2176 break; 2177 } 2178 } 2179 2180 unlock_device_hotplug(); 2181 return ret ? ret : count; 2182 } 2183 2184 #else /* !CONFIG_HOTPLUG_SMT */ 2185 static ssize_t 2186 __store_smt_control(struct device *dev, struct device_attribute *attr, 2187 const char *buf, size_t count) 2188 { 2189 return -ENODEV; 2190 } 2191 #endif /* CONFIG_HOTPLUG_SMT */ 2192 2193 static const char *smt_states[] = { 2194 [CPU_SMT_ENABLED] = "on", 2195 [CPU_SMT_DISABLED] = "off", 2196 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2197 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2198 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2199 }; 2200 2201 static ssize_t 2202 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2203 { 2204 const char *state = smt_states[cpu_smt_control]; 2205 2206 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2207 } 2208 2209 static ssize_t 2210 store_smt_control(struct device *dev, struct device_attribute *attr, 2211 const char *buf, size_t count) 2212 { 2213 return __store_smt_control(dev, attr, buf, count); 2214 } 2215 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2216 2217 static ssize_t 2218 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2219 { 2220 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2221 } 2222 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2223 2224 static struct attribute *cpuhp_smt_attrs[] = { 2225 &dev_attr_control.attr, 2226 &dev_attr_active.attr, 2227 NULL 2228 }; 2229 2230 static const struct attribute_group cpuhp_smt_attr_group = { 2231 .attrs = cpuhp_smt_attrs, 2232 .name = "smt", 2233 NULL 2234 }; 2235 2236 static int __init cpu_smt_sysfs_init(void) 2237 { 2238 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2239 &cpuhp_smt_attr_group); 2240 } 2241 2242 static int __init cpuhp_sysfs_init(void) 2243 { 2244 int cpu, ret; 2245 2246 ret = cpu_smt_sysfs_init(); 2247 if (ret) 2248 return ret; 2249 2250 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2251 &cpuhp_cpu_root_attr_group); 2252 if (ret) 2253 return ret; 2254 2255 for_each_possible_cpu(cpu) { 2256 struct device *dev = get_cpu_device(cpu); 2257 2258 if (!dev) 2259 continue; 2260 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2261 if (ret) 2262 return ret; 2263 } 2264 return 0; 2265 } 2266 device_initcall(cpuhp_sysfs_init); 2267 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2268 2269 /* 2270 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2271 * represents all NR_CPUS bits binary values of 1<<nr. 2272 * 2273 * It is used by cpumask_of() to get a constant address to a CPU 2274 * mask value that has a single bit set only. 2275 */ 2276 2277 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2278 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2279 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2280 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2281 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2282 2283 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2284 2285 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2286 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2287 #if BITS_PER_LONG > 32 2288 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2289 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2290 #endif 2291 }; 2292 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2293 2294 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2295 EXPORT_SYMBOL(cpu_all_bits); 2296 2297 #ifdef CONFIG_INIT_ALL_POSSIBLE 2298 struct cpumask __cpu_possible_mask __read_mostly 2299 = {CPU_BITS_ALL}; 2300 #else 2301 struct cpumask __cpu_possible_mask __read_mostly; 2302 #endif 2303 EXPORT_SYMBOL(__cpu_possible_mask); 2304 2305 struct cpumask __cpu_online_mask __read_mostly; 2306 EXPORT_SYMBOL(__cpu_online_mask); 2307 2308 struct cpumask __cpu_present_mask __read_mostly; 2309 EXPORT_SYMBOL(__cpu_present_mask); 2310 2311 struct cpumask __cpu_active_mask __read_mostly; 2312 EXPORT_SYMBOL(__cpu_active_mask); 2313 2314 atomic_t __num_online_cpus __read_mostly; 2315 EXPORT_SYMBOL(__num_online_cpus); 2316 2317 void init_cpu_present(const struct cpumask *src) 2318 { 2319 cpumask_copy(&__cpu_present_mask, src); 2320 } 2321 2322 void init_cpu_possible(const struct cpumask *src) 2323 { 2324 cpumask_copy(&__cpu_possible_mask, src); 2325 } 2326 2327 void init_cpu_online(const struct cpumask *src) 2328 { 2329 cpumask_copy(&__cpu_online_mask, src); 2330 } 2331 2332 void set_cpu_online(unsigned int cpu, bool online) 2333 { 2334 /* 2335 * atomic_inc/dec() is required to handle the horrid abuse of this 2336 * function by the reboot and kexec code which invoke it from 2337 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2338 * regular CPU hotplug is properly serialized. 2339 * 2340 * Note, that the fact that __num_online_cpus is of type atomic_t 2341 * does not protect readers which are not serialized against 2342 * concurrent hotplug operations. 2343 */ 2344 if (online) { 2345 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2346 atomic_inc(&__num_online_cpus); 2347 } else { 2348 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2349 atomic_dec(&__num_online_cpus); 2350 } 2351 } 2352 2353 /* 2354 * Activate the first processor. 2355 */ 2356 void __init boot_cpu_init(void) 2357 { 2358 int cpu = smp_processor_id(); 2359 2360 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2361 set_cpu_online(cpu, true); 2362 set_cpu_active(cpu, true); 2363 set_cpu_present(cpu, true); 2364 set_cpu_possible(cpu, true); 2365 2366 #ifdef CONFIG_SMP 2367 __boot_cpu_id = cpu; 2368 #endif 2369 } 2370 2371 /* 2372 * Must be called _AFTER_ setting up the per_cpu areas 2373 */ 2374 void __init boot_cpu_hotplug_init(void) 2375 { 2376 #ifdef CONFIG_SMP 2377 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2378 #endif 2379 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2380 } 2381 2382 /* 2383 * These are used for a global "mitigations=" cmdline option for toggling 2384 * optional CPU mitigations. 2385 */ 2386 enum cpu_mitigations { 2387 CPU_MITIGATIONS_OFF, 2388 CPU_MITIGATIONS_AUTO, 2389 CPU_MITIGATIONS_AUTO_NOSMT, 2390 }; 2391 2392 static enum cpu_mitigations cpu_mitigations __ro_after_init = 2393 CPU_MITIGATIONS_AUTO; 2394 2395 static int __init mitigations_parse_cmdline(char *arg) 2396 { 2397 if (!strcmp(arg, "off")) 2398 cpu_mitigations = CPU_MITIGATIONS_OFF; 2399 else if (!strcmp(arg, "auto")) 2400 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2401 else if (!strcmp(arg, "auto,nosmt")) 2402 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2403 else 2404 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2405 arg); 2406 2407 return 0; 2408 } 2409 early_param("mitigations", mitigations_parse_cmdline); 2410 2411 /* mitigations=off */ 2412 bool cpu_mitigations_off(void) 2413 { 2414 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2415 } 2416 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2417 2418 /* mitigations=auto,nosmt */ 2419 bool cpu_mitigations_auto_nosmt(void) 2420 { 2421 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2422 } 2423 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 2424