1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched/signal.h> 11 #include <linux/sched/hotplug.h> 12 #include <linux/sched/task.h> 13 #include <linux/sched/smt.h> 14 #include <linux/unistd.h> 15 #include <linux/cpu.h> 16 #include <linux/oom.h> 17 #include <linux/rcupdate.h> 18 #include <linux/export.h> 19 #include <linux/bug.h> 20 #include <linux/kthread.h> 21 #include <linux/stop_machine.h> 22 #include <linux/mutex.h> 23 #include <linux/gfp.h> 24 #include <linux/suspend.h> 25 #include <linux/lockdep.h> 26 #include <linux/tick.h> 27 #include <linux/irq.h> 28 #include <linux/nmi.h> 29 #include <linux/smpboot.h> 30 #include <linux/relay.h> 31 #include <linux/slab.h> 32 #include <linux/percpu-rwsem.h> 33 34 #include <trace/events/power.h> 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/cpuhp.h> 37 38 #include "smpboot.h" 39 40 /** 41 * cpuhp_cpu_state - Per cpu hotplug state storage 42 * @state: The current cpu state 43 * @target: The target state 44 * @thread: Pointer to the hotplug thread 45 * @should_run: Thread should execute 46 * @rollback: Perform a rollback 47 * @single: Single callback invocation 48 * @bringup: Single callback bringup or teardown selector 49 * @cb_state: The state for a single callback (install/uninstall) 50 * @result: Result of the operation 51 * @done_up: Signal completion to the issuer of the task for cpu-up 52 * @done_down: Signal completion to the issuer of the task for cpu-down 53 */ 54 struct cpuhp_cpu_state { 55 enum cpuhp_state state; 56 enum cpuhp_state target; 57 enum cpuhp_state fail; 58 #ifdef CONFIG_SMP 59 struct task_struct *thread; 60 bool should_run; 61 bool rollback; 62 bool single; 63 bool bringup; 64 bool booted_once; 65 struct hlist_node *node; 66 struct hlist_node *last; 67 enum cpuhp_state cb_state; 68 int result; 69 struct completion done_up; 70 struct completion done_down; 71 #endif 72 }; 73 74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 75 .fail = CPUHP_INVALID, 76 }; 77 78 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 79 static struct lockdep_map cpuhp_state_up_map = 80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 81 static struct lockdep_map cpuhp_state_down_map = 82 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 83 84 85 static inline void cpuhp_lock_acquire(bool bringup) 86 { 87 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 88 } 89 90 static inline void cpuhp_lock_release(bool bringup) 91 { 92 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 93 } 94 #else 95 96 static inline void cpuhp_lock_acquire(bool bringup) { } 97 static inline void cpuhp_lock_release(bool bringup) { } 98 99 #endif 100 101 /** 102 * cpuhp_step - Hotplug state machine step 103 * @name: Name of the step 104 * @startup: Startup function of the step 105 * @teardown: Teardown function of the step 106 * @cant_stop: Bringup/teardown can't be stopped at this step 107 */ 108 struct cpuhp_step { 109 const char *name; 110 union { 111 int (*single)(unsigned int cpu); 112 int (*multi)(unsigned int cpu, 113 struct hlist_node *node); 114 } startup; 115 union { 116 int (*single)(unsigned int cpu); 117 int (*multi)(unsigned int cpu, 118 struct hlist_node *node); 119 } teardown; 120 struct hlist_head list; 121 bool cant_stop; 122 bool multi_instance; 123 }; 124 125 static DEFINE_MUTEX(cpuhp_state_mutex); 126 static struct cpuhp_step cpuhp_hp_states[]; 127 128 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 129 { 130 return cpuhp_hp_states + state; 131 } 132 133 /** 134 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 135 * @cpu: The cpu for which the callback should be invoked 136 * @state: The state to do callbacks for 137 * @bringup: True if the bringup callback should be invoked 138 * @node: For multi-instance, do a single entry callback for install/remove 139 * @lastp: For multi-instance rollback, remember how far we got 140 * 141 * Called from cpu hotplug and from the state register machinery. 142 */ 143 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 144 bool bringup, struct hlist_node *node, 145 struct hlist_node **lastp) 146 { 147 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 148 struct cpuhp_step *step = cpuhp_get_step(state); 149 int (*cbm)(unsigned int cpu, struct hlist_node *node); 150 int (*cb)(unsigned int cpu); 151 int ret, cnt; 152 153 if (st->fail == state) { 154 st->fail = CPUHP_INVALID; 155 156 if (!(bringup ? step->startup.single : step->teardown.single)) 157 return 0; 158 159 return -EAGAIN; 160 } 161 162 if (!step->multi_instance) { 163 WARN_ON_ONCE(lastp && *lastp); 164 cb = bringup ? step->startup.single : step->teardown.single; 165 if (!cb) 166 return 0; 167 trace_cpuhp_enter(cpu, st->target, state, cb); 168 ret = cb(cpu); 169 trace_cpuhp_exit(cpu, st->state, state, ret); 170 return ret; 171 } 172 cbm = bringup ? step->startup.multi : step->teardown.multi; 173 if (!cbm) 174 return 0; 175 176 /* Single invocation for instance add/remove */ 177 if (node) { 178 WARN_ON_ONCE(lastp && *lastp); 179 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 180 ret = cbm(cpu, node); 181 trace_cpuhp_exit(cpu, st->state, state, ret); 182 return ret; 183 } 184 185 /* State transition. Invoke on all instances */ 186 cnt = 0; 187 hlist_for_each(node, &step->list) { 188 if (lastp && node == *lastp) 189 break; 190 191 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 192 ret = cbm(cpu, node); 193 trace_cpuhp_exit(cpu, st->state, state, ret); 194 if (ret) { 195 if (!lastp) 196 goto err; 197 198 *lastp = node; 199 return ret; 200 } 201 cnt++; 202 } 203 if (lastp) 204 *lastp = NULL; 205 return 0; 206 err: 207 /* Rollback the instances if one failed */ 208 cbm = !bringup ? step->startup.multi : step->teardown.multi; 209 if (!cbm) 210 return ret; 211 212 hlist_for_each(node, &step->list) { 213 if (!cnt--) 214 break; 215 216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 217 ret = cbm(cpu, node); 218 trace_cpuhp_exit(cpu, st->state, state, ret); 219 /* 220 * Rollback must not fail, 221 */ 222 WARN_ON_ONCE(ret); 223 } 224 return ret; 225 } 226 227 #ifdef CONFIG_SMP 228 static bool cpuhp_is_ap_state(enum cpuhp_state state) 229 { 230 /* 231 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 232 * purposes as that state is handled explicitly in cpu_down. 233 */ 234 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 235 } 236 237 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 238 { 239 struct completion *done = bringup ? &st->done_up : &st->done_down; 240 wait_for_completion(done); 241 } 242 243 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 244 { 245 struct completion *done = bringup ? &st->done_up : &st->done_down; 246 complete(done); 247 } 248 249 /* 250 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 251 */ 252 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 253 { 254 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 255 } 256 257 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 258 static DEFINE_MUTEX(cpu_add_remove_lock); 259 bool cpuhp_tasks_frozen; 260 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 261 262 /* 263 * The following two APIs (cpu_maps_update_begin/done) must be used when 264 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 265 */ 266 void cpu_maps_update_begin(void) 267 { 268 mutex_lock(&cpu_add_remove_lock); 269 } 270 271 void cpu_maps_update_done(void) 272 { 273 mutex_unlock(&cpu_add_remove_lock); 274 } 275 276 /* 277 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 278 * Should always be manipulated under cpu_add_remove_lock 279 */ 280 static int cpu_hotplug_disabled; 281 282 #ifdef CONFIG_HOTPLUG_CPU 283 284 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 285 286 void cpus_read_lock(void) 287 { 288 percpu_down_read(&cpu_hotplug_lock); 289 } 290 EXPORT_SYMBOL_GPL(cpus_read_lock); 291 292 int cpus_read_trylock(void) 293 { 294 return percpu_down_read_trylock(&cpu_hotplug_lock); 295 } 296 EXPORT_SYMBOL_GPL(cpus_read_trylock); 297 298 void cpus_read_unlock(void) 299 { 300 percpu_up_read(&cpu_hotplug_lock); 301 } 302 EXPORT_SYMBOL_GPL(cpus_read_unlock); 303 304 void cpus_write_lock(void) 305 { 306 percpu_down_write(&cpu_hotplug_lock); 307 } 308 309 void cpus_write_unlock(void) 310 { 311 percpu_up_write(&cpu_hotplug_lock); 312 } 313 314 void lockdep_assert_cpus_held(void) 315 { 316 percpu_rwsem_assert_held(&cpu_hotplug_lock); 317 } 318 319 static void lockdep_acquire_cpus_lock(void) 320 { 321 rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_); 322 } 323 324 static void lockdep_release_cpus_lock(void) 325 { 326 rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_); 327 } 328 329 /* 330 * Wait for currently running CPU hotplug operations to complete (if any) and 331 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 332 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 333 * hotplug path before performing hotplug operations. So acquiring that lock 334 * guarantees mutual exclusion from any currently running hotplug operations. 335 */ 336 void cpu_hotplug_disable(void) 337 { 338 cpu_maps_update_begin(); 339 cpu_hotplug_disabled++; 340 cpu_maps_update_done(); 341 } 342 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 343 344 static void __cpu_hotplug_enable(void) 345 { 346 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 347 return; 348 cpu_hotplug_disabled--; 349 } 350 351 void cpu_hotplug_enable(void) 352 { 353 cpu_maps_update_begin(); 354 __cpu_hotplug_enable(); 355 cpu_maps_update_done(); 356 } 357 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 358 359 #else 360 361 static void lockdep_acquire_cpus_lock(void) 362 { 363 } 364 365 static void lockdep_release_cpus_lock(void) 366 { 367 } 368 369 #endif /* CONFIG_HOTPLUG_CPU */ 370 371 /* 372 * Architectures that need SMT-specific errata handling during SMT hotplug 373 * should override this. 374 */ 375 void __weak arch_smt_update(void) { } 376 377 #ifdef CONFIG_HOTPLUG_SMT 378 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 379 EXPORT_SYMBOL_GPL(cpu_smt_control); 380 381 static bool cpu_smt_available __read_mostly; 382 383 void __init cpu_smt_disable(bool force) 384 { 385 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED || 386 cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 387 return; 388 389 if (force) { 390 pr_info("SMT: Force disabled\n"); 391 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 392 } else { 393 pr_info("SMT: disabled\n"); 394 cpu_smt_control = CPU_SMT_DISABLED; 395 } 396 } 397 398 /* 399 * The decision whether SMT is supported can only be done after the full 400 * CPU identification. Called from architecture code before non boot CPUs 401 * are brought up. 402 */ 403 void __init cpu_smt_check_topology_early(void) 404 { 405 if (!topology_smt_supported()) 406 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 407 } 408 409 /* 410 * If SMT was disabled by BIOS, detect it here, after the CPUs have been 411 * brought online. This ensures the smt/l1tf sysfs entries are consistent 412 * with reality. cpu_smt_available is set to true during the bringup of non 413 * boot CPUs when a SMT sibling is detected. Note, this may overwrite 414 * cpu_smt_control's previous setting. 415 */ 416 void __init cpu_smt_check_topology(void) 417 { 418 if (!cpu_smt_available) 419 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 420 } 421 422 static int __init smt_cmdline_disable(char *str) 423 { 424 cpu_smt_disable(str && !strcmp(str, "force")); 425 return 0; 426 } 427 early_param("nosmt", smt_cmdline_disable); 428 429 static inline bool cpu_smt_allowed(unsigned int cpu) 430 { 431 if (topology_is_primary_thread(cpu)) 432 return true; 433 434 /* 435 * If the CPU is not a 'primary' thread and the booted_once bit is 436 * set then the processor has SMT support. Store this information 437 * for the late check of SMT support in cpu_smt_check_topology(). 438 */ 439 if (per_cpu(cpuhp_state, cpu).booted_once) 440 cpu_smt_available = true; 441 442 if (cpu_smt_control == CPU_SMT_ENABLED) 443 return true; 444 445 /* 446 * On x86 it's required to boot all logical CPUs at least once so 447 * that the init code can get a chance to set CR4.MCE on each 448 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any 449 * core will shutdown the machine. 450 */ 451 return !per_cpu(cpuhp_state, cpu).booted_once; 452 } 453 #else 454 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 455 #endif 456 457 static inline enum cpuhp_state 458 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 459 { 460 enum cpuhp_state prev_state = st->state; 461 462 st->rollback = false; 463 st->last = NULL; 464 465 st->target = target; 466 st->single = false; 467 st->bringup = st->state < target; 468 469 return prev_state; 470 } 471 472 static inline void 473 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 474 { 475 st->rollback = true; 476 477 /* 478 * If we have st->last we need to undo partial multi_instance of this 479 * state first. Otherwise start undo at the previous state. 480 */ 481 if (!st->last) { 482 if (st->bringup) 483 st->state--; 484 else 485 st->state++; 486 } 487 488 st->target = prev_state; 489 st->bringup = !st->bringup; 490 } 491 492 /* Regular hotplug invocation of the AP hotplug thread */ 493 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 494 { 495 if (!st->single && st->state == st->target) 496 return; 497 498 st->result = 0; 499 /* 500 * Make sure the above stores are visible before should_run becomes 501 * true. Paired with the mb() above in cpuhp_thread_fun() 502 */ 503 smp_mb(); 504 st->should_run = true; 505 wake_up_process(st->thread); 506 wait_for_ap_thread(st, st->bringup); 507 } 508 509 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 510 { 511 enum cpuhp_state prev_state; 512 int ret; 513 514 prev_state = cpuhp_set_state(st, target); 515 __cpuhp_kick_ap(st); 516 if ((ret = st->result)) { 517 cpuhp_reset_state(st, prev_state); 518 __cpuhp_kick_ap(st); 519 } 520 521 return ret; 522 } 523 524 static int bringup_wait_for_ap(unsigned int cpu) 525 { 526 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 527 528 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 529 wait_for_ap_thread(st, true); 530 if (WARN_ON_ONCE((!cpu_online(cpu)))) 531 return -ECANCELED; 532 533 /* Unpark the stopper thread and the hotplug thread of the target cpu */ 534 stop_machine_unpark(cpu); 535 kthread_unpark(st->thread); 536 537 /* 538 * SMT soft disabling on X86 requires to bring the CPU out of the 539 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 540 * CPU marked itself as booted_once in cpu_notify_starting() so the 541 * cpu_smt_allowed() check will now return false if this is not the 542 * primary sibling. 543 */ 544 if (!cpu_smt_allowed(cpu)) 545 return -ECANCELED; 546 547 if (st->target <= CPUHP_AP_ONLINE_IDLE) 548 return 0; 549 550 return cpuhp_kick_ap(st, st->target); 551 } 552 553 static int bringup_cpu(unsigned int cpu) 554 { 555 struct task_struct *idle = idle_thread_get(cpu); 556 int ret; 557 558 /* 559 * Some architectures have to walk the irq descriptors to 560 * setup the vector space for the cpu which comes online. 561 * Prevent irq alloc/free across the bringup. 562 */ 563 irq_lock_sparse(); 564 565 /* Arch-specific enabling code. */ 566 ret = __cpu_up(cpu, idle); 567 irq_unlock_sparse(); 568 if (ret) 569 return ret; 570 return bringup_wait_for_ap(cpu); 571 } 572 573 /* 574 * Hotplug state machine related functions 575 */ 576 577 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 578 { 579 for (st->state--; st->state > st->target; st->state--) 580 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 581 } 582 583 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 584 enum cpuhp_state target) 585 { 586 enum cpuhp_state prev_state = st->state; 587 int ret = 0; 588 589 while (st->state < target) { 590 st->state++; 591 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 592 if (ret) { 593 st->target = prev_state; 594 undo_cpu_up(cpu, st); 595 break; 596 } 597 } 598 return ret; 599 } 600 601 /* 602 * The cpu hotplug threads manage the bringup and teardown of the cpus 603 */ 604 static void cpuhp_create(unsigned int cpu) 605 { 606 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 607 608 init_completion(&st->done_up); 609 init_completion(&st->done_down); 610 } 611 612 static int cpuhp_should_run(unsigned int cpu) 613 { 614 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 615 616 return st->should_run; 617 } 618 619 /* 620 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 621 * callbacks when a state gets [un]installed at runtime. 622 * 623 * Each invocation of this function by the smpboot thread does a single AP 624 * state callback. 625 * 626 * It has 3 modes of operation: 627 * - single: runs st->cb_state 628 * - up: runs ++st->state, while st->state < st->target 629 * - down: runs st->state--, while st->state > st->target 630 * 631 * When complete or on error, should_run is cleared and the completion is fired. 632 */ 633 static void cpuhp_thread_fun(unsigned int cpu) 634 { 635 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 636 bool bringup = st->bringup; 637 enum cpuhp_state state; 638 639 if (WARN_ON_ONCE(!st->should_run)) 640 return; 641 642 /* 643 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 644 * that if we see ->should_run we also see the rest of the state. 645 */ 646 smp_mb(); 647 648 /* 649 * The BP holds the hotplug lock, but we're now running on the AP, 650 * ensure that anybody asserting the lock is held, will actually find 651 * it so. 652 */ 653 lockdep_acquire_cpus_lock(); 654 cpuhp_lock_acquire(bringup); 655 656 if (st->single) { 657 state = st->cb_state; 658 st->should_run = false; 659 } else { 660 if (bringup) { 661 st->state++; 662 state = st->state; 663 st->should_run = (st->state < st->target); 664 WARN_ON_ONCE(st->state > st->target); 665 } else { 666 state = st->state; 667 st->state--; 668 st->should_run = (st->state > st->target); 669 WARN_ON_ONCE(st->state < st->target); 670 } 671 } 672 673 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 674 675 if (cpuhp_is_atomic_state(state)) { 676 local_irq_disable(); 677 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 678 local_irq_enable(); 679 680 /* 681 * STARTING/DYING must not fail! 682 */ 683 WARN_ON_ONCE(st->result); 684 } else { 685 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 686 } 687 688 if (st->result) { 689 /* 690 * If we fail on a rollback, we're up a creek without no 691 * paddle, no way forward, no way back. We loose, thanks for 692 * playing. 693 */ 694 WARN_ON_ONCE(st->rollback); 695 st->should_run = false; 696 } 697 698 cpuhp_lock_release(bringup); 699 lockdep_release_cpus_lock(); 700 701 if (!st->should_run) 702 complete_ap_thread(st, bringup); 703 } 704 705 /* Invoke a single callback on a remote cpu */ 706 static int 707 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 708 struct hlist_node *node) 709 { 710 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 711 int ret; 712 713 if (!cpu_online(cpu)) 714 return 0; 715 716 cpuhp_lock_acquire(false); 717 cpuhp_lock_release(false); 718 719 cpuhp_lock_acquire(true); 720 cpuhp_lock_release(true); 721 722 /* 723 * If we are up and running, use the hotplug thread. For early calls 724 * we invoke the thread function directly. 725 */ 726 if (!st->thread) 727 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 728 729 st->rollback = false; 730 st->last = NULL; 731 732 st->node = node; 733 st->bringup = bringup; 734 st->cb_state = state; 735 st->single = true; 736 737 __cpuhp_kick_ap(st); 738 739 /* 740 * If we failed and did a partial, do a rollback. 741 */ 742 if ((ret = st->result) && st->last) { 743 st->rollback = true; 744 st->bringup = !bringup; 745 746 __cpuhp_kick_ap(st); 747 } 748 749 /* 750 * Clean up the leftovers so the next hotplug operation wont use stale 751 * data. 752 */ 753 st->node = st->last = NULL; 754 return ret; 755 } 756 757 static int cpuhp_kick_ap_work(unsigned int cpu) 758 { 759 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 760 enum cpuhp_state prev_state = st->state; 761 int ret; 762 763 cpuhp_lock_acquire(false); 764 cpuhp_lock_release(false); 765 766 cpuhp_lock_acquire(true); 767 cpuhp_lock_release(true); 768 769 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 770 ret = cpuhp_kick_ap(st, st->target); 771 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 772 773 return ret; 774 } 775 776 static struct smp_hotplug_thread cpuhp_threads = { 777 .store = &cpuhp_state.thread, 778 .create = &cpuhp_create, 779 .thread_should_run = cpuhp_should_run, 780 .thread_fn = cpuhp_thread_fun, 781 .thread_comm = "cpuhp/%u", 782 .selfparking = true, 783 }; 784 785 void __init cpuhp_threads_init(void) 786 { 787 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 788 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 789 } 790 791 #ifdef CONFIG_HOTPLUG_CPU 792 /** 793 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 794 * @cpu: a CPU id 795 * 796 * This function walks all processes, finds a valid mm struct for each one and 797 * then clears a corresponding bit in mm's cpumask. While this all sounds 798 * trivial, there are various non-obvious corner cases, which this function 799 * tries to solve in a safe manner. 800 * 801 * Also note that the function uses a somewhat relaxed locking scheme, so it may 802 * be called only for an already offlined CPU. 803 */ 804 void clear_tasks_mm_cpumask(int cpu) 805 { 806 struct task_struct *p; 807 808 /* 809 * This function is called after the cpu is taken down and marked 810 * offline, so its not like new tasks will ever get this cpu set in 811 * their mm mask. -- Peter Zijlstra 812 * Thus, we may use rcu_read_lock() here, instead of grabbing 813 * full-fledged tasklist_lock. 814 */ 815 WARN_ON(cpu_online(cpu)); 816 rcu_read_lock(); 817 for_each_process(p) { 818 struct task_struct *t; 819 820 /* 821 * Main thread might exit, but other threads may still have 822 * a valid mm. Find one. 823 */ 824 t = find_lock_task_mm(p); 825 if (!t) 826 continue; 827 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 828 task_unlock(t); 829 } 830 rcu_read_unlock(); 831 } 832 833 /* Take this CPU down. */ 834 static int take_cpu_down(void *_param) 835 { 836 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 837 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 838 int err, cpu = smp_processor_id(); 839 int ret; 840 841 /* Ensure this CPU doesn't handle any more interrupts. */ 842 err = __cpu_disable(); 843 if (err < 0) 844 return err; 845 846 /* 847 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 848 * do this step again. 849 */ 850 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 851 st->state--; 852 /* Invoke the former CPU_DYING callbacks */ 853 for (; st->state > target; st->state--) { 854 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 855 /* 856 * DYING must not fail! 857 */ 858 WARN_ON_ONCE(ret); 859 } 860 861 /* Give up timekeeping duties */ 862 tick_handover_do_timer(); 863 /* Park the stopper thread */ 864 stop_machine_park(cpu); 865 return 0; 866 } 867 868 static int takedown_cpu(unsigned int cpu) 869 { 870 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 871 int err; 872 873 /* Park the smpboot threads */ 874 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 875 876 /* 877 * Prevent irq alloc/free while the dying cpu reorganizes the 878 * interrupt affinities. 879 */ 880 irq_lock_sparse(); 881 882 /* 883 * So now all preempt/rcu users must observe !cpu_active(). 884 */ 885 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 886 if (err) { 887 /* CPU refused to die */ 888 irq_unlock_sparse(); 889 /* Unpark the hotplug thread so we can rollback there */ 890 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 891 return err; 892 } 893 BUG_ON(cpu_online(cpu)); 894 895 /* 896 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 897 * all runnable tasks from the CPU, there's only the idle task left now 898 * that the migration thread is done doing the stop_machine thing. 899 * 900 * Wait for the stop thread to go away. 901 */ 902 wait_for_ap_thread(st, false); 903 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 904 905 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 906 irq_unlock_sparse(); 907 908 hotplug_cpu__broadcast_tick_pull(cpu); 909 /* This actually kills the CPU. */ 910 __cpu_die(cpu); 911 912 tick_cleanup_dead_cpu(cpu); 913 rcutree_migrate_callbacks(cpu); 914 return 0; 915 } 916 917 static void cpuhp_complete_idle_dead(void *arg) 918 { 919 struct cpuhp_cpu_state *st = arg; 920 921 complete_ap_thread(st, false); 922 } 923 924 void cpuhp_report_idle_dead(void) 925 { 926 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 927 928 BUG_ON(st->state != CPUHP_AP_OFFLINE); 929 rcu_report_dead(smp_processor_id()); 930 st->state = CPUHP_AP_IDLE_DEAD; 931 /* 932 * We cannot call complete after rcu_report_dead() so we delegate it 933 * to an online cpu. 934 */ 935 smp_call_function_single(cpumask_first(cpu_online_mask), 936 cpuhp_complete_idle_dead, st, 0); 937 } 938 939 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 940 { 941 for (st->state++; st->state < st->target; st->state++) 942 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 943 } 944 945 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 946 enum cpuhp_state target) 947 { 948 enum cpuhp_state prev_state = st->state; 949 int ret = 0; 950 951 for (; st->state > target; st->state--) { 952 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 953 if (ret) { 954 st->target = prev_state; 955 if (st->state < prev_state) 956 undo_cpu_down(cpu, st); 957 break; 958 } 959 } 960 return ret; 961 } 962 963 /* Requires cpu_add_remove_lock to be held */ 964 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 965 enum cpuhp_state target) 966 { 967 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 968 int prev_state, ret = 0; 969 970 if (num_online_cpus() == 1) 971 return -EBUSY; 972 973 if (!cpu_present(cpu)) 974 return -EINVAL; 975 976 cpus_write_lock(); 977 978 cpuhp_tasks_frozen = tasks_frozen; 979 980 prev_state = cpuhp_set_state(st, target); 981 /* 982 * If the current CPU state is in the range of the AP hotplug thread, 983 * then we need to kick the thread. 984 */ 985 if (st->state > CPUHP_TEARDOWN_CPU) { 986 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 987 ret = cpuhp_kick_ap_work(cpu); 988 /* 989 * The AP side has done the error rollback already. Just 990 * return the error code.. 991 */ 992 if (ret) 993 goto out; 994 995 /* 996 * We might have stopped still in the range of the AP hotplug 997 * thread. Nothing to do anymore. 998 */ 999 if (st->state > CPUHP_TEARDOWN_CPU) 1000 goto out; 1001 1002 st->target = target; 1003 } 1004 /* 1005 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1006 * to do the further cleanups. 1007 */ 1008 ret = cpuhp_down_callbacks(cpu, st, target); 1009 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) { 1010 cpuhp_reset_state(st, prev_state); 1011 __cpuhp_kick_ap(st); 1012 } 1013 1014 out: 1015 cpus_write_unlock(); 1016 /* 1017 * Do post unplug cleanup. This is still protected against 1018 * concurrent CPU hotplug via cpu_add_remove_lock. 1019 */ 1020 lockup_detector_cleanup(); 1021 arch_smt_update(); 1022 return ret; 1023 } 1024 1025 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1026 { 1027 if (cpu_hotplug_disabled) 1028 return -EBUSY; 1029 return _cpu_down(cpu, 0, target); 1030 } 1031 1032 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 1033 { 1034 int err; 1035 1036 cpu_maps_update_begin(); 1037 err = cpu_down_maps_locked(cpu, target); 1038 cpu_maps_update_done(); 1039 return err; 1040 } 1041 1042 int cpu_down(unsigned int cpu) 1043 { 1044 return do_cpu_down(cpu, CPUHP_OFFLINE); 1045 } 1046 EXPORT_SYMBOL(cpu_down); 1047 1048 #else 1049 #define takedown_cpu NULL 1050 #endif /*CONFIG_HOTPLUG_CPU*/ 1051 1052 /** 1053 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1054 * @cpu: cpu that just started 1055 * 1056 * It must be called by the arch code on the new cpu, before the new cpu 1057 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1058 */ 1059 void notify_cpu_starting(unsigned int cpu) 1060 { 1061 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1062 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1063 int ret; 1064 1065 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1066 st->booted_once = true; 1067 while (st->state < target) { 1068 st->state++; 1069 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1070 /* 1071 * STARTING must not fail! 1072 */ 1073 WARN_ON_ONCE(ret); 1074 } 1075 } 1076 1077 /* 1078 * Called from the idle task. Wake up the controlling task which brings the 1079 * stopper and the hotplug thread of the upcoming CPU up and then delegates 1080 * the rest of the online bringup to the hotplug thread. 1081 */ 1082 void cpuhp_online_idle(enum cpuhp_state state) 1083 { 1084 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1085 1086 /* Happens for the boot cpu */ 1087 if (state != CPUHP_AP_ONLINE_IDLE) 1088 return; 1089 1090 st->state = CPUHP_AP_ONLINE_IDLE; 1091 complete_ap_thread(st, true); 1092 } 1093 1094 /* Requires cpu_add_remove_lock to be held */ 1095 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1096 { 1097 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1098 struct task_struct *idle; 1099 int ret = 0; 1100 1101 cpus_write_lock(); 1102 1103 if (!cpu_present(cpu)) { 1104 ret = -EINVAL; 1105 goto out; 1106 } 1107 1108 /* 1109 * The caller of do_cpu_up might have raced with another 1110 * caller. Ignore it for now. 1111 */ 1112 if (st->state >= target) 1113 goto out; 1114 1115 if (st->state == CPUHP_OFFLINE) { 1116 /* Let it fail before we try to bring the cpu up */ 1117 idle = idle_thread_get(cpu); 1118 if (IS_ERR(idle)) { 1119 ret = PTR_ERR(idle); 1120 goto out; 1121 } 1122 } 1123 1124 cpuhp_tasks_frozen = tasks_frozen; 1125 1126 cpuhp_set_state(st, target); 1127 /* 1128 * If the current CPU state is in the range of the AP hotplug thread, 1129 * then we need to kick the thread once more. 1130 */ 1131 if (st->state > CPUHP_BRINGUP_CPU) { 1132 ret = cpuhp_kick_ap_work(cpu); 1133 /* 1134 * The AP side has done the error rollback already. Just 1135 * return the error code.. 1136 */ 1137 if (ret) 1138 goto out; 1139 } 1140 1141 /* 1142 * Try to reach the target state. We max out on the BP at 1143 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1144 * responsible for bringing it up to the target state. 1145 */ 1146 target = min((int)target, CPUHP_BRINGUP_CPU); 1147 ret = cpuhp_up_callbacks(cpu, st, target); 1148 out: 1149 cpus_write_unlock(); 1150 arch_smt_update(); 1151 return ret; 1152 } 1153 1154 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 1155 { 1156 int err = 0; 1157 1158 if (!cpu_possible(cpu)) { 1159 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1160 cpu); 1161 #if defined(CONFIG_IA64) 1162 pr_err("please check additional_cpus= boot parameter\n"); 1163 #endif 1164 return -EINVAL; 1165 } 1166 1167 err = try_online_node(cpu_to_node(cpu)); 1168 if (err) 1169 return err; 1170 1171 cpu_maps_update_begin(); 1172 1173 if (cpu_hotplug_disabled) { 1174 err = -EBUSY; 1175 goto out; 1176 } 1177 if (!cpu_smt_allowed(cpu)) { 1178 err = -EPERM; 1179 goto out; 1180 } 1181 1182 err = _cpu_up(cpu, 0, target); 1183 out: 1184 cpu_maps_update_done(); 1185 return err; 1186 } 1187 1188 int cpu_up(unsigned int cpu) 1189 { 1190 return do_cpu_up(cpu, CPUHP_ONLINE); 1191 } 1192 EXPORT_SYMBOL_GPL(cpu_up); 1193 1194 #ifdef CONFIG_PM_SLEEP_SMP 1195 static cpumask_var_t frozen_cpus; 1196 1197 int freeze_secondary_cpus(int primary) 1198 { 1199 int cpu, error = 0; 1200 1201 cpu_maps_update_begin(); 1202 if (!cpu_online(primary)) 1203 primary = cpumask_first(cpu_online_mask); 1204 /* 1205 * We take down all of the non-boot CPUs in one shot to avoid races 1206 * with the userspace trying to use the CPU hotplug at the same time 1207 */ 1208 cpumask_clear(frozen_cpus); 1209 1210 pr_info("Disabling non-boot CPUs ...\n"); 1211 for_each_online_cpu(cpu) { 1212 if (cpu == primary) 1213 continue; 1214 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1215 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1216 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1217 if (!error) 1218 cpumask_set_cpu(cpu, frozen_cpus); 1219 else { 1220 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1221 break; 1222 } 1223 } 1224 1225 if (!error) 1226 BUG_ON(num_online_cpus() > 1); 1227 else 1228 pr_err("Non-boot CPUs are not disabled\n"); 1229 1230 /* 1231 * Make sure the CPUs won't be enabled by someone else. We need to do 1232 * this even in case of failure as all disable_nonboot_cpus() users are 1233 * supposed to do enable_nonboot_cpus() on the failure path. 1234 */ 1235 cpu_hotplug_disabled++; 1236 1237 cpu_maps_update_done(); 1238 return error; 1239 } 1240 1241 void __weak arch_enable_nonboot_cpus_begin(void) 1242 { 1243 } 1244 1245 void __weak arch_enable_nonboot_cpus_end(void) 1246 { 1247 } 1248 1249 void enable_nonboot_cpus(void) 1250 { 1251 int cpu, error; 1252 1253 /* Allow everyone to use the CPU hotplug again */ 1254 cpu_maps_update_begin(); 1255 __cpu_hotplug_enable(); 1256 if (cpumask_empty(frozen_cpus)) 1257 goto out; 1258 1259 pr_info("Enabling non-boot CPUs ...\n"); 1260 1261 arch_enable_nonboot_cpus_begin(); 1262 1263 for_each_cpu(cpu, frozen_cpus) { 1264 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1265 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1266 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1267 if (!error) { 1268 pr_info("CPU%d is up\n", cpu); 1269 continue; 1270 } 1271 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1272 } 1273 1274 arch_enable_nonboot_cpus_end(); 1275 1276 cpumask_clear(frozen_cpus); 1277 out: 1278 cpu_maps_update_done(); 1279 } 1280 1281 static int __init alloc_frozen_cpus(void) 1282 { 1283 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1284 return -ENOMEM; 1285 return 0; 1286 } 1287 core_initcall(alloc_frozen_cpus); 1288 1289 /* 1290 * When callbacks for CPU hotplug notifications are being executed, we must 1291 * ensure that the state of the system with respect to the tasks being frozen 1292 * or not, as reported by the notification, remains unchanged *throughout the 1293 * duration* of the execution of the callbacks. 1294 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1295 * 1296 * This synchronization is implemented by mutually excluding regular CPU 1297 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1298 * Hibernate notifications. 1299 */ 1300 static int 1301 cpu_hotplug_pm_callback(struct notifier_block *nb, 1302 unsigned long action, void *ptr) 1303 { 1304 switch (action) { 1305 1306 case PM_SUSPEND_PREPARE: 1307 case PM_HIBERNATION_PREPARE: 1308 cpu_hotplug_disable(); 1309 break; 1310 1311 case PM_POST_SUSPEND: 1312 case PM_POST_HIBERNATION: 1313 cpu_hotplug_enable(); 1314 break; 1315 1316 default: 1317 return NOTIFY_DONE; 1318 } 1319 1320 return NOTIFY_OK; 1321 } 1322 1323 1324 static int __init cpu_hotplug_pm_sync_init(void) 1325 { 1326 /* 1327 * cpu_hotplug_pm_callback has higher priority than x86 1328 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1329 * to disable cpu hotplug to avoid cpu hotplug race. 1330 */ 1331 pm_notifier(cpu_hotplug_pm_callback, 0); 1332 return 0; 1333 } 1334 core_initcall(cpu_hotplug_pm_sync_init); 1335 1336 #endif /* CONFIG_PM_SLEEP_SMP */ 1337 1338 int __boot_cpu_id; 1339 1340 #endif /* CONFIG_SMP */ 1341 1342 /* Boot processor state steps */ 1343 static struct cpuhp_step cpuhp_hp_states[] = { 1344 [CPUHP_OFFLINE] = { 1345 .name = "offline", 1346 .startup.single = NULL, 1347 .teardown.single = NULL, 1348 }, 1349 #ifdef CONFIG_SMP 1350 [CPUHP_CREATE_THREADS]= { 1351 .name = "threads:prepare", 1352 .startup.single = smpboot_create_threads, 1353 .teardown.single = NULL, 1354 .cant_stop = true, 1355 }, 1356 [CPUHP_PERF_PREPARE] = { 1357 .name = "perf:prepare", 1358 .startup.single = perf_event_init_cpu, 1359 .teardown.single = perf_event_exit_cpu, 1360 }, 1361 [CPUHP_WORKQUEUE_PREP] = { 1362 .name = "workqueue:prepare", 1363 .startup.single = workqueue_prepare_cpu, 1364 .teardown.single = NULL, 1365 }, 1366 [CPUHP_HRTIMERS_PREPARE] = { 1367 .name = "hrtimers:prepare", 1368 .startup.single = hrtimers_prepare_cpu, 1369 .teardown.single = hrtimers_dead_cpu, 1370 }, 1371 [CPUHP_SMPCFD_PREPARE] = { 1372 .name = "smpcfd:prepare", 1373 .startup.single = smpcfd_prepare_cpu, 1374 .teardown.single = smpcfd_dead_cpu, 1375 }, 1376 [CPUHP_RELAY_PREPARE] = { 1377 .name = "relay:prepare", 1378 .startup.single = relay_prepare_cpu, 1379 .teardown.single = NULL, 1380 }, 1381 [CPUHP_SLAB_PREPARE] = { 1382 .name = "slab:prepare", 1383 .startup.single = slab_prepare_cpu, 1384 .teardown.single = slab_dead_cpu, 1385 }, 1386 [CPUHP_RCUTREE_PREP] = { 1387 .name = "RCU/tree:prepare", 1388 .startup.single = rcutree_prepare_cpu, 1389 .teardown.single = rcutree_dead_cpu, 1390 }, 1391 /* 1392 * On the tear-down path, timers_dead_cpu() must be invoked 1393 * before blk_mq_queue_reinit_notify() from notify_dead(), 1394 * otherwise a RCU stall occurs. 1395 */ 1396 [CPUHP_TIMERS_PREPARE] = { 1397 .name = "timers:prepare", 1398 .startup.single = timers_prepare_cpu, 1399 .teardown.single = timers_dead_cpu, 1400 }, 1401 /* Kicks the plugged cpu into life */ 1402 [CPUHP_BRINGUP_CPU] = { 1403 .name = "cpu:bringup", 1404 .startup.single = bringup_cpu, 1405 .teardown.single = NULL, 1406 .cant_stop = true, 1407 }, 1408 /* Final state before CPU kills itself */ 1409 [CPUHP_AP_IDLE_DEAD] = { 1410 .name = "idle:dead", 1411 }, 1412 /* 1413 * Last state before CPU enters the idle loop to die. Transient state 1414 * for synchronization. 1415 */ 1416 [CPUHP_AP_OFFLINE] = { 1417 .name = "ap:offline", 1418 .cant_stop = true, 1419 }, 1420 /* First state is scheduler control. Interrupts are disabled */ 1421 [CPUHP_AP_SCHED_STARTING] = { 1422 .name = "sched:starting", 1423 .startup.single = sched_cpu_starting, 1424 .teardown.single = sched_cpu_dying, 1425 }, 1426 [CPUHP_AP_RCUTREE_DYING] = { 1427 .name = "RCU/tree:dying", 1428 .startup.single = NULL, 1429 .teardown.single = rcutree_dying_cpu, 1430 }, 1431 [CPUHP_AP_SMPCFD_DYING] = { 1432 .name = "smpcfd:dying", 1433 .startup.single = NULL, 1434 .teardown.single = smpcfd_dying_cpu, 1435 }, 1436 /* Entry state on starting. Interrupts enabled from here on. Transient 1437 * state for synchronsization */ 1438 [CPUHP_AP_ONLINE] = { 1439 .name = "ap:online", 1440 }, 1441 /* 1442 * Handled on controll processor until the plugged processor manages 1443 * this itself. 1444 */ 1445 [CPUHP_TEARDOWN_CPU] = { 1446 .name = "cpu:teardown", 1447 .startup.single = NULL, 1448 .teardown.single = takedown_cpu, 1449 .cant_stop = true, 1450 }, 1451 /* Handle smpboot threads park/unpark */ 1452 [CPUHP_AP_SMPBOOT_THREADS] = { 1453 .name = "smpboot/threads:online", 1454 .startup.single = smpboot_unpark_threads, 1455 .teardown.single = smpboot_park_threads, 1456 }, 1457 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1458 .name = "irq/affinity:online", 1459 .startup.single = irq_affinity_online_cpu, 1460 .teardown.single = NULL, 1461 }, 1462 [CPUHP_AP_PERF_ONLINE] = { 1463 .name = "perf:online", 1464 .startup.single = perf_event_init_cpu, 1465 .teardown.single = perf_event_exit_cpu, 1466 }, 1467 [CPUHP_AP_WATCHDOG_ONLINE] = { 1468 .name = "lockup_detector:online", 1469 .startup.single = lockup_detector_online_cpu, 1470 .teardown.single = lockup_detector_offline_cpu, 1471 }, 1472 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1473 .name = "workqueue:online", 1474 .startup.single = workqueue_online_cpu, 1475 .teardown.single = workqueue_offline_cpu, 1476 }, 1477 [CPUHP_AP_RCUTREE_ONLINE] = { 1478 .name = "RCU/tree:online", 1479 .startup.single = rcutree_online_cpu, 1480 .teardown.single = rcutree_offline_cpu, 1481 }, 1482 #endif 1483 /* 1484 * The dynamically registered state space is here 1485 */ 1486 1487 #ifdef CONFIG_SMP 1488 /* Last state is scheduler control setting the cpu active */ 1489 [CPUHP_AP_ACTIVE] = { 1490 .name = "sched:active", 1491 .startup.single = sched_cpu_activate, 1492 .teardown.single = sched_cpu_deactivate, 1493 }, 1494 #endif 1495 1496 /* CPU is fully up and running. */ 1497 [CPUHP_ONLINE] = { 1498 .name = "online", 1499 .startup.single = NULL, 1500 .teardown.single = NULL, 1501 }, 1502 }; 1503 1504 /* Sanity check for callbacks */ 1505 static int cpuhp_cb_check(enum cpuhp_state state) 1506 { 1507 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1508 return -EINVAL; 1509 return 0; 1510 } 1511 1512 /* 1513 * Returns a free for dynamic slot assignment of the Online state. The states 1514 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1515 * by having no name assigned. 1516 */ 1517 static int cpuhp_reserve_state(enum cpuhp_state state) 1518 { 1519 enum cpuhp_state i, end; 1520 struct cpuhp_step *step; 1521 1522 switch (state) { 1523 case CPUHP_AP_ONLINE_DYN: 1524 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1525 end = CPUHP_AP_ONLINE_DYN_END; 1526 break; 1527 case CPUHP_BP_PREPARE_DYN: 1528 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1529 end = CPUHP_BP_PREPARE_DYN_END; 1530 break; 1531 default: 1532 return -EINVAL; 1533 } 1534 1535 for (i = state; i <= end; i++, step++) { 1536 if (!step->name) 1537 return i; 1538 } 1539 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1540 return -ENOSPC; 1541 } 1542 1543 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1544 int (*startup)(unsigned int cpu), 1545 int (*teardown)(unsigned int cpu), 1546 bool multi_instance) 1547 { 1548 /* (Un)Install the callbacks for further cpu hotplug operations */ 1549 struct cpuhp_step *sp; 1550 int ret = 0; 1551 1552 /* 1553 * If name is NULL, then the state gets removed. 1554 * 1555 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1556 * the first allocation from these dynamic ranges, so the removal 1557 * would trigger a new allocation and clear the wrong (already 1558 * empty) state, leaving the callbacks of the to be cleared state 1559 * dangling, which causes wreckage on the next hotplug operation. 1560 */ 1561 if (name && (state == CPUHP_AP_ONLINE_DYN || 1562 state == CPUHP_BP_PREPARE_DYN)) { 1563 ret = cpuhp_reserve_state(state); 1564 if (ret < 0) 1565 return ret; 1566 state = ret; 1567 } 1568 sp = cpuhp_get_step(state); 1569 if (name && sp->name) 1570 return -EBUSY; 1571 1572 sp->startup.single = startup; 1573 sp->teardown.single = teardown; 1574 sp->name = name; 1575 sp->multi_instance = multi_instance; 1576 INIT_HLIST_HEAD(&sp->list); 1577 return ret; 1578 } 1579 1580 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1581 { 1582 return cpuhp_get_step(state)->teardown.single; 1583 } 1584 1585 /* 1586 * Call the startup/teardown function for a step either on the AP or 1587 * on the current CPU. 1588 */ 1589 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1590 struct hlist_node *node) 1591 { 1592 struct cpuhp_step *sp = cpuhp_get_step(state); 1593 int ret; 1594 1595 /* 1596 * If there's nothing to do, we done. 1597 * Relies on the union for multi_instance. 1598 */ 1599 if ((bringup && !sp->startup.single) || 1600 (!bringup && !sp->teardown.single)) 1601 return 0; 1602 /* 1603 * The non AP bound callbacks can fail on bringup. On teardown 1604 * e.g. module removal we crash for now. 1605 */ 1606 #ifdef CONFIG_SMP 1607 if (cpuhp_is_ap_state(state)) 1608 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1609 else 1610 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1611 #else 1612 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1613 #endif 1614 BUG_ON(ret && !bringup); 1615 return ret; 1616 } 1617 1618 /* 1619 * Called from __cpuhp_setup_state on a recoverable failure. 1620 * 1621 * Note: The teardown callbacks for rollback are not allowed to fail! 1622 */ 1623 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1624 struct hlist_node *node) 1625 { 1626 int cpu; 1627 1628 /* Roll back the already executed steps on the other cpus */ 1629 for_each_present_cpu(cpu) { 1630 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1631 int cpustate = st->state; 1632 1633 if (cpu >= failedcpu) 1634 break; 1635 1636 /* Did we invoke the startup call on that cpu ? */ 1637 if (cpustate >= state) 1638 cpuhp_issue_call(cpu, state, false, node); 1639 } 1640 } 1641 1642 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1643 struct hlist_node *node, 1644 bool invoke) 1645 { 1646 struct cpuhp_step *sp; 1647 int cpu; 1648 int ret; 1649 1650 lockdep_assert_cpus_held(); 1651 1652 sp = cpuhp_get_step(state); 1653 if (sp->multi_instance == false) 1654 return -EINVAL; 1655 1656 mutex_lock(&cpuhp_state_mutex); 1657 1658 if (!invoke || !sp->startup.multi) 1659 goto add_node; 1660 1661 /* 1662 * Try to call the startup callback for each present cpu 1663 * depending on the hotplug state of the cpu. 1664 */ 1665 for_each_present_cpu(cpu) { 1666 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1667 int cpustate = st->state; 1668 1669 if (cpustate < state) 1670 continue; 1671 1672 ret = cpuhp_issue_call(cpu, state, true, node); 1673 if (ret) { 1674 if (sp->teardown.multi) 1675 cpuhp_rollback_install(cpu, state, node); 1676 goto unlock; 1677 } 1678 } 1679 add_node: 1680 ret = 0; 1681 hlist_add_head(node, &sp->list); 1682 unlock: 1683 mutex_unlock(&cpuhp_state_mutex); 1684 return ret; 1685 } 1686 1687 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1688 bool invoke) 1689 { 1690 int ret; 1691 1692 cpus_read_lock(); 1693 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1694 cpus_read_unlock(); 1695 return ret; 1696 } 1697 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1698 1699 /** 1700 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1701 * @state: The state to setup 1702 * @invoke: If true, the startup function is invoked for cpus where 1703 * cpu state >= @state 1704 * @startup: startup callback function 1705 * @teardown: teardown callback function 1706 * @multi_instance: State is set up for multiple instances which get 1707 * added afterwards. 1708 * 1709 * The caller needs to hold cpus read locked while calling this function. 1710 * Returns: 1711 * On success: 1712 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1713 * 0 for all other states 1714 * On failure: proper (negative) error code 1715 */ 1716 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1717 const char *name, bool invoke, 1718 int (*startup)(unsigned int cpu), 1719 int (*teardown)(unsigned int cpu), 1720 bool multi_instance) 1721 { 1722 int cpu, ret = 0; 1723 bool dynstate; 1724 1725 lockdep_assert_cpus_held(); 1726 1727 if (cpuhp_cb_check(state) || !name) 1728 return -EINVAL; 1729 1730 mutex_lock(&cpuhp_state_mutex); 1731 1732 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1733 multi_instance); 1734 1735 dynstate = state == CPUHP_AP_ONLINE_DYN; 1736 if (ret > 0 && dynstate) { 1737 state = ret; 1738 ret = 0; 1739 } 1740 1741 if (ret || !invoke || !startup) 1742 goto out; 1743 1744 /* 1745 * Try to call the startup callback for each present cpu 1746 * depending on the hotplug state of the cpu. 1747 */ 1748 for_each_present_cpu(cpu) { 1749 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1750 int cpustate = st->state; 1751 1752 if (cpustate < state) 1753 continue; 1754 1755 ret = cpuhp_issue_call(cpu, state, true, NULL); 1756 if (ret) { 1757 if (teardown) 1758 cpuhp_rollback_install(cpu, state, NULL); 1759 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1760 goto out; 1761 } 1762 } 1763 out: 1764 mutex_unlock(&cpuhp_state_mutex); 1765 /* 1766 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1767 * dynamically allocated state in case of success. 1768 */ 1769 if (!ret && dynstate) 1770 return state; 1771 return ret; 1772 } 1773 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1774 1775 int __cpuhp_setup_state(enum cpuhp_state state, 1776 const char *name, bool invoke, 1777 int (*startup)(unsigned int cpu), 1778 int (*teardown)(unsigned int cpu), 1779 bool multi_instance) 1780 { 1781 int ret; 1782 1783 cpus_read_lock(); 1784 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1785 teardown, multi_instance); 1786 cpus_read_unlock(); 1787 return ret; 1788 } 1789 EXPORT_SYMBOL(__cpuhp_setup_state); 1790 1791 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1792 struct hlist_node *node, bool invoke) 1793 { 1794 struct cpuhp_step *sp = cpuhp_get_step(state); 1795 int cpu; 1796 1797 BUG_ON(cpuhp_cb_check(state)); 1798 1799 if (!sp->multi_instance) 1800 return -EINVAL; 1801 1802 cpus_read_lock(); 1803 mutex_lock(&cpuhp_state_mutex); 1804 1805 if (!invoke || !cpuhp_get_teardown_cb(state)) 1806 goto remove; 1807 /* 1808 * Call the teardown callback for each present cpu depending 1809 * on the hotplug state of the cpu. This function is not 1810 * allowed to fail currently! 1811 */ 1812 for_each_present_cpu(cpu) { 1813 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1814 int cpustate = st->state; 1815 1816 if (cpustate >= state) 1817 cpuhp_issue_call(cpu, state, false, node); 1818 } 1819 1820 remove: 1821 hlist_del(node); 1822 mutex_unlock(&cpuhp_state_mutex); 1823 cpus_read_unlock(); 1824 1825 return 0; 1826 } 1827 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 1828 1829 /** 1830 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 1831 * @state: The state to remove 1832 * @invoke: If true, the teardown function is invoked for cpus where 1833 * cpu state >= @state 1834 * 1835 * The caller needs to hold cpus read locked while calling this function. 1836 * The teardown callback is currently not allowed to fail. Think 1837 * about module removal! 1838 */ 1839 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 1840 { 1841 struct cpuhp_step *sp = cpuhp_get_step(state); 1842 int cpu; 1843 1844 BUG_ON(cpuhp_cb_check(state)); 1845 1846 lockdep_assert_cpus_held(); 1847 1848 mutex_lock(&cpuhp_state_mutex); 1849 if (sp->multi_instance) { 1850 WARN(!hlist_empty(&sp->list), 1851 "Error: Removing state %d which has instances left.\n", 1852 state); 1853 goto remove; 1854 } 1855 1856 if (!invoke || !cpuhp_get_teardown_cb(state)) 1857 goto remove; 1858 1859 /* 1860 * Call the teardown callback for each present cpu depending 1861 * on the hotplug state of the cpu. This function is not 1862 * allowed to fail currently! 1863 */ 1864 for_each_present_cpu(cpu) { 1865 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1866 int cpustate = st->state; 1867 1868 if (cpustate >= state) 1869 cpuhp_issue_call(cpu, state, false, NULL); 1870 } 1871 remove: 1872 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1873 mutex_unlock(&cpuhp_state_mutex); 1874 } 1875 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 1876 1877 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 1878 { 1879 cpus_read_lock(); 1880 __cpuhp_remove_state_cpuslocked(state, invoke); 1881 cpus_read_unlock(); 1882 } 1883 EXPORT_SYMBOL(__cpuhp_remove_state); 1884 1885 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 1886 static ssize_t show_cpuhp_state(struct device *dev, 1887 struct device_attribute *attr, char *buf) 1888 { 1889 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1890 1891 return sprintf(buf, "%d\n", st->state); 1892 } 1893 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 1894 1895 static ssize_t write_cpuhp_target(struct device *dev, 1896 struct device_attribute *attr, 1897 const char *buf, size_t count) 1898 { 1899 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1900 struct cpuhp_step *sp; 1901 int target, ret; 1902 1903 ret = kstrtoint(buf, 10, &target); 1904 if (ret) 1905 return ret; 1906 1907 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1908 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 1909 return -EINVAL; 1910 #else 1911 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 1912 return -EINVAL; 1913 #endif 1914 1915 ret = lock_device_hotplug_sysfs(); 1916 if (ret) 1917 return ret; 1918 1919 mutex_lock(&cpuhp_state_mutex); 1920 sp = cpuhp_get_step(target); 1921 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 1922 mutex_unlock(&cpuhp_state_mutex); 1923 if (ret) 1924 goto out; 1925 1926 if (st->state < target) 1927 ret = do_cpu_up(dev->id, target); 1928 else 1929 ret = do_cpu_down(dev->id, target); 1930 out: 1931 unlock_device_hotplug(); 1932 return ret ? ret : count; 1933 } 1934 1935 static ssize_t show_cpuhp_target(struct device *dev, 1936 struct device_attribute *attr, char *buf) 1937 { 1938 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1939 1940 return sprintf(buf, "%d\n", st->target); 1941 } 1942 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 1943 1944 1945 static ssize_t write_cpuhp_fail(struct device *dev, 1946 struct device_attribute *attr, 1947 const char *buf, size_t count) 1948 { 1949 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1950 struct cpuhp_step *sp; 1951 int fail, ret; 1952 1953 ret = kstrtoint(buf, 10, &fail); 1954 if (ret) 1955 return ret; 1956 1957 /* 1958 * Cannot fail STARTING/DYING callbacks. 1959 */ 1960 if (cpuhp_is_atomic_state(fail)) 1961 return -EINVAL; 1962 1963 /* 1964 * Cannot fail anything that doesn't have callbacks. 1965 */ 1966 mutex_lock(&cpuhp_state_mutex); 1967 sp = cpuhp_get_step(fail); 1968 if (!sp->startup.single && !sp->teardown.single) 1969 ret = -EINVAL; 1970 mutex_unlock(&cpuhp_state_mutex); 1971 if (ret) 1972 return ret; 1973 1974 st->fail = fail; 1975 1976 return count; 1977 } 1978 1979 static ssize_t show_cpuhp_fail(struct device *dev, 1980 struct device_attribute *attr, char *buf) 1981 { 1982 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 1983 1984 return sprintf(buf, "%d\n", st->fail); 1985 } 1986 1987 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 1988 1989 static struct attribute *cpuhp_cpu_attrs[] = { 1990 &dev_attr_state.attr, 1991 &dev_attr_target.attr, 1992 &dev_attr_fail.attr, 1993 NULL 1994 }; 1995 1996 static const struct attribute_group cpuhp_cpu_attr_group = { 1997 .attrs = cpuhp_cpu_attrs, 1998 .name = "hotplug", 1999 NULL 2000 }; 2001 2002 static ssize_t show_cpuhp_states(struct device *dev, 2003 struct device_attribute *attr, char *buf) 2004 { 2005 ssize_t cur, res = 0; 2006 int i; 2007 2008 mutex_lock(&cpuhp_state_mutex); 2009 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2010 struct cpuhp_step *sp = cpuhp_get_step(i); 2011 2012 if (sp->name) { 2013 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2014 buf += cur; 2015 res += cur; 2016 } 2017 } 2018 mutex_unlock(&cpuhp_state_mutex); 2019 return res; 2020 } 2021 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2022 2023 static struct attribute *cpuhp_cpu_root_attrs[] = { 2024 &dev_attr_states.attr, 2025 NULL 2026 }; 2027 2028 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2029 .attrs = cpuhp_cpu_root_attrs, 2030 .name = "hotplug", 2031 NULL 2032 }; 2033 2034 #ifdef CONFIG_HOTPLUG_SMT 2035 2036 static const char *smt_states[] = { 2037 [CPU_SMT_ENABLED] = "on", 2038 [CPU_SMT_DISABLED] = "off", 2039 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2040 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2041 }; 2042 2043 static ssize_t 2044 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2045 { 2046 return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]); 2047 } 2048 2049 static void cpuhp_offline_cpu_device(unsigned int cpu) 2050 { 2051 struct device *dev = get_cpu_device(cpu); 2052 2053 dev->offline = true; 2054 /* Tell user space about the state change */ 2055 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2056 } 2057 2058 static void cpuhp_online_cpu_device(unsigned int cpu) 2059 { 2060 struct device *dev = get_cpu_device(cpu); 2061 2062 dev->offline = false; 2063 /* Tell user space about the state change */ 2064 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2065 } 2066 2067 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2068 { 2069 int cpu, ret = 0; 2070 2071 cpu_maps_update_begin(); 2072 for_each_online_cpu(cpu) { 2073 if (topology_is_primary_thread(cpu)) 2074 continue; 2075 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2076 if (ret) 2077 break; 2078 /* 2079 * As this needs to hold the cpu maps lock it's impossible 2080 * to call device_offline() because that ends up calling 2081 * cpu_down() which takes cpu maps lock. cpu maps lock 2082 * needs to be held as this might race against in kernel 2083 * abusers of the hotplug machinery (thermal management). 2084 * 2085 * So nothing would update device:offline state. That would 2086 * leave the sysfs entry stale and prevent onlining after 2087 * smt control has been changed to 'off' again. This is 2088 * called under the sysfs hotplug lock, so it is properly 2089 * serialized against the regular offline usage. 2090 */ 2091 cpuhp_offline_cpu_device(cpu); 2092 } 2093 if (!ret) { 2094 cpu_smt_control = ctrlval; 2095 arch_smt_update(); 2096 } 2097 cpu_maps_update_done(); 2098 return ret; 2099 } 2100 2101 static int cpuhp_smt_enable(void) 2102 { 2103 int cpu, ret = 0; 2104 2105 cpu_maps_update_begin(); 2106 cpu_smt_control = CPU_SMT_ENABLED; 2107 arch_smt_update(); 2108 for_each_present_cpu(cpu) { 2109 /* Skip online CPUs and CPUs on offline nodes */ 2110 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2111 continue; 2112 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2113 if (ret) 2114 break; 2115 /* See comment in cpuhp_smt_disable() */ 2116 cpuhp_online_cpu_device(cpu); 2117 } 2118 cpu_maps_update_done(); 2119 return ret; 2120 } 2121 2122 static ssize_t 2123 store_smt_control(struct device *dev, struct device_attribute *attr, 2124 const char *buf, size_t count) 2125 { 2126 int ctrlval, ret; 2127 2128 if (sysfs_streq(buf, "on")) 2129 ctrlval = CPU_SMT_ENABLED; 2130 else if (sysfs_streq(buf, "off")) 2131 ctrlval = CPU_SMT_DISABLED; 2132 else if (sysfs_streq(buf, "forceoff")) 2133 ctrlval = CPU_SMT_FORCE_DISABLED; 2134 else 2135 return -EINVAL; 2136 2137 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2138 return -EPERM; 2139 2140 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2141 return -ENODEV; 2142 2143 ret = lock_device_hotplug_sysfs(); 2144 if (ret) 2145 return ret; 2146 2147 if (ctrlval != cpu_smt_control) { 2148 switch (ctrlval) { 2149 case CPU_SMT_ENABLED: 2150 ret = cpuhp_smt_enable(); 2151 break; 2152 case CPU_SMT_DISABLED: 2153 case CPU_SMT_FORCE_DISABLED: 2154 ret = cpuhp_smt_disable(ctrlval); 2155 break; 2156 } 2157 } 2158 2159 unlock_device_hotplug(); 2160 return ret ? ret : count; 2161 } 2162 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2163 2164 static ssize_t 2165 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2166 { 2167 bool active = topology_max_smt_threads() > 1; 2168 2169 return snprintf(buf, PAGE_SIZE - 2, "%d\n", active); 2170 } 2171 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2172 2173 static struct attribute *cpuhp_smt_attrs[] = { 2174 &dev_attr_control.attr, 2175 &dev_attr_active.attr, 2176 NULL 2177 }; 2178 2179 static const struct attribute_group cpuhp_smt_attr_group = { 2180 .attrs = cpuhp_smt_attrs, 2181 .name = "smt", 2182 NULL 2183 }; 2184 2185 static int __init cpu_smt_state_init(void) 2186 { 2187 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2188 &cpuhp_smt_attr_group); 2189 } 2190 2191 #else 2192 static inline int cpu_smt_state_init(void) { return 0; } 2193 #endif 2194 2195 static int __init cpuhp_sysfs_init(void) 2196 { 2197 int cpu, ret; 2198 2199 ret = cpu_smt_state_init(); 2200 if (ret) 2201 return ret; 2202 2203 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2204 &cpuhp_cpu_root_attr_group); 2205 if (ret) 2206 return ret; 2207 2208 for_each_possible_cpu(cpu) { 2209 struct device *dev = get_cpu_device(cpu); 2210 2211 if (!dev) 2212 continue; 2213 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2214 if (ret) 2215 return ret; 2216 } 2217 return 0; 2218 } 2219 device_initcall(cpuhp_sysfs_init); 2220 #endif 2221 2222 /* 2223 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2224 * represents all NR_CPUS bits binary values of 1<<nr. 2225 * 2226 * It is used by cpumask_of() to get a constant address to a CPU 2227 * mask value that has a single bit set only. 2228 */ 2229 2230 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2231 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2232 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2233 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2234 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2235 2236 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2237 2238 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2239 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2240 #if BITS_PER_LONG > 32 2241 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2242 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2243 #endif 2244 }; 2245 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2246 2247 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2248 EXPORT_SYMBOL(cpu_all_bits); 2249 2250 #ifdef CONFIG_INIT_ALL_POSSIBLE 2251 struct cpumask __cpu_possible_mask __read_mostly 2252 = {CPU_BITS_ALL}; 2253 #else 2254 struct cpumask __cpu_possible_mask __read_mostly; 2255 #endif 2256 EXPORT_SYMBOL(__cpu_possible_mask); 2257 2258 struct cpumask __cpu_online_mask __read_mostly; 2259 EXPORT_SYMBOL(__cpu_online_mask); 2260 2261 struct cpumask __cpu_present_mask __read_mostly; 2262 EXPORT_SYMBOL(__cpu_present_mask); 2263 2264 struct cpumask __cpu_active_mask __read_mostly; 2265 EXPORT_SYMBOL(__cpu_active_mask); 2266 2267 void init_cpu_present(const struct cpumask *src) 2268 { 2269 cpumask_copy(&__cpu_present_mask, src); 2270 } 2271 2272 void init_cpu_possible(const struct cpumask *src) 2273 { 2274 cpumask_copy(&__cpu_possible_mask, src); 2275 } 2276 2277 void init_cpu_online(const struct cpumask *src) 2278 { 2279 cpumask_copy(&__cpu_online_mask, src); 2280 } 2281 2282 /* 2283 * Activate the first processor. 2284 */ 2285 void __init boot_cpu_init(void) 2286 { 2287 int cpu = smp_processor_id(); 2288 2289 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2290 set_cpu_online(cpu, true); 2291 set_cpu_active(cpu, true); 2292 set_cpu_present(cpu, true); 2293 set_cpu_possible(cpu, true); 2294 2295 #ifdef CONFIG_SMP 2296 __boot_cpu_id = cpu; 2297 #endif 2298 } 2299 2300 /* 2301 * Must be called _AFTER_ setting up the per_cpu areas 2302 */ 2303 void __init boot_cpu_hotplug_init(void) 2304 { 2305 #ifdef CONFIG_SMP 2306 this_cpu_write(cpuhp_state.booted_once, true); 2307 #endif 2308 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2309 } 2310