1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched.h> 11 #include <linux/unistd.h> 12 #include <linux/cpu.h> 13 #include <linux/oom.h> 14 #include <linux/rcupdate.h> 15 #include <linux/export.h> 16 #include <linux/bug.h> 17 #include <linux/kthread.h> 18 #include <linux/stop_machine.h> 19 #include <linux/mutex.h> 20 #include <linux/gfp.h> 21 #include <linux/suspend.h> 22 23 #include "smpboot.h" 24 25 #ifdef CONFIG_SMP 26 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 27 static DEFINE_MUTEX(cpu_add_remove_lock); 28 29 /* 30 * The following two API's must be used when attempting 31 * to serialize the updates to cpu_online_mask, cpu_present_mask. 32 */ 33 void cpu_maps_update_begin(void) 34 { 35 mutex_lock(&cpu_add_remove_lock); 36 } 37 38 void cpu_maps_update_done(void) 39 { 40 mutex_unlock(&cpu_add_remove_lock); 41 } 42 43 static RAW_NOTIFIER_HEAD(cpu_chain); 44 45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. 46 * Should always be manipulated under cpu_add_remove_lock 47 */ 48 static int cpu_hotplug_disabled; 49 50 #ifdef CONFIG_HOTPLUG_CPU 51 52 static struct { 53 struct task_struct *active_writer; 54 struct mutex lock; /* Synchronizes accesses to refcount, */ 55 /* 56 * Also blocks the new readers during 57 * an ongoing cpu hotplug operation. 58 */ 59 int refcount; 60 } cpu_hotplug = { 61 .active_writer = NULL, 62 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock), 63 .refcount = 0, 64 }; 65 66 void get_online_cpus(void) 67 { 68 might_sleep(); 69 if (cpu_hotplug.active_writer == current) 70 return; 71 mutex_lock(&cpu_hotplug.lock); 72 cpu_hotplug.refcount++; 73 mutex_unlock(&cpu_hotplug.lock); 74 75 } 76 EXPORT_SYMBOL_GPL(get_online_cpus); 77 78 void put_online_cpus(void) 79 { 80 if (cpu_hotplug.active_writer == current) 81 return; 82 mutex_lock(&cpu_hotplug.lock); 83 84 if (WARN_ON(!cpu_hotplug.refcount)) 85 cpu_hotplug.refcount++; /* try to fix things up */ 86 87 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer)) 88 wake_up_process(cpu_hotplug.active_writer); 89 mutex_unlock(&cpu_hotplug.lock); 90 91 } 92 EXPORT_SYMBOL_GPL(put_online_cpus); 93 94 /* 95 * This ensures that the hotplug operation can begin only when the 96 * refcount goes to zero. 97 * 98 * Note that during a cpu-hotplug operation, the new readers, if any, 99 * will be blocked by the cpu_hotplug.lock 100 * 101 * Since cpu_hotplug_begin() is always called after invoking 102 * cpu_maps_update_begin(), we can be sure that only one writer is active. 103 * 104 * Note that theoretically, there is a possibility of a livelock: 105 * - Refcount goes to zero, last reader wakes up the sleeping 106 * writer. 107 * - Last reader unlocks the cpu_hotplug.lock. 108 * - A new reader arrives at this moment, bumps up the refcount. 109 * - The writer acquires the cpu_hotplug.lock finds the refcount 110 * non zero and goes to sleep again. 111 * 112 * However, this is very difficult to achieve in practice since 113 * get_online_cpus() not an api which is called all that often. 114 * 115 */ 116 static void cpu_hotplug_begin(void) 117 { 118 cpu_hotplug.active_writer = current; 119 120 for (;;) { 121 mutex_lock(&cpu_hotplug.lock); 122 if (likely(!cpu_hotplug.refcount)) 123 break; 124 __set_current_state(TASK_UNINTERRUPTIBLE); 125 mutex_unlock(&cpu_hotplug.lock); 126 schedule(); 127 } 128 } 129 130 static void cpu_hotplug_done(void) 131 { 132 cpu_hotplug.active_writer = NULL; 133 mutex_unlock(&cpu_hotplug.lock); 134 } 135 136 #else /* #if CONFIG_HOTPLUG_CPU */ 137 static void cpu_hotplug_begin(void) {} 138 static void cpu_hotplug_done(void) {} 139 #endif /* #else #if CONFIG_HOTPLUG_CPU */ 140 141 /* Need to know about CPUs going up/down? */ 142 int __ref register_cpu_notifier(struct notifier_block *nb) 143 { 144 int ret; 145 cpu_maps_update_begin(); 146 ret = raw_notifier_chain_register(&cpu_chain, nb); 147 cpu_maps_update_done(); 148 return ret; 149 } 150 151 static int __cpu_notify(unsigned long val, void *v, int nr_to_call, 152 int *nr_calls) 153 { 154 int ret; 155 156 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call, 157 nr_calls); 158 159 return notifier_to_errno(ret); 160 } 161 162 static int cpu_notify(unsigned long val, void *v) 163 { 164 return __cpu_notify(val, v, -1, NULL); 165 } 166 167 #ifdef CONFIG_HOTPLUG_CPU 168 169 static void cpu_notify_nofail(unsigned long val, void *v) 170 { 171 BUG_ON(cpu_notify(val, v)); 172 } 173 EXPORT_SYMBOL(register_cpu_notifier); 174 175 void __ref unregister_cpu_notifier(struct notifier_block *nb) 176 { 177 cpu_maps_update_begin(); 178 raw_notifier_chain_unregister(&cpu_chain, nb); 179 cpu_maps_update_done(); 180 } 181 EXPORT_SYMBOL(unregister_cpu_notifier); 182 183 /** 184 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 185 * @cpu: a CPU id 186 * 187 * This function walks all processes, finds a valid mm struct for each one and 188 * then clears a corresponding bit in mm's cpumask. While this all sounds 189 * trivial, there are various non-obvious corner cases, which this function 190 * tries to solve in a safe manner. 191 * 192 * Also note that the function uses a somewhat relaxed locking scheme, so it may 193 * be called only for an already offlined CPU. 194 */ 195 void clear_tasks_mm_cpumask(int cpu) 196 { 197 struct task_struct *p; 198 199 /* 200 * This function is called after the cpu is taken down and marked 201 * offline, so its not like new tasks will ever get this cpu set in 202 * their mm mask. -- Peter Zijlstra 203 * Thus, we may use rcu_read_lock() here, instead of grabbing 204 * full-fledged tasklist_lock. 205 */ 206 WARN_ON(cpu_online(cpu)); 207 rcu_read_lock(); 208 for_each_process(p) { 209 struct task_struct *t; 210 211 /* 212 * Main thread might exit, but other threads may still have 213 * a valid mm. Find one. 214 */ 215 t = find_lock_task_mm(p); 216 if (!t) 217 continue; 218 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 219 task_unlock(t); 220 } 221 rcu_read_unlock(); 222 } 223 224 static inline void check_for_tasks(int cpu) 225 { 226 struct task_struct *p; 227 cputime_t utime, stime; 228 229 write_lock_irq(&tasklist_lock); 230 for_each_process(p) { 231 task_cputime(p, &utime, &stime); 232 if (task_cpu(p) == cpu && p->state == TASK_RUNNING && 233 (utime || stime)) 234 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d " 235 "(state = %ld, flags = %x)\n", 236 p->comm, task_pid_nr(p), cpu, 237 p->state, p->flags); 238 } 239 write_unlock_irq(&tasklist_lock); 240 } 241 242 struct take_cpu_down_param { 243 unsigned long mod; 244 void *hcpu; 245 }; 246 247 /* Take this CPU down. */ 248 static int __ref take_cpu_down(void *_param) 249 { 250 struct take_cpu_down_param *param = _param; 251 int err; 252 253 /* Ensure this CPU doesn't handle any more interrupts. */ 254 err = __cpu_disable(); 255 if (err < 0) 256 return err; 257 258 cpu_notify(CPU_DYING | param->mod, param->hcpu); 259 /* Park the stopper thread */ 260 kthread_park(current); 261 return 0; 262 } 263 264 /* Requires cpu_add_remove_lock to be held */ 265 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) 266 { 267 int err, nr_calls = 0; 268 void *hcpu = (void *)(long)cpu; 269 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 270 struct take_cpu_down_param tcd_param = { 271 .mod = mod, 272 .hcpu = hcpu, 273 }; 274 275 if (num_online_cpus() == 1) 276 return -EBUSY; 277 278 if (!cpu_online(cpu)) 279 return -EINVAL; 280 281 cpu_hotplug_begin(); 282 283 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls); 284 if (err) { 285 nr_calls--; 286 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL); 287 printk("%s: attempt to take down CPU %u failed\n", 288 __func__, cpu); 289 goto out_release; 290 } 291 smpboot_park_threads(cpu); 292 293 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); 294 if (err) { 295 /* CPU didn't die: tell everyone. Can't complain. */ 296 smpboot_unpark_threads(cpu); 297 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu); 298 goto out_release; 299 } 300 BUG_ON(cpu_online(cpu)); 301 302 /* 303 * The migration_call() CPU_DYING callback will have removed all 304 * runnable tasks from the cpu, there's only the idle task left now 305 * that the migration thread is done doing the stop_machine thing. 306 * 307 * Wait for the stop thread to go away. 308 */ 309 while (!idle_cpu(cpu)) 310 cpu_relax(); 311 312 /* This actually kills the CPU. */ 313 __cpu_die(cpu); 314 315 /* CPU is completely dead: tell everyone. Too late to complain. */ 316 cpu_notify_nofail(CPU_DEAD | mod, hcpu); 317 318 check_for_tasks(cpu); 319 320 out_release: 321 cpu_hotplug_done(); 322 if (!err) 323 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu); 324 return err; 325 } 326 327 int __ref cpu_down(unsigned int cpu) 328 { 329 int err; 330 331 cpu_maps_update_begin(); 332 333 if (cpu_hotplug_disabled) { 334 err = -EBUSY; 335 goto out; 336 } 337 338 err = _cpu_down(cpu, 0); 339 340 out: 341 cpu_maps_update_done(); 342 return err; 343 } 344 EXPORT_SYMBOL(cpu_down); 345 #endif /*CONFIG_HOTPLUG_CPU*/ 346 347 /* Requires cpu_add_remove_lock to be held */ 348 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen) 349 { 350 int ret, nr_calls = 0; 351 void *hcpu = (void *)(long)cpu; 352 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 353 struct task_struct *idle; 354 355 cpu_hotplug_begin(); 356 357 if (cpu_online(cpu) || !cpu_present(cpu)) { 358 ret = -EINVAL; 359 goto out; 360 } 361 362 idle = idle_thread_get(cpu); 363 if (IS_ERR(idle)) { 364 ret = PTR_ERR(idle); 365 goto out; 366 } 367 368 ret = smpboot_create_threads(cpu); 369 if (ret) 370 goto out; 371 372 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls); 373 if (ret) { 374 nr_calls--; 375 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n", 376 __func__, cpu); 377 goto out_notify; 378 } 379 380 /* Arch-specific enabling code. */ 381 ret = __cpu_up(cpu, idle); 382 if (ret != 0) 383 goto out_notify; 384 BUG_ON(!cpu_online(cpu)); 385 386 /* Wake the per cpu threads */ 387 smpboot_unpark_threads(cpu); 388 389 /* Now call notifier in preparation. */ 390 cpu_notify(CPU_ONLINE | mod, hcpu); 391 392 out_notify: 393 if (ret != 0) 394 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL); 395 out: 396 cpu_hotplug_done(); 397 398 return ret; 399 } 400 401 int __cpuinit cpu_up(unsigned int cpu) 402 { 403 int err = 0; 404 405 #ifdef CONFIG_MEMORY_HOTPLUG 406 int nid; 407 pg_data_t *pgdat; 408 #endif 409 410 if (!cpu_possible(cpu)) { 411 printk(KERN_ERR "can't online cpu %d because it is not " 412 "configured as may-hotadd at boot time\n", cpu); 413 #if defined(CONFIG_IA64) 414 printk(KERN_ERR "please check additional_cpus= boot " 415 "parameter\n"); 416 #endif 417 return -EINVAL; 418 } 419 420 #ifdef CONFIG_MEMORY_HOTPLUG 421 nid = cpu_to_node(cpu); 422 if (!node_online(nid)) { 423 err = mem_online_node(nid); 424 if (err) 425 return err; 426 } 427 428 pgdat = NODE_DATA(nid); 429 if (!pgdat) { 430 printk(KERN_ERR 431 "Can't online cpu %d due to NULL pgdat\n", cpu); 432 return -ENOMEM; 433 } 434 435 if (pgdat->node_zonelists->_zonerefs->zone == NULL) { 436 mutex_lock(&zonelists_mutex); 437 build_all_zonelists(NULL, NULL); 438 mutex_unlock(&zonelists_mutex); 439 } 440 #endif 441 442 cpu_maps_update_begin(); 443 444 if (cpu_hotplug_disabled) { 445 err = -EBUSY; 446 goto out; 447 } 448 449 err = _cpu_up(cpu, 0); 450 451 out: 452 cpu_maps_update_done(); 453 return err; 454 } 455 EXPORT_SYMBOL_GPL(cpu_up); 456 457 #ifdef CONFIG_PM_SLEEP_SMP 458 static cpumask_var_t frozen_cpus; 459 460 int disable_nonboot_cpus(void) 461 { 462 int cpu, first_cpu, error = 0; 463 464 cpu_maps_update_begin(); 465 first_cpu = cpumask_first(cpu_online_mask); 466 /* 467 * We take down all of the non-boot CPUs in one shot to avoid races 468 * with the userspace trying to use the CPU hotplug at the same time 469 */ 470 cpumask_clear(frozen_cpus); 471 472 printk("Disabling non-boot CPUs ...\n"); 473 for_each_online_cpu(cpu) { 474 if (cpu == first_cpu) 475 continue; 476 error = _cpu_down(cpu, 1); 477 if (!error) 478 cpumask_set_cpu(cpu, frozen_cpus); 479 else { 480 printk(KERN_ERR "Error taking CPU%d down: %d\n", 481 cpu, error); 482 break; 483 } 484 } 485 486 if (!error) { 487 BUG_ON(num_online_cpus() > 1); 488 /* Make sure the CPUs won't be enabled by someone else */ 489 cpu_hotplug_disabled = 1; 490 } else { 491 printk(KERN_ERR "Non-boot CPUs are not disabled\n"); 492 } 493 cpu_maps_update_done(); 494 return error; 495 } 496 497 void __weak arch_enable_nonboot_cpus_begin(void) 498 { 499 } 500 501 void __weak arch_enable_nonboot_cpus_end(void) 502 { 503 } 504 505 void __ref enable_nonboot_cpus(void) 506 { 507 int cpu, error; 508 509 /* Allow everyone to use the CPU hotplug again */ 510 cpu_maps_update_begin(); 511 cpu_hotplug_disabled = 0; 512 if (cpumask_empty(frozen_cpus)) 513 goto out; 514 515 printk(KERN_INFO "Enabling non-boot CPUs ...\n"); 516 517 arch_enable_nonboot_cpus_begin(); 518 519 for_each_cpu(cpu, frozen_cpus) { 520 error = _cpu_up(cpu, 1); 521 if (!error) { 522 printk(KERN_INFO "CPU%d is up\n", cpu); 523 continue; 524 } 525 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); 526 } 527 528 arch_enable_nonboot_cpus_end(); 529 530 cpumask_clear(frozen_cpus); 531 out: 532 cpu_maps_update_done(); 533 } 534 535 static int __init alloc_frozen_cpus(void) 536 { 537 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 538 return -ENOMEM; 539 return 0; 540 } 541 core_initcall(alloc_frozen_cpus); 542 543 /* 544 * Prevent regular CPU hotplug from racing with the freezer, by disabling CPU 545 * hotplug when tasks are about to be frozen. Also, don't allow the freezer 546 * to continue until any currently running CPU hotplug operation gets 547 * completed. 548 * To modify the 'cpu_hotplug_disabled' flag, we need to acquire the 549 * 'cpu_add_remove_lock'. And this same lock is also taken by the regular 550 * CPU hotplug path and released only after it is complete. Thus, we 551 * (and hence the freezer) will block here until any currently running CPU 552 * hotplug operation gets completed. 553 */ 554 void cpu_hotplug_disable_before_freeze(void) 555 { 556 cpu_maps_update_begin(); 557 cpu_hotplug_disabled = 1; 558 cpu_maps_update_done(); 559 } 560 561 562 /* 563 * When tasks have been thawed, re-enable regular CPU hotplug (which had been 564 * disabled while beginning to freeze tasks). 565 */ 566 void cpu_hotplug_enable_after_thaw(void) 567 { 568 cpu_maps_update_begin(); 569 cpu_hotplug_disabled = 0; 570 cpu_maps_update_done(); 571 } 572 573 /* 574 * When callbacks for CPU hotplug notifications are being executed, we must 575 * ensure that the state of the system with respect to the tasks being frozen 576 * or not, as reported by the notification, remains unchanged *throughout the 577 * duration* of the execution of the callbacks. 578 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 579 * 580 * This synchronization is implemented by mutually excluding regular CPU 581 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 582 * Hibernate notifications. 583 */ 584 static int 585 cpu_hotplug_pm_callback(struct notifier_block *nb, 586 unsigned long action, void *ptr) 587 { 588 switch (action) { 589 590 case PM_SUSPEND_PREPARE: 591 case PM_HIBERNATION_PREPARE: 592 cpu_hotplug_disable_before_freeze(); 593 break; 594 595 case PM_POST_SUSPEND: 596 case PM_POST_HIBERNATION: 597 cpu_hotplug_enable_after_thaw(); 598 break; 599 600 default: 601 return NOTIFY_DONE; 602 } 603 604 return NOTIFY_OK; 605 } 606 607 608 static int __init cpu_hotplug_pm_sync_init(void) 609 { 610 /* 611 * cpu_hotplug_pm_callback has higher priority than x86 612 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 613 * to disable cpu hotplug to avoid cpu hotplug race. 614 */ 615 pm_notifier(cpu_hotplug_pm_callback, 0); 616 return 0; 617 } 618 core_initcall(cpu_hotplug_pm_sync_init); 619 620 #endif /* CONFIG_PM_SLEEP_SMP */ 621 622 /** 623 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers 624 * @cpu: cpu that just started 625 * 626 * This function calls the cpu_chain notifiers with CPU_STARTING. 627 * It must be called by the arch code on the new cpu, before the new cpu 628 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 629 */ 630 void __cpuinit notify_cpu_starting(unsigned int cpu) 631 { 632 unsigned long val = CPU_STARTING; 633 634 #ifdef CONFIG_PM_SLEEP_SMP 635 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus)) 636 val = CPU_STARTING_FROZEN; 637 #endif /* CONFIG_PM_SLEEP_SMP */ 638 cpu_notify(val, (void *)(long)cpu); 639 } 640 641 #endif /* CONFIG_SMP */ 642 643 /* 644 * cpu_bit_bitmap[] is a special, "compressed" data structure that 645 * represents all NR_CPUS bits binary values of 1<<nr. 646 * 647 * It is used by cpumask_of() to get a constant address to a CPU 648 * mask value that has a single bit set only. 649 */ 650 651 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 652 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 653 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 654 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 655 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 656 657 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 658 659 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 660 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 661 #if BITS_PER_LONG > 32 662 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 663 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 664 #endif 665 }; 666 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 667 668 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 669 EXPORT_SYMBOL(cpu_all_bits); 670 671 #ifdef CONFIG_INIT_ALL_POSSIBLE 672 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly 673 = CPU_BITS_ALL; 674 #else 675 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly; 676 #endif 677 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits); 678 EXPORT_SYMBOL(cpu_possible_mask); 679 680 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly; 681 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits); 682 EXPORT_SYMBOL(cpu_online_mask); 683 684 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly; 685 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits); 686 EXPORT_SYMBOL(cpu_present_mask); 687 688 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly; 689 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits); 690 EXPORT_SYMBOL(cpu_active_mask); 691 692 void set_cpu_possible(unsigned int cpu, bool possible) 693 { 694 if (possible) 695 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits)); 696 else 697 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits)); 698 } 699 700 void set_cpu_present(unsigned int cpu, bool present) 701 { 702 if (present) 703 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits)); 704 else 705 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits)); 706 } 707 708 void set_cpu_online(unsigned int cpu, bool online) 709 { 710 if (online) 711 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits)); 712 else 713 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits)); 714 } 715 716 void set_cpu_active(unsigned int cpu, bool active) 717 { 718 if (active) 719 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits)); 720 else 721 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits)); 722 } 723 724 void init_cpu_present(const struct cpumask *src) 725 { 726 cpumask_copy(to_cpumask(cpu_present_bits), src); 727 } 728 729 void init_cpu_possible(const struct cpumask *src) 730 { 731 cpumask_copy(to_cpumask(cpu_possible_bits), src); 732 } 733 734 void init_cpu_online(const struct cpumask *src) 735 { 736 cpumask_copy(to_cpumask(cpu_online_bits), src); 737 } 738