xref: /openbmc/linux/kernel/cpu.c (revision e6dec923)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30 #include <linux/percpu-rwsem.h>
31 
32 #include <trace/events/power.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/cpuhp.h>
35 
36 #include "smpboot.h"
37 
38 /**
39  * cpuhp_cpu_state - Per cpu hotplug state storage
40  * @state:	The current cpu state
41  * @target:	The target state
42  * @thread:	Pointer to the hotplug thread
43  * @should_run:	Thread should execute
44  * @rollback:	Perform a rollback
45  * @single:	Single callback invocation
46  * @bringup:	Single callback bringup or teardown selector
47  * @cb_state:	The state for a single callback (install/uninstall)
48  * @result:	Result of the operation
49  * @done:	Signal completion to the issuer of the task
50  */
51 struct cpuhp_cpu_state {
52 	enum cpuhp_state	state;
53 	enum cpuhp_state	target;
54 #ifdef CONFIG_SMP
55 	struct task_struct	*thread;
56 	bool			should_run;
57 	bool			rollback;
58 	bool			single;
59 	bool			bringup;
60 	struct hlist_node	*node;
61 	enum cpuhp_state	cb_state;
62 	int			result;
63 	struct completion	done;
64 #endif
65 };
66 
67 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
68 
69 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
70 static struct lock_class_key cpuhp_state_key;
71 static struct lockdep_map cpuhp_state_lock_map =
72 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key);
73 #endif
74 
75 /**
76  * cpuhp_step - Hotplug state machine step
77  * @name:	Name of the step
78  * @startup:	Startup function of the step
79  * @teardown:	Teardown function of the step
80  * @skip_onerr:	Do not invoke the functions on error rollback
81  *		Will go away once the notifiers	are gone
82  * @cant_stop:	Bringup/teardown can't be stopped at this step
83  */
84 struct cpuhp_step {
85 	const char		*name;
86 	union {
87 		int		(*single)(unsigned int cpu);
88 		int		(*multi)(unsigned int cpu,
89 					 struct hlist_node *node);
90 	} startup;
91 	union {
92 		int		(*single)(unsigned int cpu);
93 		int		(*multi)(unsigned int cpu,
94 					 struct hlist_node *node);
95 	} teardown;
96 	struct hlist_head	list;
97 	bool			skip_onerr;
98 	bool			cant_stop;
99 	bool			multi_instance;
100 };
101 
102 static DEFINE_MUTEX(cpuhp_state_mutex);
103 static struct cpuhp_step cpuhp_bp_states[];
104 static struct cpuhp_step cpuhp_ap_states[];
105 
106 static bool cpuhp_is_ap_state(enum cpuhp_state state)
107 {
108 	/*
109 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
110 	 * purposes as that state is handled explicitly in cpu_down.
111 	 */
112 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
113 }
114 
115 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
116 {
117 	struct cpuhp_step *sp;
118 
119 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
120 	return sp + state;
121 }
122 
123 /**
124  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
125  * @cpu:	The cpu for which the callback should be invoked
126  * @step:	The step in the state machine
127  * @bringup:	True if the bringup callback should be invoked
128  *
129  * Called from cpu hotplug and from the state register machinery.
130  */
131 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
132 				 bool bringup, struct hlist_node *node)
133 {
134 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
135 	struct cpuhp_step *step = cpuhp_get_step(state);
136 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
137 	int (*cb)(unsigned int cpu);
138 	int ret, cnt;
139 
140 	if (!step->multi_instance) {
141 		cb = bringup ? step->startup.single : step->teardown.single;
142 		if (!cb)
143 			return 0;
144 		trace_cpuhp_enter(cpu, st->target, state, cb);
145 		ret = cb(cpu);
146 		trace_cpuhp_exit(cpu, st->state, state, ret);
147 		return ret;
148 	}
149 	cbm = bringup ? step->startup.multi : step->teardown.multi;
150 	if (!cbm)
151 		return 0;
152 
153 	/* Single invocation for instance add/remove */
154 	if (node) {
155 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 		ret = cbm(cpu, node);
157 		trace_cpuhp_exit(cpu, st->state, state, ret);
158 		return ret;
159 	}
160 
161 	/* State transition. Invoke on all instances */
162 	cnt = 0;
163 	hlist_for_each(node, &step->list) {
164 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
165 		ret = cbm(cpu, node);
166 		trace_cpuhp_exit(cpu, st->state, state, ret);
167 		if (ret)
168 			goto err;
169 		cnt++;
170 	}
171 	return 0;
172 err:
173 	/* Rollback the instances if one failed */
174 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
175 	if (!cbm)
176 		return ret;
177 
178 	hlist_for_each(node, &step->list) {
179 		if (!cnt--)
180 			break;
181 		cbm(cpu, node);
182 	}
183 	return ret;
184 }
185 
186 #ifdef CONFIG_SMP
187 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
188 static DEFINE_MUTEX(cpu_add_remove_lock);
189 bool cpuhp_tasks_frozen;
190 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
191 
192 /*
193  * The following two APIs (cpu_maps_update_begin/done) must be used when
194  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
195  */
196 void cpu_maps_update_begin(void)
197 {
198 	mutex_lock(&cpu_add_remove_lock);
199 }
200 
201 void cpu_maps_update_done(void)
202 {
203 	mutex_unlock(&cpu_add_remove_lock);
204 }
205 
206 /*
207  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
208  * Should always be manipulated under cpu_add_remove_lock
209  */
210 static int cpu_hotplug_disabled;
211 
212 #ifdef CONFIG_HOTPLUG_CPU
213 
214 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
215 
216 void cpus_read_lock(void)
217 {
218 	percpu_down_read(&cpu_hotplug_lock);
219 }
220 EXPORT_SYMBOL_GPL(cpus_read_lock);
221 
222 void cpus_read_unlock(void)
223 {
224 	percpu_up_read(&cpu_hotplug_lock);
225 }
226 EXPORT_SYMBOL_GPL(cpus_read_unlock);
227 
228 void cpus_write_lock(void)
229 {
230 	percpu_down_write(&cpu_hotplug_lock);
231 }
232 
233 void cpus_write_unlock(void)
234 {
235 	percpu_up_write(&cpu_hotplug_lock);
236 }
237 
238 void lockdep_assert_cpus_held(void)
239 {
240 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
241 }
242 
243 /*
244  * Wait for currently running CPU hotplug operations to complete (if any) and
245  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
246  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
247  * hotplug path before performing hotplug operations. So acquiring that lock
248  * guarantees mutual exclusion from any currently running hotplug operations.
249  */
250 void cpu_hotplug_disable(void)
251 {
252 	cpu_maps_update_begin();
253 	cpu_hotplug_disabled++;
254 	cpu_maps_update_done();
255 }
256 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
257 
258 static void __cpu_hotplug_enable(void)
259 {
260 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
261 		return;
262 	cpu_hotplug_disabled--;
263 }
264 
265 void cpu_hotplug_enable(void)
266 {
267 	cpu_maps_update_begin();
268 	__cpu_hotplug_enable();
269 	cpu_maps_update_done();
270 }
271 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
272 #endif	/* CONFIG_HOTPLUG_CPU */
273 
274 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st);
275 
276 static int bringup_wait_for_ap(unsigned int cpu)
277 {
278 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
279 
280 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
281 	wait_for_completion(&st->done);
282 	if (WARN_ON_ONCE((!cpu_online(cpu))))
283 		return -ECANCELED;
284 
285 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
286 	stop_machine_unpark(cpu);
287 	kthread_unpark(st->thread);
288 
289 	/* Should we go further up ? */
290 	if (st->target > CPUHP_AP_ONLINE_IDLE) {
291 		__cpuhp_kick_ap_work(st);
292 		wait_for_completion(&st->done);
293 	}
294 	return st->result;
295 }
296 
297 static int bringup_cpu(unsigned int cpu)
298 {
299 	struct task_struct *idle = idle_thread_get(cpu);
300 	int ret;
301 
302 	/*
303 	 * Some architectures have to walk the irq descriptors to
304 	 * setup the vector space for the cpu which comes online.
305 	 * Prevent irq alloc/free across the bringup.
306 	 */
307 	irq_lock_sparse();
308 
309 	/* Arch-specific enabling code. */
310 	ret = __cpu_up(cpu, idle);
311 	irq_unlock_sparse();
312 	if (ret)
313 		return ret;
314 	return bringup_wait_for_ap(cpu);
315 }
316 
317 /*
318  * Hotplug state machine related functions
319  */
320 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
321 {
322 	for (st->state++; st->state < st->target; st->state++) {
323 		struct cpuhp_step *step = cpuhp_get_step(st->state);
324 
325 		if (!step->skip_onerr)
326 			cpuhp_invoke_callback(cpu, st->state, true, NULL);
327 	}
328 }
329 
330 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
331 				enum cpuhp_state target)
332 {
333 	enum cpuhp_state prev_state = st->state;
334 	int ret = 0;
335 
336 	for (; st->state > target; st->state--) {
337 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
338 		if (ret) {
339 			st->target = prev_state;
340 			undo_cpu_down(cpu, st);
341 			break;
342 		}
343 	}
344 	return ret;
345 }
346 
347 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
348 {
349 	for (st->state--; st->state > st->target; st->state--) {
350 		struct cpuhp_step *step = cpuhp_get_step(st->state);
351 
352 		if (!step->skip_onerr)
353 			cpuhp_invoke_callback(cpu, st->state, false, NULL);
354 	}
355 }
356 
357 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
358 			      enum cpuhp_state target)
359 {
360 	enum cpuhp_state prev_state = st->state;
361 	int ret = 0;
362 
363 	while (st->state < target) {
364 		st->state++;
365 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
366 		if (ret) {
367 			st->target = prev_state;
368 			undo_cpu_up(cpu, st);
369 			break;
370 		}
371 	}
372 	return ret;
373 }
374 
375 /*
376  * The cpu hotplug threads manage the bringup and teardown of the cpus
377  */
378 static void cpuhp_create(unsigned int cpu)
379 {
380 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
381 
382 	init_completion(&st->done);
383 }
384 
385 static int cpuhp_should_run(unsigned int cpu)
386 {
387 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
388 
389 	return st->should_run;
390 }
391 
392 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
393 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
394 {
395 	enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
396 
397 	return cpuhp_down_callbacks(cpu, st, target);
398 }
399 
400 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
401 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
402 {
403 	return cpuhp_up_callbacks(cpu, st, st->target);
404 }
405 
406 /*
407  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
408  * callbacks when a state gets [un]installed at runtime.
409  */
410 static void cpuhp_thread_fun(unsigned int cpu)
411 {
412 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
413 	int ret = 0;
414 
415 	/*
416 	 * Paired with the mb() in cpuhp_kick_ap_work and
417 	 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
418 	 */
419 	smp_mb();
420 	if (!st->should_run)
421 		return;
422 
423 	st->should_run = false;
424 
425 	lock_map_acquire(&cpuhp_state_lock_map);
426 	/* Single callback invocation for [un]install ? */
427 	if (st->single) {
428 		if (st->cb_state < CPUHP_AP_ONLINE) {
429 			local_irq_disable();
430 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
431 						    st->bringup, st->node);
432 			local_irq_enable();
433 		} else {
434 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
435 						    st->bringup, st->node);
436 		}
437 	} else if (st->rollback) {
438 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
439 
440 		undo_cpu_down(cpu, st);
441 		st->rollback = false;
442 	} else {
443 		/* Cannot happen .... */
444 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
445 
446 		/* Regular hotplug work */
447 		if (st->state < st->target)
448 			ret = cpuhp_ap_online(cpu, st);
449 		else if (st->state > st->target)
450 			ret = cpuhp_ap_offline(cpu, st);
451 	}
452 	lock_map_release(&cpuhp_state_lock_map);
453 	st->result = ret;
454 	complete(&st->done);
455 }
456 
457 /* Invoke a single callback on a remote cpu */
458 static int
459 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
460 			 struct hlist_node *node)
461 {
462 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
463 
464 	if (!cpu_online(cpu))
465 		return 0;
466 
467 	lock_map_acquire(&cpuhp_state_lock_map);
468 	lock_map_release(&cpuhp_state_lock_map);
469 
470 	/*
471 	 * If we are up and running, use the hotplug thread. For early calls
472 	 * we invoke the thread function directly.
473 	 */
474 	if (!st->thread)
475 		return cpuhp_invoke_callback(cpu, state, bringup, node);
476 
477 	st->cb_state = state;
478 	st->single = true;
479 	st->bringup = bringup;
480 	st->node = node;
481 
482 	/*
483 	 * Make sure the above stores are visible before should_run becomes
484 	 * true. Paired with the mb() above in cpuhp_thread_fun()
485 	 */
486 	smp_mb();
487 	st->should_run = true;
488 	wake_up_process(st->thread);
489 	wait_for_completion(&st->done);
490 	return st->result;
491 }
492 
493 /* Regular hotplug invocation of the AP hotplug thread */
494 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
495 {
496 	st->result = 0;
497 	st->single = false;
498 	/*
499 	 * Make sure the above stores are visible before should_run becomes
500 	 * true. Paired with the mb() above in cpuhp_thread_fun()
501 	 */
502 	smp_mb();
503 	st->should_run = true;
504 	wake_up_process(st->thread);
505 }
506 
507 static int cpuhp_kick_ap_work(unsigned int cpu)
508 {
509 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
510 	enum cpuhp_state state = st->state;
511 
512 	trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
513 	lock_map_acquire(&cpuhp_state_lock_map);
514 	lock_map_release(&cpuhp_state_lock_map);
515 	__cpuhp_kick_ap_work(st);
516 	wait_for_completion(&st->done);
517 	trace_cpuhp_exit(cpu, st->state, state, st->result);
518 	return st->result;
519 }
520 
521 static struct smp_hotplug_thread cpuhp_threads = {
522 	.store			= &cpuhp_state.thread,
523 	.create			= &cpuhp_create,
524 	.thread_should_run	= cpuhp_should_run,
525 	.thread_fn		= cpuhp_thread_fun,
526 	.thread_comm		= "cpuhp/%u",
527 	.selfparking		= true,
528 };
529 
530 void __init cpuhp_threads_init(void)
531 {
532 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
533 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
534 }
535 
536 #ifdef CONFIG_HOTPLUG_CPU
537 /**
538  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
539  * @cpu: a CPU id
540  *
541  * This function walks all processes, finds a valid mm struct for each one and
542  * then clears a corresponding bit in mm's cpumask.  While this all sounds
543  * trivial, there are various non-obvious corner cases, which this function
544  * tries to solve in a safe manner.
545  *
546  * Also note that the function uses a somewhat relaxed locking scheme, so it may
547  * be called only for an already offlined CPU.
548  */
549 void clear_tasks_mm_cpumask(int cpu)
550 {
551 	struct task_struct *p;
552 
553 	/*
554 	 * This function is called after the cpu is taken down and marked
555 	 * offline, so its not like new tasks will ever get this cpu set in
556 	 * their mm mask. -- Peter Zijlstra
557 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
558 	 * full-fledged tasklist_lock.
559 	 */
560 	WARN_ON(cpu_online(cpu));
561 	rcu_read_lock();
562 	for_each_process(p) {
563 		struct task_struct *t;
564 
565 		/*
566 		 * Main thread might exit, but other threads may still have
567 		 * a valid mm. Find one.
568 		 */
569 		t = find_lock_task_mm(p);
570 		if (!t)
571 			continue;
572 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
573 		task_unlock(t);
574 	}
575 	rcu_read_unlock();
576 }
577 
578 /* Take this CPU down. */
579 static int take_cpu_down(void *_param)
580 {
581 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
582 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
583 	int err, cpu = smp_processor_id();
584 
585 	/* Ensure this CPU doesn't handle any more interrupts. */
586 	err = __cpu_disable();
587 	if (err < 0)
588 		return err;
589 
590 	/*
591 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
592 	 * do this step again.
593 	 */
594 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
595 	st->state--;
596 	/* Invoke the former CPU_DYING callbacks */
597 	for (; st->state > target; st->state--)
598 		cpuhp_invoke_callback(cpu, st->state, false, NULL);
599 
600 	/* Give up timekeeping duties */
601 	tick_handover_do_timer();
602 	/* Park the stopper thread */
603 	stop_machine_park(cpu);
604 	return 0;
605 }
606 
607 static int takedown_cpu(unsigned int cpu)
608 {
609 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
610 	int err;
611 
612 	/* Park the smpboot threads */
613 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
614 	smpboot_park_threads(cpu);
615 
616 	/*
617 	 * Prevent irq alloc/free while the dying cpu reorganizes the
618 	 * interrupt affinities.
619 	 */
620 	irq_lock_sparse();
621 
622 	/*
623 	 * So now all preempt/rcu users must observe !cpu_active().
624 	 */
625 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
626 	if (err) {
627 		/* CPU refused to die */
628 		irq_unlock_sparse();
629 		/* Unpark the hotplug thread so we can rollback there */
630 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
631 		return err;
632 	}
633 	BUG_ON(cpu_online(cpu));
634 
635 	/*
636 	 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
637 	 * runnable tasks from the cpu, there's only the idle task left now
638 	 * that the migration thread is done doing the stop_machine thing.
639 	 *
640 	 * Wait for the stop thread to go away.
641 	 */
642 	wait_for_completion(&st->done);
643 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
644 
645 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
646 	irq_unlock_sparse();
647 
648 	hotplug_cpu__broadcast_tick_pull(cpu);
649 	/* This actually kills the CPU. */
650 	__cpu_die(cpu);
651 
652 	tick_cleanup_dead_cpu(cpu);
653 	return 0;
654 }
655 
656 static void cpuhp_complete_idle_dead(void *arg)
657 {
658 	struct cpuhp_cpu_state *st = arg;
659 
660 	complete(&st->done);
661 }
662 
663 void cpuhp_report_idle_dead(void)
664 {
665 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
666 
667 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
668 	rcu_report_dead(smp_processor_id());
669 	st->state = CPUHP_AP_IDLE_DEAD;
670 	/*
671 	 * We cannot call complete after rcu_report_dead() so we delegate it
672 	 * to an online cpu.
673 	 */
674 	smp_call_function_single(cpumask_first(cpu_online_mask),
675 				 cpuhp_complete_idle_dead, st, 0);
676 }
677 
678 #else
679 #define takedown_cpu		NULL
680 #endif
681 
682 #ifdef CONFIG_HOTPLUG_CPU
683 
684 /* Requires cpu_add_remove_lock to be held */
685 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
686 			   enum cpuhp_state target)
687 {
688 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
689 	int prev_state, ret = 0;
690 
691 	if (num_online_cpus() == 1)
692 		return -EBUSY;
693 
694 	if (!cpu_present(cpu))
695 		return -EINVAL;
696 
697 	cpus_write_lock();
698 
699 	cpuhp_tasks_frozen = tasks_frozen;
700 
701 	prev_state = st->state;
702 	st->target = target;
703 	/*
704 	 * If the current CPU state is in the range of the AP hotplug thread,
705 	 * then we need to kick the thread.
706 	 */
707 	if (st->state > CPUHP_TEARDOWN_CPU) {
708 		ret = cpuhp_kick_ap_work(cpu);
709 		/*
710 		 * The AP side has done the error rollback already. Just
711 		 * return the error code..
712 		 */
713 		if (ret)
714 			goto out;
715 
716 		/*
717 		 * We might have stopped still in the range of the AP hotplug
718 		 * thread. Nothing to do anymore.
719 		 */
720 		if (st->state > CPUHP_TEARDOWN_CPU)
721 			goto out;
722 	}
723 	/*
724 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
725 	 * to do the further cleanups.
726 	 */
727 	ret = cpuhp_down_callbacks(cpu, st, target);
728 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
729 		st->target = prev_state;
730 		st->rollback = true;
731 		cpuhp_kick_ap_work(cpu);
732 	}
733 
734 out:
735 	cpus_write_unlock();
736 	return ret;
737 }
738 
739 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
740 {
741 	int err;
742 
743 	cpu_maps_update_begin();
744 
745 	if (cpu_hotplug_disabled) {
746 		err = -EBUSY;
747 		goto out;
748 	}
749 
750 	err = _cpu_down(cpu, 0, target);
751 
752 out:
753 	cpu_maps_update_done();
754 	return err;
755 }
756 int cpu_down(unsigned int cpu)
757 {
758 	return do_cpu_down(cpu, CPUHP_OFFLINE);
759 }
760 EXPORT_SYMBOL(cpu_down);
761 #endif /*CONFIG_HOTPLUG_CPU*/
762 
763 /**
764  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
765  * @cpu: cpu that just started
766  *
767  * It must be called by the arch code on the new cpu, before the new cpu
768  * enables interrupts and before the "boot" cpu returns from __cpu_up().
769  */
770 void notify_cpu_starting(unsigned int cpu)
771 {
772 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
773 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
774 
775 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
776 	while (st->state < target) {
777 		st->state++;
778 		cpuhp_invoke_callback(cpu, st->state, true, NULL);
779 	}
780 }
781 
782 /*
783  * Called from the idle task. Wake up the controlling task which brings the
784  * stopper and the hotplug thread of the upcoming CPU up and then delegates
785  * the rest of the online bringup to the hotplug thread.
786  */
787 void cpuhp_online_idle(enum cpuhp_state state)
788 {
789 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
790 
791 	/* Happens for the boot cpu */
792 	if (state != CPUHP_AP_ONLINE_IDLE)
793 		return;
794 
795 	st->state = CPUHP_AP_ONLINE_IDLE;
796 	complete(&st->done);
797 }
798 
799 /* Requires cpu_add_remove_lock to be held */
800 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
801 {
802 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
803 	struct task_struct *idle;
804 	int ret = 0;
805 
806 	cpus_write_lock();
807 
808 	if (!cpu_present(cpu)) {
809 		ret = -EINVAL;
810 		goto out;
811 	}
812 
813 	/*
814 	 * The caller of do_cpu_up might have raced with another
815 	 * caller. Ignore it for now.
816 	 */
817 	if (st->state >= target)
818 		goto out;
819 
820 	if (st->state == CPUHP_OFFLINE) {
821 		/* Let it fail before we try to bring the cpu up */
822 		idle = idle_thread_get(cpu);
823 		if (IS_ERR(idle)) {
824 			ret = PTR_ERR(idle);
825 			goto out;
826 		}
827 	}
828 
829 	cpuhp_tasks_frozen = tasks_frozen;
830 
831 	st->target = target;
832 	/*
833 	 * If the current CPU state is in the range of the AP hotplug thread,
834 	 * then we need to kick the thread once more.
835 	 */
836 	if (st->state > CPUHP_BRINGUP_CPU) {
837 		ret = cpuhp_kick_ap_work(cpu);
838 		/*
839 		 * The AP side has done the error rollback already. Just
840 		 * return the error code..
841 		 */
842 		if (ret)
843 			goto out;
844 	}
845 
846 	/*
847 	 * Try to reach the target state. We max out on the BP at
848 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
849 	 * responsible for bringing it up to the target state.
850 	 */
851 	target = min((int)target, CPUHP_BRINGUP_CPU);
852 	ret = cpuhp_up_callbacks(cpu, st, target);
853 out:
854 	cpus_write_unlock();
855 	return ret;
856 }
857 
858 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
859 {
860 	int err = 0;
861 
862 	if (!cpu_possible(cpu)) {
863 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
864 		       cpu);
865 #if defined(CONFIG_IA64)
866 		pr_err("please check additional_cpus= boot parameter\n");
867 #endif
868 		return -EINVAL;
869 	}
870 
871 	err = try_online_node(cpu_to_node(cpu));
872 	if (err)
873 		return err;
874 
875 	cpu_maps_update_begin();
876 
877 	if (cpu_hotplug_disabled) {
878 		err = -EBUSY;
879 		goto out;
880 	}
881 
882 	err = _cpu_up(cpu, 0, target);
883 out:
884 	cpu_maps_update_done();
885 	return err;
886 }
887 
888 int cpu_up(unsigned int cpu)
889 {
890 	return do_cpu_up(cpu, CPUHP_ONLINE);
891 }
892 EXPORT_SYMBOL_GPL(cpu_up);
893 
894 #ifdef CONFIG_PM_SLEEP_SMP
895 static cpumask_var_t frozen_cpus;
896 
897 int freeze_secondary_cpus(int primary)
898 {
899 	int cpu, error = 0;
900 
901 	cpu_maps_update_begin();
902 	if (!cpu_online(primary))
903 		primary = cpumask_first(cpu_online_mask);
904 	/*
905 	 * We take down all of the non-boot CPUs in one shot to avoid races
906 	 * with the userspace trying to use the CPU hotplug at the same time
907 	 */
908 	cpumask_clear(frozen_cpus);
909 
910 	pr_info("Disabling non-boot CPUs ...\n");
911 	for_each_online_cpu(cpu) {
912 		if (cpu == primary)
913 			continue;
914 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
915 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
916 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
917 		if (!error)
918 			cpumask_set_cpu(cpu, frozen_cpus);
919 		else {
920 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
921 			break;
922 		}
923 	}
924 
925 	if (!error)
926 		BUG_ON(num_online_cpus() > 1);
927 	else
928 		pr_err("Non-boot CPUs are not disabled\n");
929 
930 	/*
931 	 * Make sure the CPUs won't be enabled by someone else. We need to do
932 	 * this even in case of failure as all disable_nonboot_cpus() users are
933 	 * supposed to do enable_nonboot_cpus() on the failure path.
934 	 */
935 	cpu_hotplug_disabled++;
936 
937 	cpu_maps_update_done();
938 	return error;
939 }
940 
941 void __weak arch_enable_nonboot_cpus_begin(void)
942 {
943 }
944 
945 void __weak arch_enable_nonboot_cpus_end(void)
946 {
947 }
948 
949 void enable_nonboot_cpus(void)
950 {
951 	int cpu, error;
952 
953 	/* Allow everyone to use the CPU hotplug again */
954 	cpu_maps_update_begin();
955 	__cpu_hotplug_enable();
956 	if (cpumask_empty(frozen_cpus))
957 		goto out;
958 
959 	pr_info("Enabling non-boot CPUs ...\n");
960 
961 	arch_enable_nonboot_cpus_begin();
962 
963 	for_each_cpu(cpu, frozen_cpus) {
964 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
965 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
966 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
967 		if (!error) {
968 			pr_info("CPU%d is up\n", cpu);
969 			continue;
970 		}
971 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
972 	}
973 
974 	arch_enable_nonboot_cpus_end();
975 
976 	cpumask_clear(frozen_cpus);
977 out:
978 	cpu_maps_update_done();
979 }
980 
981 static int __init alloc_frozen_cpus(void)
982 {
983 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
984 		return -ENOMEM;
985 	return 0;
986 }
987 core_initcall(alloc_frozen_cpus);
988 
989 /*
990  * When callbacks for CPU hotplug notifications are being executed, we must
991  * ensure that the state of the system with respect to the tasks being frozen
992  * or not, as reported by the notification, remains unchanged *throughout the
993  * duration* of the execution of the callbacks.
994  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
995  *
996  * This synchronization is implemented by mutually excluding regular CPU
997  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
998  * Hibernate notifications.
999  */
1000 static int
1001 cpu_hotplug_pm_callback(struct notifier_block *nb,
1002 			unsigned long action, void *ptr)
1003 {
1004 	switch (action) {
1005 
1006 	case PM_SUSPEND_PREPARE:
1007 	case PM_HIBERNATION_PREPARE:
1008 		cpu_hotplug_disable();
1009 		break;
1010 
1011 	case PM_POST_SUSPEND:
1012 	case PM_POST_HIBERNATION:
1013 		cpu_hotplug_enable();
1014 		break;
1015 
1016 	default:
1017 		return NOTIFY_DONE;
1018 	}
1019 
1020 	return NOTIFY_OK;
1021 }
1022 
1023 
1024 static int __init cpu_hotplug_pm_sync_init(void)
1025 {
1026 	/*
1027 	 * cpu_hotplug_pm_callback has higher priority than x86
1028 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1029 	 * to disable cpu hotplug to avoid cpu hotplug race.
1030 	 */
1031 	pm_notifier(cpu_hotplug_pm_callback, 0);
1032 	return 0;
1033 }
1034 core_initcall(cpu_hotplug_pm_sync_init);
1035 
1036 #endif /* CONFIG_PM_SLEEP_SMP */
1037 
1038 int __boot_cpu_id;
1039 
1040 #endif /* CONFIG_SMP */
1041 
1042 /* Boot processor state steps */
1043 static struct cpuhp_step cpuhp_bp_states[] = {
1044 	[CPUHP_OFFLINE] = {
1045 		.name			= "offline",
1046 		.startup.single		= NULL,
1047 		.teardown.single	= NULL,
1048 	},
1049 #ifdef CONFIG_SMP
1050 	[CPUHP_CREATE_THREADS]= {
1051 		.name			= "threads:prepare",
1052 		.startup.single		= smpboot_create_threads,
1053 		.teardown.single	= NULL,
1054 		.cant_stop		= true,
1055 	},
1056 	[CPUHP_PERF_PREPARE] = {
1057 		.name			= "perf:prepare",
1058 		.startup.single		= perf_event_init_cpu,
1059 		.teardown.single	= perf_event_exit_cpu,
1060 	},
1061 	[CPUHP_WORKQUEUE_PREP] = {
1062 		.name			= "workqueue:prepare",
1063 		.startup.single		= workqueue_prepare_cpu,
1064 		.teardown.single	= NULL,
1065 	},
1066 	[CPUHP_HRTIMERS_PREPARE] = {
1067 		.name			= "hrtimers:prepare",
1068 		.startup.single		= hrtimers_prepare_cpu,
1069 		.teardown.single	= hrtimers_dead_cpu,
1070 	},
1071 	[CPUHP_SMPCFD_PREPARE] = {
1072 		.name			= "smpcfd:prepare",
1073 		.startup.single		= smpcfd_prepare_cpu,
1074 		.teardown.single	= smpcfd_dead_cpu,
1075 	},
1076 	[CPUHP_RELAY_PREPARE] = {
1077 		.name			= "relay:prepare",
1078 		.startup.single		= relay_prepare_cpu,
1079 		.teardown.single	= NULL,
1080 	},
1081 	[CPUHP_SLAB_PREPARE] = {
1082 		.name			= "slab:prepare",
1083 		.startup.single		= slab_prepare_cpu,
1084 		.teardown.single	= slab_dead_cpu,
1085 	},
1086 	[CPUHP_RCUTREE_PREP] = {
1087 		.name			= "RCU/tree:prepare",
1088 		.startup.single		= rcutree_prepare_cpu,
1089 		.teardown.single	= rcutree_dead_cpu,
1090 	},
1091 	/*
1092 	 * On the tear-down path, timers_dead_cpu() must be invoked
1093 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1094 	 * otherwise a RCU stall occurs.
1095 	 */
1096 	[CPUHP_TIMERS_DEAD] = {
1097 		.name			= "timers:dead",
1098 		.startup.single		= NULL,
1099 		.teardown.single	= timers_dead_cpu,
1100 	},
1101 	/* Kicks the plugged cpu into life */
1102 	[CPUHP_BRINGUP_CPU] = {
1103 		.name			= "cpu:bringup",
1104 		.startup.single		= bringup_cpu,
1105 		.teardown.single	= NULL,
1106 		.cant_stop		= true,
1107 	},
1108 	[CPUHP_AP_SMPCFD_DYING] = {
1109 		.name			= "smpcfd:dying",
1110 		.startup.single		= NULL,
1111 		.teardown.single	= smpcfd_dying_cpu,
1112 	},
1113 	/*
1114 	 * Handled on controll processor until the plugged processor manages
1115 	 * this itself.
1116 	 */
1117 	[CPUHP_TEARDOWN_CPU] = {
1118 		.name			= "cpu:teardown",
1119 		.startup.single		= NULL,
1120 		.teardown.single	= takedown_cpu,
1121 		.cant_stop		= true,
1122 	},
1123 #else
1124 	[CPUHP_BRINGUP_CPU] = { },
1125 #endif
1126 };
1127 
1128 /* Application processor state steps */
1129 static struct cpuhp_step cpuhp_ap_states[] = {
1130 #ifdef CONFIG_SMP
1131 	/* Final state before CPU kills itself */
1132 	[CPUHP_AP_IDLE_DEAD] = {
1133 		.name			= "idle:dead",
1134 	},
1135 	/*
1136 	 * Last state before CPU enters the idle loop to die. Transient state
1137 	 * for synchronization.
1138 	 */
1139 	[CPUHP_AP_OFFLINE] = {
1140 		.name			= "ap:offline",
1141 		.cant_stop		= true,
1142 	},
1143 	/* First state is scheduler control. Interrupts are disabled */
1144 	[CPUHP_AP_SCHED_STARTING] = {
1145 		.name			= "sched:starting",
1146 		.startup.single		= sched_cpu_starting,
1147 		.teardown.single	= sched_cpu_dying,
1148 	},
1149 	[CPUHP_AP_RCUTREE_DYING] = {
1150 		.name			= "RCU/tree:dying",
1151 		.startup.single		= NULL,
1152 		.teardown.single	= rcutree_dying_cpu,
1153 	},
1154 	/* Entry state on starting. Interrupts enabled from here on. Transient
1155 	 * state for synchronsization */
1156 	[CPUHP_AP_ONLINE] = {
1157 		.name			= "ap:online",
1158 	},
1159 	/* Handle smpboot threads park/unpark */
1160 	[CPUHP_AP_SMPBOOT_THREADS] = {
1161 		.name			= "smpboot/threads:online",
1162 		.startup.single		= smpboot_unpark_threads,
1163 		.teardown.single	= NULL,
1164 	},
1165 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1166 		.name			= "irq/affinity:online",
1167 		.startup.single		= irq_affinity_online_cpu,
1168 		.teardown.single	= NULL,
1169 	},
1170 	[CPUHP_AP_PERF_ONLINE] = {
1171 		.name			= "perf:online",
1172 		.startup.single		= perf_event_init_cpu,
1173 		.teardown.single	= perf_event_exit_cpu,
1174 	},
1175 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1176 		.name			= "workqueue:online",
1177 		.startup.single		= workqueue_online_cpu,
1178 		.teardown.single	= workqueue_offline_cpu,
1179 	},
1180 	[CPUHP_AP_RCUTREE_ONLINE] = {
1181 		.name			= "RCU/tree:online",
1182 		.startup.single		= rcutree_online_cpu,
1183 		.teardown.single	= rcutree_offline_cpu,
1184 	},
1185 #endif
1186 	/*
1187 	 * The dynamically registered state space is here
1188 	 */
1189 
1190 #ifdef CONFIG_SMP
1191 	/* Last state is scheduler control setting the cpu active */
1192 	[CPUHP_AP_ACTIVE] = {
1193 		.name			= "sched:active",
1194 		.startup.single		= sched_cpu_activate,
1195 		.teardown.single	= sched_cpu_deactivate,
1196 	},
1197 #endif
1198 
1199 	/* CPU is fully up and running. */
1200 	[CPUHP_ONLINE] = {
1201 		.name			= "online",
1202 		.startup.single		= NULL,
1203 		.teardown.single	= NULL,
1204 	},
1205 };
1206 
1207 /* Sanity check for callbacks */
1208 static int cpuhp_cb_check(enum cpuhp_state state)
1209 {
1210 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1211 		return -EINVAL;
1212 	return 0;
1213 }
1214 
1215 /*
1216  * Returns a free for dynamic slot assignment of the Online state. The states
1217  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1218  * by having no name assigned.
1219  */
1220 static int cpuhp_reserve_state(enum cpuhp_state state)
1221 {
1222 	enum cpuhp_state i, end;
1223 	struct cpuhp_step *step;
1224 
1225 	switch (state) {
1226 	case CPUHP_AP_ONLINE_DYN:
1227 		step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1228 		end = CPUHP_AP_ONLINE_DYN_END;
1229 		break;
1230 	case CPUHP_BP_PREPARE_DYN:
1231 		step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1232 		end = CPUHP_BP_PREPARE_DYN_END;
1233 		break;
1234 	default:
1235 		return -EINVAL;
1236 	}
1237 
1238 	for (i = state; i <= end; i++, step++) {
1239 		if (!step->name)
1240 			return i;
1241 	}
1242 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1243 	return -ENOSPC;
1244 }
1245 
1246 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1247 				 int (*startup)(unsigned int cpu),
1248 				 int (*teardown)(unsigned int cpu),
1249 				 bool multi_instance)
1250 {
1251 	/* (Un)Install the callbacks for further cpu hotplug operations */
1252 	struct cpuhp_step *sp;
1253 	int ret = 0;
1254 
1255 	if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1256 		ret = cpuhp_reserve_state(state);
1257 		if (ret < 0)
1258 			return ret;
1259 		state = ret;
1260 	}
1261 	sp = cpuhp_get_step(state);
1262 	if (name && sp->name)
1263 		return -EBUSY;
1264 
1265 	sp->startup.single = startup;
1266 	sp->teardown.single = teardown;
1267 	sp->name = name;
1268 	sp->multi_instance = multi_instance;
1269 	INIT_HLIST_HEAD(&sp->list);
1270 	return ret;
1271 }
1272 
1273 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1274 {
1275 	return cpuhp_get_step(state)->teardown.single;
1276 }
1277 
1278 /*
1279  * Call the startup/teardown function for a step either on the AP or
1280  * on the current CPU.
1281  */
1282 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1283 			    struct hlist_node *node)
1284 {
1285 	struct cpuhp_step *sp = cpuhp_get_step(state);
1286 	int ret;
1287 
1288 	if ((bringup && !sp->startup.single) ||
1289 	    (!bringup && !sp->teardown.single))
1290 		return 0;
1291 	/*
1292 	 * The non AP bound callbacks can fail on bringup. On teardown
1293 	 * e.g. module removal we crash for now.
1294 	 */
1295 #ifdef CONFIG_SMP
1296 	if (cpuhp_is_ap_state(state))
1297 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1298 	else
1299 		ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1300 #else
1301 	ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1302 #endif
1303 	BUG_ON(ret && !bringup);
1304 	return ret;
1305 }
1306 
1307 /*
1308  * Called from __cpuhp_setup_state on a recoverable failure.
1309  *
1310  * Note: The teardown callbacks for rollback are not allowed to fail!
1311  */
1312 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1313 				   struct hlist_node *node)
1314 {
1315 	int cpu;
1316 
1317 	/* Roll back the already executed steps on the other cpus */
1318 	for_each_present_cpu(cpu) {
1319 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1320 		int cpustate = st->state;
1321 
1322 		if (cpu >= failedcpu)
1323 			break;
1324 
1325 		/* Did we invoke the startup call on that cpu ? */
1326 		if (cpustate >= state)
1327 			cpuhp_issue_call(cpu, state, false, node);
1328 	}
1329 }
1330 
1331 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1332 					  struct hlist_node *node,
1333 					  bool invoke)
1334 {
1335 	struct cpuhp_step *sp;
1336 	int cpu;
1337 	int ret;
1338 
1339 	lockdep_assert_cpus_held();
1340 
1341 	sp = cpuhp_get_step(state);
1342 	if (sp->multi_instance == false)
1343 		return -EINVAL;
1344 
1345 	mutex_lock(&cpuhp_state_mutex);
1346 
1347 	if (!invoke || !sp->startup.multi)
1348 		goto add_node;
1349 
1350 	/*
1351 	 * Try to call the startup callback for each present cpu
1352 	 * depending on the hotplug state of the cpu.
1353 	 */
1354 	for_each_present_cpu(cpu) {
1355 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1356 		int cpustate = st->state;
1357 
1358 		if (cpustate < state)
1359 			continue;
1360 
1361 		ret = cpuhp_issue_call(cpu, state, true, node);
1362 		if (ret) {
1363 			if (sp->teardown.multi)
1364 				cpuhp_rollback_install(cpu, state, node);
1365 			goto unlock;
1366 		}
1367 	}
1368 add_node:
1369 	ret = 0;
1370 	hlist_add_head(node, &sp->list);
1371 unlock:
1372 	mutex_unlock(&cpuhp_state_mutex);
1373 	return ret;
1374 }
1375 
1376 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1377 			       bool invoke)
1378 {
1379 	int ret;
1380 
1381 	cpus_read_lock();
1382 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1383 	cpus_read_unlock();
1384 	return ret;
1385 }
1386 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1387 
1388 /**
1389  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1390  * @state:		The state to setup
1391  * @invoke:		If true, the startup function is invoked for cpus where
1392  *			cpu state >= @state
1393  * @startup:		startup callback function
1394  * @teardown:		teardown callback function
1395  * @multi_instance:	State is set up for multiple instances which get
1396  *			added afterwards.
1397  *
1398  * The caller needs to hold cpus read locked while calling this function.
1399  * Returns:
1400  *   On success:
1401  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1402  *      0 for all other states
1403  *   On failure: proper (negative) error code
1404  */
1405 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1406 				   const char *name, bool invoke,
1407 				   int (*startup)(unsigned int cpu),
1408 				   int (*teardown)(unsigned int cpu),
1409 				   bool multi_instance)
1410 {
1411 	int cpu, ret = 0;
1412 	bool dynstate;
1413 
1414 	lockdep_assert_cpus_held();
1415 
1416 	if (cpuhp_cb_check(state) || !name)
1417 		return -EINVAL;
1418 
1419 	mutex_lock(&cpuhp_state_mutex);
1420 
1421 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1422 				    multi_instance);
1423 
1424 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1425 	if (ret > 0 && dynstate) {
1426 		state = ret;
1427 		ret = 0;
1428 	}
1429 
1430 	if (ret || !invoke || !startup)
1431 		goto out;
1432 
1433 	/*
1434 	 * Try to call the startup callback for each present cpu
1435 	 * depending on the hotplug state of the cpu.
1436 	 */
1437 	for_each_present_cpu(cpu) {
1438 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1439 		int cpustate = st->state;
1440 
1441 		if (cpustate < state)
1442 			continue;
1443 
1444 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1445 		if (ret) {
1446 			if (teardown)
1447 				cpuhp_rollback_install(cpu, state, NULL);
1448 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1449 			goto out;
1450 		}
1451 	}
1452 out:
1453 	mutex_unlock(&cpuhp_state_mutex);
1454 	/*
1455 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1456 	 * dynamically allocated state in case of success.
1457 	 */
1458 	if (!ret && dynstate)
1459 		return state;
1460 	return ret;
1461 }
1462 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1463 
1464 int __cpuhp_setup_state(enum cpuhp_state state,
1465 			const char *name, bool invoke,
1466 			int (*startup)(unsigned int cpu),
1467 			int (*teardown)(unsigned int cpu),
1468 			bool multi_instance)
1469 {
1470 	int ret;
1471 
1472 	cpus_read_lock();
1473 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1474 					     teardown, multi_instance);
1475 	cpus_read_unlock();
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL(__cpuhp_setup_state);
1479 
1480 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1481 				  struct hlist_node *node, bool invoke)
1482 {
1483 	struct cpuhp_step *sp = cpuhp_get_step(state);
1484 	int cpu;
1485 
1486 	BUG_ON(cpuhp_cb_check(state));
1487 
1488 	if (!sp->multi_instance)
1489 		return -EINVAL;
1490 
1491 	cpus_read_lock();
1492 	mutex_lock(&cpuhp_state_mutex);
1493 
1494 	if (!invoke || !cpuhp_get_teardown_cb(state))
1495 		goto remove;
1496 	/*
1497 	 * Call the teardown callback for each present cpu depending
1498 	 * on the hotplug state of the cpu. This function is not
1499 	 * allowed to fail currently!
1500 	 */
1501 	for_each_present_cpu(cpu) {
1502 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1503 		int cpustate = st->state;
1504 
1505 		if (cpustate >= state)
1506 			cpuhp_issue_call(cpu, state, false, node);
1507 	}
1508 
1509 remove:
1510 	hlist_del(node);
1511 	mutex_unlock(&cpuhp_state_mutex);
1512 	cpus_read_unlock();
1513 
1514 	return 0;
1515 }
1516 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1517 
1518 /**
1519  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1520  * @state:	The state to remove
1521  * @invoke:	If true, the teardown function is invoked for cpus where
1522  *		cpu state >= @state
1523  *
1524  * The caller needs to hold cpus read locked while calling this function.
1525  * The teardown callback is currently not allowed to fail. Think
1526  * about module removal!
1527  */
1528 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1529 {
1530 	struct cpuhp_step *sp = cpuhp_get_step(state);
1531 	int cpu;
1532 
1533 	BUG_ON(cpuhp_cb_check(state));
1534 
1535 	lockdep_assert_cpus_held();
1536 
1537 	mutex_lock(&cpuhp_state_mutex);
1538 	if (sp->multi_instance) {
1539 		WARN(!hlist_empty(&sp->list),
1540 		     "Error: Removing state %d which has instances left.\n",
1541 		     state);
1542 		goto remove;
1543 	}
1544 
1545 	if (!invoke || !cpuhp_get_teardown_cb(state))
1546 		goto remove;
1547 
1548 	/*
1549 	 * Call the teardown callback for each present cpu depending
1550 	 * on the hotplug state of the cpu. This function is not
1551 	 * allowed to fail currently!
1552 	 */
1553 	for_each_present_cpu(cpu) {
1554 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1555 		int cpustate = st->state;
1556 
1557 		if (cpustate >= state)
1558 			cpuhp_issue_call(cpu, state, false, NULL);
1559 	}
1560 remove:
1561 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1562 	mutex_unlock(&cpuhp_state_mutex);
1563 }
1564 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1565 
1566 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1567 {
1568 	cpus_read_lock();
1569 	__cpuhp_remove_state_cpuslocked(state, invoke);
1570 	cpus_read_unlock();
1571 }
1572 EXPORT_SYMBOL(__cpuhp_remove_state);
1573 
1574 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1575 static ssize_t show_cpuhp_state(struct device *dev,
1576 				struct device_attribute *attr, char *buf)
1577 {
1578 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1579 
1580 	return sprintf(buf, "%d\n", st->state);
1581 }
1582 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1583 
1584 static ssize_t write_cpuhp_target(struct device *dev,
1585 				  struct device_attribute *attr,
1586 				  const char *buf, size_t count)
1587 {
1588 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1589 	struct cpuhp_step *sp;
1590 	int target, ret;
1591 
1592 	ret = kstrtoint(buf, 10, &target);
1593 	if (ret)
1594 		return ret;
1595 
1596 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1597 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1598 		return -EINVAL;
1599 #else
1600 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1601 		return -EINVAL;
1602 #endif
1603 
1604 	ret = lock_device_hotplug_sysfs();
1605 	if (ret)
1606 		return ret;
1607 
1608 	mutex_lock(&cpuhp_state_mutex);
1609 	sp = cpuhp_get_step(target);
1610 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1611 	mutex_unlock(&cpuhp_state_mutex);
1612 	if (ret)
1613 		goto out;
1614 
1615 	if (st->state < target)
1616 		ret = do_cpu_up(dev->id, target);
1617 	else
1618 		ret = do_cpu_down(dev->id, target);
1619 out:
1620 	unlock_device_hotplug();
1621 	return ret ? ret : count;
1622 }
1623 
1624 static ssize_t show_cpuhp_target(struct device *dev,
1625 				 struct device_attribute *attr, char *buf)
1626 {
1627 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1628 
1629 	return sprintf(buf, "%d\n", st->target);
1630 }
1631 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1632 
1633 static struct attribute *cpuhp_cpu_attrs[] = {
1634 	&dev_attr_state.attr,
1635 	&dev_attr_target.attr,
1636 	NULL
1637 };
1638 
1639 static const struct attribute_group cpuhp_cpu_attr_group = {
1640 	.attrs = cpuhp_cpu_attrs,
1641 	.name = "hotplug",
1642 	NULL
1643 };
1644 
1645 static ssize_t show_cpuhp_states(struct device *dev,
1646 				 struct device_attribute *attr, char *buf)
1647 {
1648 	ssize_t cur, res = 0;
1649 	int i;
1650 
1651 	mutex_lock(&cpuhp_state_mutex);
1652 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1653 		struct cpuhp_step *sp = cpuhp_get_step(i);
1654 
1655 		if (sp->name) {
1656 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1657 			buf += cur;
1658 			res += cur;
1659 		}
1660 	}
1661 	mutex_unlock(&cpuhp_state_mutex);
1662 	return res;
1663 }
1664 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1665 
1666 static struct attribute *cpuhp_cpu_root_attrs[] = {
1667 	&dev_attr_states.attr,
1668 	NULL
1669 };
1670 
1671 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1672 	.attrs = cpuhp_cpu_root_attrs,
1673 	.name = "hotplug",
1674 	NULL
1675 };
1676 
1677 static int __init cpuhp_sysfs_init(void)
1678 {
1679 	int cpu, ret;
1680 
1681 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1682 				 &cpuhp_cpu_root_attr_group);
1683 	if (ret)
1684 		return ret;
1685 
1686 	for_each_possible_cpu(cpu) {
1687 		struct device *dev = get_cpu_device(cpu);
1688 
1689 		if (!dev)
1690 			continue;
1691 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1692 		if (ret)
1693 			return ret;
1694 	}
1695 	return 0;
1696 }
1697 device_initcall(cpuhp_sysfs_init);
1698 #endif
1699 
1700 /*
1701  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1702  * represents all NR_CPUS bits binary values of 1<<nr.
1703  *
1704  * It is used by cpumask_of() to get a constant address to a CPU
1705  * mask value that has a single bit set only.
1706  */
1707 
1708 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1709 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1710 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1711 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1712 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1713 
1714 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1715 
1716 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1717 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1718 #if BITS_PER_LONG > 32
1719 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1720 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1721 #endif
1722 };
1723 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1724 
1725 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1726 EXPORT_SYMBOL(cpu_all_bits);
1727 
1728 #ifdef CONFIG_INIT_ALL_POSSIBLE
1729 struct cpumask __cpu_possible_mask __read_mostly
1730 	= {CPU_BITS_ALL};
1731 #else
1732 struct cpumask __cpu_possible_mask __read_mostly;
1733 #endif
1734 EXPORT_SYMBOL(__cpu_possible_mask);
1735 
1736 struct cpumask __cpu_online_mask __read_mostly;
1737 EXPORT_SYMBOL(__cpu_online_mask);
1738 
1739 struct cpumask __cpu_present_mask __read_mostly;
1740 EXPORT_SYMBOL(__cpu_present_mask);
1741 
1742 struct cpumask __cpu_active_mask __read_mostly;
1743 EXPORT_SYMBOL(__cpu_active_mask);
1744 
1745 void init_cpu_present(const struct cpumask *src)
1746 {
1747 	cpumask_copy(&__cpu_present_mask, src);
1748 }
1749 
1750 void init_cpu_possible(const struct cpumask *src)
1751 {
1752 	cpumask_copy(&__cpu_possible_mask, src);
1753 }
1754 
1755 void init_cpu_online(const struct cpumask *src)
1756 {
1757 	cpumask_copy(&__cpu_online_mask, src);
1758 }
1759 
1760 /*
1761  * Activate the first processor.
1762  */
1763 void __init boot_cpu_init(void)
1764 {
1765 	int cpu = smp_processor_id();
1766 
1767 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
1768 	set_cpu_online(cpu, true);
1769 	set_cpu_active(cpu, true);
1770 	set_cpu_present(cpu, true);
1771 	set_cpu_possible(cpu, true);
1772 
1773 #ifdef CONFIG_SMP
1774 	__boot_cpu_id = cpu;
1775 #endif
1776 }
1777 
1778 /*
1779  * Must be called _AFTER_ setting up the per_cpu areas
1780  */
1781 void __init boot_cpu_state_init(void)
1782 {
1783 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1784 }
1785