xref: /openbmc/linux/kernel/cpu.c (revision d4092d76)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30 #include <linux/percpu-rwsem.h>
31 
32 #include <trace/events/power.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/cpuhp.h>
35 
36 #include "smpboot.h"
37 
38 /**
39  * cpuhp_cpu_state - Per cpu hotplug state storage
40  * @state:	The current cpu state
41  * @target:	The target state
42  * @thread:	Pointer to the hotplug thread
43  * @should_run:	Thread should execute
44  * @rollback:	Perform a rollback
45  * @single:	Single callback invocation
46  * @bringup:	Single callback bringup or teardown selector
47  * @cb_state:	The state for a single callback (install/uninstall)
48  * @result:	Result of the operation
49  * @done:	Signal completion to the issuer of the task
50  */
51 struct cpuhp_cpu_state {
52 	enum cpuhp_state	state;
53 	enum cpuhp_state	target;
54 #ifdef CONFIG_SMP
55 	struct task_struct	*thread;
56 	bool			should_run;
57 	bool			rollback;
58 	bool			single;
59 	bool			bringup;
60 	struct hlist_node	*node;
61 	enum cpuhp_state	cb_state;
62 	int			result;
63 	struct completion	done;
64 #endif
65 };
66 
67 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
68 
69 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
70 static struct lock_class_key cpuhp_state_key;
71 static struct lockdep_map cpuhp_state_lock_map =
72 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state", &cpuhp_state_key);
73 #endif
74 
75 /**
76  * cpuhp_step - Hotplug state machine step
77  * @name:	Name of the step
78  * @startup:	Startup function of the step
79  * @teardown:	Teardown function of the step
80  * @skip_onerr:	Do not invoke the functions on error rollback
81  *		Will go away once the notifiers	are gone
82  * @cant_stop:	Bringup/teardown can't be stopped at this step
83  */
84 struct cpuhp_step {
85 	const char		*name;
86 	union {
87 		int		(*single)(unsigned int cpu);
88 		int		(*multi)(unsigned int cpu,
89 					 struct hlist_node *node);
90 	} startup;
91 	union {
92 		int		(*single)(unsigned int cpu);
93 		int		(*multi)(unsigned int cpu,
94 					 struct hlist_node *node);
95 	} teardown;
96 	struct hlist_head	list;
97 	bool			skip_onerr;
98 	bool			cant_stop;
99 	bool			multi_instance;
100 };
101 
102 static DEFINE_MUTEX(cpuhp_state_mutex);
103 static struct cpuhp_step cpuhp_bp_states[];
104 static struct cpuhp_step cpuhp_ap_states[];
105 
106 static bool cpuhp_is_ap_state(enum cpuhp_state state)
107 {
108 	/*
109 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
110 	 * purposes as that state is handled explicitly in cpu_down.
111 	 */
112 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
113 }
114 
115 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
116 {
117 	struct cpuhp_step *sp;
118 
119 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
120 	return sp + state;
121 }
122 
123 /**
124  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
125  * @cpu:	The cpu for which the callback should be invoked
126  * @step:	The step in the state machine
127  * @bringup:	True if the bringup callback should be invoked
128  *
129  * Called from cpu hotplug and from the state register machinery.
130  */
131 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
132 				 bool bringup, struct hlist_node *node)
133 {
134 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
135 	struct cpuhp_step *step = cpuhp_get_step(state);
136 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
137 	int (*cb)(unsigned int cpu);
138 	int ret, cnt;
139 
140 	if (!step->multi_instance) {
141 		cb = bringup ? step->startup.single : step->teardown.single;
142 		if (!cb)
143 			return 0;
144 		trace_cpuhp_enter(cpu, st->target, state, cb);
145 		ret = cb(cpu);
146 		trace_cpuhp_exit(cpu, st->state, state, ret);
147 		return ret;
148 	}
149 	cbm = bringup ? step->startup.multi : step->teardown.multi;
150 	if (!cbm)
151 		return 0;
152 
153 	/* Single invocation for instance add/remove */
154 	if (node) {
155 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
156 		ret = cbm(cpu, node);
157 		trace_cpuhp_exit(cpu, st->state, state, ret);
158 		return ret;
159 	}
160 
161 	/* State transition. Invoke on all instances */
162 	cnt = 0;
163 	hlist_for_each(node, &step->list) {
164 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
165 		ret = cbm(cpu, node);
166 		trace_cpuhp_exit(cpu, st->state, state, ret);
167 		if (ret)
168 			goto err;
169 		cnt++;
170 	}
171 	return 0;
172 err:
173 	/* Rollback the instances if one failed */
174 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
175 	if (!cbm)
176 		return ret;
177 
178 	hlist_for_each(node, &step->list) {
179 		if (!cnt--)
180 			break;
181 		cbm(cpu, node);
182 	}
183 	return ret;
184 }
185 
186 #ifdef CONFIG_SMP
187 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
188 static DEFINE_MUTEX(cpu_add_remove_lock);
189 bool cpuhp_tasks_frozen;
190 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
191 
192 /*
193  * The following two APIs (cpu_maps_update_begin/done) must be used when
194  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
195  */
196 void cpu_maps_update_begin(void)
197 {
198 	mutex_lock(&cpu_add_remove_lock);
199 }
200 
201 void cpu_maps_update_done(void)
202 {
203 	mutex_unlock(&cpu_add_remove_lock);
204 }
205 
206 /*
207  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
208  * Should always be manipulated under cpu_add_remove_lock
209  */
210 static int cpu_hotplug_disabled;
211 
212 #ifdef CONFIG_HOTPLUG_CPU
213 
214 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
215 
216 void cpus_read_lock(void)
217 {
218 	percpu_down_read(&cpu_hotplug_lock);
219 }
220 EXPORT_SYMBOL_GPL(cpus_read_lock);
221 
222 void cpus_read_unlock(void)
223 {
224 	percpu_up_read(&cpu_hotplug_lock);
225 }
226 EXPORT_SYMBOL_GPL(cpus_read_unlock);
227 
228 void cpus_write_lock(void)
229 {
230 	percpu_down_write(&cpu_hotplug_lock);
231 }
232 
233 void cpus_write_unlock(void)
234 {
235 	percpu_up_write(&cpu_hotplug_lock);
236 }
237 
238 void lockdep_assert_cpus_held(void)
239 {
240 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
241 }
242 
243 /*
244  * Wait for currently running CPU hotplug operations to complete (if any) and
245  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
246  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
247  * hotplug path before performing hotplug operations. So acquiring that lock
248  * guarantees mutual exclusion from any currently running hotplug operations.
249  */
250 void cpu_hotplug_disable(void)
251 {
252 	cpu_maps_update_begin();
253 	cpu_hotplug_disabled++;
254 	cpu_maps_update_done();
255 }
256 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
257 
258 static void __cpu_hotplug_enable(void)
259 {
260 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
261 		return;
262 	cpu_hotplug_disabled--;
263 }
264 
265 void cpu_hotplug_enable(void)
266 {
267 	cpu_maps_update_begin();
268 	__cpu_hotplug_enable();
269 	cpu_maps_update_done();
270 }
271 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
272 #endif	/* CONFIG_HOTPLUG_CPU */
273 
274 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st);
275 
276 static int bringup_wait_for_ap(unsigned int cpu)
277 {
278 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
279 
280 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
281 	wait_for_completion(&st->done);
282 	BUG_ON(!cpu_online(cpu));
283 
284 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
285 	stop_machine_unpark(cpu);
286 	kthread_unpark(st->thread);
287 
288 	/* Should we go further up ? */
289 	if (st->target > CPUHP_AP_ONLINE_IDLE) {
290 		__cpuhp_kick_ap_work(st);
291 		wait_for_completion(&st->done);
292 	}
293 	return st->result;
294 }
295 
296 static int bringup_cpu(unsigned int cpu)
297 {
298 	struct task_struct *idle = idle_thread_get(cpu);
299 	int ret;
300 
301 	/*
302 	 * Some architectures have to walk the irq descriptors to
303 	 * setup the vector space for the cpu which comes online.
304 	 * Prevent irq alloc/free across the bringup.
305 	 */
306 	irq_lock_sparse();
307 
308 	/* Arch-specific enabling code. */
309 	ret = __cpu_up(cpu, idle);
310 	irq_unlock_sparse();
311 	if (ret)
312 		return ret;
313 	return bringup_wait_for_ap(cpu);
314 }
315 
316 /*
317  * Hotplug state machine related functions
318  */
319 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
320 {
321 	for (st->state++; st->state < st->target; st->state++) {
322 		struct cpuhp_step *step = cpuhp_get_step(st->state);
323 
324 		if (!step->skip_onerr)
325 			cpuhp_invoke_callback(cpu, st->state, true, NULL);
326 	}
327 }
328 
329 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
330 				enum cpuhp_state target)
331 {
332 	enum cpuhp_state prev_state = st->state;
333 	int ret = 0;
334 
335 	for (; st->state > target; st->state--) {
336 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
337 		if (ret) {
338 			st->target = prev_state;
339 			undo_cpu_down(cpu, st);
340 			break;
341 		}
342 	}
343 	return ret;
344 }
345 
346 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
347 {
348 	for (st->state--; st->state > st->target; st->state--) {
349 		struct cpuhp_step *step = cpuhp_get_step(st->state);
350 
351 		if (!step->skip_onerr)
352 			cpuhp_invoke_callback(cpu, st->state, false, NULL);
353 	}
354 }
355 
356 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
357 			      enum cpuhp_state target)
358 {
359 	enum cpuhp_state prev_state = st->state;
360 	int ret = 0;
361 
362 	while (st->state < target) {
363 		st->state++;
364 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
365 		if (ret) {
366 			st->target = prev_state;
367 			undo_cpu_up(cpu, st);
368 			break;
369 		}
370 	}
371 	return ret;
372 }
373 
374 /*
375  * The cpu hotplug threads manage the bringup and teardown of the cpus
376  */
377 static void cpuhp_create(unsigned int cpu)
378 {
379 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
380 
381 	init_completion(&st->done);
382 }
383 
384 static int cpuhp_should_run(unsigned int cpu)
385 {
386 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
387 
388 	return st->should_run;
389 }
390 
391 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
392 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
393 {
394 	enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
395 
396 	return cpuhp_down_callbacks(cpu, st, target);
397 }
398 
399 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
400 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
401 {
402 	return cpuhp_up_callbacks(cpu, st, st->target);
403 }
404 
405 /*
406  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
407  * callbacks when a state gets [un]installed at runtime.
408  */
409 static void cpuhp_thread_fun(unsigned int cpu)
410 {
411 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
412 	int ret = 0;
413 
414 	/*
415 	 * Paired with the mb() in cpuhp_kick_ap_work and
416 	 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
417 	 */
418 	smp_mb();
419 	if (!st->should_run)
420 		return;
421 
422 	st->should_run = false;
423 
424 	lock_map_acquire(&cpuhp_state_lock_map);
425 	/* Single callback invocation for [un]install ? */
426 	if (st->single) {
427 		if (st->cb_state < CPUHP_AP_ONLINE) {
428 			local_irq_disable();
429 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
430 						    st->bringup, st->node);
431 			local_irq_enable();
432 		} else {
433 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
434 						    st->bringup, st->node);
435 		}
436 	} else if (st->rollback) {
437 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
438 
439 		undo_cpu_down(cpu, st);
440 		st->rollback = false;
441 	} else {
442 		/* Cannot happen .... */
443 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
444 
445 		/* Regular hotplug work */
446 		if (st->state < st->target)
447 			ret = cpuhp_ap_online(cpu, st);
448 		else if (st->state > st->target)
449 			ret = cpuhp_ap_offline(cpu, st);
450 	}
451 	lock_map_release(&cpuhp_state_lock_map);
452 	st->result = ret;
453 	complete(&st->done);
454 }
455 
456 /* Invoke a single callback on a remote cpu */
457 static int
458 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
459 			 struct hlist_node *node)
460 {
461 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
462 
463 	if (!cpu_online(cpu))
464 		return 0;
465 
466 	lock_map_acquire(&cpuhp_state_lock_map);
467 	lock_map_release(&cpuhp_state_lock_map);
468 
469 	/*
470 	 * If we are up and running, use the hotplug thread. For early calls
471 	 * we invoke the thread function directly.
472 	 */
473 	if (!st->thread)
474 		return cpuhp_invoke_callback(cpu, state, bringup, node);
475 
476 	st->cb_state = state;
477 	st->single = true;
478 	st->bringup = bringup;
479 	st->node = node;
480 
481 	/*
482 	 * Make sure the above stores are visible before should_run becomes
483 	 * true. Paired with the mb() above in cpuhp_thread_fun()
484 	 */
485 	smp_mb();
486 	st->should_run = true;
487 	wake_up_process(st->thread);
488 	wait_for_completion(&st->done);
489 	return st->result;
490 }
491 
492 /* Regular hotplug invocation of the AP hotplug thread */
493 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
494 {
495 	st->result = 0;
496 	st->single = false;
497 	/*
498 	 * Make sure the above stores are visible before should_run becomes
499 	 * true. Paired with the mb() above in cpuhp_thread_fun()
500 	 */
501 	smp_mb();
502 	st->should_run = true;
503 	wake_up_process(st->thread);
504 }
505 
506 static int cpuhp_kick_ap_work(unsigned int cpu)
507 {
508 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
509 	enum cpuhp_state state = st->state;
510 
511 	trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
512 	lock_map_acquire(&cpuhp_state_lock_map);
513 	lock_map_release(&cpuhp_state_lock_map);
514 	__cpuhp_kick_ap_work(st);
515 	wait_for_completion(&st->done);
516 	trace_cpuhp_exit(cpu, st->state, state, st->result);
517 	return st->result;
518 }
519 
520 static struct smp_hotplug_thread cpuhp_threads = {
521 	.store			= &cpuhp_state.thread,
522 	.create			= &cpuhp_create,
523 	.thread_should_run	= cpuhp_should_run,
524 	.thread_fn		= cpuhp_thread_fun,
525 	.thread_comm		= "cpuhp/%u",
526 	.selfparking		= true,
527 };
528 
529 void __init cpuhp_threads_init(void)
530 {
531 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
532 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
533 }
534 
535 #ifdef CONFIG_HOTPLUG_CPU
536 /**
537  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
538  * @cpu: a CPU id
539  *
540  * This function walks all processes, finds a valid mm struct for each one and
541  * then clears a corresponding bit in mm's cpumask.  While this all sounds
542  * trivial, there are various non-obvious corner cases, which this function
543  * tries to solve in a safe manner.
544  *
545  * Also note that the function uses a somewhat relaxed locking scheme, so it may
546  * be called only for an already offlined CPU.
547  */
548 void clear_tasks_mm_cpumask(int cpu)
549 {
550 	struct task_struct *p;
551 
552 	/*
553 	 * This function is called after the cpu is taken down and marked
554 	 * offline, so its not like new tasks will ever get this cpu set in
555 	 * their mm mask. -- Peter Zijlstra
556 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
557 	 * full-fledged tasklist_lock.
558 	 */
559 	WARN_ON(cpu_online(cpu));
560 	rcu_read_lock();
561 	for_each_process(p) {
562 		struct task_struct *t;
563 
564 		/*
565 		 * Main thread might exit, but other threads may still have
566 		 * a valid mm. Find one.
567 		 */
568 		t = find_lock_task_mm(p);
569 		if (!t)
570 			continue;
571 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
572 		task_unlock(t);
573 	}
574 	rcu_read_unlock();
575 }
576 
577 /* Take this CPU down. */
578 static int take_cpu_down(void *_param)
579 {
580 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
581 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
582 	int err, cpu = smp_processor_id();
583 
584 	/* Ensure this CPU doesn't handle any more interrupts. */
585 	err = __cpu_disable();
586 	if (err < 0)
587 		return err;
588 
589 	/*
590 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
591 	 * do this step again.
592 	 */
593 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
594 	st->state--;
595 	/* Invoke the former CPU_DYING callbacks */
596 	for (; st->state > target; st->state--)
597 		cpuhp_invoke_callback(cpu, st->state, false, NULL);
598 
599 	/* Give up timekeeping duties */
600 	tick_handover_do_timer();
601 	/* Park the stopper thread */
602 	stop_machine_park(cpu);
603 	return 0;
604 }
605 
606 static int takedown_cpu(unsigned int cpu)
607 {
608 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
609 	int err;
610 
611 	/* Park the smpboot threads */
612 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
613 	smpboot_park_threads(cpu);
614 
615 	/*
616 	 * Prevent irq alloc/free while the dying cpu reorganizes the
617 	 * interrupt affinities.
618 	 */
619 	irq_lock_sparse();
620 
621 	/*
622 	 * So now all preempt/rcu users must observe !cpu_active().
623 	 */
624 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
625 	if (err) {
626 		/* CPU refused to die */
627 		irq_unlock_sparse();
628 		/* Unpark the hotplug thread so we can rollback there */
629 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
630 		return err;
631 	}
632 	BUG_ON(cpu_online(cpu));
633 
634 	/*
635 	 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
636 	 * runnable tasks from the cpu, there's only the idle task left now
637 	 * that the migration thread is done doing the stop_machine thing.
638 	 *
639 	 * Wait for the stop thread to go away.
640 	 */
641 	wait_for_completion(&st->done);
642 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
643 
644 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
645 	irq_unlock_sparse();
646 
647 	hotplug_cpu__broadcast_tick_pull(cpu);
648 	/* This actually kills the CPU. */
649 	__cpu_die(cpu);
650 
651 	tick_cleanup_dead_cpu(cpu);
652 	return 0;
653 }
654 
655 static void cpuhp_complete_idle_dead(void *arg)
656 {
657 	struct cpuhp_cpu_state *st = arg;
658 
659 	complete(&st->done);
660 }
661 
662 void cpuhp_report_idle_dead(void)
663 {
664 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
665 
666 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
667 	rcu_report_dead(smp_processor_id());
668 	st->state = CPUHP_AP_IDLE_DEAD;
669 	/*
670 	 * We cannot call complete after rcu_report_dead() so we delegate it
671 	 * to an online cpu.
672 	 */
673 	smp_call_function_single(cpumask_first(cpu_online_mask),
674 				 cpuhp_complete_idle_dead, st, 0);
675 }
676 
677 #else
678 #define takedown_cpu		NULL
679 #endif
680 
681 #ifdef CONFIG_HOTPLUG_CPU
682 
683 /* Requires cpu_add_remove_lock to be held */
684 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
685 			   enum cpuhp_state target)
686 {
687 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
688 	int prev_state, ret = 0;
689 
690 	if (num_online_cpus() == 1)
691 		return -EBUSY;
692 
693 	if (!cpu_present(cpu))
694 		return -EINVAL;
695 
696 	cpus_write_lock();
697 
698 	cpuhp_tasks_frozen = tasks_frozen;
699 
700 	prev_state = st->state;
701 	st->target = target;
702 	/*
703 	 * If the current CPU state is in the range of the AP hotplug thread,
704 	 * then we need to kick the thread.
705 	 */
706 	if (st->state > CPUHP_TEARDOWN_CPU) {
707 		ret = cpuhp_kick_ap_work(cpu);
708 		/*
709 		 * The AP side has done the error rollback already. Just
710 		 * return the error code..
711 		 */
712 		if (ret)
713 			goto out;
714 
715 		/*
716 		 * We might have stopped still in the range of the AP hotplug
717 		 * thread. Nothing to do anymore.
718 		 */
719 		if (st->state > CPUHP_TEARDOWN_CPU)
720 			goto out;
721 	}
722 	/*
723 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
724 	 * to do the further cleanups.
725 	 */
726 	ret = cpuhp_down_callbacks(cpu, st, target);
727 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
728 		st->target = prev_state;
729 		st->rollback = true;
730 		cpuhp_kick_ap_work(cpu);
731 	}
732 
733 out:
734 	cpus_write_unlock();
735 	return ret;
736 }
737 
738 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
739 {
740 	int err;
741 
742 	cpu_maps_update_begin();
743 
744 	if (cpu_hotplug_disabled) {
745 		err = -EBUSY;
746 		goto out;
747 	}
748 
749 	err = _cpu_down(cpu, 0, target);
750 
751 out:
752 	cpu_maps_update_done();
753 	return err;
754 }
755 int cpu_down(unsigned int cpu)
756 {
757 	return do_cpu_down(cpu, CPUHP_OFFLINE);
758 }
759 EXPORT_SYMBOL(cpu_down);
760 #endif /*CONFIG_HOTPLUG_CPU*/
761 
762 /**
763  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
764  * @cpu: cpu that just started
765  *
766  * It must be called by the arch code on the new cpu, before the new cpu
767  * enables interrupts and before the "boot" cpu returns from __cpu_up().
768  */
769 void notify_cpu_starting(unsigned int cpu)
770 {
771 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
772 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
773 
774 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
775 	while (st->state < target) {
776 		st->state++;
777 		cpuhp_invoke_callback(cpu, st->state, true, NULL);
778 	}
779 }
780 
781 /*
782  * Called from the idle task. Wake up the controlling task which brings the
783  * stopper and the hotplug thread of the upcoming CPU up and then delegates
784  * the rest of the online bringup to the hotplug thread.
785  */
786 void cpuhp_online_idle(enum cpuhp_state state)
787 {
788 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
789 
790 	/* Happens for the boot cpu */
791 	if (state != CPUHP_AP_ONLINE_IDLE)
792 		return;
793 
794 	st->state = CPUHP_AP_ONLINE_IDLE;
795 	complete(&st->done);
796 }
797 
798 /* Requires cpu_add_remove_lock to be held */
799 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
800 {
801 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
802 	struct task_struct *idle;
803 	int ret = 0;
804 
805 	cpus_write_lock();
806 
807 	if (!cpu_present(cpu)) {
808 		ret = -EINVAL;
809 		goto out;
810 	}
811 
812 	/*
813 	 * The caller of do_cpu_up might have raced with another
814 	 * caller. Ignore it for now.
815 	 */
816 	if (st->state >= target)
817 		goto out;
818 
819 	if (st->state == CPUHP_OFFLINE) {
820 		/* Let it fail before we try to bring the cpu up */
821 		idle = idle_thread_get(cpu);
822 		if (IS_ERR(idle)) {
823 			ret = PTR_ERR(idle);
824 			goto out;
825 		}
826 	}
827 
828 	cpuhp_tasks_frozen = tasks_frozen;
829 
830 	st->target = target;
831 	/*
832 	 * If the current CPU state is in the range of the AP hotplug thread,
833 	 * then we need to kick the thread once more.
834 	 */
835 	if (st->state > CPUHP_BRINGUP_CPU) {
836 		ret = cpuhp_kick_ap_work(cpu);
837 		/*
838 		 * The AP side has done the error rollback already. Just
839 		 * return the error code..
840 		 */
841 		if (ret)
842 			goto out;
843 	}
844 
845 	/*
846 	 * Try to reach the target state. We max out on the BP at
847 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
848 	 * responsible for bringing it up to the target state.
849 	 */
850 	target = min((int)target, CPUHP_BRINGUP_CPU);
851 	ret = cpuhp_up_callbacks(cpu, st, target);
852 out:
853 	cpus_write_unlock();
854 	return ret;
855 }
856 
857 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
858 {
859 	int err = 0;
860 
861 	if (!cpu_possible(cpu)) {
862 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
863 		       cpu);
864 #if defined(CONFIG_IA64)
865 		pr_err("please check additional_cpus= boot parameter\n");
866 #endif
867 		return -EINVAL;
868 	}
869 
870 	err = try_online_node(cpu_to_node(cpu));
871 	if (err)
872 		return err;
873 
874 	cpu_maps_update_begin();
875 
876 	if (cpu_hotplug_disabled) {
877 		err = -EBUSY;
878 		goto out;
879 	}
880 
881 	err = _cpu_up(cpu, 0, target);
882 out:
883 	cpu_maps_update_done();
884 	return err;
885 }
886 
887 int cpu_up(unsigned int cpu)
888 {
889 	return do_cpu_up(cpu, CPUHP_ONLINE);
890 }
891 EXPORT_SYMBOL_GPL(cpu_up);
892 
893 #ifdef CONFIG_PM_SLEEP_SMP
894 static cpumask_var_t frozen_cpus;
895 
896 int freeze_secondary_cpus(int primary)
897 {
898 	int cpu, error = 0;
899 
900 	cpu_maps_update_begin();
901 	if (!cpu_online(primary))
902 		primary = cpumask_first(cpu_online_mask);
903 	/*
904 	 * We take down all of the non-boot CPUs in one shot to avoid races
905 	 * with the userspace trying to use the CPU hotplug at the same time
906 	 */
907 	cpumask_clear(frozen_cpus);
908 
909 	pr_info("Disabling non-boot CPUs ...\n");
910 	for_each_online_cpu(cpu) {
911 		if (cpu == primary)
912 			continue;
913 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
914 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
915 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
916 		if (!error)
917 			cpumask_set_cpu(cpu, frozen_cpus);
918 		else {
919 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
920 			break;
921 		}
922 	}
923 
924 	if (!error)
925 		BUG_ON(num_online_cpus() > 1);
926 	else
927 		pr_err("Non-boot CPUs are not disabled\n");
928 
929 	/*
930 	 * Make sure the CPUs won't be enabled by someone else. We need to do
931 	 * this even in case of failure as all disable_nonboot_cpus() users are
932 	 * supposed to do enable_nonboot_cpus() on the failure path.
933 	 */
934 	cpu_hotplug_disabled++;
935 
936 	cpu_maps_update_done();
937 	return error;
938 }
939 
940 void __weak arch_enable_nonboot_cpus_begin(void)
941 {
942 }
943 
944 void __weak arch_enable_nonboot_cpus_end(void)
945 {
946 }
947 
948 void enable_nonboot_cpus(void)
949 {
950 	int cpu, error;
951 
952 	/* Allow everyone to use the CPU hotplug again */
953 	cpu_maps_update_begin();
954 	__cpu_hotplug_enable();
955 	if (cpumask_empty(frozen_cpus))
956 		goto out;
957 
958 	pr_info("Enabling non-boot CPUs ...\n");
959 
960 	arch_enable_nonboot_cpus_begin();
961 
962 	for_each_cpu(cpu, frozen_cpus) {
963 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
964 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
965 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
966 		if (!error) {
967 			pr_info("CPU%d is up\n", cpu);
968 			continue;
969 		}
970 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
971 	}
972 
973 	arch_enable_nonboot_cpus_end();
974 
975 	cpumask_clear(frozen_cpus);
976 out:
977 	cpu_maps_update_done();
978 }
979 
980 static int __init alloc_frozen_cpus(void)
981 {
982 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
983 		return -ENOMEM;
984 	return 0;
985 }
986 core_initcall(alloc_frozen_cpus);
987 
988 /*
989  * When callbacks for CPU hotplug notifications are being executed, we must
990  * ensure that the state of the system with respect to the tasks being frozen
991  * or not, as reported by the notification, remains unchanged *throughout the
992  * duration* of the execution of the callbacks.
993  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
994  *
995  * This synchronization is implemented by mutually excluding regular CPU
996  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
997  * Hibernate notifications.
998  */
999 static int
1000 cpu_hotplug_pm_callback(struct notifier_block *nb,
1001 			unsigned long action, void *ptr)
1002 {
1003 	switch (action) {
1004 
1005 	case PM_SUSPEND_PREPARE:
1006 	case PM_HIBERNATION_PREPARE:
1007 		cpu_hotplug_disable();
1008 		break;
1009 
1010 	case PM_POST_SUSPEND:
1011 	case PM_POST_HIBERNATION:
1012 		cpu_hotplug_enable();
1013 		break;
1014 
1015 	default:
1016 		return NOTIFY_DONE;
1017 	}
1018 
1019 	return NOTIFY_OK;
1020 }
1021 
1022 
1023 static int __init cpu_hotplug_pm_sync_init(void)
1024 {
1025 	/*
1026 	 * cpu_hotplug_pm_callback has higher priority than x86
1027 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1028 	 * to disable cpu hotplug to avoid cpu hotplug race.
1029 	 */
1030 	pm_notifier(cpu_hotplug_pm_callback, 0);
1031 	return 0;
1032 }
1033 core_initcall(cpu_hotplug_pm_sync_init);
1034 
1035 #endif /* CONFIG_PM_SLEEP_SMP */
1036 
1037 int __boot_cpu_id;
1038 
1039 #endif /* CONFIG_SMP */
1040 
1041 /* Boot processor state steps */
1042 static struct cpuhp_step cpuhp_bp_states[] = {
1043 	[CPUHP_OFFLINE] = {
1044 		.name			= "offline",
1045 		.startup.single		= NULL,
1046 		.teardown.single	= NULL,
1047 	},
1048 #ifdef CONFIG_SMP
1049 	[CPUHP_CREATE_THREADS]= {
1050 		.name			= "threads:prepare",
1051 		.startup.single		= smpboot_create_threads,
1052 		.teardown.single	= NULL,
1053 		.cant_stop		= true,
1054 	},
1055 	[CPUHP_PERF_PREPARE] = {
1056 		.name			= "perf:prepare",
1057 		.startup.single		= perf_event_init_cpu,
1058 		.teardown.single	= perf_event_exit_cpu,
1059 	},
1060 	[CPUHP_WORKQUEUE_PREP] = {
1061 		.name			= "workqueue:prepare",
1062 		.startup.single		= workqueue_prepare_cpu,
1063 		.teardown.single	= NULL,
1064 	},
1065 	[CPUHP_HRTIMERS_PREPARE] = {
1066 		.name			= "hrtimers:prepare",
1067 		.startup.single		= hrtimers_prepare_cpu,
1068 		.teardown.single	= hrtimers_dead_cpu,
1069 	},
1070 	[CPUHP_SMPCFD_PREPARE] = {
1071 		.name			= "smpcfd:prepare",
1072 		.startup.single		= smpcfd_prepare_cpu,
1073 		.teardown.single	= smpcfd_dead_cpu,
1074 	},
1075 	[CPUHP_RELAY_PREPARE] = {
1076 		.name			= "relay:prepare",
1077 		.startup.single		= relay_prepare_cpu,
1078 		.teardown.single	= NULL,
1079 	},
1080 	[CPUHP_SLAB_PREPARE] = {
1081 		.name			= "slab:prepare",
1082 		.startup.single		= slab_prepare_cpu,
1083 		.teardown.single	= slab_dead_cpu,
1084 	},
1085 	[CPUHP_RCUTREE_PREP] = {
1086 		.name			= "RCU/tree:prepare",
1087 		.startup.single		= rcutree_prepare_cpu,
1088 		.teardown.single	= rcutree_dead_cpu,
1089 	},
1090 	/*
1091 	 * On the tear-down path, timers_dead_cpu() must be invoked
1092 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1093 	 * otherwise a RCU stall occurs.
1094 	 */
1095 	[CPUHP_TIMERS_DEAD] = {
1096 		.name			= "timers:dead",
1097 		.startup.single		= NULL,
1098 		.teardown.single	= timers_dead_cpu,
1099 	},
1100 	/* Kicks the plugged cpu into life */
1101 	[CPUHP_BRINGUP_CPU] = {
1102 		.name			= "cpu:bringup",
1103 		.startup.single		= bringup_cpu,
1104 		.teardown.single	= NULL,
1105 		.cant_stop		= true,
1106 	},
1107 	[CPUHP_AP_SMPCFD_DYING] = {
1108 		.name			= "smpcfd:dying",
1109 		.startup.single		= NULL,
1110 		.teardown.single	= smpcfd_dying_cpu,
1111 	},
1112 	/*
1113 	 * Handled on controll processor until the plugged processor manages
1114 	 * this itself.
1115 	 */
1116 	[CPUHP_TEARDOWN_CPU] = {
1117 		.name			= "cpu:teardown",
1118 		.startup.single		= NULL,
1119 		.teardown.single	= takedown_cpu,
1120 		.cant_stop		= true,
1121 	},
1122 #else
1123 	[CPUHP_BRINGUP_CPU] = { },
1124 #endif
1125 };
1126 
1127 /* Application processor state steps */
1128 static struct cpuhp_step cpuhp_ap_states[] = {
1129 #ifdef CONFIG_SMP
1130 	/* Final state before CPU kills itself */
1131 	[CPUHP_AP_IDLE_DEAD] = {
1132 		.name			= "idle:dead",
1133 	},
1134 	/*
1135 	 * Last state before CPU enters the idle loop to die. Transient state
1136 	 * for synchronization.
1137 	 */
1138 	[CPUHP_AP_OFFLINE] = {
1139 		.name			= "ap:offline",
1140 		.cant_stop		= true,
1141 	},
1142 	/* First state is scheduler control. Interrupts are disabled */
1143 	[CPUHP_AP_SCHED_STARTING] = {
1144 		.name			= "sched:starting",
1145 		.startup.single		= sched_cpu_starting,
1146 		.teardown.single	= sched_cpu_dying,
1147 	},
1148 	[CPUHP_AP_RCUTREE_DYING] = {
1149 		.name			= "RCU/tree:dying",
1150 		.startup.single		= NULL,
1151 		.teardown.single	= rcutree_dying_cpu,
1152 	},
1153 	/* Entry state on starting. Interrupts enabled from here on. Transient
1154 	 * state for synchronsization */
1155 	[CPUHP_AP_ONLINE] = {
1156 		.name			= "ap:online",
1157 	},
1158 	/* Handle smpboot threads park/unpark */
1159 	[CPUHP_AP_SMPBOOT_THREADS] = {
1160 		.name			= "smpboot/threads:online",
1161 		.startup.single		= smpboot_unpark_threads,
1162 		.teardown.single	= NULL,
1163 	},
1164 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1165 		.name			= "irq/affinity:online",
1166 		.startup.single		= irq_affinity_online_cpu,
1167 		.teardown.single	= NULL,
1168 	},
1169 	[CPUHP_AP_PERF_ONLINE] = {
1170 		.name			= "perf:online",
1171 		.startup.single		= perf_event_init_cpu,
1172 		.teardown.single	= perf_event_exit_cpu,
1173 	},
1174 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1175 		.name			= "workqueue:online",
1176 		.startup.single		= workqueue_online_cpu,
1177 		.teardown.single	= workqueue_offline_cpu,
1178 	},
1179 	[CPUHP_AP_RCUTREE_ONLINE] = {
1180 		.name			= "RCU/tree:online",
1181 		.startup.single		= rcutree_online_cpu,
1182 		.teardown.single	= rcutree_offline_cpu,
1183 	},
1184 #endif
1185 	/*
1186 	 * The dynamically registered state space is here
1187 	 */
1188 
1189 #ifdef CONFIG_SMP
1190 	/* Last state is scheduler control setting the cpu active */
1191 	[CPUHP_AP_ACTIVE] = {
1192 		.name			= "sched:active",
1193 		.startup.single		= sched_cpu_activate,
1194 		.teardown.single	= sched_cpu_deactivate,
1195 	},
1196 #endif
1197 
1198 	/* CPU is fully up and running. */
1199 	[CPUHP_ONLINE] = {
1200 		.name			= "online",
1201 		.startup.single		= NULL,
1202 		.teardown.single	= NULL,
1203 	},
1204 };
1205 
1206 /* Sanity check for callbacks */
1207 static int cpuhp_cb_check(enum cpuhp_state state)
1208 {
1209 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1210 		return -EINVAL;
1211 	return 0;
1212 }
1213 
1214 /*
1215  * Returns a free for dynamic slot assignment of the Online state. The states
1216  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1217  * by having no name assigned.
1218  */
1219 static int cpuhp_reserve_state(enum cpuhp_state state)
1220 {
1221 	enum cpuhp_state i, end;
1222 	struct cpuhp_step *step;
1223 
1224 	switch (state) {
1225 	case CPUHP_AP_ONLINE_DYN:
1226 		step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1227 		end = CPUHP_AP_ONLINE_DYN_END;
1228 		break;
1229 	case CPUHP_BP_PREPARE_DYN:
1230 		step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1231 		end = CPUHP_BP_PREPARE_DYN_END;
1232 		break;
1233 	default:
1234 		return -EINVAL;
1235 	}
1236 
1237 	for (i = state; i <= end; i++, step++) {
1238 		if (!step->name)
1239 			return i;
1240 	}
1241 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1242 	return -ENOSPC;
1243 }
1244 
1245 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1246 				 int (*startup)(unsigned int cpu),
1247 				 int (*teardown)(unsigned int cpu),
1248 				 bool multi_instance)
1249 {
1250 	/* (Un)Install the callbacks for further cpu hotplug operations */
1251 	struct cpuhp_step *sp;
1252 	int ret = 0;
1253 
1254 	if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1255 		ret = cpuhp_reserve_state(state);
1256 		if (ret < 0)
1257 			return ret;
1258 		state = ret;
1259 	}
1260 	sp = cpuhp_get_step(state);
1261 	if (name && sp->name)
1262 		return -EBUSY;
1263 
1264 	sp->startup.single = startup;
1265 	sp->teardown.single = teardown;
1266 	sp->name = name;
1267 	sp->multi_instance = multi_instance;
1268 	INIT_HLIST_HEAD(&sp->list);
1269 	return ret;
1270 }
1271 
1272 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1273 {
1274 	return cpuhp_get_step(state)->teardown.single;
1275 }
1276 
1277 /*
1278  * Call the startup/teardown function for a step either on the AP or
1279  * on the current CPU.
1280  */
1281 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1282 			    struct hlist_node *node)
1283 {
1284 	struct cpuhp_step *sp = cpuhp_get_step(state);
1285 	int ret;
1286 
1287 	if ((bringup && !sp->startup.single) ||
1288 	    (!bringup && !sp->teardown.single))
1289 		return 0;
1290 	/*
1291 	 * The non AP bound callbacks can fail on bringup. On teardown
1292 	 * e.g. module removal we crash for now.
1293 	 */
1294 #ifdef CONFIG_SMP
1295 	if (cpuhp_is_ap_state(state))
1296 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1297 	else
1298 		ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1299 #else
1300 	ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1301 #endif
1302 	BUG_ON(ret && !bringup);
1303 	return ret;
1304 }
1305 
1306 /*
1307  * Called from __cpuhp_setup_state on a recoverable failure.
1308  *
1309  * Note: The teardown callbacks for rollback are not allowed to fail!
1310  */
1311 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1312 				   struct hlist_node *node)
1313 {
1314 	int cpu;
1315 
1316 	/* Roll back the already executed steps on the other cpus */
1317 	for_each_present_cpu(cpu) {
1318 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1319 		int cpustate = st->state;
1320 
1321 		if (cpu >= failedcpu)
1322 			break;
1323 
1324 		/* Did we invoke the startup call on that cpu ? */
1325 		if (cpustate >= state)
1326 			cpuhp_issue_call(cpu, state, false, node);
1327 	}
1328 }
1329 
1330 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1331 					  struct hlist_node *node,
1332 					  bool invoke)
1333 {
1334 	struct cpuhp_step *sp;
1335 	int cpu;
1336 	int ret;
1337 
1338 	lockdep_assert_cpus_held();
1339 
1340 	sp = cpuhp_get_step(state);
1341 	if (sp->multi_instance == false)
1342 		return -EINVAL;
1343 
1344 	mutex_lock(&cpuhp_state_mutex);
1345 
1346 	if (!invoke || !sp->startup.multi)
1347 		goto add_node;
1348 
1349 	/*
1350 	 * Try to call the startup callback for each present cpu
1351 	 * depending on the hotplug state of the cpu.
1352 	 */
1353 	for_each_present_cpu(cpu) {
1354 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1355 		int cpustate = st->state;
1356 
1357 		if (cpustate < state)
1358 			continue;
1359 
1360 		ret = cpuhp_issue_call(cpu, state, true, node);
1361 		if (ret) {
1362 			if (sp->teardown.multi)
1363 				cpuhp_rollback_install(cpu, state, node);
1364 			goto unlock;
1365 		}
1366 	}
1367 add_node:
1368 	ret = 0;
1369 	hlist_add_head(node, &sp->list);
1370 unlock:
1371 	mutex_unlock(&cpuhp_state_mutex);
1372 	return ret;
1373 }
1374 
1375 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1376 			       bool invoke)
1377 {
1378 	int ret;
1379 
1380 	cpus_read_lock();
1381 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1382 	cpus_read_unlock();
1383 	return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1386 
1387 /**
1388  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1389  * @state:		The state to setup
1390  * @invoke:		If true, the startup function is invoked for cpus where
1391  *			cpu state >= @state
1392  * @startup:		startup callback function
1393  * @teardown:		teardown callback function
1394  * @multi_instance:	State is set up for multiple instances which get
1395  *			added afterwards.
1396  *
1397  * The caller needs to hold cpus read locked while calling this function.
1398  * Returns:
1399  *   On success:
1400  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1401  *      0 for all other states
1402  *   On failure: proper (negative) error code
1403  */
1404 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1405 				   const char *name, bool invoke,
1406 				   int (*startup)(unsigned int cpu),
1407 				   int (*teardown)(unsigned int cpu),
1408 				   bool multi_instance)
1409 {
1410 	int cpu, ret = 0;
1411 	bool dynstate;
1412 
1413 	lockdep_assert_cpus_held();
1414 
1415 	if (cpuhp_cb_check(state) || !name)
1416 		return -EINVAL;
1417 
1418 	mutex_lock(&cpuhp_state_mutex);
1419 
1420 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1421 				    multi_instance);
1422 
1423 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1424 	if (ret > 0 && dynstate) {
1425 		state = ret;
1426 		ret = 0;
1427 	}
1428 
1429 	if (ret || !invoke || !startup)
1430 		goto out;
1431 
1432 	/*
1433 	 * Try to call the startup callback for each present cpu
1434 	 * depending on the hotplug state of the cpu.
1435 	 */
1436 	for_each_present_cpu(cpu) {
1437 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1438 		int cpustate = st->state;
1439 
1440 		if (cpustate < state)
1441 			continue;
1442 
1443 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1444 		if (ret) {
1445 			if (teardown)
1446 				cpuhp_rollback_install(cpu, state, NULL);
1447 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1448 			goto out;
1449 		}
1450 	}
1451 out:
1452 	mutex_unlock(&cpuhp_state_mutex);
1453 	/*
1454 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1455 	 * dynamically allocated state in case of success.
1456 	 */
1457 	if (!ret && dynstate)
1458 		return state;
1459 	return ret;
1460 }
1461 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1462 
1463 int __cpuhp_setup_state(enum cpuhp_state state,
1464 			const char *name, bool invoke,
1465 			int (*startup)(unsigned int cpu),
1466 			int (*teardown)(unsigned int cpu),
1467 			bool multi_instance)
1468 {
1469 	int ret;
1470 
1471 	cpus_read_lock();
1472 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1473 					     teardown, multi_instance);
1474 	cpus_read_unlock();
1475 	return ret;
1476 }
1477 EXPORT_SYMBOL(__cpuhp_setup_state);
1478 
1479 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1480 				  struct hlist_node *node, bool invoke)
1481 {
1482 	struct cpuhp_step *sp = cpuhp_get_step(state);
1483 	int cpu;
1484 
1485 	BUG_ON(cpuhp_cb_check(state));
1486 
1487 	if (!sp->multi_instance)
1488 		return -EINVAL;
1489 
1490 	cpus_read_lock();
1491 	mutex_lock(&cpuhp_state_mutex);
1492 
1493 	if (!invoke || !cpuhp_get_teardown_cb(state))
1494 		goto remove;
1495 	/*
1496 	 * Call the teardown callback for each present cpu depending
1497 	 * on the hotplug state of the cpu. This function is not
1498 	 * allowed to fail currently!
1499 	 */
1500 	for_each_present_cpu(cpu) {
1501 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1502 		int cpustate = st->state;
1503 
1504 		if (cpustate >= state)
1505 			cpuhp_issue_call(cpu, state, false, node);
1506 	}
1507 
1508 remove:
1509 	hlist_del(node);
1510 	mutex_unlock(&cpuhp_state_mutex);
1511 	cpus_read_unlock();
1512 
1513 	return 0;
1514 }
1515 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1516 
1517 /**
1518  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1519  * @state:	The state to remove
1520  * @invoke:	If true, the teardown function is invoked for cpus where
1521  *		cpu state >= @state
1522  *
1523  * The caller needs to hold cpus read locked while calling this function.
1524  * The teardown callback is currently not allowed to fail. Think
1525  * about module removal!
1526  */
1527 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1528 {
1529 	struct cpuhp_step *sp = cpuhp_get_step(state);
1530 	int cpu;
1531 
1532 	BUG_ON(cpuhp_cb_check(state));
1533 
1534 	lockdep_assert_cpus_held();
1535 
1536 	mutex_lock(&cpuhp_state_mutex);
1537 	if (sp->multi_instance) {
1538 		WARN(!hlist_empty(&sp->list),
1539 		     "Error: Removing state %d which has instances left.\n",
1540 		     state);
1541 		goto remove;
1542 	}
1543 
1544 	if (!invoke || !cpuhp_get_teardown_cb(state))
1545 		goto remove;
1546 
1547 	/*
1548 	 * Call the teardown callback for each present cpu depending
1549 	 * on the hotplug state of the cpu. This function is not
1550 	 * allowed to fail currently!
1551 	 */
1552 	for_each_present_cpu(cpu) {
1553 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1554 		int cpustate = st->state;
1555 
1556 		if (cpustate >= state)
1557 			cpuhp_issue_call(cpu, state, false, NULL);
1558 	}
1559 remove:
1560 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1561 	mutex_unlock(&cpuhp_state_mutex);
1562 }
1563 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1564 
1565 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1566 {
1567 	cpus_read_lock();
1568 	__cpuhp_remove_state_cpuslocked(state, invoke);
1569 	cpus_read_unlock();
1570 }
1571 EXPORT_SYMBOL(__cpuhp_remove_state);
1572 
1573 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1574 static ssize_t show_cpuhp_state(struct device *dev,
1575 				struct device_attribute *attr, char *buf)
1576 {
1577 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1578 
1579 	return sprintf(buf, "%d\n", st->state);
1580 }
1581 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1582 
1583 static ssize_t write_cpuhp_target(struct device *dev,
1584 				  struct device_attribute *attr,
1585 				  const char *buf, size_t count)
1586 {
1587 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1588 	struct cpuhp_step *sp;
1589 	int target, ret;
1590 
1591 	ret = kstrtoint(buf, 10, &target);
1592 	if (ret)
1593 		return ret;
1594 
1595 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1596 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1597 		return -EINVAL;
1598 #else
1599 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1600 		return -EINVAL;
1601 #endif
1602 
1603 	ret = lock_device_hotplug_sysfs();
1604 	if (ret)
1605 		return ret;
1606 
1607 	mutex_lock(&cpuhp_state_mutex);
1608 	sp = cpuhp_get_step(target);
1609 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1610 	mutex_unlock(&cpuhp_state_mutex);
1611 	if (ret)
1612 		goto out;
1613 
1614 	if (st->state < target)
1615 		ret = do_cpu_up(dev->id, target);
1616 	else
1617 		ret = do_cpu_down(dev->id, target);
1618 out:
1619 	unlock_device_hotplug();
1620 	return ret ? ret : count;
1621 }
1622 
1623 static ssize_t show_cpuhp_target(struct device *dev,
1624 				 struct device_attribute *attr, char *buf)
1625 {
1626 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1627 
1628 	return sprintf(buf, "%d\n", st->target);
1629 }
1630 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1631 
1632 static struct attribute *cpuhp_cpu_attrs[] = {
1633 	&dev_attr_state.attr,
1634 	&dev_attr_target.attr,
1635 	NULL
1636 };
1637 
1638 static const struct attribute_group cpuhp_cpu_attr_group = {
1639 	.attrs = cpuhp_cpu_attrs,
1640 	.name = "hotplug",
1641 	NULL
1642 };
1643 
1644 static ssize_t show_cpuhp_states(struct device *dev,
1645 				 struct device_attribute *attr, char *buf)
1646 {
1647 	ssize_t cur, res = 0;
1648 	int i;
1649 
1650 	mutex_lock(&cpuhp_state_mutex);
1651 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1652 		struct cpuhp_step *sp = cpuhp_get_step(i);
1653 
1654 		if (sp->name) {
1655 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1656 			buf += cur;
1657 			res += cur;
1658 		}
1659 	}
1660 	mutex_unlock(&cpuhp_state_mutex);
1661 	return res;
1662 }
1663 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1664 
1665 static struct attribute *cpuhp_cpu_root_attrs[] = {
1666 	&dev_attr_states.attr,
1667 	NULL
1668 };
1669 
1670 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1671 	.attrs = cpuhp_cpu_root_attrs,
1672 	.name = "hotplug",
1673 	NULL
1674 };
1675 
1676 static int __init cpuhp_sysfs_init(void)
1677 {
1678 	int cpu, ret;
1679 
1680 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1681 				 &cpuhp_cpu_root_attr_group);
1682 	if (ret)
1683 		return ret;
1684 
1685 	for_each_possible_cpu(cpu) {
1686 		struct device *dev = get_cpu_device(cpu);
1687 
1688 		if (!dev)
1689 			continue;
1690 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1691 		if (ret)
1692 			return ret;
1693 	}
1694 	return 0;
1695 }
1696 device_initcall(cpuhp_sysfs_init);
1697 #endif
1698 
1699 /*
1700  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1701  * represents all NR_CPUS bits binary values of 1<<nr.
1702  *
1703  * It is used by cpumask_of() to get a constant address to a CPU
1704  * mask value that has a single bit set only.
1705  */
1706 
1707 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1708 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1709 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1710 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1711 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1712 
1713 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1714 
1715 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1716 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1717 #if BITS_PER_LONG > 32
1718 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1719 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1720 #endif
1721 };
1722 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1723 
1724 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1725 EXPORT_SYMBOL(cpu_all_bits);
1726 
1727 #ifdef CONFIG_INIT_ALL_POSSIBLE
1728 struct cpumask __cpu_possible_mask __read_mostly
1729 	= {CPU_BITS_ALL};
1730 #else
1731 struct cpumask __cpu_possible_mask __read_mostly;
1732 #endif
1733 EXPORT_SYMBOL(__cpu_possible_mask);
1734 
1735 struct cpumask __cpu_online_mask __read_mostly;
1736 EXPORT_SYMBOL(__cpu_online_mask);
1737 
1738 struct cpumask __cpu_present_mask __read_mostly;
1739 EXPORT_SYMBOL(__cpu_present_mask);
1740 
1741 struct cpumask __cpu_active_mask __read_mostly;
1742 EXPORT_SYMBOL(__cpu_active_mask);
1743 
1744 void init_cpu_present(const struct cpumask *src)
1745 {
1746 	cpumask_copy(&__cpu_present_mask, src);
1747 }
1748 
1749 void init_cpu_possible(const struct cpumask *src)
1750 {
1751 	cpumask_copy(&__cpu_possible_mask, src);
1752 }
1753 
1754 void init_cpu_online(const struct cpumask *src)
1755 {
1756 	cpumask_copy(&__cpu_online_mask, src);
1757 }
1758 
1759 /*
1760  * Activate the first processor.
1761  */
1762 void __init boot_cpu_init(void)
1763 {
1764 	int cpu = smp_processor_id();
1765 
1766 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
1767 	set_cpu_online(cpu, true);
1768 	set_cpu_active(cpu, true);
1769 	set_cpu_present(cpu, true);
1770 	set_cpu_possible(cpu, true);
1771 
1772 #ifdef CONFIG_SMP
1773 	__boot_cpu_id = cpu;
1774 #endif
1775 }
1776 
1777 /*
1778  * Must be called _AFTER_ setting up the per_cpu areas
1779  */
1780 void __init boot_cpu_state_init(void)
1781 {
1782 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1783 }
1784