xref: /openbmc/linux/kernel/cpu.c (revision cee50c2a)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
35 
36 #include <trace/events/power.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/cpuhp.h>
39 
40 #include "smpboot.h"
41 
42 /**
43  * cpuhp_cpu_state - Per cpu hotplug state storage
44  * @state:	The current cpu state
45  * @target:	The target state
46  * @thread:	Pointer to the hotplug thread
47  * @should_run:	Thread should execute
48  * @rollback:	Perform a rollback
49  * @single:	Single callback invocation
50  * @bringup:	Single callback bringup or teardown selector
51  * @cb_state:	The state for a single callback (install/uninstall)
52  * @result:	Result of the operation
53  * @done_up:	Signal completion to the issuer of the task for cpu-up
54  * @done_down:	Signal completion to the issuer of the task for cpu-down
55  */
56 struct cpuhp_cpu_state {
57 	enum cpuhp_state	state;
58 	enum cpuhp_state	target;
59 	enum cpuhp_state	fail;
60 #ifdef CONFIG_SMP
61 	struct task_struct	*thread;
62 	bool			should_run;
63 	bool			rollback;
64 	bool			single;
65 	bool			bringup;
66 	struct hlist_node	*node;
67 	struct hlist_node	*last;
68 	enum cpuhp_state	cb_state;
69 	int			result;
70 	struct completion	done_up;
71 	struct completion	done_down;
72 #endif
73 };
74 
75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
76 	.fail = CPUHP_INVALID,
77 };
78 
79 #ifdef CONFIG_SMP
80 cpumask_t cpus_booted_once_mask;
81 #endif
82 
83 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
84 static struct lockdep_map cpuhp_state_up_map =
85 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
86 static struct lockdep_map cpuhp_state_down_map =
87 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
88 
89 
90 static inline void cpuhp_lock_acquire(bool bringup)
91 {
92 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
93 }
94 
95 static inline void cpuhp_lock_release(bool bringup)
96 {
97 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
98 }
99 #else
100 
101 static inline void cpuhp_lock_acquire(bool bringup) { }
102 static inline void cpuhp_lock_release(bool bringup) { }
103 
104 #endif
105 
106 /**
107  * cpuhp_step - Hotplug state machine step
108  * @name:	Name of the step
109  * @startup:	Startup function of the step
110  * @teardown:	Teardown function of the step
111  * @cant_stop:	Bringup/teardown can't be stopped at this step
112  */
113 struct cpuhp_step {
114 	const char		*name;
115 	union {
116 		int		(*single)(unsigned int cpu);
117 		int		(*multi)(unsigned int cpu,
118 					 struct hlist_node *node);
119 	} startup;
120 	union {
121 		int		(*single)(unsigned int cpu);
122 		int		(*multi)(unsigned int cpu,
123 					 struct hlist_node *node);
124 	} teardown;
125 	struct hlist_head	list;
126 	bool			cant_stop;
127 	bool			multi_instance;
128 };
129 
130 static DEFINE_MUTEX(cpuhp_state_mutex);
131 static struct cpuhp_step cpuhp_hp_states[];
132 
133 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
134 {
135 	return cpuhp_hp_states + state;
136 }
137 
138 /**
139  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
140  * @cpu:	The cpu for which the callback should be invoked
141  * @state:	The state to do callbacks for
142  * @bringup:	True if the bringup callback should be invoked
143  * @node:	For multi-instance, do a single entry callback for install/remove
144  * @lastp:	For multi-instance rollback, remember how far we got
145  *
146  * Called from cpu hotplug and from the state register machinery.
147  */
148 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
149 				 bool bringup, struct hlist_node *node,
150 				 struct hlist_node **lastp)
151 {
152 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
153 	struct cpuhp_step *step = cpuhp_get_step(state);
154 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
155 	int (*cb)(unsigned int cpu);
156 	int ret, cnt;
157 
158 	if (st->fail == state) {
159 		st->fail = CPUHP_INVALID;
160 
161 		if (!(bringup ? step->startup.single : step->teardown.single))
162 			return 0;
163 
164 		return -EAGAIN;
165 	}
166 
167 	if (!step->multi_instance) {
168 		WARN_ON_ONCE(lastp && *lastp);
169 		cb = bringup ? step->startup.single : step->teardown.single;
170 		if (!cb)
171 			return 0;
172 		trace_cpuhp_enter(cpu, st->target, state, cb);
173 		ret = cb(cpu);
174 		trace_cpuhp_exit(cpu, st->state, state, ret);
175 		return ret;
176 	}
177 	cbm = bringup ? step->startup.multi : step->teardown.multi;
178 	if (!cbm)
179 		return 0;
180 
181 	/* Single invocation for instance add/remove */
182 	if (node) {
183 		WARN_ON_ONCE(lastp && *lastp);
184 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
185 		ret = cbm(cpu, node);
186 		trace_cpuhp_exit(cpu, st->state, state, ret);
187 		return ret;
188 	}
189 
190 	/* State transition. Invoke on all instances */
191 	cnt = 0;
192 	hlist_for_each(node, &step->list) {
193 		if (lastp && node == *lastp)
194 			break;
195 
196 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
197 		ret = cbm(cpu, node);
198 		trace_cpuhp_exit(cpu, st->state, state, ret);
199 		if (ret) {
200 			if (!lastp)
201 				goto err;
202 
203 			*lastp = node;
204 			return ret;
205 		}
206 		cnt++;
207 	}
208 	if (lastp)
209 		*lastp = NULL;
210 	return 0;
211 err:
212 	/* Rollback the instances if one failed */
213 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
214 	if (!cbm)
215 		return ret;
216 
217 	hlist_for_each(node, &step->list) {
218 		if (!cnt--)
219 			break;
220 
221 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
222 		ret = cbm(cpu, node);
223 		trace_cpuhp_exit(cpu, st->state, state, ret);
224 		/*
225 		 * Rollback must not fail,
226 		 */
227 		WARN_ON_ONCE(ret);
228 	}
229 	return ret;
230 }
231 
232 #ifdef CONFIG_SMP
233 static bool cpuhp_is_ap_state(enum cpuhp_state state)
234 {
235 	/*
236 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
237 	 * purposes as that state is handled explicitly in cpu_down.
238 	 */
239 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
240 }
241 
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244 	struct completion *done = bringup ? &st->done_up : &st->done_down;
245 	wait_for_completion(done);
246 }
247 
248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249 {
250 	struct completion *done = bringup ? &st->done_up : &st->done_down;
251 	complete(done);
252 }
253 
254 /*
255  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
256  */
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
258 {
259 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
260 }
261 
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock);
264 bool cpuhp_tasks_frozen;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
266 
267 /*
268  * The following two APIs (cpu_maps_update_begin/done) must be used when
269  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
270  */
271 void cpu_maps_update_begin(void)
272 {
273 	mutex_lock(&cpu_add_remove_lock);
274 }
275 
276 void cpu_maps_update_done(void)
277 {
278 	mutex_unlock(&cpu_add_remove_lock);
279 }
280 
281 /*
282  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283  * Should always be manipulated under cpu_add_remove_lock
284  */
285 static int cpu_hotplug_disabled;
286 
287 #ifdef CONFIG_HOTPLUG_CPU
288 
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
290 
291 void cpus_read_lock(void)
292 {
293 	percpu_down_read(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_lock);
296 
297 int cpus_read_trylock(void)
298 {
299 	return percpu_down_read_trylock(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_trylock);
302 
303 void cpus_read_unlock(void)
304 {
305 	percpu_up_read(&cpu_hotplug_lock);
306 }
307 EXPORT_SYMBOL_GPL(cpus_read_unlock);
308 
309 void cpus_write_lock(void)
310 {
311 	percpu_down_write(&cpu_hotplug_lock);
312 }
313 
314 void cpus_write_unlock(void)
315 {
316 	percpu_up_write(&cpu_hotplug_lock);
317 }
318 
319 void lockdep_assert_cpus_held(void)
320 {
321 	/*
322 	 * We can't have hotplug operations before userspace starts running,
323 	 * and some init codepaths will knowingly not take the hotplug lock.
324 	 * This is all valid, so mute lockdep until it makes sense to report
325 	 * unheld locks.
326 	 */
327 	if (system_state < SYSTEM_RUNNING)
328 		return;
329 
330 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
331 }
332 
333 static void lockdep_acquire_cpus_lock(void)
334 {
335 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
336 }
337 
338 static void lockdep_release_cpus_lock(void)
339 {
340 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
341 }
342 
343 /*
344  * Wait for currently running CPU hotplug operations to complete (if any) and
345  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
346  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
347  * hotplug path before performing hotplug operations. So acquiring that lock
348  * guarantees mutual exclusion from any currently running hotplug operations.
349  */
350 void cpu_hotplug_disable(void)
351 {
352 	cpu_maps_update_begin();
353 	cpu_hotplug_disabled++;
354 	cpu_maps_update_done();
355 }
356 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
357 
358 static void __cpu_hotplug_enable(void)
359 {
360 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
361 		return;
362 	cpu_hotplug_disabled--;
363 }
364 
365 void cpu_hotplug_enable(void)
366 {
367 	cpu_maps_update_begin();
368 	__cpu_hotplug_enable();
369 	cpu_maps_update_done();
370 }
371 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
372 
373 #else
374 
375 static void lockdep_acquire_cpus_lock(void)
376 {
377 }
378 
379 static void lockdep_release_cpus_lock(void)
380 {
381 }
382 
383 #endif	/* CONFIG_HOTPLUG_CPU */
384 
385 /*
386  * Architectures that need SMT-specific errata handling during SMT hotplug
387  * should override this.
388  */
389 void __weak arch_smt_update(void) { }
390 
391 #ifdef CONFIG_HOTPLUG_SMT
392 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
393 
394 void __init cpu_smt_disable(bool force)
395 {
396 	if (!cpu_smt_possible())
397 		return;
398 
399 	if (force) {
400 		pr_info("SMT: Force disabled\n");
401 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
402 	} else {
403 		pr_info("SMT: disabled\n");
404 		cpu_smt_control = CPU_SMT_DISABLED;
405 	}
406 }
407 
408 /*
409  * The decision whether SMT is supported can only be done after the full
410  * CPU identification. Called from architecture code.
411  */
412 void __init cpu_smt_check_topology(void)
413 {
414 	if (!topology_smt_supported())
415 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
416 }
417 
418 static int __init smt_cmdline_disable(char *str)
419 {
420 	cpu_smt_disable(str && !strcmp(str, "force"));
421 	return 0;
422 }
423 early_param("nosmt", smt_cmdline_disable);
424 
425 static inline bool cpu_smt_allowed(unsigned int cpu)
426 {
427 	if (cpu_smt_control == CPU_SMT_ENABLED)
428 		return true;
429 
430 	if (topology_is_primary_thread(cpu))
431 		return true;
432 
433 	/*
434 	 * On x86 it's required to boot all logical CPUs at least once so
435 	 * that the init code can get a chance to set CR4.MCE on each
436 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
437 	 * core will shutdown the machine.
438 	 */
439 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
440 }
441 
442 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
443 bool cpu_smt_possible(void)
444 {
445 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
446 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
447 }
448 EXPORT_SYMBOL_GPL(cpu_smt_possible);
449 #else
450 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
451 #endif
452 
453 static inline enum cpuhp_state
454 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
455 {
456 	enum cpuhp_state prev_state = st->state;
457 
458 	st->rollback = false;
459 	st->last = NULL;
460 
461 	st->target = target;
462 	st->single = false;
463 	st->bringup = st->state < target;
464 
465 	return prev_state;
466 }
467 
468 static inline void
469 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
470 {
471 	st->rollback = true;
472 
473 	/*
474 	 * If we have st->last we need to undo partial multi_instance of this
475 	 * state first. Otherwise start undo at the previous state.
476 	 */
477 	if (!st->last) {
478 		if (st->bringup)
479 			st->state--;
480 		else
481 			st->state++;
482 	}
483 
484 	st->target = prev_state;
485 	st->bringup = !st->bringup;
486 }
487 
488 /* Regular hotplug invocation of the AP hotplug thread */
489 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
490 {
491 	if (!st->single && st->state == st->target)
492 		return;
493 
494 	st->result = 0;
495 	/*
496 	 * Make sure the above stores are visible before should_run becomes
497 	 * true. Paired with the mb() above in cpuhp_thread_fun()
498 	 */
499 	smp_mb();
500 	st->should_run = true;
501 	wake_up_process(st->thread);
502 	wait_for_ap_thread(st, st->bringup);
503 }
504 
505 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
506 {
507 	enum cpuhp_state prev_state;
508 	int ret;
509 
510 	prev_state = cpuhp_set_state(st, target);
511 	__cpuhp_kick_ap(st);
512 	if ((ret = st->result)) {
513 		cpuhp_reset_state(st, prev_state);
514 		__cpuhp_kick_ap(st);
515 	}
516 
517 	return ret;
518 }
519 
520 static int bringup_wait_for_ap(unsigned int cpu)
521 {
522 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
523 
524 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
525 	wait_for_ap_thread(st, true);
526 	if (WARN_ON_ONCE((!cpu_online(cpu))))
527 		return -ECANCELED;
528 
529 	/* Unpark the hotplug thread of the target cpu */
530 	kthread_unpark(st->thread);
531 
532 	/*
533 	 * SMT soft disabling on X86 requires to bring the CPU out of the
534 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
535 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
536 	 * cpu_smt_allowed() check will now return false if this is not the
537 	 * primary sibling.
538 	 */
539 	if (!cpu_smt_allowed(cpu))
540 		return -ECANCELED;
541 
542 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
543 		return 0;
544 
545 	return cpuhp_kick_ap(st, st->target);
546 }
547 
548 static int bringup_cpu(unsigned int cpu)
549 {
550 	struct task_struct *idle = idle_thread_get(cpu);
551 	int ret;
552 
553 	/*
554 	 * Some architectures have to walk the irq descriptors to
555 	 * setup the vector space for the cpu which comes online.
556 	 * Prevent irq alloc/free across the bringup.
557 	 */
558 	irq_lock_sparse();
559 
560 	/* Arch-specific enabling code. */
561 	ret = __cpu_up(cpu, idle);
562 	irq_unlock_sparse();
563 	if (ret)
564 		return ret;
565 	return bringup_wait_for_ap(cpu);
566 }
567 
568 static int finish_cpu(unsigned int cpu)
569 {
570 	struct task_struct *idle = idle_thread_get(cpu);
571 	struct mm_struct *mm = idle->active_mm;
572 
573 	/*
574 	 * idle_task_exit() will have switched to &init_mm, now
575 	 * clean up any remaining active_mm state.
576 	 */
577 	if (mm != &init_mm)
578 		idle->active_mm = &init_mm;
579 	mmdrop(mm);
580 	return 0;
581 }
582 
583 /*
584  * Hotplug state machine related functions
585  */
586 
587 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
588 {
589 	for (st->state--; st->state > st->target; st->state--)
590 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
591 }
592 
593 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
594 {
595 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
596 		return true;
597 	/*
598 	 * When CPU hotplug is disabled, then taking the CPU down is not
599 	 * possible because takedown_cpu() and the architecture and
600 	 * subsystem specific mechanisms are not available. So the CPU
601 	 * which would be completely unplugged again needs to stay around
602 	 * in the current state.
603 	 */
604 	return st->state <= CPUHP_BRINGUP_CPU;
605 }
606 
607 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
608 			      enum cpuhp_state target)
609 {
610 	enum cpuhp_state prev_state = st->state;
611 	int ret = 0;
612 
613 	while (st->state < target) {
614 		st->state++;
615 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
616 		if (ret) {
617 			if (can_rollback_cpu(st)) {
618 				st->target = prev_state;
619 				undo_cpu_up(cpu, st);
620 			}
621 			break;
622 		}
623 	}
624 	return ret;
625 }
626 
627 /*
628  * The cpu hotplug threads manage the bringup and teardown of the cpus
629  */
630 static void cpuhp_create(unsigned int cpu)
631 {
632 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
633 
634 	init_completion(&st->done_up);
635 	init_completion(&st->done_down);
636 }
637 
638 static int cpuhp_should_run(unsigned int cpu)
639 {
640 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
641 
642 	return st->should_run;
643 }
644 
645 /*
646  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
647  * callbacks when a state gets [un]installed at runtime.
648  *
649  * Each invocation of this function by the smpboot thread does a single AP
650  * state callback.
651  *
652  * It has 3 modes of operation:
653  *  - single: runs st->cb_state
654  *  - up:     runs ++st->state, while st->state < st->target
655  *  - down:   runs st->state--, while st->state > st->target
656  *
657  * When complete or on error, should_run is cleared and the completion is fired.
658  */
659 static void cpuhp_thread_fun(unsigned int cpu)
660 {
661 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
662 	bool bringup = st->bringup;
663 	enum cpuhp_state state;
664 
665 	if (WARN_ON_ONCE(!st->should_run))
666 		return;
667 
668 	/*
669 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
670 	 * that if we see ->should_run we also see the rest of the state.
671 	 */
672 	smp_mb();
673 
674 	/*
675 	 * The BP holds the hotplug lock, but we're now running on the AP,
676 	 * ensure that anybody asserting the lock is held, will actually find
677 	 * it so.
678 	 */
679 	lockdep_acquire_cpus_lock();
680 	cpuhp_lock_acquire(bringup);
681 
682 	if (st->single) {
683 		state = st->cb_state;
684 		st->should_run = false;
685 	} else {
686 		if (bringup) {
687 			st->state++;
688 			state = st->state;
689 			st->should_run = (st->state < st->target);
690 			WARN_ON_ONCE(st->state > st->target);
691 		} else {
692 			state = st->state;
693 			st->state--;
694 			st->should_run = (st->state > st->target);
695 			WARN_ON_ONCE(st->state < st->target);
696 		}
697 	}
698 
699 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
700 
701 	if (cpuhp_is_atomic_state(state)) {
702 		local_irq_disable();
703 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
704 		local_irq_enable();
705 
706 		/*
707 		 * STARTING/DYING must not fail!
708 		 */
709 		WARN_ON_ONCE(st->result);
710 	} else {
711 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
712 	}
713 
714 	if (st->result) {
715 		/*
716 		 * If we fail on a rollback, we're up a creek without no
717 		 * paddle, no way forward, no way back. We loose, thanks for
718 		 * playing.
719 		 */
720 		WARN_ON_ONCE(st->rollback);
721 		st->should_run = false;
722 	}
723 
724 	cpuhp_lock_release(bringup);
725 	lockdep_release_cpus_lock();
726 
727 	if (!st->should_run)
728 		complete_ap_thread(st, bringup);
729 }
730 
731 /* Invoke a single callback on a remote cpu */
732 static int
733 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
734 			 struct hlist_node *node)
735 {
736 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
737 	int ret;
738 
739 	if (!cpu_online(cpu))
740 		return 0;
741 
742 	cpuhp_lock_acquire(false);
743 	cpuhp_lock_release(false);
744 
745 	cpuhp_lock_acquire(true);
746 	cpuhp_lock_release(true);
747 
748 	/*
749 	 * If we are up and running, use the hotplug thread. For early calls
750 	 * we invoke the thread function directly.
751 	 */
752 	if (!st->thread)
753 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
754 
755 	st->rollback = false;
756 	st->last = NULL;
757 
758 	st->node = node;
759 	st->bringup = bringup;
760 	st->cb_state = state;
761 	st->single = true;
762 
763 	__cpuhp_kick_ap(st);
764 
765 	/*
766 	 * If we failed and did a partial, do a rollback.
767 	 */
768 	if ((ret = st->result) && st->last) {
769 		st->rollback = true;
770 		st->bringup = !bringup;
771 
772 		__cpuhp_kick_ap(st);
773 	}
774 
775 	/*
776 	 * Clean up the leftovers so the next hotplug operation wont use stale
777 	 * data.
778 	 */
779 	st->node = st->last = NULL;
780 	return ret;
781 }
782 
783 static int cpuhp_kick_ap_work(unsigned int cpu)
784 {
785 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
786 	enum cpuhp_state prev_state = st->state;
787 	int ret;
788 
789 	cpuhp_lock_acquire(false);
790 	cpuhp_lock_release(false);
791 
792 	cpuhp_lock_acquire(true);
793 	cpuhp_lock_release(true);
794 
795 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
796 	ret = cpuhp_kick_ap(st, st->target);
797 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
798 
799 	return ret;
800 }
801 
802 static struct smp_hotplug_thread cpuhp_threads = {
803 	.store			= &cpuhp_state.thread,
804 	.create			= &cpuhp_create,
805 	.thread_should_run	= cpuhp_should_run,
806 	.thread_fn		= cpuhp_thread_fun,
807 	.thread_comm		= "cpuhp/%u",
808 	.selfparking		= true,
809 };
810 
811 void __init cpuhp_threads_init(void)
812 {
813 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
814 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
815 }
816 
817 #ifdef CONFIG_HOTPLUG_CPU
818 /**
819  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
820  * @cpu: a CPU id
821  *
822  * This function walks all processes, finds a valid mm struct for each one and
823  * then clears a corresponding bit in mm's cpumask.  While this all sounds
824  * trivial, there are various non-obvious corner cases, which this function
825  * tries to solve in a safe manner.
826  *
827  * Also note that the function uses a somewhat relaxed locking scheme, so it may
828  * be called only for an already offlined CPU.
829  */
830 void clear_tasks_mm_cpumask(int cpu)
831 {
832 	struct task_struct *p;
833 
834 	/*
835 	 * This function is called after the cpu is taken down and marked
836 	 * offline, so its not like new tasks will ever get this cpu set in
837 	 * their mm mask. -- Peter Zijlstra
838 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
839 	 * full-fledged tasklist_lock.
840 	 */
841 	WARN_ON(cpu_online(cpu));
842 	rcu_read_lock();
843 	for_each_process(p) {
844 		struct task_struct *t;
845 
846 		/*
847 		 * Main thread might exit, but other threads may still have
848 		 * a valid mm. Find one.
849 		 */
850 		t = find_lock_task_mm(p);
851 		if (!t)
852 			continue;
853 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
854 		task_unlock(t);
855 	}
856 	rcu_read_unlock();
857 }
858 
859 /* Take this CPU down. */
860 static int take_cpu_down(void *_param)
861 {
862 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
863 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
864 	int err, cpu = smp_processor_id();
865 	int ret;
866 
867 	/* Ensure this CPU doesn't handle any more interrupts. */
868 	err = __cpu_disable();
869 	if (err < 0)
870 		return err;
871 
872 	/*
873 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
874 	 * do this step again.
875 	 */
876 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
877 	st->state--;
878 	/* Invoke the former CPU_DYING callbacks */
879 	for (; st->state > target; st->state--) {
880 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
881 		/*
882 		 * DYING must not fail!
883 		 */
884 		WARN_ON_ONCE(ret);
885 	}
886 
887 	/* Give up timekeeping duties */
888 	tick_handover_do_timer();
889 	/* Remove CPU from timer broadcasting */
890 	tick_offline_cpu(cpu);
891 	/* Park the stopper thread */
892 	stop_machine_park(cpu);
893 	return 0;
894 }
895 
896 static int takedown_cpu(unsigned int cpu)
897 {
898 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
899 	int err;
900 
901 	/* Park the smpboot threads */
902 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
903 
904 	/*
905 	 * Prevent irq alloc/free while the dying cpu reorganizes the
906 	 * interrupt affinities.
907 	 */
908 	irq_lock_sparse();
909 
910 	/*
911 	 * So now all preempt/rcu users must observe !cpu_active().
912 	 */
913 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
914 	if (err) {
915 		/* CPU refused to die */
916 		irq_unlock_sparse();
917 		/* Unpark the hotplug thread so we can rollback there */
918 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
919 		return err;
920 	}
921 	BUG_ON(cpu_online(cpu));
922 
923 	/*
924 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
925 	 * all runnable tasks from the CPU, there's only the idle task left now
926 	 * that the migration thread is done doing the stop_machine thing.
927 	 *
928 	 * Wait for the stop thread to go away.
929 	 */
930 	wait_for_ap_thread(st, false);
931 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
932 
933 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
934 	irq_unlock_sparse();
935 
936 	hotplug_cpu__broadcast_tick_pull(cpu);
937 	/* This actually kills the CPU. */
938 	__cpu_die(cpu);
939 
940 	tick_cleanup_dead_cpu(cpu);
941 	rcutree_migrate_callbacks(cpu);
942 	return 0;
943 }
944 
945 static void cpuhp_complete_idle_dead(void *arg)
946 {
947 	struct cpuhp_cpu_state *st = arg;
948 
949 	complete_ap_thread(st, false);
950 }
951 
952 void cpuhp_report_idle_dead(void)
953 {
954 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
955 
956 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
957 	rcu_report_dead(smp_processor_id());
958 	st->state = CPUHP_AP_IDLE_DEAD;
959 	/*
960 	 * We cannot call complete after rcu_report_dead() so we delegate it
961 	 * to an online cpu.
962 	 */
963 	smp_call_function_single(cpumask_first(cpu_online_mask),
964 				 cpuhp_complete_idle_dead, st, 0);
965 }
966 
967 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
968 {
969 	for (st->state++; st->state < st->target; st->state++)
970 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
971 }
972 
973 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
974 				enum cpuhp_state target)
975 {
976 	enum cpuhp_state prev_state = st->state;
977 	int ret = 0;
978 
979 	for (; st->state > target; st->state--) {
980 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
981 		if (ret) {
982 			st->target = prev_state;
983 			if (st->state < prev_state)
984 				undo_cpu_down(cpu, st);
985 			break;
986 		}
987 	}
988 	return ret;
989 }
990 
991 /* Requires cpu_add_remove_lock to be held */
992 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
993 			   enum cpuhp_state target)
994 {
995 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
996 	int prev_state, ret = 0;
997 
998 	if (num_online_cpus() == 1)
999 		return -EBUSY;
1000 
1001 	if (!cpu_present(cpu))
1002 		return -EINVAL;
1003 
1004 	cpus_write_lock();
1005 
1006 	cpuhp_tasks_frozen = tasks_frozen;
1007 
1008 	prev_state = cpuhp_set_state(st, target);
1009 	/*
1010 	 * If the current CPU state is in the range of the AP hotplug thread,
1011 	 * then we need to kick the thread.
1012 	 */
1013 	if (st->state > CPUHP_TEARDOWN_CPU) {
1014 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1015 		ret = cpuhp_kick_ap_work(cpu);
1016 		/*
1017 		 * The AP side has done the error rollback already. Just
1018 		 * return the error code..
1019 		 */
1020 		if (ret)
1021 			goto out;
1022 
1023 		/*
1024 		 * We might have stopped still in the range of the AP hotplug
1025 		 * thread. Nothing to do anymore.
1026 		 */
1027 		if (st->state > CPUHP_TEARDOWN_CPU)
1028 			goto out;
1029 
1030 		st->target = target;
1031 	}
1032 	/*
1033 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1034 	 * to do the further cleanups.
1035 	 */
1036 	ret = cpuhp_down_callbacks(cpu, st, target);
1037 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1038 		cpuhp_reset_state(st, prev_state);
1039 		__cpuhp_kick_ap(st);
1040 	}
1041 
1042 out:
1043 	cpus_write_unlock();
1044 	/*
1045 	 * Do post unplug cleanup. This is still protected against
1046 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1047 	 */
1048 	lockup_detector_cleanup();
1049 	arch_smt_update();
1050 	return ret;
1051 }
1052 
1053 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1054 {
1055 	if (cpu_hotplug_disabled)
1056 		return -EBUSY;
1057 	return _cpu_down(cpu, 0, target);
1058 }
1059 
1060 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1061 {
1062 	int err;
1063 
1064 	cpu_maps_update_begin();
1065 	err = cpu_down_maps_locked(cpu, target);
1066 	cpu_maps_update_done();
1067 	return err;
1068 }
1069 
1070 /**
1071  * cpu_device_down - Bring down a cpu device
1072  * @dev: Pointer to the cpu device to offline
1073  *
1074  * This function is meant to be used by device core cpu subsystem only.
1075  *
1076  * Other subsystems should use remove_cpu() instead.
1077  */
1078 int cpu_device_down(struct device *dev)
1079 {
1080 	return cpu_down(dev->id, CPUHP_OFFLINE);
1081 }
1082 
1083 int remove_cpu(unsigned int cpu)
1084 {
1085 	int ret;
1086 
1087 	lock_device_hotplug();
1088 	ret = device_offline(get_cpu_device(cpu));
1089 	unlock_device_hotplug();
1090 
1091 	return ret;
1092 }
1093 EXPORT_SYMBOL_GPL(remove_cpu);
1094 
1095 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1096 {
1097 	unsigned int cpu;
1098 	int error;
1099 
1100 	cpu_maps_update_begin();
1101 
1102 	/*
1103 	 * Make certain the cpu I'm about to reboot on is online.
1104 	 *
1105 	 * This is inline to what migrate_to_reboot_cpu() already do.
1106 	 */
1107 	if (!cpu_online(primary_cpu))
1108 		primary_cpu = cpumask_first(cpu_online_mask);
1109 
1110 	for_each_online_cpu(cpu) {
1111 		if (cpu == primary_cpu)
1112 			continue;
1113 
1114 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1115 		if (error) {
1116 			pr_err("Failed to offline CPU%d - error=%d",
1117 				cpu, error);
1118 			break;
1119 		}
1120 	}
1121 
1122 	/*
1123 	 * Ensure all but the reboot CPU are offline.
1124 	 */
1125 	BUG_ON(num_online_cpus() > 1);
1126 
1127 	/*
1128 	 * Make sure the CPUs won't be enabled by someone else after this
1129 	 * point. Kexec will reboot to a new kernel shortly resetting
1130 	 * everything along the way.
1131 	 */
1132 	cpu_hotplug_disabled++;
1133 
1134 	cpu_maps_update_done();
1135 }
1136 
1137 #else
1138 #define takedown_cpu		NULL
1139 #endif /*CONFIG_HOTPLUG_CPU*/
1140 
1141 /**
1142  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1143  * @cpu: cpu that just started
1144  *
1145  * It must be called by the arch code on the new cpu, before the new cpu
1146  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1147  */
1148 void notify_cpu_starting(unsigned int cpu)
1149 {
1150 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1151 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1152 	int ret;
1153 
1154 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1155 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1156 	while (st->state < target) {
1157 		st->state++;
1158 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1159 		/*
1160 		 * STARTING must not fail!
1161 		 */
1162 		WARN_ON_ONCE(ret);
1163 	}
1164 }
1165 
1166 /*
1167  * Called from the idle task. Wake up the controlling task which brings the
1168  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1169  * online bringup to the hotplug thread.
1170  */
1171 void cpuhp_online_idle(enum cpuhp_state state)
1172 {
1173 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1174 
1175 	/* Happens for the boot cpu */
1176 	if (state != CPUHP_AP_ONLINE_IDLE)
1177 		return;
1178 
1179 	/*
1180 	 * Unpart the stopper thread before we start the idle loop (and start
1181 	 * scheduling); this ensures the stopper task is always available.
1182 	 */
1183 	stop_machine_unpark(smp_processor_id());
1184 
1185 	st->state = CPUHP_AP_ONLINE_IDLE;
1186 	complete_ap_thread(st, true);
1187 }
1188 
1189 /* Requires cpu_add_remove_lock to be held */
1190 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1191 {
1192 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1193 	struct task_struct *idle;
1194 	int ret = 0;
1195 
1196 	cpus_write_lock();
1197 
1198 	if (!cpu_present(cpu)) {
1199 		ret = -EINVAL;
1200 		goto out;
1201 	}
1202 
1203 	/*
1204 	 * The caller of cpu_up() might have raced with another
1205 	 * caller. Nothing to do.
1206 	 */
1207 	if (st->state >= target)
1208 		goto out;
1209 
1210 	if (st->state == CPUHP_OFFLINE) {
1211 		/* Let it fail before we try to bring the cpu up */
1212 		idle = idle_thread_get(cpu);
1213 		if (IS_ERR(idle)) {
1214 			ret = PTR_ERR(idle);
1215 			goto out;
1216 		}
1217 	}
1218 
1219 	cpuhp_tasks_frozen = tasks_frozen;
1220 
1221 	cpuhp_set_state(st, target);
1222 	/*
1223 	 * If the current CPU state is in the range of the AP hotplug thread,
1224 	 * then we need to kick the thread once more.
1225 	 */
1226 	if (st->state > CPUHP_BRINGUP_CPU) {
1227 		ret = cpuhp_kick_ap_work(cpu);
1228 		/*
1229 		 * The AP side has done the error rollback already. Just
1230 		 * return the error code..
1231 		 */
1232 		if (ret)
1233 			goto out;
1234 	}
1235 
1236 	/*
1237 	 * Try to reach the target state. We max out on the BP at
1238 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1239 	 * responsible for bringing it up to the target state.
1240 	 */
1241 	target = min((int)target, CPUHP_BRINGUP_CPU);
1242 	ret = cpuhp_up_callbacks(cpu, st, target);
1243 out:
1244 	cpus_write_unlock();
1245 	arch_smt_update();
1246 	return ret;
1247 }
1248 
1249 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1250 {
1251 	int err = 0;
1252 
1253 	if (!cpu_possible(cpu)) {
1254 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1255 		       cpu);
1256 #if defined(CONFIG_IA64)
1257 		pr_err("please check additional_cpus= boot parameter\n");
1258 #endif
1259 		return -EINVAL;
1260 	}
1261 
1262 	err = try_online_node(cpu_to_node(cpu));
1263 	if (err)
1264 		return err;
1265 
1266 	cpu_maps_update_begin();
1267 
1268 	if (cpu_hotplug_disabled) {
1269 		err = -EBUSY;
1270 		goto out;
1271 	}
1272 	if (!cpu_smt_allowed(cpu)) {
1273 		err = -EPERM;
1274 		goto out;
1275 	}
1276 
1277 	err = _cpu_up(cpu, 0, target);
1278 out:
1279 	cpu_maps_update_done();
1280 	return err;
1281 }
1282 
1283 /**
1284  * cpu_device_up - Bring up a cpu device
1285  * @dev: Pointer to the cpu device to online
1286  *
1287  * This function is meant to be used by device core cpu subsystem only.
1288  *
1289  * Other subsystems should use add_cpu() instead.
1290  */
1291 int cpu_device_up(struct device *dev)
1292 {
1293 	return cpu_up(dev->id, CPUHP_ONLINE);
1294 }
1295 
1296 int add_cpu(unsigned int cpu)
1297 {
1298 	int ret;
1299 
1300 	lock_device_hotplug();
1301 	ret = device_online(get_cpu_device(cpu));
1302 	unlock_device_hotplug();
1303 
1304 	return ret;
1305 }
1306 EXPORT_SYMBOL_GPL(add_cpu);
1307 
1308 /**
1309  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1310  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1311  *
1312  * On some architectures like arm64, we can hibernate on any CPU, but on
1313  * wake up the CPU we hibernated on might be offline as a side effect of
1314  * using maxcpus= for example.
1315  */
1316 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1317 {
1318 	int ret;
1319 
1320 	if (!cpu_online(sleep_cpu)) {
1321 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1322 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1323 		if (ret) {
1324 			pr_err("Failed to bring hibernate-CPU up!\n");
1325 			return ret;
1326 		}
1327 	}
1328 	return 0;
1329 }
1330 
1331 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1332 {
1333 	unsigned int cpu;
1334 
1335 	for_each_present_cpu(cpu) {
1336 		if (num_online_cpus() >= setup_max_cpus)
1337 			break;
1338 		if (!cpu_online(cpu))
1339 			cpu_up(cpu, CPUHP_ONLINE);
1340 	}
1341 }
1342 
1343 #ifdef CONFIG_PM_SLEEP_SMP
1344 static cpumask_var_t frozen_cpus;
1345 
1346 int freeze_secondary_cpus(int primary)
1347 {
1348 	int cpu, error = 0;
1349 
1350 	cpu_maps_update_begin();
1351 	if (primary == -1) {
1352 		primary = cpumask_first(cpu_online_mask);
1353 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1354 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1355 	} else {
1356 		if (!cpu_online(primary))
1357 			primary = cpumask_first(cpu_online_mask);
1358 	}
1359 
1360 	/*
1361 	 * We take down all of the non-boot CPUs in one shot to avoid races
1362 	 * with the userspace trying to use the CPU hotplug at the same time
1363 	 */
1364 	cpumask_clear(frozen_cpus);
1365 
1366 	pr_info("Disabling non-boot CPUs ...\n");
1367 	for_each_online_cpu(cpu) {
1368 		if (cpu == primary)
1369 			continue;
1370 
1371 		if (pm_wakeup_pending()) {
1372 			pr_info("Wakeup pending. Abort CPU freeze\n");
1373 			error = -EBUSY;
1374 			break;
1375 		}
1376 
1377 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1378 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1379 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1380 		if (!error)
1381 			cpumask_set_cpu(cpu, frozen_cpus);
1382 		else {
1383 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1384 			break;
1385 		}
1386 	}
1387 
1388 	if (!error)
1389 		BUG_ON(num_online_cpus() > 1);
1390 	else
1391 		pr_err("Non-boot CPUs are not disabled\n");
1392 
1393 	/*
1394 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1395 	 * this even in case of failure as all freeze_secondary_cpus() users are
1396 	 * supposed to do thaw_secondary_cpus() on the failure path.
1397 	 */
1398 	cpu_hotplug_disabled++;
1399 
1400 	cpu_maps_update_done();
1401 	return error;
1402 }
1403 
1404 void __weak arch_thaw_secondary_cpus_begin(void)
1405 {
1406 }
1407 
1408 void __weak arch_thaw_secondary_cpus_end(void)
1409 {
1410 }
1411 
1412 void thaw_secondary_cpus(void)
1413 {
1414 	int cpu, error;
1415 
1416 	/* Allow everyone to use the CPU hotplug again */
1417 	cpu_maps_update_begin();
1418 	__cpu_hotplug_enable();
1419 	if (cpumask_empty(frozen_cpus))
1420 		goto out;
1421 
1422 	pr_info("Enabling non-boot CPUs ...\n");
1423 
1424 	arch_thaw_secondary_cpus_begin();
1425 
1426 	for_each_cpu(cpu, frozen_cpus) {
1427 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1428 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1429 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1430 		if (!error) {
1431 			pr_info("CPU%d is up\n", cpu);
1432 			continue;
1433 		}
1434 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1435 	}
1436 
1437 	arch_thaw_secondary_cpus_end();
1438 
1439 	cpumask_clear(frozen_cpus);
1440 out:
1441 	cpu_maps_update_done();
1442 }
1443 
1444 static int __init alloc_frozen_cpus(void)
1445 {
1446 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1447 		return -ENOMEM;
1448 	return 0;
1449 }
1450 core_initcall(alloc_frozen_cpus);
1451 
1452 /*
1453  * When callbacks for CPU hotplug notifications are being executed, we must
1454  * ensure that the state of the system with respect to the tasks being frozen
1455  * or not, as reported by the notification, remains unchanged *throughout the
1456  * duration* of the execution of the callbacks.
1457  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1458  *
1459  * This synchronization is implemented by mutually excluding regular CPU
1460  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1461  * Hibernate notifications.
1462  */
1463 static int
1464 cpu_hotplug_pm_callback(struct notifier_block *nb,
1465 			unsigned long action, void *ptr)
1466 {
1467 	switch (action) {
1468 
1469 	case PM_SUSPEND_PREPARE:
1470 	case PM_HIBERNATION_PREPARE:
1471 		cpu_hotplug_disable();
1472 		break;
1473 
1474 	case PM_POST_SUSPEND:
1475 	case PM_POST_HIBERNATION:
1476 		cpu_hotplug_enable();
1477 		break;
1478 
1479 	default:
1480 		return NOTIFY_DONE;
1481 	}
1482 
1483 	return NOTIFY_OK;
1484 }
1485 
1486 
1487 static int __init cpu_hotplug_pm_sync_init(void)
1488 {
1489 	/*
1490 	 * cpu_hotplug_pm_callback has higher priority than x86
1491 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1492 	 * to disable cpu hotplug to avoid cpu hotplug race.
1493 	 */
1494 	pm_notifier(cpu_hotplug_pm_callback, 0);
1495 	return 0;
1496 }
1497 core_initcall(cpu_hotplug_pm_sync_init);
1498 
1499 #endif /* CONFIG_PM_SLEEP_SMP */
1500 
1501 int __boot_cpu_id;
1502 
1503 #endif /* CONFIG_SMP */
1504 
1505 /* Boot processor state steps */
1506 static struct cpuhp_step cpuhp_hp_states[] = {
1507 	[CPUHP_OFFLINE] = {
1508 		.name			= "offline",
1509 		.startup.single		= NULL,
1510 		.teardown.single	= NULL,
1511 	},
1512 #ifdef CONFIG_SMP
1513 	[CPUHP_CREATE_THREADS]= {
1514 		.name			= "threads:prepare",
1515 		.startup.single		= smpboot_create_threads,
1516 		.teardown.single	= NULL,
1517 		.cant_stop		= true,
1518 	},
1519 	[CPUHP_PERF_PREPARE] = {
1520 		.name			= "perf:prepare",
1521 		.startup.single		= perf_event_init_cpu,
1522 		.teardown.single	= perf_event_exit_cpu,
1523 	},
1524 	[CPUHP_WORKQUEUE_PREP] = {
1525 		.name			= "workqueue:prepare",
1526 		.startup.single		= workqueue_prepare_cpu,
1527 		.teardown.single	= NULL,
1528 	},
1529 	[CPUHP_HRTIMERS_PREPARE] = {
1530 		.name			= "hrtimers:prepare",
1531 		.startup.single		= hrtimers_prepare_cpu,
1532 		.teardown.single	= hrtimers_dead_cpu,
1533 	},
1534 	[CPUHP_SMPCFD_PREPARE] = {
1535 		.name			= "smpcfd:prepare",
1536 		.startup.single		= smpcfd_prepare_cpu,
1537 		.teardown.single	= smpcfd_dead_cpu,
1538 	},
1539 	[CPUHP_RELAY_PREPARE] = {
1540 		.name			= "relay:prepare",
1541 		.startup.single		= relay_prepare_cpu,
1542 		.teardown.single	= NULL,
1543 	},
1544 	[CPUHP_SLAB_PREPARE] = {
1545 		.name			= "slab:prepare",
1546 		.startup.single		= slab_prepare_cpu,
1547 		.teardown.single	= slab_dead_cpu,
1548 	},
1549 	[CPUHP_RCUTREE_PREP] = {
1550 		.name			= "RCU/tree:prepare",
1551 		.startup.single		= rcutree_prepare_cpu,
1552 		.teardown.single	= rcutree_dead_cpu,
1553 	},
1554 	/*
1555 	 * On the tear-down path, timers_dead_cpu() must be invoked
1556 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1557 	 * otherwise a RCU stall occurs.
1558 	 */
1559 	[CPUHP_TIMERS_PREPARE] = {
1560 		.name			= "timers:prepare",
1561 		.startup.single		= timers_prepare_cpu,
1562 		.teardown.single	= timers_dead_cpu,
1563 	},
1564 	/* Kicks the plugged cpu into life */
1565 	[CPUHP_BRINGUP_CPU] = {
1566 		.name			= "cpu:bringup",
1567 		.startup.single		= bringup_cpu,
1568 		.teardown.single	= finish_cpu,
1569 		.cant_stop		= true,
1570 	},
1571 	/* Final state before CPU kills itself */
1572 	[CPUHP_AP_IDLE_DEAD] = {
1573 		.name			= "idle:dead",
1574 	},
1575 	/*
1576 	 * Last state before CPU enters the idle loop to die. Transient state
1577 	 * for synchronization.
1578 	 */
1579 	[CPUHP_AP_OFFLINE] = {
1580 		.name			= "ap:offline",
1581 		.cant_stop		= true,
1582 	},
1583 	/* First state is scheduler control. Interrupts are disabled */
1584 	[CPUHP_AP_SCHED_STARTING] = {
1585 		.name			= "sched:starting",
1586 		.startup.single		= sched_cpu_starting,
1587 		.teardown.single	= sched_cpu_dying,
1588 	},
1589 	[CPUHP_AP_RCUTREE_DYING] = {
1590 		.name			= "RCU/tree:dying",
1591 		.startup.single		= NULL,
1592 		.teardown.single	= rcutree_dying_cpu,
1593 	},
1594 	[CPUHP_AP_SMPCFD_DYING] = {
1595 		.name			= "smpcfd:dying",
1596 		.startup.single		= NULL,
1597 		.teardown.single	= smpcfd_dying_cpu,
1598 	},
1599 	/* Entry state on starting. Interrupts enabled from here on. Transient
1600 	 * state for synchronsization */
1601 	[CPUHP_AP_ONLINE] = {
1602 		.name			= "ap:online",
1603 	},
1604 	/*
1605 	 * Handled on controll processor until the plugged processor manages
1606 	 * this itself.
1607 	 */
1608 	[CPUHP_TEARDOWN_CPU] = {
1609 		.name			= "cpu:teardown",
1610 		.startup.single		= NULL,
1611 		.teardown.single	= takedown_cpu,
1612 		.cant_stop		= true,
1613 	},
1614 	/* Handle smpboot threads park/unpark */
1615 	[CPUHP_AP_SMPBOOT_THREADS] = {
1616 		.name			= "smpboot/threads:online",
1617 		.startup.single		= smpboot_unpark_threads,
1618 		.teardown.single	= smpboot_park_threads,
1619 	},
1620 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1621 		.name			= "irq/affinity:online",
1622 		.startup.single		= irq_affinity_online_cpu,
1623 		.teardown.single	= NULL,
1624 	},
1625 	[CPUHP_AP_PERF_ONLINE] = {
1626 		.name			= "perf:online",
1627 		.startup.single		= perf_event_init_cpu,
1628 		.teardown.single	= perf_event_exit_cpu,
1629 	},
1630 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1631 		.name			= "lockup_detector:online",
1632 		.startup.single		= lockup_detector_online_cpu,
1633 		.teardown.single	= lockup_detector_offline_cpu,
1634 	},
1635 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1636 		.name			= "workqueue:online",
1637 		.startup.single		= workqueue_online_cpu,
1638 		.teardown.single	= workqueue_offline_cpu,
1639 	},
1640 	[CPUHP_AP_RCUTREE_ONLINE] = {
1641 		.name			= "RCU/tree:online",
1642 		.startup.single		= rcutree_online_cpu,
1643 		.teardown.single	= rcutree_offline_cpu,
1644 	},
1645 #endif
1646 	/*
1647 	 * The dynamically registered state space is here
1648 	 */
1649 
1650 #ifdef CONFIG_SMP
1651 	/* Last state is scheduler control setting the cpu active */
1652 	[CPUHP_AP_ACTIVE] = {
1653 		.name			= "sched:active",
1654 		.startup.single		= sched_cpu_activate,
1655 		.teardown.single	= sched_cpu_deactivate,
1656 	},
1657 #endif
1658 
1659 	/* CPU is fully up and running. */
1660 	[CPUHP_ONLINE] = {
1661 		.name			= "online",
1662 		.startup.single		= NULL,
1663 		.teardown.single	= NULL,
1664 	},
1665 };
1666 
1667 /* Sanity check for callbacks */
1668 static int cpuhp_cb_check(enum cpuhp_state state)
1669 {
1670 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1671 		return -EINVAL;
1672 	return 0;
1673 }
1674 
1675 /*
1676  * Returns a free for dynamic slot assignment of the Online state. The states
1677  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1678  * by having no name assigned.
1679  */
1680 static int cpuhp_reserve_state(enum cpuhp_state state)
1681 {
1682 	enum cpuhp_state i, end;
1683 	struct cpuhp_step *step;
1684 
1685 	switch (state) {
1686 	case CPUHP_AP_ONLINE_DYN:
1687 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1688 		end = CPUHP_AP_ONLINE_DYN_END;
1689 		break;
1690 	case CPUHP_BP_PREPARE_DYN:
1691 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1692 		end = CPUHP_BP_PREPARE_DYN_END;
1693 		break;
1694 	default:
1695 		return -EINVAL;
1696 	}
1697 
1698 	for (i = state; i <= end; i++, step++) {
1699 		if (!step->name)
1700 			return i;
1701 	}
1702 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1703 	return -ENOSPC;
1704 }
1705 
1706 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1707 				 int (*startup)(unsigned int cpu),
1708 				 int (*teardown)(unsigned int cpu),
1709 				 bool multi_instance)
1710 {
1711 	/* (Un)Install the callbacks for further cpu hotplug operations */
1712 	struct cpuhp_step *sp;
1713 	int ret = 0;
1714 
1715 	/*
1716 	 * If name is NULL, then the state gets removed.
1717 	 *
1718 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1719 	 * the first allocation from these dynamic ranges, so the removal
1720 	 * would trigger a new allocation and clear the wrong (already
1721 	 * empty) state, leaving the callbacks of the to be cleared state
1722 	 * dangling, which causes wreckage on the next hotplug operation.
1723 	 */
1724 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1725 		     state == CPUHP_BP_PREPARE_DYN)) {
1726 		ret = cpuhp_reserve_state(state);
1727 		if (ret < 0)
1728 			return ret;
1729 		state = ret;
1730 	}
1731 	sp = cpuhp_get_step(state);
1732 	if (name && sp->name)
1733 		return -EBUSY;
1734 
1735 	sp->startup.single = startup;
1736 	sp->teardown.single = teardown;
1737 	sp->name = name;
1738 	sp->multi_instance = multi_instance;
1739 	INIT_HLIST_HEAD(&sp->list);
1740 	return ret;
1741 }
1742 
1743 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1744 {
1745 	return cpuhp_get_step(state)->teardown.single;
1746 }
1747 
1748 /*
1749  * Call the startup/teardown function for a step either on the AP or
1750  * on the current CPU.
1751  */
1752 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1753 			    struct hlist_node *node)
1754 {
1755 	struct cpuhp_step *sp = cpuhp_get_step(state);
1756 	int ret;
1757 
1758 	/*
1759 	 * If there's nothing to do, we done.
1760 	 * Relies on the union for multi_instance.
1761 	 */
1762 	if ((bringup && !sp->startup.single) ||
1763 	    (!bringup && !sp->teardown.single))
1764 		return 0;
1765 	/*
1766 	 * The non AP bound callbacks can fail on bringup. On teardown
1767 	 * e.g. module removal we crash for now.
1768 	 */
1769 #ifdef CONFIG_SMP
1770 	if (cpuhp_is_ap_state(state))
1771 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1772 	else
1773 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1774 #else
1775 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1776 #endif
1777 	BUG_ON(ret && !bringup);
1778 	return ret;
1779 }
1780 
1781 /*
1782  * Called from __cpuhp_setup_state on a recoverable failure.
1783  *
1784  * Note: The teardown callbacks for rollback are not allowed to fail!
1785  */
1786 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1787 				   struct hlist_node *node)
1788 {
1789 	int cpu;
1790 
1791 	/* Roll back the already executed steps on the other cpus */
1792 	for_each_present_cpu(cpu) {
1793 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1794 		int cpustate = st->state;
1795 
1796 		if (cpu >= failedcpu)
1797 			break;
1798 
1799 		/* Did we invoke the startup call on that cpu ? */
1800 		if (cpustate >= state)
1801 			cpuhp_issue_call(cpu, state, false, node);
1802 	}
1803 }
1804 
1805 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1806 					  struct hlist_node *node,
1807 					  bool invoke)
1808 {
1809 	struct cpuhp_step *sp;
1810 	int cpu;
1811 	int ret;
1812 
1813 	lockdep_assert_cpus_held();
1814 
1815 	sp = cpuhp_get_step(state);
1816 	if (sp->multi_instance == false)
1817 		return -EINVAL;
1818 
1819 	mutex_lock(&cpuhp_state_mutex);
1820 
1821 	if (!invoke || !sp->startup.multi)
1822 		goto add_node;
1823 
1824 	/*
1825 	 * Try to call the startup callback for each present cpu
1826 	 * depending on the hotplug state of the cpu.
1827 	 */
1828 	for_each_present_cpu(cpu) {
1829 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1830 		int cpustate = st->state;
1831 
1832 		if (cpustate < state)
1833 			continue;
1834 
1835 		ret = cpuhp_issue_call(cpu, state, true, node);
1836 		if (ret) {
1837 			if (sp->teardown.multi)
1838 				cpuhp_rollback_install(cpu, state, node);
1839 			goto unlock;
1840 		}
1841 	}
1842 add_node:
1843 	ret = 0;
1844 	hlist_add_head(node, &sp->list);
1845 unlock:
1846 	mutex_unlock(&cpuhp_state_mutex);
1847 	return ret;
1848 }
1849 
1850 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1851 			       bool invoke)
1852 {
1853 	int ret;
1854 
1855 	cpus_read_lock();
1856 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1857 	cpus_read_unlock();
1858 	return ret;
1859 }
1860 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1861 
1862 /**
1863  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1864  * @state:		The state to setup
1865  * @invoke:		If true, the startup function is invoked for cpus where
1866  *			cpu state >= @state
1867  * @startup:		startup callback function
1868  * @teardown:		teardown callback function
1869  * @multi_instance:	State is set up for multiple instances which get
1870  *			added afterwards.
1871  *
1872  * The caller needs to hold cpus read locked while calling this function.
1873  * Returns:
1874  *   On success:
1875  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1876  *      0 for all other states
1877  *   On failure: proper (negative) error code
1878  */
1879 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1880 				   const char *name, bool invoke,
1881 				   int (*startup)(unsigned int cpu),
1882 				   int (*teardown)(unsigned int cpu),
1883 				   bool multi_instance)
1884 {
1885 	int cpu, ret = 0;
1886 	bool dynstate;
1887 
1888 	lockdep_assert_cpus_held();
1889 
1890 	if (cpuhp_cb_check(state) || !name)
1891 		return -EINVAL;
1892 
1893 	mutex_lock(&cpuhp_state_mutex);
1894 
1895 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1896 				    multi_instance);
1897 
1898 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1899 	if (ret > 0 && dynstate) {
1900 		state = ret;
1901 		ret = 0;
1902 	}
1903 
1904 	if (ret || !invoke || !startup)
1905 		goto out;
1906 
1907 	/*
1908 	 * Try to call the startup callback for each present cpu
1909 	 * depending on the hotplug state of the cpu.
1910 	 */
1911 	for_each_present_cpu(cpu) {
1912 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1913 		int cpustate = st->state;
1914 
1915 		if (cpustate < state)
1916 			continue;
1917 
1918 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1919 		if (ret) {
1920 			if (teardown)
1921 				cpuhp_rollback_install(cpu, state, NULL);
1922 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1923 			goto out;
1924 		}
1925 	}
1926 out:
1927 	mutex_unlock(&cpuhp_state_mutex);
1928 	/*
1929 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1930 	 * dynamically allocated state in case of success.
1931 	 */
1932 	if (!ret && dynstate)
1933 		return state;
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1937 
1938 int __cpuhp_setup_state(enum cpuhp_state state,
1939 			const char *name, bool invoke,
1940 			int (*startup)(unsigned int cpu),
1941 			int (*teardown)(unsigned int cpu),
1942 			bool multi_instance)
1943 {
1944 	int ret;
1945 
1946 	cpus_read_lock();
1947 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1948 					     teardown, multi_instance);
1949 	cpus_read_unlock();
1950 	return ret;
1951 }
1952 EXPORT_SYMBOL(__cpuhp_setup_state);
1953 
1954 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1955 				  struct hlist_node *node, bool invoke)
1956 {
1957 	struct cpuhp_step *sp = cpuhp_get_step(state);
1958 	int cpu;
1959 
1960 	BUG_ON(cpuhp_cb_check(state));
1961 
1962 	if (!sp->multi_instance)
1963 		return -EINVAL;
1964 
1965 	cpus_read_lock();
1966 	mutex_lock(&cpuhp_state_mutex);
1967 
1968 	if (!invoke || !cpuhp_get_teardown_cb(state))
1969 		goto remove;
1970 	/*
1971 	 * Call the teardown callback for each present cpu depending
1972 	 * on the hotplug state of the cpu. This function is not
1973 	 * allowed to fail currently!
1974 	 */
1975 	for_each_present_cpu(cpu) {
1976 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1977 		int cpustate = st->state;
1978 
1979 		if (cpustate >= state)
1980 			cpuhp_issue_call(cpu, state, false, node);
1981 	}
1982 
1983 remove:
1984 	hlist_del(node);
1985 	mutex_unlock(&cpuhp_state_mutex);
1986 	cpus_read_unlock();
1987 
1988 	return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1991 
1992 /**
1993  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1994  * @state:	The state to remove
1995  * @invoke:	If true, the teardown function is invoked for cpus where
1996  *		cpu state >= @state
1997  *
1998  * The caller needs to hold cpus read locked while calling this function.
1999  * The teardown callback is currently not allowed to fail. Think
2000  * about module removal!
2001  */
2002 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2003 {
2004 	struct cpuhp_step *sp = cpuhp_get_step(state);
2005 	int cpu;
2006 
2007 	BUG_ON(cpuhp_cb_check(state));
2008 
2009 	lockdep_assert_cpus_held();
2010 
2011 	mutex_lock(&cpuhp_state_mutex);
2012 	if (sp->multi_instance) {
2013 		WARN(!hlist_empty(&sp->list),
2014 		     "Error: Removing state %d which has instances left.\n",
2015 		     state);
2016 		goto remove;
2017 	}
2018 
2019 	if (!invoke || !cpuhp_get_teardown_cb(state))
2020 		goto remove;
2021 
2022 	/*
2023 	 * Call the teardown callback for each present cpu depending
2024 	 * on the hotplug state of the cpu. This function is not
2025 	 * allowed to fail currently!
2026 	 */
2027 	for_each_present_cpu(cpu) {
2028 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2029 		int cpustate = st->state;
2030 
2031 		if (cpustate >= state)
2032 			cpuhp_issue_call(cpu, state, false, NULL);
2033 	}
2034 remove:
2035 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2036 	mutex_unlock(&cpuhp_state_mutex);
2037 }
2038 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2039 
2040 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2041 {
2042 	cpus_read_lock();
2043 	__cpuhp_remove_state_cpuslocked(state, invoke);
2044 	cpus_read_unlock();
2045 }
2046 EXPORT_SYMBOL(__cpuhp_remove_state);
2047 
2048 #ifdef CONFIG_HOTPLUG_SMT
2049 static void cpuhp_offline_cpu_device(unsigned int cpu)
2050 {
2051 	struct device *dev = get_cpu_device(cpu);
2052 
2053 	dev->offline = true;
2054 	/* Tell user space about the state change */
2055 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2056 }
2057 
2058 static void cpuhp_online_cpu_device(unsigned int cpu)
2059 {
2060 	struct device *dev = get_cpu_device(cpu);
2061 
2062 	dev->offline = false;
2063 	/* Tell user space about the state change */
2064 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2065 }
2066 
2067 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2068 {
2069 	int cpu, ret = 0;
2070 
2071 	cpu_maps_update_begin();
2072 	for_each_online_cpu(cpu) {
2073 		if (topology_is_primary_thread(cpu))
2074 			continue;
2075 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2076 		if (ret)
2077 			break;
2078 		/*
2079 		 * As this needs to hold the cpu maps lock it's impossible
2080 		 * to call device_offline() because that ends up calling
2081 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2082 		 * needs to be held as this might race against in kernel
2083 		 * abusers of the hotplug machinery (thermal management).
2084 		 *
2085 		 * So nothing would update device:offline state. That would
2086 		 * leave the sysfs entry stale and prevent onlining after
2087 		 * smt control has been changed to 'off' again. This is
2088 		 * called under the sysfs hotplug lock, so it is properly
2089 		 * serialized against the regular offline usage.
2090 		 */
2091 		cpuhp_offline_cpu_device(cpu);
2092 	}
2093 	if (!ret)
2094 		cpu_smt_control = ctrlval;
2095 	cpu_maps_update_done();
2096 	return ret;
2097 }
2098 
2099 int cpuhp_smt_enable(void)
2100 {
2101 	int cpu, ret = 0;
2102 
2103 	cpu_maps_update_begin();
2104 	cpu_smt_control = CPU_SMT_ENABLED;
2105 	for_each_present_cpu(cpu) {
2106 		/* Skip online CPUs and CPUs on offline nodes */
2107 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2108 			continue;
2109 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2110 		if (ret)
2111 			break;
2112 		/* See comment in cpuhp_smt_disable() */
2113 		cpuhp_online_cpu_device(cpu);
2114 	}
2115 	cpu_maps_update_done();
2116 	return ret;
2117 }
2118 #endif
2119 
2120 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2121 static ssize_t show_cpuhp_state(struct device *dev,
2122 				struct device_attribute *attr, char *buf)
2123 {
2124 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2125 
2126 	return sprintf(buf, "%d\n", st->state);
2127 }
2128 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2129 
2130 static ssize_t write_cpuhp_target(struct device *dev,
2131 				  struct device_attribute *attr,
2132 				  const char *buf, size_t count)
2133 {
2134 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2135 	struct cpuhp_step *sp;
2136 	int target, ret;
2137 
2138 	ret = kstrtoint(buf, 10, &target);
2139 	if (ret)
2140 		return ret;
2141 
2142 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2143 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2144 		return -EINVAL;
2145 #else
2146 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2147 		return -EINVAL;
2148 #endif
2149 
2150 	ret = lock_device_hotplug_sysfs();
2151 	if (ret)
2152 		return ret;
2153 
2154 	mutex_lock(&cpuhp_state_mutex);
2155 	sp = cpuhp_get_step(target);
2156 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2157 	mutex_unlock(&cpuhp_state_mutex);
2158 	if (ret)
2159 		goto out;
2160 
2161 	if (st->state < target)
2162 		ret = cpu_up(dev->id, target);
2163 	else
2164 		ret = cpu_down(dev->id, target);
2165 out:
2166 	unlock_device_hotplug();
2167 	return ret ? ret : count;
2168 }
2169 
2170 static ssize_t show_cpuhp_target(struct device *dev,
2171 				 struct device_attribute *attr, char *buf)
2172 {
2173 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2174 
2175 	return sprintf(buf, "%d\n", st->target);
2176 }
2177 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2178 
2179 
2180 static ssize_t write_cpuhp_fail(struct device *dev,
2181 				struct device_attribute *attr,
2182 				const char *buf, size_t count)
2183 {
2184 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2185 	struct cpuhp_step *sp;
2186 	int fail, ret;
2187 
2188 	ret = kstrtoint(buf, 10, &fail);
2189 	if (ret)
2190 		return ret;
2191 
2192 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2193 		return -EINVAL;
2194 
2195 	/*
2196 	 * Cannot fail STARTING/DYING callbacks.
2197 	 */
2198 	if (cpuhp_is_atomic_state(fail))
2199 		return -EINVAL;
2200 
2201 	/*
2202 	 * Cannot fail anything that doesn't have callbacks.
2203 	 */
2204 	mutex_lock(&cpuhp_state_mutex);
2205 	sp = cpuhp_get_step(fail);
2206 	if (!sp->startup.single && !sp->teardown.single)
2207 		ret = -EINVAL;
2208 	mutex_unlock(&cpuhp_state_mutex);
2209 	if (ret)
2210 		return ret;
2211 
2212 	st->fail = fail;
2213 
2214 	return count;
2215 }
2216 
2217 static ssize_t show_cpuhp_fail(struct device *dev,
2218 			       struct device_attribute *attr, char *buf)
2219 {
2220 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2221 
2222 	return sprintf(buf, "%d\n", st->fail);
2223 }
2224 
2225 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2226 
2227 static struct attribute *cpuhp_cpu_attrs[] = {
2228 	&dev_attr_state.attr,
2229 	&dev_attr_target.attr,
2230 	&dev_attr_fail.attr,
2231 	NULL
2232 };
2233 
2234 static const struct attribute_group cpuhp_cpu_attr_group = {
2235 	.attrs = cpuhp_cpu_attrs,
2236 	.name = "hotplug",
2237 	NULL
2238 };
2239 
2240 static ssize_t show_cpuhp_states(struct device *dev,
2241 				 struct device_attribute *attr, char *buf)
2242 {
2243 	ssize_t cur, res = 0;
2244 	int i;
2245 
2246 	mutex_lock(&cpuhp_state_mutex);
2247 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2248 		struct cpuhp_step *sp = cpuhp_get_step(i);
2249 
2250 		if (sp->name) {
2251 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2252 			buf += cur;
2253 			res += cur;
2254 		}
2255 	}
2256 	mutex_unlock(&cpuhp_state_mutex);
2257 	return res;
2258 }
2259 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2260 
2261 static struct attribute *cpuhp_cpu_root_attrs[] = {
2262 	&dev_attr_states.attr,
2263 	NULL
2264 };
2265 
2266 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2267 	.attrs = cpuhp_cpu_root_attrs,
2268 	.name = "hotplug",
2269 	NULL
2270 };
2271 
2272 #ifdef CONFIG_HOTPLUG_SMT
2273 
2274 static ssize_t
2275 __store_smt_control(struct device *dev, struct device_attribute *attr,
2276 		    const char *buf, size_t count)
2277 {
2278 	int ctrlval, ret;
2279 
2280 	if (sysfs_streq(buf, "on"))
2281 		ctrlval = CPU_SMT_ENABLED;
2282 	else if (sysfs_streq(buf, "off"))
2283 		ctrlval = CPU_SMT_DISABLED;
2284 	else if (sysfs_streq(buf, "forceoff"))
2285 		ctrlval = CPU_SMT_FORCE_DISABLED;
2286 	else
2287 		return -EINVAL;
2288 
2289 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2290 		return -EPERM;
2291 
2292 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2293 		return -ENODEV;
2294 
2295 	ret = lock_device_hotplug_sysfs();
2296 	if (ret)
2297 		return ret;
2298 
2299 	if (ctrlval != cpu_smt_control) {
2300 		switch (ctrlval) {
2301 		case CPU_SMT_ENABLED:
2302 			ret = cpuhp_smt_enable();
2303 			break;
2304 		case CPU_SMT_DISABLED:
2305 		case CPU_SMT_FORCE_DISABLED:
2306 			ret = cpuhp_smt_disable(ctrlval);
2307 			break;
2308 		}
2309 	}
2310 
2311 	unlock_device_hotplug();
2312 	return ret ? ret : count;
2313 }
2314 
2315 #else /* !CONFIG_HOTPLUG_SMT */
2316 static ssize_t
2317 __store_smt_control(struct device *dev, struct device_attribute *attr,
2318 		    const char *buf, size_t count)
2319 {
2320 	return -ENODEV;
2321 }
2322 #endif /* CONFIG_HOTPLUG_SMT */
2323 
2324 static const char *smt_states[] = {
2325 	[CPU_SMT_ENABLED]		= "on",
2326 	[CPU_SMT_DISABLED]		= "off",
2327 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2328 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2329 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2330 };
2331 
2332 static ssize_t
2333 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2334 {
2335 	const char *state = smt_states[cpu_smt_control];
2336 
2337 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2338 }
2339 
2340 static ssize_t
2341 store_smt_control(struct device *dev, struct device_attribute *attr,
2342 		  const char *buf, size_t count)
2343 {
2344 	return __store_smt_control(dev, attr, buf, count);
2345 }
2346 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2347 
2348 static ssize_t
2349 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2350 {
2351 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2352 }
2353 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2354 
2355 static struct attribute *cpuhp_smt_attrs[] = {
2356 	&dev_attr_control.attr,
2357 	&dev_attr_active.attr,
2358 	NULL
2359 };
2360 
2361 static const struct attribute_group cpuhp_smt_attr_group = {
2362 	.attrs = cpuhp_smt_attrs,
2363 	.name = "smt",
2364 	NULL
2365 };
2366 
2367 static int __init cpu_smt_sysfs_init(void)
2368 {
2369 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2370 				  &cpuhp_smt_attr_group);
2371 }
2372 
2373 static int __init cpuhp_sysfs_init(void)
2374 {
2375 	int cpu, ret;
2376 
2377 	ret = cpu_smt_sysfs_init();
2378 	if (ret)
2379 		return ret;
2380 
2381 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2382 				 &cpuhp_cpu_root_attr_group);
2383 	if (ret)
2384 		return ret;
2385 
2386 	for_each_possible_cpu(cpu) {
2387 		struct device *dev = get_cpu_device(cpu);
2388 
2389 		if (!dev)
2390 			continue;
2391 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2392 		if (ret)
2393 			return ret;
2394 	}
2395 	return 0;
2396 }
2397 device_initcall(cpuhp_sysfs_init);
2398 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2399 
2400 /*
2401  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2402  * represents all NR_CPUS bits binary values of 1<<nr.
2403  *
2404  * It is used by cpumask_of() to get a constant address to a CPU
2405  * mask value that has a single bit set only.
2406  */
2407 
2408 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2409 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2410 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2411 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2412 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2413 
2414 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2415 
2416 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2417 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2418 #if BITS_PER_LONG > 32
2419 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2420 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2421 #endif
2422 };
2423 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2424 
2425 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2426 EXPORT_SYMBOL(cpu_all_bits);
2427 
2428 #ifdef CONFIG_INIT_ALL_POSSIBLE
2429 struct cpumask __cpu_possible_mask __read_mostly
2430 	= {CPU_BITS_ALL};
2431 #else
2432 struct cpumask __cpu_possible_mask __read_mostly;
2433 #endif
2434 EXPORT_SYMBOL(__cpu_possible_mask);
2435 
2436 struct cpumask __cpu_online_mask __read_mostly;
2437 EXPORT_SYMBOL(__cpu_online_mask);
2438 
2439 struct cpumask __cpu_present_mask __read_mostly;
2440 EXPORT_SYMBOL(__cpu_present_mask);
2441 
2442 struct cpumask __cpu_active_mask __read_mostly;
2443 EXPORT_SYMBOL(__cpu_active_mask);
2444 
2445 atomic_t __num_online_cpus __read_mostly;
2446 EXPORT_SYMBOL(__num_online_cpus);
2447 
2448 void init_cpu_present(const struct cpumask *src)
2449 {
2450 	cpumask_copy(&__cpu_present_mask, src);
2451 }
2452 
2453 void init_cpu_possible(const struct cpumask *src)
2454 {
2455 	cpumask_copy(&__cpu_possible_mask, src);
2456 }
2457 
2458 void init_cpu_online(const struct cpumask *src)
2459 {
2460 	cpumask_copy(&__cpu_online_mask, src);
2461 }
2462 
2463 void set_cpu_online(unsigned int cpu, bool online)
2464 {
2465 	/*
2466 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2467 	 * function by the reboot and kexec code which invoke it from
2468 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2469 	 * regular CPU hotplug is properly serialized.
2470 	 *
2471 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2472 	 * does not protect readers which are not serialized against
2473 	 * concurrent hotplug operations.
2474 	 */
2475 	if (online) {
2476 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2477 			atomic_inc(&__num_online_cpus);
2478 	} else {
2479 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2480 			atomic_dec(&__num_online_cpus);
2481 	}
2482 }
2483 
2484 /*
2485  * Activate the first processor.
2486  */
2487 void __init boot_cpu_init(void)
2488 {
2489 	int cpu = smp_processor_id();
2490 
2491 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2492 	set_cpu_online(cpu, true);
2493 	set_cpu_active(cpu, true);
2494 	set_cpu_present(cpu, true);
2495 	set_cpu_possible(cpu, true);
2496 
2497 #ifdef CONFIG_SMP
2498 	__boot_cpu_id = cpu;
2499 #endif
2500 }
2501 
2502 /*
2503  * Must be called _AFTER_ setting up the per_cpu areas
2504  */
2505 void __init boot_cpu_hotplug_init(void)
2506 {
2507 #ifdef CONFIG_SMP
2508 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2509 #endif
2510 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2511 }
2512 
2513 /*
2514  * These are used for a global "mitigations=" cmdline option for toggling
2515  * optional CPU mitigations.
2516  */
2517 enum cpu_mitigations {
2518 	CPU_MITIGATIONS_OFF,
2519 	CPU_MITIGATIONS_AUTO,
2520 	CPU_MITIGATIONS_AUTO_NOSMT,
2521 };
2522 
2523 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2524 	CPU_MITIGATIONS_AUTO;
2525 
2526 static int __init mitigations_parse_cmdline(char *arg)
2527 {
2528 	if (!strcmp(arg, "off"))
2529 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2530 	else if (!strcmp(arg, "auto"))
2531 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2532 	else if (!strcmp(arg, "auto,nosmt"))
2533 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2534 	else
2535 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2536 			arg);
2537 
2538 	return 0;
2539 }
2540 early_param("mitigations", mitigations_parse_cmdline);
2541 
2542 /* mitigations=off */
2543 bool cpu_mitigations_off(void)
2544 {
2545 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2546 }
2547 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2548 
2549 /* mitigations=auto,nosmt */
2550 bool cpu_mitigations_auto_nosmt(void)
2551 {
2552 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2553 }
2554 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2555