xref: /openbmc/linux/kernel/cpu.c (revision c0e297dc)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <trace/events/power.h>
26 
27 #include "smpboot.h"
28 
29 #ifdef CONFIG_SMP
30 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
31 static DEFINE_MUTEX(cpu_add_remove_lock);
32 
33 /*
34  * The following two APIs (cpu_maps_update_begin/done) must be used when
35  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
36  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
37  * hotplug callback (un)registration performed using __register_cpu_notifier()
38  * or __unregister_cpu_notifier().
39  */
40 void cpu_maps_update_begin(void)
41 {
42 	mutex_lock(&cpu_add_remove_lock);
43 }
44 EXPORT_SYMBOL(cpu_notifier_register_begin);
45 
46 void cpu_maps_update_done(void)
47 {
48 	mutex_unlock(&cpu_add_remove_lock);
49 }
50 EXPORT_SYMBOL(cpu_notifier_register_done);
51 
52 static RAW_NOTIFIER_HEAD(cpu_chain);
53 
54 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
55  * Should always be manipulated under cpu_add_remove_lock
56  */
57 static int cpu_hotplug_disabled;
58 
59 #ifdef CONFIG_HOTPLUG_CPU
60 
61 static struct {
62 	struct task_struct *active_writer;
63 	/* wait queue to wake up the active_writer */
64 	wait_queue_head_t wq;
65 	/* verifies that no writer will get active while readers are active */
66 	struct mutex lock;
67 	/*
68 	 * Also blocks the new readers during
69 	 * an ongoing cpu hotplug operation.
70 	 */
71 	atomic_t refcount;
72 
73 #ifdef CONFIG_DEBUG_LOCK_ALLOC
74 	struct lockdep_map dep_map;
75 #endif
76 } cpu_hotplug = {
77 	.active_writer = NULL,
78 	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
79 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81 	.dep_map = {.name = "cpu_hotplug.lock" },
82 #endif
83 };
84 
85 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
86 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
87 #define cpuhp_lock_acquire_tryread() \
88 				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
89 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
90 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
91 
92 
93 void get_online_cpus(void)
94 {
95 	might_sleep();
96 	if (cpu_hotplug.active_writer == current)
97 		return;
98 	cpuhp_lock_acquire_read();
99 	mutex_lock(&cpu_hotplug.lock);
100 	atomic_inc(&cpu_hotplug.refcount);
101 	mutex_unlock(&cpu_hotplug.lock);
102 }
103 EXPORT_SYMBOL_GPL(get_online_cpus);
104 
105 bool try_get_online_cpus(void)
106 {
107 	if (cpu_hotplug.active_writer == current)
108 		return true;
109 	if (!mutex_trylock(&cpu_hotplug.lock))
110 		return false;
111 	cpuhp_lock_acquire_tryread();
112 	atomic_inc(&cpu_hotplug.refcount);
113 	mutex_unlock(&cpu_hotplug.lock);
114 	return true;
115 }
116 EXPORT_SYMBOL_GPL(try_get_online_cpus);
117 
118 void put_online_cpus(void)
119 {
120 	int refcount;
121 
122 	if (cpu_hotplug.active_writer == current)
123 		return;
124 
125 	refcount = atomic_dec_return(&cpu_hotplug.refcount);
126 	if (WARN_ON(refcount < 0)) /* try to fix things up */
127 		atomic_inc(&cpu_hotplug.refcount);
128 
129 	if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
130 		wake_up(&cpu_hotplug.wq);
131 
132 	cpuhp_lock_release();
133 
134 }
135 EXPORT_SYMBOL_GPL(put_online_cpus);
136 
137 /*
138  * This ensures that the hotplug operation can begin only when the
139  * refcount goes to zero.
140  *
141  * Note that during a cpu-hotplug operation, the new readers, if any,
142  * will be blocked by the cpu_hotplug.lock
143  *
144  * Since cpu_hotplug_begin() is always called after invoking
145  * cpu_maps_update_begin(), we can be sure that only one writer is active.
146  *
147  * Note that theoretically, there is a possibility of a livelock:
148  * - Refcount goes to zero, last reader wakes up the sleeping
149  *   writer.
150  * - Last reader unlocks the cpu_hotplug.lock.
151  * - A new reader arrives at this moment, bumps up the refcount.
152  * - The writer acquires the cpu_hotplug.lock finds the refcount
153  *   non zero and goes to sleep again.
154  *
155  * However, this is very difficult to achieve in practice since
156  * get_online_cpus() not an api which is called all that often.
157  *
158  */
159 void cpu_hotplug_begin(void)
160 {
161 	DEFINE_WAIT(wait);
162 
163 	cpu_hotplug.active_writer = current;
164 	cpuhp_lock_acquire();
165 
166 	for (;;) {
167 		mutex_lock(&cpu_hotplug.lock);
168 		prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
169 		if (likely(!atomic_read(&cpu_hotplug.refcount)))
170 				break;
171 		mutex_unlock(&cpu_hotplug.lock);
172 		schedule();
173 	}
174 	finish_wait(&cpu_hotplug.wq, &wait);
175 }
176 
177 void cpu_hotplug_done(void)
178 {
179 	cpu_hotplug.active_writer = NULL;
180 	mutex_unlock(&cpu_hotplug.lock);
181 	cpuhp_lock_release();
182 }
183 
184 /*
185  * Wait for currently running CPU hotplug operations to complete (if any) and
186  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
187  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
188  * hotplug path before performing hotplug operations. So acquiring that lock
189  * guarantees mutual exclusion from any currently running hotplug operations.
190  */
191 void cpu_hotplug_disable(void)
192 {
193 	cpu_maps_update_begin();
194 	cpu_hotplug_disabled = 1;
195 	cpu_maps_update_done();
196 }
197 
198 void cpu_hotplug_enable(void)
199 {
200 	cpu_maps_update_begin();
201 	cpu_hotplug_disabled = 0;
202 	cpu_maps_update_done();
203 }
204 
205 #endif	/* CONFIG_HOTPLUG_CPU */
206 
207 /* Need to know about CPUs going up/down? */
208 int __ref register_cpu_notifier(struct notifier_block *nb)
209 {
210 	int ret;
211 	cpu_maps_update_begin();
212 	ret = raw_notifier_chain_register(&cpu_chain, nb);
213 	cpu_maps_update_done();
214 	return ret;
215 }
216 
217 int __ref __register_cpu_notifier(struct notifier_block *nb)
218 {
219 	return raw_notifier_chain_register(&cpu_chain, nb);
220 }
221 
222 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
223 			int *nr_calls)
224 {
225 	int ret;
226 
227 	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
228 					nr_calls);
229 
230 	return notifier_to_errno(ret);
231 }
232 
233 static int cpu_notify(unsigned long val, void *v)
234 {
235 	return __cpu_notify(val, v, -1, NULL);
236 }
237 
238 #ifdef CONFIG_HOTPLUG_CPU
239 
240 static void cpu_notify_nofail(unsigned long val, void *v)
241 {
242 	BUG_ON(cpu_notify(val, v));
243 }
244 EXPORT_SYMBOL(register_cpu_notifier);
245 EXPORT_SYMBOL(__register_cpu_notifier);
246 
247 void __ref unregister_cpu_notifier(struct notifier_block *nb)
248 {
249 	cpu_maps_update_begin();
250 	raw_notifier_chain_unregister(&cpu_chain, nb);
251 	cpu_maps_update_done();
252 }
253 EXPORT_SYMBOL(unregister_cpu_notifier);
254 
255 void __ref __unregister_cpu_notifier(struct notifier_block *nb)
256 {
257 	raw_notifier_chain_unregister(&cpu_chain, nb);
258 }
259 EXPORT_SYMBOL(__unregister_cpu_notifier);
260 
261 /**
262  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
263  * @cpu: a CPU id
264  *
265  * This function walks all processes, finds a valid mm struct for each one and
266  * then clears a corresponding bit in mm's cpumask.  While this all sounds
267  * trivial, there are various non-obvious corner cases, which this function
268  * tries to solve in a safe manner.
269  *
270  * Also note that the function uses a somewhat relaxed locking scheme, so it may
271  * be called only for an already offlined CPU.
272  */
273 void clear_tasks_mm_cpumask(int cpu)
274 {
275 	struct task_struct *p;
276 
277 	/*
278 	 * This function is called after the cpu is taken down and marked
279 	 * offline, so its not like new tasks will ever get this cpu set in
280 	 * their mm mask. -- Peter Zijlstra
281 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
282 	 * full-fledged tasklist_lock.
283 	 */
284 	WARN_ON(cpu_online(cpu));
285 	rcu_read_lock();
286 	for_each_process(p) {
287 		struct task_struct *t;
288 
289 		/*
290 		 * Main thread might exit, but other threads may still have
291 		 * a valid mm. Find one.
292 		 */
293 		t = find_lock_task_mm(p);
294 		if (!t)
295 			continue;
296 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
297 		task_unlock(t);
298 	}
299 	rcu_read_unlock();
300 }
301 
302 static inline void check_for_tasks(int dead_cpu)
303 {
304 	struct task_struct *g, *p;
305 
306 	read_lock_irq(&tasklist_lock);
307 	do_each_thread(g, p) {
308 		if (!p->on_rq)
309 			continue;
310 		/*
311 		 * We do the check with unlocked task_rq(p)->lock.
312 		 * Order the reading to do not warn about a task,
313 		 * which was running on this cpu in the past, and
314 		 * it's just been woken on another cpu.
315 		 */
316 		rmb();
317 		if (task_cpu(p) != dead_cpu)
318 			continue;
319 
320 		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
321 			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
322 	} while_each_thread(g, p);
323 	read_unlock_irq(&tasklist_lock);
324 }
325 
326 struct take_cpu_down_param {
327 	unsigned long mod;
328 	void *hcpu;
329 };
330 
331 /* Take this CPU down. */
332 static int __ref take_cpu_down(void *_param)
333 {
334 	struct take_cpu_down_param *param = _param;
335 	int err;
336 
337 	/* Ensure this CPU doesn't handle any more interrupts. */
338 	err = __cpu_disable();
339 	if (err < 0)
340 		return err;
341 
342 	cpu_notify(CPU_DYING | param->mod, param->hcpu);
343 	/* Give up timekeeping duties */
344 	tick_handover_do_timer();
345 	/* Park the stopper thread */
346 	kthread_park(current);
347 	return 0;
348 }
349 
350 /* Requires cpu_add_remove_lock to be held */
351 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
352 {
353 	int err, nr_calls = 0;
354 	void *hcpu = (void *)(long)cpu;
355 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
356 	struct take_cpu_down_param tcd_param = {
357 		.mod = mod,
358 		.hcpu = hcpu,
359 	};
360 
361 	if (num_online_cpus() == 1)
362 		return -EBUSY;
363 
364 	if (!cpu_online(cpu))
365 		return -EINVAL;
366 
367 	cpu_hotplug_begin();
368 
369 	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
370 	if (err) {
371 		nr_calls--;
372 		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
373 		pr_warn("%s: attempt to take down CPU %u failed\n",
374 			__func__, cpu);
375 		goto out_release;
376 	}
377 
378 	/*
379 	 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
380 	 * and RCU users of this state to go away such that all new such users
381 	 * will observe it.
382 	 *
383 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
384 	 * not imply sync_sched(), so explicitly call both.
385 	 *
386 	 * Do sync before park smpboot threads to take care the rcu boost case.
387 	 */
388 #ifdef CONFIG_PREEMPT
389 	synchronize_sched();
390 #endif
391 	synchronize_rcu();
392 
393 	smpboot_park_threads(cpu);
394 
395 	/*
396 	 * Prevent irq alloc/free while the dying cpu reorganizes the
397 	 * interrupt affinities.
398 	 */
399 	irq_lock_sparse();
400 
401 	/*
402 	 * So now all preempt/rcu users must observe !cpu_active().
403 	 */
404 	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
405 	if (err) {
406 		/* CPU didn't die: tell everyone.  Can't complain. */
407 		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
408 		irq_unlock_sparse();
409 		goto out_release;
410 	}
411 	BUG_ON(cpu_online(cpu));
412 
413 	/*
414 	 * The migration_call() CPU_DYING callback will have removed all
415 	 * runnable tasks from the cpu, there's only the idle task left now
416 	 * that the migration thread is done doing the stop_machine thing.
417 	 *
418 	 * Wait for the stop thread to go away.
419 	 */
420 	while (!per_cpu(cpu_dead_idle, cpu))
421 		cpu_relax();
422 	smp_mb(); /* Read from cpu_dead_idle before __cpu_die(). */
423 	per_cpu(cpu_dead_idle, cpu) = false;
424 
425 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
426 	irq_unlock_sparse();
427 
428 	hotplug_cpu__broadcast_tick_pull(cpu);
429 	/* This actually kills the CPU. */
430 	__cpu_die(cpu);
431 
432 	/* CPU is completely dead: tell everyone.  Too late to complain. */
433 	tick_cleanup_dead_cpu(cpu);
434 	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
435 
436 	check_for_tasks(cpu);
437 
438 out_release:
439 	cpu_hotplug_done();
440 	if (!err)
441 		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
442 	return err;
443 }
444 
445 int __ref cpu_down(unsigned int cpu)
446 {
447 	int err;
448 
449 	cpu_maps_update_begin();
450 
451 	if (cpu_hotplug_disabled) {
452 		err = -EBUSY;
453 		goto out;
454 	}
455 
456 	err = _cpu_down(cpu, 0);
457 
458 out:
459 	cpu_maps_update_done();
460 	return err;
461 }
462 EXPORT_SYMBOL(cpu_down);
463 #endif /*CONFIG_HOTPLUG_CPU*/
464 
465 /*
466  * Unpark per-CPU smpboot kthreads at CPU-online time.
467  */
468 static int smpboot_thread_call(struct notifier_block *nfb,
469 			       unsigned long action, void *hcpu)
470 {
471 	int cpu = (long)hcpu;
472 
473 	switch (action & ~CPU_TASKS_FROZEN) {
474 
475 	case CPU_DOWN_FAILED:
476 	case CPU_ONLINE:
477 		smpboot_unpark_threads(cpu);
478 		break;
479 
480 	default:
481 		break;
482 	}
483 
484 	return NOTIFY_OK;
485 }
486 
487 static struct notifier_block smpboot_thread_notifier = {
488 	.notifier_call = smpboot_thread_call,
489 	.priority = CPU_PRI_SMPBOOT,
490 };
491 
492 void smpboot_thread_init(void)
493 {
494 	register_cpu_notifier(&smpboot_thread_notifier);
495 }
496 
497 /* Requires cpu_add_remove_lock to be held */
498 static int _cpu_up(unsigned int cpu, int tasks_frozen)
499 {
500 	int ret, nr_calls = 0;
501 	void *hcpu = (void *)(long)cpu;
502 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
503 	struct task_struct *idle;
504 
505 	cpu_hotplug_begin();
506 
507 	if (cpu_online(cpu) || !cpu_present(cpu)) {
508 		ret = -EINVAL;
509 		goto out;
510 	}
511 
512 	idle = idle_thread_get(cpu);
513 	if (IS_ERR(idle)) {
514 		ret = PTR_ERR(idle);
515 		goto out;
516 	}
517 
518 	ret = smpboot_create_threads(cpu);
519 	if (ret)
520 		goto out;
521 
522 	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
523 	if (ret) {
524 		nr_calls--;
525 		pr_warn("%s: attempt to bring up CPU %u failed\n",
526 			__func__, cpu);
527 		goto out_notify;
528 	}
529 
530 	/* Arch-specific enabling code. */
531 	ret = __cpu_up(cpu, idle);
532 
533 	if (ret != 0)
534 		goto out_notify;
535 	BUG_ON(!cpu_online(cpu));
536 
537 	/* Now call notifier in preparation. */
538 	cpu_notify(CPU_ONLINE | mod, hcpu);
539 
540 out_notify:
541 	if (ret != 0)
542 		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
543 out:
544 	cpu_hotplug_done();
545 
546 	return ret;
547 }
548 
549 int cpu_up(unsigned int cpu)
550 {
551 	int err = 0;
552 
553 	if (!cpu_possible(cpu)) {
554 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
555 		       cpu);
556 #if defined(CONFIG_IA64)
557 		pr_err("please check additional_cpus= boot parameter\n");
558 #endif
559 		return -EINVAL;
560 	}
561 
562 	err = try_online_node(cpu_to_node(cpu));
563 	if (err)
564 		return err;
565 
566 	cpu_maps_update_begin();
567 
568 	if (cpu_hotplug_disabled) {
569 		err = -EBUSY;
570 		goto out;
571 	}
572 
573 	err = _cpu_up(cpu, 0);
574 
575 out:
576 	cpu_maps_update_done();
577 	return err;
578 }
579 EXPORT_SYMBOL_GPL(cpu_up);
580 
581 #ifdef CONFIG_PM_SLEEP_SMP
582 static cpumask_var_t frozen_cpus;
583 
584 int disable_nonboot_cpus(void)
585 {
586 	int cpu, first_cpu, error = 0;
587 
588 	cpu_maps_update_begin();
589 	first_cpu = cpumask_first(cpu_online_mask);
590 	/*
591 	 * We take down all of the non-boot CPUs in one shot to avoid races
592 	 * with the userspace trying to use the CPU hotplug at the same time
593 	 */
594 	cpumask_clear(frozen_cpus);
595 
596 	pr_info("Disabling non-boot CPUs ...\n");
597 	for_each_online_cpu(cpu) {
598 		if (cpu == first_cpu)
599 			continue;
600 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
601 		error = _cpu_down(cpu, 1);
602 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
603 		if (!error)
604 			cpumask_set_cpu(cpu, frozen_cpus);
605 		else {
606 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
607 			break;
608 		}
609 	}
610 
611 	if (!error) {
612 		BUG_ON(num_online_cpus() > 1);
613 		/* Make sure the CPUs won't be enabled by someone else */
614 		cpu_hotplug_disabled = 1;
615 	} else {
616 		pr_err("Non-boot CPUs are not disabled\n");
617 	}
618 	cpu_maps_update_done();
619 	return error;
620 }
621 
622 void __weak arch_enable_nonboot_cpus_begin(void)
623 {
624 }
625 
626 void __weak arch_enable_nonboot_cpus_end(void)
627 {
628 }
629 
630 void __ref enable_nonboot_cpus(void)
631 {
632 	int cpu, error;
633 
634 	/* Allow everyone to use the CPU hotplug again */
635 	cpu_maps_update_begin();
636 	cpu_hotplug_disabled = 0;
637 	if (cpumask_empty(frozen_cpus))
638 		goto out;
639 
640 	pr_info("Enabling non-boot CPUs ...\n");
641 
642 	arch_enable_nonboot_cpus_begin();
643 
644 	for_each_cpu(cpu, frozen_cpus) {
645 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
646 		error = _cpu_up(cpu, 1);
647 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
648 		if (!error) {
649 			pr_info("CPU%d is up\n", cpu);
650 			continue;
651 		}
652 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
653 	}
654 
655 	arch_enable_nonboot_cpus_end();
656 
657 	cpumask_clear(frozen_cpus);
658 out:
659 	cpu_maps_update_done();
660 }
661 
662 static int __init alloc_frozen_cpus(void)
663 {
664 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
665 		return -ENOMEM;
666 	return 0;
667 }
668 core_initcall(alloc_frozen_cpus);
669 
670 /*
671  * When callbacks for CPU hotplug notifications are being executed, we must
672  * ensure that the state of the system with respect to the tasks being frozen
673  * or not, as reported by the notification, remains unchanged *throughout the
674  * duration* of the execution of the callbacks.
675  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
676  *
677  * This synchronization is implemented by mutually excluding regular CPU
678  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
679  * Hibernate notifications.
680  */
681 static int
682 cpu_hotplug_pm_callback(struct notifier_block *nb,
683 			unsigned long action, void *ptr)
684 {
685 	switch (action) {
686 
687 	case PM_SUSPEND_PREPARE:
688 	case PM_HIBERNATION_PREPARE:
689 		cpu_hotplug_disable();
690 		break;
691 
692 	case PM_POST_SUSPEND:
693 	case PM_POST_HIBERNATION:
694 		cpu_hotplug_enable();
695 		break;
696 
697 	default:
698 		return NOTIFY_DONE;
699 	}
700 
701 	return NOTIFY_OK;
702 }
703 
704 
705 static int __init cpu_hotplug_pm_sync_init(void)
706 {
707 	/*
708 	 * cpu_hotplug_pm_callback has higher priority than x86
709 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
710 	 * to disable cpu hotplug to avoid cpu hotplug race.
711 	 */
712 	pm_notifier(cpu_hotplug_pm_callback, 0);
713 	return 0;
714 }
715 core_initcall(cpu_hotplug_pm_sync_init);
716 
717 #endif /* CONFIG_PM_SLEEP_SMP */
718 
719 /**
720  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
721  * @cpu: cpu that just started
722  *
723  * This function calls the cpu_chain notifiers with CPU_STARTING.
724  * It must be called by the arch code on the new cpu, before the new cpu
725  * enables interrupts and before the "boot" cpu returns from __cpu_up().
726  */
727 void notify_cpu_starting(unsigned int cpu)
728 {
729 	unsigned long val = CPU_STARTING;
730 
731 #ifdef CONFIG_PM_SLEEP_SMP
732 	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
733 		val = CPU_STARTING_FROZEN;
734 #endif /* CONFIG_PM_SLEEP_SMP */
735 	cpu_notify(val, (void *)(long)cpu);
736 }
737 
738 #endif /* CONFIG_SMP */
739 
740 /*
741  * cpu_bit_bitmap[] is a special, "compressed" data structure that
742  * represents all NR_CPUS bits binary values of 1<<nr.
743  *
744  * It is used by cpumask_of() to get a constant address to a CPU
745  * mask value that has a single bit set only.
746  */
747 
748 /* cpu_bit_bitmap[0] is empty - so we can back into it */
749 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
750 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
751 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
752 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
753 
754 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
755 
756 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
757 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
758 #if BITS_PER_LONG > 32
759 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
760 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
761 #endif
762 };
763 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
764 
765 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
766 EXPORT_SYMBOL(cpu_all_bits);
767 
768 #ifdef CONFIG_INIT_ALL_POSSIBLE
769 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
770 	= CPU_BITS_ALL;
771 #else
772 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
773 #endif
774 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
775 EXPORT_SYMBOL(cpu_possible_mask);
776 
777 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
778 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
779 EXPORT_SYMBOL(cpu_online_mask);
780 
781 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
782 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
783 EXPORT_SYMBOL(cpu_present_mask);
784 
785 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
786 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
787 EXPORT_SYMBOL(cpu_active_mask);
788 
789 void set_cpu_possible(unsigned int cpu, bool possible)
790 {
791 	if (possible)
792 		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
793 	else
794 		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
795 }
796 
797 void set_cpu_present(unsigned int cpu, bool present)
798 {
799 	if (present)
800 		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
801 	else
802 		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
803 }
804 
805 void set_cpu_online(unsigned int cpu, bool online)
806 {
807 	if (online) {
808 		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
809 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
810 	} else {
811 		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
812 	}
813 }
814 
815 void set_cpu_active(unsigned int cpu, bool active)
816 {
817 	if (active)
818 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
819 	else
820 		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
821 }
822 
823 void init_cpu_present(const struct cpumask *src)
824 {
825 	cpumask_copy(to_cpumask(cpu_present_bits), src);
826 }
827 
828 void init_cpu_possible(const struct cpumask *src)
829 {
830 	cpumask_copy(to_cpumask(cpu_possible_bits), src);
831 }
832 
833 void init_cpu_online(const struct cpumask *src)
834 {
835 	cpumask_copy(to_cpumask(cpu_online_bits), src);
836 }
837