xref: /openbmc/linux/kernel/cpu.c (revision c040c748)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40 
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44 
45 #include "smpboot.h"
46 
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:	The current cpu state
50  * @target:	The target state
51  * @fail:	Current CPU hotplug callback state
52  * @thread:	Pointer to the hotplug thread
53  * @should_run:	Thread should execute
54  * @rollback:	Perform a rollback
55  * @single:	Single callback invocation
56  * @bringup:	Single callback bringup or teardown selector
57  * @cpu:	CPU number
58  * @node:	Remote CPU node; for multi-instance, do a
59  *		single entry callback for install/remove
60  * @last:	For multi-instance rollback, remember how far we got
61  * @cb_state:	The state for a single callback (install/uninstall)
62  * @result:	Result of the operation
63  * @ap_sync_state:	State for AP synchronization
64  * @done_up:	Signal completion to the issuer of the task for cpu-up
65  * @done_down:	Signal completion to the issuer of the task for cpu-down
66  */
67 struct cpuhp_cpu_state {
68 	enum cpuhp_state	state;
69 	enum cpuhp_state	target;
70 	enum cpuhp_state	fail;
71 #ifdef CONFIG_SMP
72 	struct task_struct	*thread;
73 	bool			should_run;
74 	bool			rollback;
75 	bool			single;
76 	bool			bringup;
77 	struct hlist_node	*node;
78 	struct hlist_node	*last;
79 	enum cpuhp_state	cb_state;
80 	int			result;
81 	atomic_t		ap_sync_state;
82 	struct completion	done_up;
83 	struct completion	done_down;
84 #endif
85 };
86 
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88 	.fail = CPUHP_INVALID,
89 };
90 
91 #ifdef CONFIG_SMP
92 cpumask_t cpus_booted_once_mask;
93 #endif
94 
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100 
101 
102 static inline void cpuhp_lock_acquire(bool bringup)
103 {
104 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106 
107 static inline void cpuhp_lock_release(bool bringup)
108 {
109 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110 }
111 #else
112 
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
115 
116 #endif
117 
118 /**
119  * struct cpuhp_step - Hotplug state machine step
120  * @name:	Name of the step
121  * @startup:	Startup function of the step
122  * @teardown:	Teardown function of the step
123  * @cant_stop:	Bringup/teardown can't be stopped at this step
124  * @multi_instance:	State has multiple instances which get added afterwards
125  */
126 struct cpuhp_step {
127 	const char		*name;
128 	union {
129 		int		(*single)(unsigned int cpu);
130 		int		(*multi)(unsigned int cpu,
131 					 struct hlist_node *node);
132 	} startup;
133 	union {
134 		int		(*single)(unsigned int cpu);
135 		int		(*multi)(unsigned int cpu,
136 					 struct hlist_node *node);
137 	} teardown;
138 	/* private: */
139 	struct hlist_head	list;
140 	/* public: */
141 	bool			cant_stop;
142 	bool			multi_instance;
143 };
144 
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
147 
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 {
150 	return cpuhp_hp_states + state;
151 }
152 
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 {
155 	return bringup ? !step->startup.single : !step->teardown.single;
156 }
157 
158 /**
159  * cpuhp_invoke_callback - Invoke the callbacks for a given state
160  * @cpu:	The cpu for which the callback should be invoked
161  * @state:	The state to do callbacks for
162  * @bringup:	True if the bringup callback should be invoked
163  * @node:	For multi-instance, do a single entry callback for install/remove
164  * @lastp:	For multi-instance rollback, remember how far we got
165  *
166  * Called from cpu hotplug and from the state register machinery.
167  *
168  * Return: %0 on success or a negative errno code
169  */
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171 				 bool bringup, struct hlist_node *node,
172 				 struct hlist_node **lastp)
173 {
174 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175 	struct cpuhp_step *step = cpuhp_get_step(state);
176 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
177 	int (*cb)(unsigned int cpu);
178 	int ret, cnt;
179 
180 	if (st->fail == state) {
181 		st->fail = CPUHP_INVALID;
182 		return -EAGAIN;
183 	}
184 
185 	if (cpuhp_step_empty(bringup, step)) {
186 		WARN_ON_ONCE(1);
187 		return 0;
188 	}
189 
190 	if (!step->multi_instance) {
191 		WARN_ON_ONCE(lastp && *lastp);
192 		cb = bringup ? step->startup.single : step->teardown.single;
193 
194 		trace_cpuhp_enter(cpu, st->target, state, cb);
195 		ret = cb(cpu);
196 		trace_cpuhp_exit(cpu, st->state, state, ret);
197 		return ret;
198 	}
199 	cbm = bringup ? step->startup.multi : step->teardown.multi;
200 
201 	/* Single invocation for instance add/remove */
202 	if (node) {
203 		WARN_ON_ONCE(lastp && *lastp);
204 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 		ret = cbm(cpu, node);
206 		trace_cpuhp_exit(cpu, st->state, state, ret);
207 		return ret;
208 	}
209 
210 	/* State transition. Invoke on all instances */
211 	cnt = 0;
212 	hlist_for_each(node, &step->list) {
213 		if (lastp && node == *lastp)
214 			break;
215 
216 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 		ret = cbm(cpu, node);
218 		trace_cpuhp_exit(cpu, st->state, state, ret);
219 		if (ret) {
220 			if (!lastp)
221 				goto err;
222 
223 			*lastp = node;
224 			return ret;
225 		}
226 		cnt++;
227 	}
228 	if (lastp)
229 		*lastp = NULL;
230 	return 0;
231 err:
232 	/* Rollback the instances if one failed */
233 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
234 	if (!cbm)
235 		return ret;
236 
237 	hlist_for_each(node, &step->list) {
238 		if (!cnt--)
239 			break;
240 
241 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242 		ret = cbm(cpu, node);
243 		trace_cpuhp_exit(cpu, st->state, state, ret);
244 		/*
245 		 * Rollback must not fail,
246 		 */
247 		WARN_ON_ONCE(ret);
248 	}
249 	return ret;
250 }
251 
252 #ifdef CONFIG_SMP
253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
254 {
255 	/*
256 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257 	 * purposes as that state is handled explicitly in cpu_down.
258 	 */
259 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260 }
261 
262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263 {
264 	struct completion *done = bringup ? &st->done_up : &st->done_down;
265 	wait_for_completion(done);
266 }
267 
268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269 {
270 	struct completion *done = bringup ? &st->done_up : &st->done_down;
271 	complete(done);
272 }
273 
274 /*
275  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276  */
277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278 {
279 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280 }
281 
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
284 	SYNC_STATE_DEAD,
285 	SYNC_STATE_KICKED,
286 	SYNC_STATE_SHOULD_DIE,
287 	SYNC_STATE_ALIVE,
288 	SYNC_STATE_SHOULD_ONLINE,
289 	SYNC_STATE_ONLINE,
290 };
291 
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 /**
294  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295  * @state:	The synchronization state to set
296  *
297  * No synchronization point. Just update of the synchronization state, but implies
298  * a full barrier so that the AP changes are visible before the control CPU proceeds.
299  */
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 {
302 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303 
304 	(void)atomic_xchg(st, state);
305 }
306 
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308 
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310 				      enum cpuhp_sync_state next_state)
311 {
312 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313 	ktime_t now, end, start = ktime_get();
314 	int sync;
315 
316 	end = start + 10ULL * NSEC_PER_SEC;
317 
318 	sync = atomic_read(st);
319 	while (1) {
320 		if (sync == state) {
321 			if (!atomic_try_cmpxchg(st, &sync, next_state))
322 				continue;
323 			return true;
324 		}
325 
326 		now = ktime_get();
327 		if (now > end) {
328 			/* Timeout. Leave the state unchanged */
329 			return false;
330 		} else if (now - start < NSEC_PER_MSEC) {
331 			/* Poll for one millisecond */
332 			arch_cpuhp_sync_state_poll();
333 		} else {
334 			usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335 		}
336 		sync = atomic_read(st);
337 	}
338 	return true;
339 }
340 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343 
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 /**
346  * cpuhp_ap_report_dead - Update synchronization state to DEAD
347  *
348  * No synchronization point. Just update of the synchronization state.
349  */
350 void cpuhp_ap_report_dead(void)
351 {
352 	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353 }
354 
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356 
357 /*
358  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359  * because the AP cannot issue complete() at this stage.
360  */
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 {
363 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364 	int sync = atomic_read(st);
365 
366 	do {
367 		/* CPU can have reported dead already. Don't overwrite that! */
368 		if (sync == SYNC_STATE_DEAD)
369 			break;
370 	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371 
372 	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373 		/* CPU reached dead state. Invoke the cleanup function */
374 		arch_cpuhp_cleanup_dead_cpu(cpu);
375 		return;
376 	}
377 
378 	/* No further action possible. Emit message and give up. */
379 	pr_err("CPU%u failed to report dead state\n", cpu);
380 }
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384 
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 /**
387  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388  *
389  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390  * for the BP to release it.
391  */
392 void cpuhp_ap_sync_alive(void)
393 {
394 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395 
396 	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397 
398 	/* Wait for the control CPU to release it. */
399 	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400 		cpu_relax();
401 }
402 
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 {
405 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406 	int sync = atomic_read(st);
407 
408 again:
409 	switch (sync) {
410 	case SYNC_STATE_DEAD:
411 		/* CPU is properly dead */
412 		break;
413 	case SYNC_STATE_KICKED:
414 		/* CPU did not come up in previous attempt */
415 		break;
416 	case SYNC_STATE_ALIVE:
417 		/* CPU is stuck cpuhp_ap_sync_alive(). */
418 		break;
419 	default:
420 		/* CPU failed to report online or dead and is in limbo state. */
421 		return false;
422 	}
423 
424 	/* Prepare for booting */
425 	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426 		goto again;
427 
428 	return true;
429 }
430 
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432 
433 /*
434  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435  * because the AP cannot issue complete() so early in the bringup.
436  */
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
438 {
439 	int ret = 0;
440 
441 	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442 		return 0;
443 
444 	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445 		pr_err("CPU%u failed to report alive state\n", cpu);
446 		ret = -EIO;
447 	}
448 
449 	/* Let the architecture cleanup the kick alive mechanics. */
450 	arch_cpuhp_cleanup_kick_cpu(cpu);
451 	return ret;
452 }
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457 
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462 
463 /*
464  * The following two APIs (cpu_maps_update_begin/done) must be used when
465  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466  */
467 void cpu_maps_update_begin(void)
468 {
469 	mutex_lock(&cpu_add_remove_lock);
470 }
471 
472 void cpu_maps_update_done(void)
473 {
474 	mutex_unlock(&cpu_add_remove_lock);
475 }
476 
477 /*
478  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479  * Should always be manipulated under cpu_add_remove_lock
480  */
481 static int cpu_hotplug_disabled;
482 
483 #ifdef CONFIG_HOTPLUG_CPU
484 
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486 
487 void cpus_read_lock(void)
488 {
489 	percpu_down_read(&cpu_hotplug_lock);
490 }
491 EXPORT_SYMBOL_GPL(cpus_read_lock);
492 
493 int cpus_read_trylock(void)
494 {
495 	return percpu_down_read_trylock(&cpu_hotplug_lock);
496 }
497 EXPORT_SYMBOL_GPL(cpus_read_trylock);
498 
499 void cpus_read_unlock(void)
500 {
501 	percpu_up_read(&cpu_hotplug_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpus_read_unlock);
504 
505 void cpus_write_lock(void)
506 {
507 	percpu_down_write(&cpu_hotplug_lock);
508 }
509 
510 void cpus_write_unlock(void)
511 {
512 	percpu_up_write(&cpu_hotplug_lock);
513 }
514 
515 void lockdep_assert_cpus_held(void)
516 {
517 	/*
518 	 * We can't have hotplug operations before userspace starts running,
519 	 * and some init codepaths will knowingly not take the hotplug lock.
520 	 * This is all valid, so mute lockdep until it makes sense to report
521 	 * unheld locks.
522 	 */
523 	if (system_state < SYSTEM_RUNNING)
524 		return;
525 
526 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
527 }
528 
529 #ifdef CONFIG_LOCKDEP
530 int lockdep_is_cpus_held(void)
531 {
532 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
533 }
534 #endif
535 
536 static void lockdep_acquire_cpus_lock(void)
537 {
538 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539 }
540 
541 static void lockdep_release_cpus_lock(void)
542 {
543 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544 }
545 
546 /*
547  * Wait for currently running CPU hotplug operations to complete (if any) and
548  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550  * hotplug path before performing hotplug operations. So acquiring that lock
551  * guarantees mutual exclusion from any currently running hotplug operations.
552  */
553 void cpu_hotplug_disable(void)
554 {
555 	cpu_maps_update_begin();
556 	cpu_hotplug_disabled++;
557 	cpu_maps_update_done();
558 }
559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560 
561 static void __cpu_hotplug_enable(void)
562 {
563 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564 		return;
565 	cpu_hotplug_disabled--;
566 }
567 
568 void cpu_hotplug_enable(void)
569 {
570 	cpu_maps_update_begin();
571 	__cpu_hotplug_enable();
572 	cpu_maps_update_done();
573 }
574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575 
576 #else
577 
578 static void lockdep_acquire_cpus_lock(void)
579 {
580 }
581 
582 static void lockdep_release_cpus_lock(void)
583 {
584 }
585 
586 #endif	/* CONFIG_HOTPLUG_CPU */
587 
588 /*
589  * Architectures that need SMT-specific errata handling during SMT hotplug
590  * should override this.
591  */
592 void __weak arch_smt_update(void) { }
593 
594 #ifdef CONFIG_HOTPLUG_SMT
595 
596 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
597 static unsigned int cpu_smt_max_threads __ro_after_init;
598 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
599 
600 void __init cpu_smt_disable(bool force)
601 {
602 	if (!cpu_smt_possible())
603 		return;
604 
605 	if (force) {
606 		pr_info("SMT: Force disabled\n");
607 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
608 	} else {
609 		pr_info("SMT: disabled\n");
610 		cpu_smt_control = CPU_SMT_DISABLED;
611 	}
612 	cpu_smt_num_threads = 1;
613 }
614 
615 /*
616  * The decision whether SMT is supported can only be done after the full
617  * CPU identification. Called from architecture code.
618  */
619 void __init cpu_smt_set_num_threads(unsigned int num_threads,
620 				    unsigned int max_threads)
621 {
622 	WARN_ON(!num_threads || (num_threads > max_threads));
623 
624 	if (max_threads == 1)
625 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
626 
627 	cpu_smt_max_threads = max_threads;
628 
629 	/*
630 	 * If SMT has been disabled via the kernel command line or SMT is
631 	 * not supported, set cpu_smt_num_threads to 1 for consistency.
632 	 * If enabled, take the architecture requested number of threads
633 	 * to bring up into account.
634 	 */
635 	if (cpu_smt_control != CPU_SMT_ENABLED)
636 		cpu_smt_num_threads = 1;
637 	else if (num_threads < cpu_smt_num_threads)
638 		cpu_smt_num_threads = num_threads;
639 }
640 
641 static int __init smt_cmdline_disable(char *str)
642 {
643 	cpu_smt_disable(str && !strcmp(str, "force"));
644 	return 0;
645 }
646 early_param("nosmt", smt_cmdline_disable);
647 
648 /*
649  * For Archicture supporting partial SMT states check if the thread is allowed.
650  * Otherwise this has already been checked through cpu_smt_max_threads when
651  * setting the SMT level.
652  */
653 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
654 {
655 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
656 	return topology_smt_thread_allowed(cpu);
657 #else
658 	return true;
659 #endif
660 }
661 
662 static inline bool cpu_smt_allowed(unsigned int cpu)
663 {
664 	if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
665 		return true;
666 
667 	if (topology_is_primary_thread(cpu))
668 		return true;
669 
670 	/*
671 	 * On x86 it's required to boot all logical CPUs at least once so
672 	 * that the init code can get a chance to set CR4.MCE on each
673 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
674 	 * core will shutdown the machine.
675 	 */
676 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
677 }
678 
679 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
680 bool cpu_smt_possible(void)
681 {
682 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
683 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
684 }
685 EXPORT_SYMBOL_GPL(cpu_smt_possible);
686 
687 #else
688 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
689 #endif
690 
691 static inline enum cpuhp_state
692 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
693 {
694 	enum cpuhp_state prev_state = st->state;
695 	bool bringup = st->state < target;
696 
697 	st->rollback = false;
698 	st->last = NULL;
699 
700 	st->target = target;
701 	st->single = false;
702 	st->bringup = bringup;
703 	if (cpu_dying(cpu) != !bringup)
704 		set_cpu_dying(cpu, !bringup);
705 
706 	return prev_state;
707 }
708 
709 static inline void
710 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
711 		  enum cpuhp_state prev_state)
712 {
713 	bool bringup = !st->bringup;
714 
715 	st->target = prev_state;
716 
717 	/*
718 	 * Already rolling back. No need invert the bringup value or to change
719 	 * the current state.
720 	 */
721 	if (st->rollback)
722 		return;
723 
724 	st->rollback = true;
725 
726 	/*
727 	 * If we have st->last we need to undo partial multi_instance of this
728 	 * state first. Otherwise start undo at the previous state.
729 	 */
730 	if (!st->last) {
731 		if (st->bringup)
732 			st->state--;
733 		else
734 			st->state++;
735 	}
736 
737 	st->bringup = bringup;
738 	if (cpu_dying(cpu) != !bringup)
739 		set_cpu_dying(cpu, !bringup);
740 }
741 
742 /* Regular hotplug invocation of the AP hotplug thread */
743 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
744 {
745 	if (!st->single && st->state == st->target)
746 		return;
747 
748 	st->result = 0;
749 	/*
750 	 * Make sure the above stores are visible before should_run becomes
751 	 * true. Paired with the mb() above in cpuhp_thread_fun()
752 	 */
753 	smp_mb();
754 	st->should_run = true;
755 	wake_up_process(st->thread);
756 	wait_for_ap_thread(st, st->bringup);
757 }
758 
759 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
760 			 enum cpuhp_state target)
761 {
762 	enum cpuhp_state prev_state;
763 	int ret;
764 
765 	prev_state = cpuhp_set_state(cpu, st, target);
766 	__cpuhp_kick_ap(st);
767 	if ((ret = st->result)) {
768 		cpuhp_reset_state(cpu, st, prev_state);
769 		__cpuhp_kick_ap(st);
770 	}
771 
772 	return ret;
773 }
774 
775 static int bringup_wait_for_ap_online(unsigned int cpu)
776 {
777 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
778 
779 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
780 	wait_for_ap_thread(st, true);
781 	if (WARN_ON_ONCE((!cpu_online(cpu))))
782 		return -ECANCELED;
783 
784 	/* Unpark the hotplug thread of the target cpu */
785 	kthread_unpark(st->thread);
786 
787 	/*
788 	 * SMT soft disabling on X86 requires to bring the CPU out of the
789 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
790 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
791 	 * cpu_smt_allowed() check will now return false if this is not the
792 	 * primary sibling.
793 	 */
794 	if (!cpu_smt_allowed(cpu))
795 		return -ECANCELED;
796 	return 0;
797 }
798 
799 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
800 static int cpuhp_kick_ap_alive(unsigned int cpu)
801 {
802 	if (!cpuhp_can_boot_ap(cpu))
803 		return -EAGAIN;
804 
805 	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
806 }
807 
808 static int cpuhp_bringup_ap(unsigned int cpu)
809 {
810 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
811 	int ret;
812 
813 	/*
814 	 * Some architectures have to walk the irq descriptors to
815 	 * setup the vector space for the cpu which comes online.
816 	 * Prevent irq alloc/free across the bringup.
817 	 */
818 	irq_lock_sparse();
819 
820 	ret = cpuhp_bp_sync_alive(cpu);
821 	if (ret)
822 		goto out_unlock;
823 
824 	ret = bringup_wait_for_ap_online(cpu);
825 	if (ret)
826 		goto out_unlock;
827 
828 	irq_unlock_sparse();
829 
830 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
831 		return 0;
832 
833 	return cpuhp_kick_ap(cpu, st, st->target);
834 
835 out_unlock:
836 	irq_unlock_sparse();
837 	return ret;
838 }
839 #else
840 static int bringup_cpu(unsigned int cpu)
841 {
842 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
843 	struct task_struct *idle = idle_thread_get(cpu);
844 	int ret;
845 
846 	if (!cpuhp_can_boot_ap(cpu))
847 		return -EAGAIN;
848 
849 	/*
850 	 * Some architectures have to walk the irq descriptors to
851 	 * setup the vector space for the cpu which comes online.
852 	 *
853 	 * Prevent irq alloc/free across the bringup by acquiring the
854 	 * sparse irq lock. Hold it until the upcoming CPU completes the
855 	 * startup in cpuhp_online_idle() which allows to avoid
856 	 * intermediate synchronization points in the architecture code.
857 	 */
858 	irq_lock_sparse();
859 
860 	ret = __cpu_up(cpu, idle);
861 	if (ret)
862 		goto out_unlock;
863 
864 	ret = cpuhp_bp_sync_alive(cpu);
865 	if (ret)
866 		goto out_unlock;
867 
868 	ret = bringup_wait_for_ap_online(cpu);
869 	if (ret)
870 		goto out_unlock;
871 
872 	irq_unlock_sparse();
873 
874 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
875 		return 0;
876 
877 	return cpuhp_kick_ap(cpu, st, st->target);
878 
879 out_unlock:
880 	irq_unlock_sparse();
881 	return ret;
882 }
883 #endif
884 
885 static int finish_cpu(unsigned int cpu)
886 {
887 	struct task_struct *idle = idle_thread_get(cpu);
888 	struct mm_struct *mm = idle->active_mm;
889 
890 	/*
891 	 * idle_task_exit() will have switched to &init_mm, now
892 	 * clean up any remaining active_mm state.
893 	 */
894 	if (mm != &init_mm)
895 		idle->active_mm = &init_mm;
896 	mmdrop_lazy_tlb(mm);
897 	return 0;
898 }
899 
900 /*
901  * Hotplug state machine related functions
902  */
903 
904 /*
905  * Get the next state to run. Empty ones will be skipped. Returns true if a
906  * state must be run.
907  *
908  * st->state will be modified ahead of time, to match state_to_run, as if it
909  * has already ran.
910  */
911 static bool cpuhp_next_state(bool bringup,
912 			     enum cpuhp_state *state_to_run,
913 			     struct cpuhp_cpu_state *st,
914 			     enum cpuhp_state target)
915 {
916 	do {
917 		if (bringup) {
918 			if (st->state >= target)
919 				return false;
920 
921 			*state_to_run = ++st->state;
922 		} else {
923 			if (st->state <= target)
924 				return false;
925 
926 			*state_to_run = st->state--;
927 		}
928 
929 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
930 			break;
931 	} while (true);
932 
933 	return true;
934 }
935 
936 static int __cpuhp_invoke_callback_range(bool bringup,
937 					 unsigned int cpu,
938 					 struct cpuhp_cpu_state *st,
939 					 enum cpuhp_state target,
940 					 bool nofail)
941 {
942 	enum cpuhp_state state;
943 	int ret = 0;
944 
945 	while (cpuhp_next_state(bringup, &state, st, target)) {
946 		int err;
947 
948 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
949 		if (!err)
950 			continue;
951 
952 		if (nofail) {
953 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
954 				cpu, bringup ? "UP" : "DOWN",
955 				cpuhp_get_step(st->state)->name,
956 				st->state, err);
957 			ret = -1;
958 		} else {
959 			ret = err;
960 			break;
961 		}
962 	}
963 
964 	return ret;
965 }
966 
967 static inline int cpuhp_invoke_callback_range(bool bringup,
968 					      unsigned int cpu,
969 					      struct cpuhp_cpu_state *st,
970 					      enum cpuhp_state target)
971 {
972 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
973 }
974 
975 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
976 						      unsigned int cpu,
977 						      struct cpuhp_cpu_state *st,
978 						      enum cpuhp_state target)
979 {
980 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
981 }
982 
983 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
984 {
985 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
986 		return true;
987 	/*
988 	 * When CPU hotplug is disabled, then taking the CPU down is not
989 	 * possible because takedown_cpu() and the architecture and
990 	 * subsystem specific mechanisms are not available. So the CPU
991 	 * which would be completely unplugged again needs to stay around
992 	 * in the current state.
993 	 */
994 	return st->state <= CPUHP_BRINGUP_CPU;
995 }
996 
997 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
998 			      enum cpuhp_state target)
999 {
1000 	enum cpuhp_state prev_state = st->state;
1001 	int ret = 0;
1002 
1003 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1004 	if (ret) {
1005 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1006 			 ret, cpu, cpuhp_get_step(st->state)->name,
1007 			 st->state);
1008 
1009 		cpuhp_reset_state(cpu, st, prev_state);
1010 		if (can_rollback_cpu(st))
1011 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1012 							    prev_state));
1013 	}
1014 	return ret;
1015 }
1016 
1017 /*
1018  * The cpu hotplug threads manage the bringup and teardown of the cpus
1019  */
1020 static int cpuhp_should_run(unsigned int cpu)
1021 {
1022 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1023 
1024 	return st->should_run;
1025 }
1026 
1027 /*
1028  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1029  * callbacks when a state gets [un]installed at runtime.
1030  *
1031  * Each invocation of this function by the smpboot thread does a single AP
1032  * state callback.
1033  *
1034  * It has 3 modes of operation:
1035  *  - single: runs st->cb_state
1036  *  - up:     runs ++st->state, while st->state < st->target
1037  *  - down:   runs st->state--, while st->state > st->target
1038  *
1039  * When complete or on error, should_run is cleared and the completion is fired.
1040  */
1041 static void cpuhp_thread_fun(unsigned int cpu)
1042 {
1043 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1044 	bool bringup = st->bringup;
1045 	enum cpuhp_state state;
1046 
1047 	if (WARN_ON_ONCE(!st->should_run))
1048 		return;
1049 
1050 	/*
1051 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1052 	 * that if we see ->should_run we also see the rest of the state.
1053 	 */
1054 	smp_mb();
1055 
1056 	/*
1057 	 * The BP holds the hotplug lock, but we're now running on the AP,
1058 	 * ensure that anybody asserting the lock is held, will actually find
1059 	 * it so.
1060 	 */
1061 	lockdep_acquire_cpus_lock();
1062 	cpuhp_lock_acquire(bringup);
1063 
1064 	if (st->single) {
1065 		state = st->cb_state;
1066 		st->should_run = false;
1067 	} else {
1068 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1069 		if (!st->should_run)
1070 			goto end;
1071 	}
1072 
1073 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1074 
1075 	if (cpuhp_is_atomic_state(state)) {
1076 		local_irq_disable();
1077 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1078 		local_irq_enable();
1079 
1080 		/*
1081 		 * STARTING/DYING must not fail!
1082 		 */
1083 		WARN_ON_ONCE(st->result);
1084 	} else {
1085 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1086 	}
1087 
1088 	if (st->result) {
1089 		/*
1090 		 * If we fail on a rollback, we're up a creek without no
1091 		 * paddle, no way forward, no way back. We loose, thanks for
1092 		 * playing.
1093 		 */
1094 		WARN_ON_ONCE(st->rollback);
1095 		st->should_run = false;
1096 	}
1097 
1098 end:
1099 	cpuhp_lock_release(bringup);
1100 	lockdep_release_cpus_lock();
1101 
1102 	if (!st->should_run)
1103 		complete_ap_thread(st, bringup);
1104 }
1105 
1106 /* Invoke a single callback on a remote cpu */
1107 static int
1108 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1109 			 struct hlist_node *node)
1110 {
1111 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1112 	int ret;
1113 
1114 	if (!cpu_online(cpu))
1115 		return 0;
1116 
1117 	cpuhp_lock_acquire(false);
1118 	cpuhp_lock_release(false);
1119 
1120 	cpuhp_lock_acquire(true);
1121 	cpuhp_lock_release(true);
1122 
1123 	/*
1124 	 * If we are up and running, use the hotplug thread. For early calls
1125 	 * we invoke the thread function directly.
1126 	 */
1127 	if (!st->thread)
1128 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1129 
1130 	st->rollback = false;
1131 	st->last = NULL;
1132 
1133 	st->node = node;
1134 	st->bringup = bringup;
1135 	st->cb_state = state;
1136 	st->single = true;
1137 
1138 	__cpuhp_kick_ap(st);
1139 
1140 	/*
1141 	 * If we failed and did a partial, do a rollback.
1142 	 */
1143 	if ((ret = st->result) && st->last) {
1144 		st->rollback = true;
1145 		st->bringup = !bringup;
1146 
1147 		__cpuhp_kick_ap(st);
1148 	}
1149 
1150 	/*
1151 	 * Clean up the leftovers so the next hotplug operation wont use stale
1152 	 * data.
1153 	 */
1154 	st->node = st->last = NULL;
1155 	return ret;
1156 }
1157 
1158 static int cpuhp_kick_ap_work(unsigned int cpu)
1159 {
1160 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1161 	enum cpuhp_state prev_state = st->state;
1162 	int ret;
1163 
1164 	cpuhp_lock_acquire(false);
1165 	cpuhp_lock_release(false);
1166 
1167 	cpuhp_lock_acquire(true);
1168 	cpuhp_lock_release(true);
1169 
1170 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1171 	ret = cpuhp_kick_ap(cpu, st, st->target);
1172 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1173 
1174 	return ret;
1175 }
1176 
1177 static struct smp_hotplug_thread cpuhp_threads = {
1178 	.store			= &cpuhp_state.thread,
1179 	.thread_should_run	= cpuhp_should_run,
1180 	.thread_fn		= cpuhp_thread_fun,
1181 	.thread_comm		= "cpuhp/%u",
1182 	.selfparking		= true,
1183 };
1184 
1185 static __init void cpuhp_init_state(void)
1186 {
1187 	struct cpuhp_cpu_state *st;
1188 	int cpu;
1189 
1190 	for_each_possible_cpu(cpu) {
1191 		st = per_cpu_ptr(&cpuhp_state, cpu);
1192 		init_completion(&st->done_up);
1193 		init_completion(&st->done_down);
1194 	}
1195 }
1196 
1197 void __init cpuhp_threads_init(void)
1198 {
1199 	cpuhp_init_state();
1200 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1201 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1202 }
1203 
1204 /*
1205  *
1206  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1207  * protected region.
1208  *
1209  * The operation is still serialized against concurrent CPU hotplug via
1210  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1211  * serialized against other hotplug related activity like adding or
1212  * removing of state callbacks and state instances, which invoke either the
1213  * startup or the teardown callback of the affected state.
1214  *
1215  * This is required for subsystems which are unfixable vs. CPU hotplug and
1216  * evade lock inversion problems by scheduling work which has to be
1217  * completed _before_ cpu_up()/_cpu_down() returns.
1218  *
1219  * Don't even think about adding anything to this for any new code or even
1220  * drivers. It's only purpose is to keep existing lock order trainwrecks
1221  * working.
1222  *
1223  * For cpu_down() there might be valid reasons to finish cleanups which are
1224  * not required to be done under cpu_hotplug_lock, but that's a different
1225  * story and would be not invoked via this.
1226  */
1227 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1228 {
1229 	/*
1230 	 * cpusets delegate hotplug operations to a worker to "solve" the
1231 	 * lock order problems. Wait for the worker, but only if tasks are
1232 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
1233 	 *
1234 	 * The wait is required because otherwise the hotplug operation
1235 	 * returns with inconsistent state, which could even be observed in
1236 	 * user space when a new CPU is brought up. The CPU plug uevent
1237 	 * would be delivered and user space reacting on it would fail to
1238 	 * move tasks to the newly plugged CPU up to the point where the
1239 	 * work has finished because up to that point the newly plugged CPU
1240 	 * is not assignable in cpusets/cgroups. On unplug that's not
1241 	 * necessarily a visible issue, but it is still inconsistent state,
1242 	 * which is the real problem which needs to be "fixed". This can't
1243 	 * prevent the transient state between scheduling the work and
1244 	 * returning from waiting for it.
1245 	 */
1246 	if (!tasks_frozen)
1247 		cpuset_wait_for_hotplug();
1248 }
1249 
1250 #ifdef CONFIG_HOTPLUG_CPU
1251 #ifndef arch_clear_mm_cpumask_cpu
1252 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1253 #endif
1254 
1255 /**
1256  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1257  * @cpu: a CPU id
1258  *
1259  * This function walks all processes, finds a valid mm struct for each one and
1260  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1261  * trivial, there are various non-obvious corner cases, which this function
1262  * tries to solve in a safe manner.
1263  *
1264  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1265  * be called only for an already offlined CPU.
1266  */
1267 void clear_tasks_mm_cpumask(int cpu)
1268 {
1269 	struct task_struct *p;
1270 
1271 	/*
1272 	 * This function is called after the cpu is taken down and marked
1273 	 * offline, so its not like new tasks will ever get this cpu set in
1274 	 * their mm mask. -- Peter Zijlstra
1275 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1276 	 * full-fledged tasklist_lock.
1277 	 */
1278 	WARN_ON(cpu_online(cpu));
1279 	rcu_read_lock();
1280 	for_each_process(p) {
1281 		struct task_struct *t;
1282 
1283 		/*
1284 		 * Main thread might exit, but other threads may still have
1285 		 * a valid mm. Find one.
1286 		 */
1287 		t = find_lock_task_mm(p);
1288 		if (!t)
1289 			continue;
1290 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1291 		task_unlock(t);
1292 	}
1293 	rcu_read_unlock();
1294 }
1295 
1296 /* Take this CPU down. */
1297 static int take_cpu_down(void *_param)
1298 {
1299 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1300 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1301 	int err, cpu = smp_processor_id();
1302 
1303 	/* Ensure this CPU doesn't handle any more interrupts. */
1304 	err = __cpu_disable();
1305 	if (err < 0)
1306 		return err;
1307 
1308 	/*
1309 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1310 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1311 	 */
1312 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1313 
1314 	/*
1315 	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1316 	 */
1317 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1318 
1319 	/* Give up timekeeping duties */
1320 	tick_handover_do_timer();
1321 	/* Remove CPU from timer broadcasting */
1322 	tick_offline_cpu(cpu);
1323 	/* Park the stopper thread */
1324 	stop_machine_park(cpu);
1325 	return 0;
1326 }
1327 
1328 static int takedown_cpu(unsigned int cpu)
1329 {
1330 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1331 	int err;
1332 
1333 	/* Park the smpboot threads */
1334 	kthread_park(st->thread);
1335 
1336 	/*
1337 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1338 	 * interrupt affinities.
1339 	 */
1340 	irq_lock_sparse();
1341 
1342 	/*
1343 	 * So now all preempt/rcu users must observe !cpu_active().
1344 	 */
1345 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1346 	if (err) {
1347 		/* CPU refused to die */
1348 		irq_unlock_sparse();
1349 		/* Unpark the hotplug thread so we can rollback there */
1350 		kthread_unpark(st->thread);
1351 		return err;
1352 	}
1353 	BUG_ON(cpu_online(cpu));
1354 
1355 	/*
1356 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1357 	 * all runnable tasks from the CPU, there's only the idle task left now
1358 	 * that the migration thread is done doing the stop_machine thing.
1359 	 *
1360 	 * Wait for the stop thread to go away.
1361 	 */
1362 	wait_for_ap_thread(st, false);
1363 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1364 
1365 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1366 	irq_unlock_sparse();
1367 
1368 	hotplug_cpu__broadcast_tick_pull(cpu);
1369 	/* This actually kills the CPU. */
1370 	__cpu_die(cpu);
1371 
1372 	cpuhp_bp_sync_dead(cpu);
1373 
1374 	tick_cleanup_dead_cpu(cpu);
1375 	rcutree_migrate_callbacks(cpu);
1376 	return 0;
1377 }
1378 
1379 static void cpuhp_complete_idle_dead(void *arg)
1380 {
1381 	struct cpuhp_cpu_state *st = arg;
1382 
1383 	complete_ap_thread(st, false);
1384 }
1385 
1386 void cpuhp_report_idle_dead(void)
1387 {
1388 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1389 
1390 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1391 	rcu_report_dead(smp_processor_id());
1392 	st->state = CPUHP_AP_IDLE_DEAD;
1393 	/*
1394 	 * We cannot call complete after rcu_report_dead() so we delegate it
1395 	 * to an online cpu.
1396 	 */
1397 	smp_call_function_single(cpumask_first(cpu_online_mask),
1398 				 cpuhp_complete_idle_dead, st, 0);
1399 }
1400 
1401 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1402 				enum cpuhp_state target)
1403 {
1404 	enum cpuhp_state prev_state = st->state;
1405 	int ret = 0;
1406 
1407 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1408 	if (ret) {
1409 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1410 			 ret, cpu, cpuhp_get_step(st->state)->name,
1411 			 st->state);
1412 
1413 		cpuhp_reset_state(cpu, st, prev_state);
1414 
1415 		if (st->state < prev_state)
1416 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1417 							    prev_state));
1418 	}
1419 
1420 	return ret;
1421 }
1422 
1423 /* Requires cpu_add_remove_lock to be held */
1424 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1425 			   enum cpuhp_state target)
1426 {
1427 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1428 	int prev_state, ret = 0;
1429 
1430 	if (num_online_cpus() == 1)
1431 		return -EBUSY;
1432 
1433 	if (!cpu_present(cpu))
1434 		return -EINVAL;
1435 
1436 	cpus_write_lock();
1437 
1438 	cpuhp_tasks_frozen = tasks_frozen;
1439 
1440 	prev_state = cpuhp_set_state(cpu, st, target);
1441 	/*
1442 	 * If the current CPU state is in the range of the AP hotplug thread,
1443 	 * then we need to kick the thread.
1444 	 */
1445 	if (st->state > CPUHP_TEARDOWN_CPU) {
1446 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1447 		ret = cpuhp_kick_ap_work(cpu);
1448 		/*
1449 		 * The AP side has done the error rollback already. Just
1450 		 * return the error code..
1451 		 */
1452 		if (ret)
1453 			goto out;
1454 
1455 		/*
1456 		 * We might have stopped still in the range of the AP hotplug
1457 		 * thread. Nothing to do anymore.
1458 		 */
1459 		if (st->state > CPUHP_TEARDOWN_CPU)
1460 			goto out;
1461 
1462 		st->target = target;
1463 	}
1464 	/*
1465 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1466 	 * to do the further cleanups.
1467 	 */
1468 	ret = cpuhp_down_callbacks(cpu, st, target);
1469 	if (ret && st->state < prev_state) {
1470 		if (st->state == CPUHP_TEARDOWN_CPU) {
1471 			cpuhp_reset_state(cpu, st, prev_state);
1472 			__cpuhp_kick_ap(st);
1473 		} else {
1474 			WARN(1, "DEAD callback error for CPU%d", cpu);
1475 		}
1476 	}
1477 
1478 out:
1479 	cpus_write_unlock();
1480 	/*
1481 	 * Do post unplug cleanup. This is still protected against
1482 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1483 	 */
1484 	lockup_detector_cleanup();
1485 	arch_smt_update();
1486 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1487 	return ret;
1488 }
1489 
1490 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1491 {
1492 	/*
1493 	 * If the platform does not support hotplug, report it explicitly to
1494 	 * differentiate it from a transient offlining failure.
1495 	 */
1496 	if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1497 		return -EOPNOTSUPP;
1498 	if (cpu_hotplug_disabled)
1499 		return -EBUSY;
1500 	return _cpu_down(cpu, 0, target);
1501 }
1502 
1503 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1504 {
1505 	int err;
1506 
1507 	cpu_maps_update_begin();
1508 	err = cpu_down_maps_locked(cpu, target);
1509 	cpu_maps_update_done();
1510 	return err;
1511 }
1512 
1513 /**
1514  * cpu_device_down - Bring down a cpu device
1515  * @dev: Pointer to the cpu device to offline
1516  *
1517  * This function is meant to be used by device core cpu subsystem only.
1518  *
1519  * Other subsystems should use remove_cpu() instead.
1520  *
1521  * Return: %0 on success or a negative errno code
1522  */
1523 int cpu_device_down(struct device *dev)
1524 {
1525 	return cpu_down(dev->id, CPUHP_OFFLINE);
1526 }
1527 
1528 int remove_cpu(unsigned int cpu)
1529 {
1530 	int ret;
1531 
1532 	lock_device_hotplug();
1533 	ret = device_offline(get_cpu_device(cpu));
1534 	unlock_device_hotplug();
1535 
1536 	return ret;
1537 }
1538 EXPORT_SYMBOL_GPL(remove_cpu);
1539 
1540 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1541 {
1542 	unsigned int cpu;
1543 	int error;
1544 
1545 	cpu_maps_update_begin();
1546 
1547 	/*
1548 	 * Make certain the cpu I'm about to reboot on is online.
1549 	 *
1550 	 * This is inline to what migrate_to_reboot_cpu() already do.
1551 	 */
1552 	if (!cpu_online(primary_cpu))
1553 		primary_cpu = cpumask_first(cpu_online_mask);
1554 
1555 	for_each_online_cpu(cpu) {
1556 		if (cpu == primary_cpu)
1557 			continue;
1558 
1559 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1560 		if (error) {
1561 			pr_err("Failed to offline CPU%d - error=%d",
1562 				cpu, error);
1563 			break;
1564 		}
1565 	}
1566 
1567 	/*
1568 	 * Ensure all but the reboot CPU are offline.
1569 	 */
1570 	BUG_ON(num_online_cpus() > 1);
1571 
1572 	/*
1573 	 * Make sure the CPUs won't be enabled by someone else after this
1574 	 * point. Kexec will reboot to a new kernel shortly resetting
1575 	 * everything along the way.
1576 	 */
1577 	cpu_hotplug_disabled++;
1578 
1579 	cpu_maps_update_done();
1580 }
1581 
1582 #else
1583 #define takedown_cpu		NULL
1584 #endif /*CONFIG_HOTPLUG_CPU*/
1585 
1586 /**
1587  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1588  * @cpu: cpu that just started
1589  *
1590  * It must be called by the arch code on the new cpu, before the new cpu
1591  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1592  */
1593 void notify_cpu_starting(unsigned int cpu)
1594 {
1595 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1596 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1597 
1598 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1599 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1600 
1601 	/*
1602 	 * STARTING must not fail!
1603 	 */
1604 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1605 }
1606 
1607 /*
1608  * Called from the idle task. Wake up the controlling task which brings the
1609  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1610  * online bringup to the hotplug thread.
1611  */
1612 void cpuhp_online_idle(enum cpuhp_state state)
1613 {
1614 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1615 
1616 	/* Happens for the boot cpu */
1617 	if (state != CPUHP_AP_ONLINE_IDLE)
1618 		return;
1619 
1620 	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1621 
1622 	/*
1623 	 * Unpark the stopper thread before we start the idle loop (and start
1624 	 * scheduling); this ensures the stopper task is always available.
1625 	 */
1626 	stop_machine_unpark(smp_processor_id());
1627 
1628 	st->state = CPUHP_AP_ONLINE_IDLE;
1629 	complete_ap_thread(st, true);
1630 }
1631 
1632 /* Requires cpu_add_remove_lock to be held */
1633 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1634 {
1635 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1636 	struct task_struct *idle;
1637 	int ret = 0;
1638 
1639 	cpus_write_lock();
1640 
1641 	if (!cpu_present(cpu)) {
1642 		ret = -EINVAL;
1643 		goto out;
1644 	}
1645 
1646 	/*
1647 	 * The caller of cpu_up() might have raced with another
1648 	 * caller. Nothing to do.
1649 	 */
1650 	if (st->state >= target)
1651 		goto out;
1652 
1653 	if (st->state == CPUHP_OFFLINE) {
1654 		/* Let it fail before we try to bring the cpu up */
1655 		idle = idle_thread_get(cpu);
1656 		if (IS_ERR(idle)) {
1657 			ret = PTR_ERR(idle);
1658 			goto out;
1659 		}
1660 
1661 		/*
1662 		 * Reset stale stack state from the last time this CPU was online.
1663 		 */
1664 		scs_task_reset(idle);
1665 		kasan_unpoison_task_stack(idle);
1666 	}
1667 
1668 	cpuhp_tasks_frozen = tasks_frozen;
1669 
1670 	cpuhp_set_state(cpu, st, target);
1671 	/*
1672 	 * If the current CPU state is in the range of the AP hotplug thread,
1673 	 * then we need to kick the thread once more.
1674 	 */
1675 	if (st->state > CPUHP_BRINGUP_CPU) {
1676 		ret = cpuhp_kick_ap_work(cpu);
1677 		/*
1678 		 * The AP side has done the error rollback already. Just
1679 		 * return the error code..
1680 		 */
1681 		if (ret)
1682 			goto out;
1683 	}
1684 
1685 	/*
1686 	 * Try to reach the target state. We max out on the BP at
1687 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1688 	 * responsible for bringing it up to the target state.
1689 	 */
1690 	target = min((int)target, CPUHP_BRINGUP_CPU);
1691 	ret = cpuhp_up_callbacks(cpu, st, target);
1692 out:
1693 	cpus_write_unlock();
1694 	arch_smt_update();
1695 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1696 	return ret;
1697 }
1698 
1699 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1700 {
1701 	int err = 0;
1702 
1703 	if (!cpu_possible(cpu)) {
1704 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1705 		       cpu);
1706 #if defined(CONFIG_IA64)
1707 		pr_err("please check additional_cpus= boot parameter\n");
1708 #endif
1709 		return -EINVAL;
1710 	}
1711 
1712 	err = try_online_node(cpu_to_node(cpu));
1713 	if (err)
1714 		return err;
1715 
1716 	cpu_maps_update_begin();
1717 
1718 	if (cpu_hotplug_disabled) {
1719 		err = -EBUSY;
1720 		goto out;
1721 	}
1722 	if (!cpu_smt_allowed(cpu)) {
1723 		err = -EPERM;
1724 		goto out;
1725 	}
1726 
1727 	err = _cpu_up(cpu, 0, target);
1728 out:
1729 	cpu_maps_update_done();
1730 	return err;
1731 }
1732 
1733 /**
1734  * cpu_device_up - Bring up a cpu device
1735  * @dev: Pointer to the cpu device to online
1736  *
1737  * This function is meant to be used by device core cpu subsystem only.
1738  *
1739  * Other subsystems should use add_cpu() instead.
1740  *
1741  * Return: %0 on success or a negative errno code
1742  */
1743 int cpu_device_up(struct device *dev)
1744 {
1745 	return cpu_up(dev->id, CPUHP_ONLINE);
1746 }
1747 
1748 int add_cpu(unsigned int cpu)
1749 {
1750 	int ret;
1751 
1752 	lock_device_hotplug();
1753 	ret = device_online(get_cpu_device(cpu));
1754 	unlock_device_hotplug();
1755 
1756 	return ret;
1757 }
1758 EXPORT_SYMBOL_GPL(add_cpu);
1759 
1760 /**
1761  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1762  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1763  *
1764  * On some architectures like arm64, we can hibernate on any CPU, but on
1765  * wake up the CPU we hibernated on might be offline as a side effect of
1766  * using maxcpus= for example.
1767  *
1768  * Return: %0 on success or a negative errno code
1769  */
1770 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1771 {
1772 	int ret;
1773 
1774 	if (!cpu_online(sleep_cpu)) {
1775 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1776 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1777 		if (ret) {
1778 			pr_err("Failed to bring hibernate-CPU up!\n");
1779 			return ret;
1780 		}
1781 	}
1782 	return 0;
1783 }
1784 
1785 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1786 				      enum cpuhp_state target)
1787 {
1788 	unsigned int cpu;
1789 
1790 	for_each_cpu(cpu, mask) {
1791 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1792 
1793 		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1794 			/*
1795 			 * If this failed then cpu_up() might have only
1796 			 * rolled back to CPUHP_BP_KICK_AP for the final
1797 			 * online. Clean it up. NOOP if already rolled back.
1798 			 */
1799 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1800 		}
1801 
1802 		if (!--ncpus)
1803 			break;
1804 	}
1805 }
1806 
1807 #ifdef CONFIG_HOTPLUG_PARALLEL
1808 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1809 
1810 static int __init parallel_bringup_parse_param(char *arg)
1811 {
1812 	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1813 }
1814 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1815 
1816 static inline bool cpuhp_smt_aware(void)
1817 {
1818 	return cpu_smt_max_threads > 1;
1819 }
1820 
1821 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1822 {
1823 	return cpu_primary_thread_mask;
1824 }
1825 
1826 /*
1827  * On architectures which have enabled parallel bringup this invokes all BP
1828  * prepare states for each of the to be onlined APs first. The last state
1829  * sends the startup IPI to the APs. The APs proceed through the low level
1830  * bringup code in parallel and then wait for the control CPU to release
1831  * them one by one for the final onlining procedure.
1832  *
1833  * This avoids waiting for each AP to respond to the startup IPI in
1834  * CPUHP_BRINGUP_CPU.
1835  */
1836 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1837 {
1838 	const struct cpumask *mask = cpu_present_mask;
1839 
1840 	if (__cpuhp_parallel_bringup)
1841 		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1842 	if (!__cpuhp_parallel_bringup)
1843 		return false;
1844 
1845 	if (cpuhp_smt_aware()) {
1846 		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1847 		static struct cpumask tmp_mask __initdata;
1848 
1849 		/*
1850 		 * X86 requires to prevent that SMT siblings stopped while
1851 		 * the primary thread does a microcode update for various
1852 		 * reasons. Bring the primary threads up first.
1853 		 */
1854 		cpumask_and(&tmp_mask, mask, pmask);
1855 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1856 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1857 		/* Account for the online CPUs */
1858 		ncpus -= num_online_cpus();
1859 		if (!ncpus)
1860 			return true;
1861 		/* Create the mask for secondary CPUs */
1862 		cpumask_andnot(&tmp_mask, mask, pmask);
1863 		mask = &tmp_mask;
1864 	}
1865 
1866 	/* Bring the not-yet started CPUs up */
1867 	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1868 	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1869 	return true;
1870 }
1871 #else
1872 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1873 #endif /* CONFIG_HOTPLUG_PARALLEL */
1874 
1875 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1876 {
1877 	/* Try parallel bringup optimization if enabled */
1878 	if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1879 		return;
1880 
1881 	/* Full per CPU serialized bringup */
1882 	cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1883 }
1884 
1885 #ifdef CONFIG_PM_SLEEP_SMP
1886 static cpumask_var_t frozen_cpus;
1887 
1888 int freeze_secondary_cpus(int primary)
1889 {
1890 	int cpu, error = 0;
1891 
1892 	cpu_maps_update_begin();
1893 	if (primary == -1) {
1894 		primary = cpumask_first(cpu_online_mask);
1895 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1896 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1897 	} else {
1898 		if (!cpu_online(primary))
1899 			primary = cpumask_first(cpu_online_mask);
1900 	}
1901 
1902 	/*
1903 	 * We take down all of the non-boot CPUs in one shot to avoid races
1904 	 * with the userspace trying to use the CPU hotplug at the same time
1905 	 */
1906 	cpumask_clear(frozen_cpus);
1907 
1908 	pr_info("Disabling non-boot CPUs ...\n");
1909 	for_each_online_cpu(cpu) {
1910 		if (cpu == primary)
1911 			continue;
1912 
1913 		if (pm_wakeup_pending()) {
1914 			pr_info("Wakeup pending. Abort CPU freeze\n");
1915 			error = -EBUSY;
1916 			break;
1917 		}
1918 
1919 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1920 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1921 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1922 		if (!error)
1923 			cpumask_set_cpu(cpu, frozen_cpus);
1924 		else {
1925 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1926 			break;
1927 		}
1928 	}
1929 
1930 	if (!error)
1931 		BUG_ON(num_online_cpus() > 1);
1932 	else
1933 		pr_err("Non-boot CPUs are not disabled\n");
1934 
1935 	/*
1936 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1937 	 * this even in case of failure as all freeze_secondary_cpus() users are
1938 	 * supposed to do thaw_secondary_cpus() on the failure path.
1939 	 */
1940 	cpu_hotplug_disabled++;
1941 
1942 	cpu_maps_update_done();
1943 	return error;
1944 }
1945 
1946 void __weak arch_thaw_secondary_cpus_begin(void)
1947 {
1948 }
1949 
1950 void __weak arch_thaw_secondary_cpus_end(void)
1951 {
1952 }
1953 
1954 void thaw_secondary_cpus(void)
1955 {
1956 	int cpu, error;
1957 
1958 	/* Allow everyone to use the CPU hotplug again */
1959 	cpu_maps_update_begin();
1960 	__cpu_hotplug_enable();
1961 	if (cpumask_empty(frozen_cpus))
1962 		goto out;
1963 
1964 	pr_info("Enabling non-boot CPUs ...\n");
1965 
1966 	arch_thaw_secondary_cpus_begin();
1967 
1968 	for_each_cpu(cpu, frozen_cpus) {
1969 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1970 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1971 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1972 		if (!error) {
1973 			pr_info("CPU%d is up\n", cpu);
1974 			continue;
1975 		}
1976 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1977 	}
1978 
1979 	arch_thaw_secondary_cpus_end();
1980 
1981 	cpumask_clear(frozen_cpus);
1982 out:
1983 	cpu_maps_update_done();
1984 }
1985 
1986 static int __init alloc_frozen_cpus(void)
1987 {
1988 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1989 		return -ENOMEM;
1990 	return 0;
1991 }
1992 core_initcall(alloc_frozen_cpus);
1993 
1994 /*
1995  * When callbacks for CPU hotplug notifications are being executed, we must
1996  * ensure that the state of the system with respect to the tasks being frozen
1997  * or not, as reported by the notification, remains unchanged *throughout the
1998  * duration* of the execution of the callbacks.
1999  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2000  *
2001  * This synchronization is implemented by mutually excluding regular CPU
2002  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2003  * Hibernate notifications.
2004  */
2005 static int
2006 cpu_hotplug_pm_callback(struct notifier_block *nb,
2007 			unsigned long action, void *ptr)
2008 {
2009 	switch (action) {
2010 
2011 	case PM_SUSPEND_PREPARE:
2012 	case PM_HIBERNATION_PREPARE:
2013 		cpu_hotplug_disable();
2014 		break;
2015 
2016 	case PM_POST_SUSPEND:
2017 	case PM_POST_HIBERNATION:
2018 		cpu_hotplug_enable();
2019 		break;
2020 
2021 	default:
2022 		return NOTIFY_DONE;
2023 	}
2024 
2025 	return NOTIFY_OK;
2026 }
2027 
2028 
2029 static int __init cpu_hotplug_pm_sync_init(void)
2030 {
2031 	/*
2032 	 * cpu_hotplug_pm_callback has higher priority than x86
2033 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2034 	 * to disable cpu hotplug to avoid cpu hotplug race.
2035 	 */
2036 	pm_notifier(cpu_hotplug_pm_callback, 0);
2037 	return 0;
2038 }
2039 core_initcall(cpu_hotplug_pm_sync_init);
2040 
2041 #endif /* CONFIG_PM_SLEEP_SMP */
2042 
2043 int __boot_cpu_id;
2044 
2045 #endif /* CONFIG_SMP */
2046 
2047 /* Boot processor state steps */
2048 static struct cpuhp_step cpuhp_hp_states[] = {
2049 	[CPUHP_OFFLINE] = {
2050 		.name			= "offline",
2051 		.startup.single		= NULL,
2052 		.teardown.single	= NULL,
2053 	},
2054 #ifdef CONFIG_SMP
2055 	[CPUHP_CREATE_THREADS]= {
2056 		.name			= "threads:prepare",
2057 		.startup.single		= smpboot_create_threads,
2058 		.teardown.single	= NULL,
2059 		.cant_stop		= true,
2060 	},
2061 	[CPUHP_PERF_PREPARE] = {
2062 		.name			= "perf:prepare",
2063 		.startup.single		= perf_event_init_cpu,
2064 		.teardown.single	= perf_event_exit_cpu,
2065 	},
2066 	[CPUHP_RANDOM_PREPARE] = {
2067 		.name			= "random:prepare",
2068 		.startup.single		= random_prepare_cpu,
2069 		.teardown.single	= NULL,
2070 	},
2071 	[CPUHP_WORKQUEUE_PREP] = {
2072 		.name			= "workqueue:prepare",
2073 		.startup.single		= workqueue_prepare_cpu,
2074 		.teardown.single	= NULL,
2075 	},
2076 	[CPUHP_HRTIMERS_PREPARE] = {
2077 		.name			= "hrtimers:prepare",
2078 		.startup.single		= hrtimers_prepare_cpu,
2079 		.teardown.single	= hrtimers_dead_cpu,
2080 	},
2081 	[CPUHP_SMPCFD_PREPARE] = {
2082 		.name			= "smpcfd:prepare",
2083 		.startup.single		= smpcfd_prepare_cpu,
2084 		.teardown.single	= smpcfd_dead_cpu,
2085 	},
2086 	[CPUHP_RELAY_PREPARE] = {
2087 		.name			= "relay:prepare",
2088 		.startup.single		= relay_prepare_cpu,
2089 		.teardown.single	= NULL,
2090 	},
2091 	[CPUHP_SLAB_PREPARE] = {
2092 		.name			= "slab:prepare",
2093 		.startup.single		= slab_prepare_cpu,
2094 		.teardown.single	= slab_dead_cpu,
2095 	},
2096 	[CPUHP_RCUTREE_PREP] = {
2097 		.name			= "RCU/tree:prepare",
2098 		.startup.single		= rcutree_prepare_cpu,
2099 		.teardown.single	= rcutree_dead_cpu,
2100 	},
2101 	/*
2102 	 * On the tear-down path, timers_dead_cpu() must be invoked
2103 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2104 	 * otherwise a RCU stall occurs.
2105 	 */
2106 	[CPUHP_TIMERS_PREPARE] = {
2107 		.name			= "timers:prepare",
2108 		.startup.single		= timers_prepare_cpu,
2109 		.teardown.single	= timers_dead_cpu,
2110 	},
2111 
2112 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2113 	/*
2114 	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2115 	 * the next step will release it.
2116 	 */
2117 	[CPUHP_BP_KICK_AP] = {
2118 		.name			= "cpu:kick_ap",
2119 		.startup.single		= cpuhp_kick_ap_alive,
2120 	},
2121 
2122 	/*
2123 	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2124 	 * releases it for the complete bringup.
2125 	 */
2126 	[CPUHP_BRINGUP_CPU] = {
2127 		.name			= "cpu:bringup",
2128 		.startup.single		= cpuhp_bringup_ap,
2129 		.teardown.single	= finish_cpu,
2130 		.cant_stop		= true,
2131 	},
2132 #else
2133 	/*
2134 	 * All-in-one CPU bringup state which includes the kick alive.
2135 	 */
2136 	[CPUHP_BRINGUP_CPU] = {
2137 		.name			= "cpu:bringup",
2138 		.startup.single		= bringup_cpu,
2139 		.teardown.single	= finish_cpu,
2140 		.cant_stop		= true,
2141 	},
2142 #endif
2143 	/* Final state before CPU kills itself */
2144 	[CPUHP_AP_IDLE_DEAD] = {
2145 		.name			= "idle:dead",
2146 	},
2147 	/*
2148 	 * Last state before CPU enters the idle loop to die. Transient state
2149 	 * for synchronization.
2150 	 */
2151 	[CPUHP_AP_OFFLINE] = {
2152 		.name			= "ap:offline",
2153 		.cant_stop		= true,
2154 	},
2155 	/* First state is scheduler control. Interrupts are disabled */
2156 	[CPUHP_AP_SCHED_STARTING] = {
2157 		.name			= "sched:starting",
2158 		.startup.single		= sched_cpu_starting,
2159 		.teardown.single	= sched_cpu_dying,
2160 	},
2161 	[CPUHP_AP_RCUTREE_DYING] = {
2162 		.name			= "RCU/tree:dying",
2163 		.startup.single		= NULL,
2164 		.teardown.single	= rcutree_dying_cpu,
2165 	},
2166 	[CPUHP_AP_SMPCFD_DYING] = {
2167 		.name			= "smpcfd:dying",
2168 		.startup.single		= NULL,
2169 		.teardown.single	= smpcfd_dying_cpu,
2170 	},
2171 	/* Entry state on starting. Interrupts enabled from here on. Transient
2172 	 * state for synchronsization */
2173 	[CPUHP_AP_ONLINE] = {
2174 		.name			= "ap:online",
2175 	},
2176 	/*
2177 	 * Handled on control processor until the plugged processor manages
2178 	 * this itself.
2179 	 */
2180 	[CPUHP_TEARDOWN_CPU] = {
2181 		.name			= "cpu:teardown",
2182 		.startup.single		= NULL,
2183 		.teardown.single	= takedown_cpu,
2184 		.cant_stop		= true,
2185 	},
2186 
2187 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2188 		.name			= "sched:waitempty",
2189 		.startup.single		= NULL,
2190 		.teardown.single	= sched_cpu_wait_empty,
2191 	},
2192 
2193 	/* Handle smpboot threads park/unpark */
2194 	[CPUHP_AP_SMPBOOT_THREADS] = {
2195 		.name			= "smpboot/threads:online",
2196 		.startup.single		= smpboot_unpark_threads,
2197 		.teardown.single	= smpboot_park_threads,
2198 	},
2199 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2200 		.name			= "irq/affinity:online",
2201 		.startup.single		= irq_affinity_online_cpu,
2202 		.teardown.single	= NULL,
2203 	},
2204 	[CPUHP_AP_PERF_ONLINE] = {
2205 		.name			= "perf:online",
2206 		.startup.single		= perf_event_init_cpu,
2207 		.teardown.single	= perf_event_exit_cpu,
2208 	},
2209 	[CPUHP_AP_WATCHDOG_ONLINE] = {
2210 		.name			= "lockup_detector:online",
2211 		.startup.single		= lockup_detector_online_cpu,
2212 		.teardown.single	= lockup_detector_offline_cpu,
2213 	},
2214 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2215 		.name			= "workqueue:online",
2216 		.startup.single		= workqueue_online_cpu,
2217 		.teardown.single	= workqueue_offline_cpu,
2218 	},
2219 	[CPUHP_AP_RANDOM_ONLINE] = {
2220 		.name			= "random:online",
2221 		.startup.single		= random_online_cpu,
2222 		.teardown.single	= NULL,
2223 	},
2224 	[CPUHP_AP_RCUTREE_ONLINE] = {
2225 		.name			= "RCU/tree:online",
2226 		.startup.single		= rcutree_online_cpu,
2227 		.teardown.single	= rcutree_offline_cpu,
2228 	},
2229 #endif
2230 	/*
2231 	 * The dynamically registered state space is here
2232 	 */
2233 
2234 #ifdef CONFIG_SMP
2235 	/* Last state is scheduler control setting the cpu active */
2236 	[CPUHP_AP_ACTIVE] = {
2237 		.name			= "sched:active",
2238 		.startup.single		= sched_cpu_activate,
2239 		.teardown.single	= sched_cpu_deactivate,
2240 	},
2241 #endif
2242 
2243 	/* CPU is fully up and running. */
2244 	[CPUHP_ONLINE] = {
2245 		.name			= "online",
2246 		.startup.single		= NULL,
2247 		.teardown.single	= NULL,
2248 	},
2249 };
2250 
2251 /* Sanity check for callbacks */
2252 static int cpuhp_cb_check(enum cpuhp_state state)
2253 {
2254 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2255 		return -EINVAL;
2256 	return 0;
2257 }
2258 
2259 /*
2260  * Returns a free for dynamic slot assignment of the Online state. The states
2261  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2262  * by having no name assigned.
2263  */
2264 static int cpuhp_reserve_state(enum cpuhp_state state)
2265 {
2266 	enum cpuhp_state i, end;
2267 	struct cpuhp_step *step;
2268 
2269 	switch (state) {
2270 	case CPUHP_AP_ONLINE_DYN:
2271 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2272 		end = CPUHP_AP_ONLINE_DYN_END;
2273 		break;
2274 	case CPUHP_BP_PREPARE_DYN:
2275 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2276 		end = CPUHP_BP_PREPARE_DYN_END;
2277 		break;
2278 	default:
2279 		return -EINVAL;
2280 	}
2281 
2282 	for (i = state; i <= end; i++, step++) {
2283 		if (!step->name)
2284 			return i;
2285 	}
2286 	WARN(1, "No more dynamic states available for CPU hotplug\n");
2287 	return -ENOSPC;
2288 }
2289 
2290 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2291 				 int (*startup)(unsigned int cpu),
2292 				 int (*teardown)(unsigned int cpu),
2293 				 bool multi_instance)
2294 {
2295 	/* (Un)Install the callbacks for further cpu hotplug operations */
2296 	struct cpuhp_step *sp;
2297 	int ret = 0;
2298 
2299 	/*
2300 	 * If name is NULL, then the state gets removed.
2301 	 *
2302 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2303 	 * the first allocation from these dynamic ranges, so the removal
2304 	 * would trigger a new allocation and clear the wrong (already
2305 	 * empty) state, leaving the callbacks of the to be cleared state
2306 	 * dangling, which causes wreckage on the next hotplug operation.
2307 	 */
2308 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2309 		     state == CPUHP_BP_PREPARE_DYN)) {
2310 		ret = cpuhp_reserve_state(state);
2311 		if (ret < 0)
2312 			return ret;
2313 		state = ret;
2314 	}
2315 	sp = cpuhp_get_step(state);
2316 	if (name && sp->name)
2317 		return -EBUSY;
2318 
2319 	sp->startup.single = startup;
2320 	sp->teardown.single = teardown;
2321 	sp->name = name;
2322 	sp->multi_instance = multi_instance;
2323 	INIT_HLIST_HEAD(&sp->list);
2324 	return ret;
2325 }
2326 
2327 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2328 {
2329 	return cpuhp_get_step(state)->teardown.single;
2330 }
2331 
2332 /*
2333  * Call the startup/teardown function for a step either on the AP or
2334  * on the current CPU.
2335  */
2336 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2337 			    struct hlist_node *node)
2338 {
2339 	struct cpuhp_step *sp = cpuhp_get_step(state);
2340 	int ret;
2341 
2342 	/*
2343 	 * If there's nothing to do, we done.
2344 	 * Relies on the union for multi_instance.
2345 	 */
2346 	if (cpuhp_step_empty(bringup, sp))
2347 		return 0;
2348 	/*
2349 	 * The non AP bound callbacks can fail on bringup. On teardown
2350 	 * e.g. module removal we crash for now.
2351 	 */
2352 #ifdef CONFIG_SMP
2353 	if (cpuhp_is_ap_state(state))
2354 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2355 	else
2356 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2357 #else
2358 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2359 #endif
2360 	BUG_ON(ret && !bringup);
2361 	return ret;
2362 }
2363 
2364 /*
2365  * Called from __cpuhp_setup_state on a recoverable failure.
2366  *
2367  * Note: The teardown callbacks for rollback are not allowed to fail!
2368  */
2369 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2370 				   struct hlist_node *node)
2371 {
2372 	int cpu;
2373 
2374 	/* Roll back the already executed steps on the other cpus */
2375 	for_each_present_cpu(cpu) {
2376 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2377 		int cpustate = st->state;
2378 
2379 		if (cpu >= failedcpu)
2380 			break;
2381 
2382 		/* Did we invoke the startup call on that cpu ? */
2383 		if (cpustate >= state)
2384 			cpuhp_issue_call(cpu, state, false, node);
2385 	}
2386 }
2387 
2388 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2389 					  struct hlist_node *node,
2390 					  bool invoke)
2391 {
2392 	struct cpuhp_step *sp;
2393 	int cpu;
2394 	int ret;
2395 
2396 	lockdep_assert_cpus_held();
2397 
2398 	sp = cpuhp_get_step(state);
2399 	if (sp->multi_instance == false)
2400 		return -EINVAL;
2401 
2402 	mutex_lock(&cpuhp_state_mutex);
2403 
2404 	if (!invoke || !sp->startup.multi)
2405 		goto add_node;
2406 
2407 	/*
2408 	 * Try to call the startup callback for each present cpu
2409 	 * depending on the hotplug state of the cpu.
2410 	 */
2411 	for_each_present_cpu(cpu) {
2412 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2413 		int cpustate = st->state;
2414 
2415 		if (cpustate < state)
2416 			continue;
2417 
2418 		ret = cpuhp_issue_call(cpu, state, true, node);
2419 		if (ret) {
2420 			if (sp->teardown.multi)
2421 				cpuhp_rollback_install(cpu, state, node);
2422 			goto unlock;
2423 		}
2424 	}
2425 add_node:
2426 	ret = 0;
2427 	hlist_add_head(node, &sp->list);
2428 unlock:
2429 	mutex_unlock(&cpuhp_state_mutex);
2430 	return ret;
2431 }
2432 
2433 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2434 			       bool invoke)
2435 {
2436 	int ret;
2437 
2438 	cpus_read_lock();
2439 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2440 	cpus_read_unlock();
2441 	return ret;
2442 }
2443 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2444 
2445 /**
2446  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2447  * @state:		The state to setup
2448  * @name:		Name of the step
2449  * @invoke:		If true, the startup function is invoked for cpus where
2450  *			cpu state >= @state
2451  * @startup:		startup callback function
2452  * @teardown:		teardown callback function
2453  * @multi_instance:	State is set up for multiple instances which get
2454  *			added afterwards.
2455  *
2456  * The caller needs to hold cpus read locked while calling this function.
2457  * Return:
2458  *   On success:
2459  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2460  *      0 for all other states
2461  *   On failure: proper (negative) error code
2462  */
2463 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2464 				   const char *name, bool invoke,
2465 				   int (*startup)(unsigned int cpu),
2466 				   int (*teardown)(unsigned int cpu),
2467 				   bool multi_instance)
2468 {
2469 	int cpu, ret = 0;
2470 	bool dynstate;
2471 
2472 	lockdep_assert_cpus_held();
2473 
2474 	if (cpuhp_cb_check(state) || !name)
2475 		return -EINVAL;
2476 
2477 	mutex_lock(&cpuhp_state_mutex);
2478 
2479 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2480 				    multi_instance);
2481 
2482 	dynstate = state == CPUHP_AP_ONLINE_DYN;
2483 	if (ret > 0 && dynstate) {
2484 		state = ret;
2485 		ret = 0;
2486 	}
2487 
2488 	if (ret || !invoke || !startup)
2489 		goto out;
2490 
2491 	/*
2492 	 * Try to call the startup callback for each present cpu
2493 	 * depending on the hotplug state of the cpu.
2494 	 */
2495 	for_each_present_cpu(cpu) {
2496 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2497 		int cpustate = st->state;
2498 
2499 		if (cpustate < state)
2500 			continue;
2501 
2502 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2503 		if (ret) {
2504 			if (teardown)
2505 				cpuhp_rollback_install(cpu, state, NULL);
2506 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2507 			goto out;
2508 		}
2509 	}
2510 out:
2511 	mutex_unlock(&cpuhp_state_mutex);
2512 	/*
2513 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2514 	 * dynamically allocated state in case of success.
2515 	 */
2516 	if (!ret && dynstate)
2517 		return state;
2518 	return ret;
2519 }
2520 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2521 
2522 int __cpuhp_setup_state(enum cpuhp_state state,
2523 			const char *name, bool invoke,
2524 			int (*startup)(unsigned int cpu),
2525 			int (*teardown)(unsigned int cpu),
2526 			bool multi_instance)
2527 {
2528 	int ret;
2529 
2530 	cpus_read_lock();
2531 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2532 					     teardown, multi_instance);
2533 	cpus_read_unlock();
2534 	return ret;
2535 }
2536 EXPORT_SYMBOL(__cpuhp_setup_state);
2537 
2538 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2539 				  struct hlist_node *node, bool invoke)
2540 {
2541 	struct cpuhp_step *sp = cpuhp_get_step(state);
2542 	int cpu;
2543 
2544 	BUG_ON(cpuhp_cb_check(state));
2545 
2546 	if (!sp->multi_instance)
2547 		return -EINVAL;
2548 
2549 	cpus_read_lock();
2550 	mutex_lock(&cpuhp_state_mutex);
2551 
2552 	if (!invoke || !cpuhp_get_teardown_cb(state))
2553 		goto remove;
2554 	/*
2555 	 * Call the teardown callback for each present cpu depending
2556 	 * on the hotplug state of the cpu. This function is not
2557 	 * allowed to fail currently!
2558 	 */
2559 	for_each_present_cpu(cpu) {
2560 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2561 		int cpustate = st->state;
2562 
2563 		if (cpustate >= state)
2564 			cpuhp_issue_call(cpu, state, false, node);
2565 	}
2566 
2567 remove:
2568 	hlist_del(node);
2569 	mutex_unlock(&cpuhp_state_mutex);
2570 	cpus_read_unlock();
2571 
2572 	return 0;
2573 }
2574 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2575 
2576 /**
2577  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2578  * @state:	The state to remove
2579  * @invoke:	If true, the teardown function is invoked for cpus where
2580  *		cpu state >= @state
2581  *
2582  * The caller needs to hold cpus read locked while calling this function.
2583  * The teardown callback is currently not allowed to fail. Think
2584  * about module removal!
2585  */
2586 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2587 {
2588 	struct cpuhp_step *sp = cpuhp_get_step(state);
2589 	int cpu;
2590 
2591 	BUG_ON(cpuhp_cb_check(state));
2592 
2593 	lockdep_assert_cpus_held();
2594 
2595 	mutex_lock(&cpuhp_state_mutex);
2596 	if (sp->multi_instance) {
2597 		WARN(!hlist_empty(&sp->list),
2598 		     "Error: Removing state %d which has instances left.\n",
2599 		     state);
2600 		goto remove;
2601 	}
2602 
2603 	if (!invoke || !cpuhp_get_teardown_cb(state))
2604 		goto remove;
2605 
2606 	/*
2607 	 * Call the teardown callback for each present cpu depending
2608 	 * on the hotplug state of the cpu. This function is not
2609 	 * allowed to fail currently!
2610 	 */
2611 	for_each_present_cpu(cpu) {
2612 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2613 		int cpustate = st->state;
2614 
2615 		if (cpustate >= state)
2616 			cpuhp_issue_call(cpu, state, false, NULL);
2617 	}
2618 remove:
2619 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2620 	mutex_unlock(&cpuhp_state_mutex);
2621 }
2622 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2623 
2624 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2625 {
2626 	cpus_read_lock();
2627 	__cpuhp_remove_state_cpuslocked(state, invoke);
2628 	cpus_read_unlock();
2629 }
2630 EXPORT_SYMBOL(__cpuhp_remove_state);
2631 
2632 #ifdef CONFIG_HOTPLUG_SMT
2633 static void cpuhp_offline_cpu_device(unsigned int cpu)
2634 {
2635 	struct device *dev = get_cpu_device(cpu);
2636 
2637 	dev->offline = true;
2638 	/* Tell user space about the state change */
2639 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2640 }
2641 
2642 static void cpuhp_online_cpu_device(unsigned int cpu)
2643 {
2644 	struct device *dev = get_cpu_device(cpu);
2645 
2646 	dev->offline = false;
2647 	/* Tell user space about the state change */
2648 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2649 }
2650 
2651 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2652 {
2653 	int cpu, ret = 0;
2654 
2655 	cpu_maps_update_begin();
2656 	for_each_online_cpu(cpu) {
2657 		if (topology_is_primary_thread(cpu))
2658 			continue;
2659 		/*
2660 		 * Disable can be called with CPU_SMT_ENABLED when changing
2661 		 * from a higher to lower number of SMT threads per core.
2662 		 */
2663 		if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2664 			continue;
2665 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2666 		if (ret)
2667 			break;
2668 		/*
2669 		 * As this needs to hold the cpu maps lock it's impossible
2670 		 * to call device_offline() because that ends up calling
2671 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2672 		 * needs to be held as this might race against in kernel
2673 		 * abusers of the hotplug machinery (thermal management).
2674 		 *
2675 		 * So nothing would update device:offline state. That would
2676 		 * leave the sysfs entry stale and prevent onlining after
2677 		 * smt control has been changed to 'off' again. This is
2678 		 * called under the sysfs hotplug lock, so it is properly
2679 		 * serialized against the regular offline usage.
2680 		 */
2681 		cpuhp_offline_cpu_device(cpu);
2682 	}
2683 	if (!ret)
2684 		cpu_smt_control = ctrlval;
2685 	cpu_maps_update_done();
2686 	return ret;
2687 }
2688 
2689 int cpuhp_smt_enable(void)
2690 {
2691 	int cpu, ret = 0;
2692 
2693 	cpu_maps_update_begin();
2694 	cpu_smt_control = CPU_SMT_ENABLED;
2695 	for_each_present_cpu(cpu) {
2696 		/* Skip online CPUs and CPUs on offline nodes */
2697 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2698 			continue;
2699 		if (!cpu_smt_thread_allowed(cpu))
2700 			continue;
2701 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2702 		if (ret)
2703 			break;
2704 		/* See comment in cpuhp_smt_disable() */
2705 		cpuhp_online_cpu_device(cpu);
2706 	}
2707 	cpu_maps_update_done();
2708 	return ret;
2709 }
2710 #endif
2711 
2712 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2713 static ssize_t state_show(struct device *dev,
2714 			  struct device_attribute *attr, char *buf)
2715 {
2716 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2717 
2718 	return sprintf(buf, "%d\n", st->state);
2719 }
2720 static DEVICE_ATTR_RO(state);
2721 
2722 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2723 			    const char *buf, size_t count)
2724 {
2725 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2726 	struct cpuhp_step *sp;
2727 	int target, ret;
2728 
2729 	ret = kstrtoint(buf, 10, &target);
2730 	if (ret)
2731 		return ret;
2732 
2733 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2734 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2735 		return -EINVAL;
2736 #else
2737 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2738 		return -EINVAL;
2739 #endif
2740 
2741 	ret = lock_device_hotplug_sysfs();
2742 	if (ret)
2743 		return ret;
2744 
2745 	mutex_lock(&cpuhp_state_mutex);
2746 	sp = cpuhp_get_step(target);
2747 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2748 	mutex_unlock(&cpuhp_state_mutex);
2749 	if (ret)
2750 		goto out;
2751 
2752 	if (st->state < target)
2753 		ret = cpu_up(dev->id, target);
2754 	else if (st->state > target)
2755 		ret = cpu_down(dev->id, target);
2756 	else if (WARN_ON(st->target != target))
2757 		st->target = target;
2758 out:
2759 	unlock_device_hotplug();
2760 	return ret ? ret : count;
2761 }
2762 
2763 static ssize_t target_show(struct device *dev,
2764 			   struct device_attribute *attr, char *buf)
2765 {
2766 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2767 
2768 	return sprintf(buf, "%d\n", st->target);
2769 }
2770 static DEVICE_ATTR_RW(target);
2771 
2772 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2773 			  const char *buf, size_t count)
2774 {
2775 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2776 	struct cpuhp_step *sp;
2777 	int fail, ret;
2778 
2779 	ret = kstrtoint(buf, 10, &fail);
2780 	if (ret)
2781 		return ret;
2782 
2783 	if (fail == CPUHP_INVALID) {
2784 		st->fail = fail;
2785 		return count;
2786 	}
2787 
2788 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2789 		return -EINVAL;
2790 
2791 	/*
2792 	 * Cannot fail STARTING/DYING callbacks.
2793 	 */
2794 	if (cpuhp_is_atomic_state(fail))
2795 		return -EINVAL;
2796 
2797 	/*
2798 	 * DEAD callbacks cannot fail...
2799 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2800 	 * triggering STARTING callbacks, a failure in this state would
2801 	 * hinder rollback.
2802 	 */
2803 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2804 		return -EINVAL;
2805 
2806 	/*
2807 	 * Cannot fail anything that doesn't have callbacks.
2808 	 */
2809 	mutex_lock(&cpuhp_state_mutex);
2810 	sp = cpuhp_get_step(fail);
2811 	if (!sp->startup.single && !sp->teardown.single)
2812 		ret = -EINVAL;
2813 	mutex_unlock(&cpuhp_state_mutex);
2814 	if (ret)
2815 		return ret;
2816 
2817 	st->fail = fail;
2818 
2819 	return count;
2820 }
2821 
2822 static ssize_t fail_show(struct device *dev,
2823 			 struct device_attribute *attr, char *buf)
2824 {
2825 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2826 
2827 	return sprintf(buf, "%d\n", st->fail);
2828 }
2829 
2830 static DEVICE_ATTR_RW(fail);
2831 
2832 static struct attribute *cpuhp_cpu_attrs[] = {
2833 	&dev_attr_state.attr,
2834 	&dev_attr_target.attr,
2835 	&dev_attr_fail.attr,
2836 	NULL
2837 };
2838 
2839 static const struct attribute_group cpuhp_cpu_attr_group = {
2840 	.attrs = cpuhp_cpu_attrs,
2841 	.name = "hotplug",
2842 	NULL
2843 };
2844 
2845 static ssize_t states_show(struct device *dev,
2846 				 struct device_attribute *attr, char *buf)
2847 {
2848 	ssize_t cur, res = 0;
2849 	int i;
2850 
2851 	mutex_lock(&cpuhp_state_mutex);
2852 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2853 		struct cpuhp_step *sp = cpuhp_get_step(i);
2854 
2855 		if (sp->name) {
2856 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2857 			buf += cur;
2858 			res += cur;
2859 		}
2860 	}
2861 	mutex_unlock(&cpuhp_state_mutex);
2862 	return res;
2863 }
2864 static DEVICE_ATTR_RO(states);
2865 
2866 static struct attribute *cpuhp_cpu_root_attrs[] = {
2867 	&dev_attr_states.attr,
2868 	NULL
2869 };
2870 
2871 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2872 	.attrs = cpuhp_cpu_root_attrs,
2873 	.name = "hotplug",
2874 	NULL
2875 };
2876 
2877 #ifdef CONFIG_HOTPLUG_SMT
2878 
2879 static bool cpu_smt_num_threads_valid(unsigned int threads)
2880 {
2881 	if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2882 		return threads >= 1 && threads <= cpu_smt_max_threads;
2883 	return threads == 1 || threads == cpu_smt_max_threads;
2884 }
2885 
2886 static ssize_t
2887 __store_smt_control(struct device *dev, struct device_attribute *attr,
2888 		    const char *buf, size_t count)
2889 {
2890 	int ctrlval, ret, num_threads, orig_threads;
2891 	bool force_off;
2892 
2893 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2894 		return -EPERM;
2895 
2896 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2897 		return -ENODEV;
2898 
2899 	if (sysfs_streq(buf, "on")) {
2900 		ctrlval = CPU_SMT_ENABLED;
2901 		num_threads = cpu_smt_max_threads;
2902 	} else if (sysfs_streq(buf, "off")) {
2903 		ctrlval = CPU_SMT_DISABLED;
2904 		num_threads = 1;
2905 	} else if (sysfs_streq(buf, "forceoff")) {
2906 		ctrlval = CPU_SMT_FORCE_DISABLED;
2907 		num_threads = 1;
2908 	} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2909 		if (num_threads == 1)
2910 			ctrlval = CPU_SMT_DISABLED;
2911 		else if (cpu_smt_num_threads_valid(num_threads))
2912 			ctrlval = CPU_SMT_ENABLED;
2913 		else
2914 			return -EINVAL;
2915 	} else {
2916 		return -EINVAL;
2917 	}
2918 
2919 	ret = lock_device_hotplug_sysfs();
2920 	if (ret)
2921 		return ret;
2922 
2923 	orig_threads = cpu_smt_num_threads;
2924 	cpu_smt_num_threads = num_threads;
2925 
2926 	force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2927 
2928 	if (num_threads > orig_threads)
2929 		ret = cpuhp_smt_enable();
2930 	else if (num_threads < orig_threads || force_off)
2931 		ret = cpuhp_smt_disable(ctrlval);
2932 
2933 	unlock_device_hotplug();
2934 	return ret ? ret : count;
2935 }
2936 
2937 #else /* !CONFIG_HOTPLUG_SMT */
2938 static ssize_t
2939 __store_smt_control(struct device *dev, struct device_attribute *attr,
2940 		    const char *buf, size_t count)
2941 {
2942 	return -ENODEV;
2943 }
2944 #endif /* CONFIG_HOTPLUG_SMT */
2945 
2946 static const char *smt_states[] = {
2947 	[CPU_SMT_ENABLED]		= "on",
2948 	[CPU_SMT_DISABLED]		= "off",
2949 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2950 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2951 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2952 };
2953 
2954 static ssize_t control_show(struct device *dev,
2955 			    struct device_attribute *attr, char *buf)
2956 {
2957 	const char *state = smt_states[cpu_smt_control];
2958 
2959 #ifdef CONFIG_HOTPLUG_SMT
2960 	/*
2961 	 * If SMT is enabled but not all threads are enabled then show the
2962 	 * number of threads. If all threads are enabled show "on". Otherwise
2963 	 * show the state name.
2964 	 */
2965 	if (cpu_smt_control == CPU_SMT_ENABLED &&
2966 	    cpu_smt_num_threads != cpu_smt_max_threads)
2967 		return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2968 #endif
2969 
2970 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2971 }
2972 
2973 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2974 			     const char *buf, size_t count)
2975 {
2976 	return __store_smt_control(dev, attr, buf, count);
2977 }
2978 static DEVICE_ATTR_RW(control);
2979 
2980 static ssize_t active_show(struct device *dev,
2981 			   struct device_attribute *attr, char *buf)
2982 {
2983 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2984 }
2985 static DEVICE_ATTR_RO(active);
2986 
2987 static struct attribute *cpuhp_smt_attrs[] = {
2988 	&dev_attr_control.attr,
2989 	&dev_attr_active.attr,
2990 	NULL
2991 };
2992 
2993 static const struct attribute_group cpuhp_smt_attr_group = {
2994 	.attrs = cpuhp_smt_attrs,
2995 	.name = "smt",
2996 	NULL
2997 };
2998 
2999 static int __init cpu_smt_sysfs_init(void)
3000 {
3001 	struct device *dev_root;
3002 	int ret = -ENODEV;
3003 
3004 	dev_root = bus_get_dev_root(&cpu_subsys);
3005 	if (dev_root) {
3006 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3007 		put_device(dev_root);
3008 	}
3009 	return ret;
3010 }
3011 
3012 static int __init cpuhp_sysfs_init(void)
3013 {
3014 	struct device *dev_root;
3015 	int cpu, ret;
3016 
3017 	ret = cpu_smt_sysfs_init();
3018 	if (ret)
3019 		return ret;
3020 
3021 	dev_root = bus_get_dev_root(&cpu_subsys);
3022 	if (dev_root) {
3023 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3024 		put_device(dev_root);
3025 		if (ret)
3026 			return ret;
3027 	}
3028 
3029 	for_each_possible_cpu(cpu) {
3030 		struct device *dev = get_cpu_device(cpu);
3031 
3032 		if (!dev)
3033 			continue;
3034 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3035 		if (ret)
3036 			return ret;
3037 	}
3038 	return 0;
3039 }
3040 device_initcall(cpuhp_sysfs_init);
3041 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3042 
3043 /*
3044  * cpu_bit_bitmap[] is a special, "compressed" data structure that
3045  * represents all NR_CPUS bits binary values of 1<<nr.
3046  *
3047  * It is used by cpumask_of() to get a constant address to a CPU
3048  * mask value that has a single bit set only.
3049  */
3050 
3051 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3052 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
3053 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3054 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3055 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3056 
3057 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3058 
3059 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
3060 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
3061 #if BITS_PER_LONG > 32
3062 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
3063 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
3064 #endif
3065 };
3066 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3067 
3068 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3069 EXPORT_SYMBOL(cpu_all_bits);
3070 
3071 #ifdef CONFIG_INIT_ALL_POSSIBLE
3072 struct cpumask __cpu_possible_mask __read_mostly
3073 	= {CPU_BITS_ALL};
3074 #else
3075 struct cpumask __cpu_possible_mask __read_mostly;
3076 #endif
3077 EXPORT_SYMBOL(__cpu_possible_mask);
3078 
3079 struct cpumask __cpu_online_mask __read_mostly;
3080 EXPORT_SYMBOL(__cpu_online_mask);
3081 
3082 struct cpumask __cpu_present_mask __read_mostly;
3083 EXPORT_SYMBOL(__cpu_present_mask);
3084 
3085 struct cpumask __cpu_active_mask __read_mostly;
3086 EXPORT_SYMBOL(__cpu_active_mask);
3087 
3088 struct cpumask __cpu_dying_mask __read_mostly;
3089 EXPORT_SYMBOL(__cpu_dying_mask);
3090 
3091 atomic_t __num_online_cpus __read_mostly;
3092 EXPORT_SYMBOL(__num_online_cpus);
3093 
3094 void init_cpu_present(const struct cpumask *src)
3095 {
3096 	cpumask_copy(&__cpu_present_mask, src);
3097 }
3098 
3099 void init_cpu_possible(const struct cpumask *src)
3100 {
3101 	cpumask_copy(&__cpu_possible_mask, src);
3102 }
3103 
3104 void init_cpu_online(const struct cpumask *src)
3105 {
3106 	cpumask_copy(&__cpu_online_mask, src);
3107 }
3108 
3109 void set_cpu_online(unsigned int cpu, bool online)
3110 {
3111 	/*
3112 	 * atomic_inc/dec() is required to handle the horrid abuse of this
3113 	 * function by the reboot and kexec code which invoke it from
3114 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3115 	 * regular CPU hotplug is properly serialized.
3116 	 *
3117 	 * Note, that the fact that __num_online_cpus is of type atomic_t
3118 	 * does not protect readers which are not serialized against
3119 	 * concurrent hotplug operations.
3120 	 */
3121 	if (online) {
3122 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3123 			atomic_inc(&__num_online_cpus);
3124 	} else {
3125 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3126 			atomic_dec(&__num_online_cpus);
3127 	}
3128 }
3129 
3130 /*
3131  * Activate the first processor.
3132  */
3133 void __init boot_cpu_init(void)
3134 {
3135 	int cpu = smp_processor_id();
3136 
3137 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3138 	set_cpu_online(cpu, true);
3139 	set_cpu_active(cpu, true);
3140 	set_cpu_present(cpu, true);
3141 	set_cpu_possible(cpu, true);
3142 
3143 #ifdef CONFIG_SMP
3144 	__boot_cpu_id = cpu;
3145 #endif
3146 }
3147 
3148 /*
3149  * Must be called _AFTER_ setting up the per_cpu areas
3150  */
3151 void __init boot_cpu_hotplug_init(void)
3152 {
3153 #ifdef CONFIG_SMP
3154 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3155 	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3156 #endif
3157 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3158 	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3159 }
3160 
3161 /*
3162  * These are used for a global "mitigations=" cmdline option for toggling
3163  * optional CPU mitigations.
3164  */
3165 enum cpu_mitigations {
3166 	CPU_MITIGATIONS_OFF,
3167 	CPU_MITIGATIONS_AUTO,
3168 	CPU_MITIGATIONS_AUTO_NOSMT,
3169 };
3170 
3171 static enum cpu_mitigations cpu_mitigations __ro_after_init =
3172 	CPU_MITIGATIONS_AUTO;
3173 
3174 static int __init mitigations_parse_cmdline(char *arg)
3175 {
3176 	if (!strcmp(arg, "off"))
3177 		cpu_mitigations = CPU_MITIGATIONS_OFF;
3178 	else if (!strcmp(arg, "auto"))
3179 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
3180 	else if (!strcmp(arg, "auto,nosmt"))
3181 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3182 	else
3183 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3184 			arg);
3185 
3186 	return 0;
3187 }
3188 early_param("mitigations", mitigations_parse_cmdline);
3189 
3190 /* mitigations=off */
3191 bool cpu_mitigations_off(void)
3192 {
3193 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3194 }
3195 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3196 
3197 /* mitigations=auto,nosmt */
3198 bool cpu_mitigations_auto_nosmt(void)
3199 {
3200 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3201 }
3202 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3203