1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/proc_fs.h> 7 #include <linux/smp.h> 8 #include <linux/init.h> 9 #include <linux/notifier.h> 10 #include <linux/sched.h> 11 #include <linux/unistd.h> 12 #include <linux/cpu.h> 13 #include <linux/oom.h> 14 #include <linux/rcupdate.h> 15 #include <linux/export.h> 16 #include <linux/bug.h> 17 #include <linux/kthread.h> 18 #include <linux/stop_machine.h> 19 #include <linux/mutex.h> 20 #include <linux/gfp.h> 21 #include <linux/suspend.h> 22 23 #include "smpboot.h" 24 25 #ifdef CONFIG_SMP 26 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 27 static DEFINE_MUTEX(cpu_add_remove_lock); 28 29 /* 30 * The following two API's must be used when attempting 31 * to serialize the updates to cpu_online_mask, cpu_present_mask. 32 */ 33 void cpu_maps_update_begin(void) 34 { 35 mutex_lock(&cpu_add_remove_lock); 36 } 37 38 void cpu_maps_update_done(void) 39 { 40 mutex_unlock(&cpu_add_remove_lock); 41 } 42 43 static RAW_NOTIFIER_HEAD(cpu_chain); 44 45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing. 46 * Should always be manipulated under cpu_add_remove_lock 47 */ 48 static int cpu_hotplug_disabled; 49 50 #ifdef CONFIG_HOTPLUG_CPU 51 52 static struct { 53 struct task_struct *active_writer; 54 struct mutex lock; /* Synchronizes accesses to refcount, */ 55 /* 56 * Also blocks the new readers during 57 * an ongoing cpu hotplug operation. 58 */ 59 int refcount; 60 } cpu_hotplug = { 61 .active_writer = NULL, 62 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock), 63 .refcount = 0, 64 }; 65 66 void get_online_cpus(void) 67 { 68 might_sleep(); 69 if (cpu_hotplug.active_writer == current) 70 return; 71 mutex_lock(&cpu_hotplug.lock); 72 cpu_hotplug.refcount++; 73 mutex_unlock(&cpu_hotplug.lock); 74 75 } 76 EXPORT_SYMBOL_GPL(get_online_cpus); 77 78 void put_online_cpus(void) 79 { 80 if (cpu_hotplug.active_writer == current) 81 return; 82 mutex_lock(&cpu_hotplug.lock); 83 84 if (WARN_ON(!cpu_hotplug.refcount)) 85 cpu_hotplug.refcount++; /* try to fix things up */ 86 87 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer)) 88 wake_up_process(cpu_hotplug.active_writer); 89 mutex_unlock(&cpu_hotplug.lock); 90 91 } 92 EXPORT_SYMBOL_GPL(put_online_cpus); 93 94 /* 95 * This ensures that the hotplug operation can begin only when the 96 * refcount goes to zero. 97 * 98 * Note that during a cpu-hotplug operation, the new readers, if any, 99 * will be blocked by the cpu_hotplug.lock 100 * 101 * Since cpu_hotplug_begin() is always called after invoking 102 * cpu_maps_update_begin(), we can be sure that only one writer is active. 103 * 104 * Note that theoretically, there is a possibility of a livelock: 105 * - Refcount goes to zero, last reader wakes up the sleeping 106 * writer. 107 * - Last reader unlocks the cpu_hotplug.lock. 108 * - A new reader arrives at this moment, bumps up the refcount. 109 * - The writer acquires the cpu_hotplug.lock finds the refcount 110 * non zero and goes to sleep again. 111 * 112 * However, this is very difficult to achieve in practice since 113 * get_online_cpus() not an api which is called all that often. 114 * 115 */ 116 void cpu_hotplug_begin(void) 117 { 118 cpu_hotplug.active_writer = current; 119 120 for (;;) { 121 mutex_lock(&cpu_hotplug.lock); 122 if (likely(!cpu_hotplug.refcount)) 123 break; 124 __set_current_state(TASK_UNINTERRUPTIBLE); 125 mutex_unlock(&cpu_hotplug.lock); 126 schedule(); 127 } 128 } 129 130 void cpu_hotplug_done(void) 131 { 132 cpu_hotplug.active_writer = NULL; 133 mutex_unlock(&cpu_hotplug.lock); 134 } 135 136 /* 137 * Wait for currently running CPU hotplug operations to complete (if any) and 138 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 139 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 140 * hotplug path before performing hotplug operations. So acquiring that lock 141 * guarantees mutual exclusion from any currently running hotplug operations. 142 */ 143 void cpu_hotplug_disable(void) 144 { 145 cpu_maps_update_begin(); 146 cpu_hotplug_disabled = 1; 147 cpu_maps_update_done(); 148 } 149 150 void cpu_hotplug_enable(void) 151 { 152 cpu_maps_update_begin(); 153 cpu_hotplug_disabled = 0; 154 cpu_maps_update_done(); 155 } 156 157 #endif /* CONFIG_HOTPLUG_CPU */ 158 159 /* Need to know about CPUs going up/down? */ 160 int __ref register_cpu_notifier(struct notifier_block *nb) 161 { 162 int ret; 163 cpu_maps_update_begin(); 164 ret = raw_notifier_chain_register(&cpu_chain, nb); 165 cpu_maps_update_done(); 166 return ret; 167 } 168 169 static int __cpu_notify(unsigned long val, void *v, int nr_to_call, 170 int *nr_calls) 171 { 172 int ret; 173 174 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call, 175 nr_calls); 176 177 return notifier_to_errno(ret); 178 } 179 180 static int cpu_notify(unsigned long val, void *v) 181 { 182 return __cpu_notify(val, v, -1, NULL); 183 } 184 185 #ifdef CONFIG_HOTPLUG_CPU 186 187 static void cpu_notify_nofail(unsigned long val, void *v) 188 { 189 BUG_ON(cpu_notify(val, v)); 190 } 191 EXPORT_SYMBOL(register_cpu_notifier); 192 193 void __ref unregister_cpu_notifier(struct notifier_block *nb) 194 { 195 cpu_maps_update_begin(); 196 raw_notifier_chain_unregister(&cpu_chain, nb); 197 cpu_maps_update_done(); 198 } 199 EXPORT_SYMBOL(unregister_cpu_notifier); 200 201 /** 202 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 203 * @cpu: a CPU id 204 * 205 * This function walks all processes, finds a valid mm struct for each one and 206 * then clears a corresponding bit in mm's cpumask. While this all sounds 207 * trivial, there are various non-obvious corner cases, which this function 208 * tries to solve in a safe manner. 209 * 210 * Also note that the function uses a somewhat relaxed locking scheme, so it may 211 * be called only for an already offlined CPU. 212 */ 213 void clear_tasks_mm_cpumask(int cpu) 214 { 215 struct task_struct *p; 216 217 /* 218 * This function is called after the cpu is taken down and marked 219 * offline, so its not like new tasks will ever get this cpu set in 220 * their mm mask. -- Peter Zijlstra 221 * Thus, we may use rcu_read_lock() here, instead of grabbing 222 * full-fledged tasklist_lock. 223 */ 224 WARN_ON(cpu_online(cpu)); 225 rcu_read_lock(); 226 for_each_process(p) { 227 struct task_struct *t; 228 229 /* 230 * Main thread might exit, but other threads may still have 231 * a valid mm. Find one. 232 */ 233 t = find_lock_task_mm(p); 234 if (!t) 235 continue; 236 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 237 task_unlock(t); 238 } 239 rcu_read_unlock(); 240 } 241 242 static inline void check_for_tasks(int cpu) 243 { 244 struct task_struct *p; 245 cputime_t utime, stime; 246 247 write_lock_irq(&tasklist_lock); 248 for_each_process(p) { 249 task_cputime(p, &utime, &stime); 250 if (task_cpu(p) == cpu && p->state == TASK_RUNNING && 251 (utime || stime)) 252 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d " 253 "(state = %ld, flags = %x)\n", 254 p->comm, task_pid_nr(p), cpu, 255 p->state, p->flags); 256 } 257 write_unlock_irq(&tasklist_lock); 258 } 259 260 struct take_cpu_down_param { 261 unsigned long mod; 262 void *hcpu; 263 }; 264 265 /* Take this CPU down. */ 266 static int __ref take_cpu_down(void *_param) 267 { 268 struct take_cpu_down_param *param = _param; 269 int err; 270 271 /* Ensure this CPU doesn't handle any more interrupts. */ 272 err = __cpu_disable(); 273 if (err < 0) 274 return err; 275 276 cpu_notify(CPU_DYING | param->mod, param->hcpu); 277 /* Park the stopper thread */ 278 kthread_park(current); 279 return 0; 280 } 281 282 /* Requires cpu_add_remove_lock to be held */ 283 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen) 284 { 285 int err, nr_calls = 0; 286 void *hcpu = (void *)(long)cpu; 287 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 288 struct take_cpu_down_param tcd_param = { 289 .mod = mod, 290 .hcpu = hcpu, 291 }; 292 293 if (num_online_cpus() == 1) 294 return -EBUSY; 295 296 if (!cpu_online(cpu)) 297 return -EINVAL; 298 299 cpu_hotplug_begin(); 300 301 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls); 302 if (err) { 303 nr_calls--; 304 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL); 305 printk("%s: attempt to take down CPU %u failed\n", 306 __func__, cpu); 307 goto out_release; 308 } 309 310 /* 311 * By now we've cleared cpu_active_mask, wait for all preempt-disabled 312 * and RCU users of this state to go away such that all new such users 313 * will observe it. 314 * 315 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might 316 * not imply sync_sched(), so explicitly call both. 317 * 318 * Do sync before park smpboot threads to take care the rcu boost case. 319 */ 320 #ifdef CONFIG_PREEMPT 321 synchronize_sched(); 322 #endif 323 synchronize_rcu(); 324 325 smpboot_park_threads(cpu); 326 327 /* 328 * So now all preempt/rcu users must observe !cpu_active(). 329 */ 330 331 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu)); 332 if (err) { 333 /* CPU didn't die: tell everyone. Can't complain. */ 334 smpboot_unpark_threads(cpu); 335 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu); 336 goto out_release; 337 } 338 BUG_ON(cpu_online(cpu)); 339 340 /* 341 * The migration_call() CPU_DYING callback will have removed all 342 * runnable tasks from the cpu, there's only the idle task left now 343 * that the migration thread is done doing the stop_machine thing. 344 * 345 * Wait for the stop thread to go away. 346 */ 347 while (!idle_cpu(cpu)) 348 cpu_relax(); 349 350 /* This actually kills the CPU. */ 351 __cpu_die(cpu); 352 353 /* CPU is completely dead: tell everyone. Too late to complain. */ 354 cpu_notify_nofail(CPU_DEAD | mod, hcpu); 355 356 check_for_tasks(cpu); 357 358 out_release: 359 cpu_hotplug_done(); 360 if (!err) 361 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu); 362 return err; 363 } 364 365 int __ref cpu_down(unsigned int cpu) 366 { 367 int err; 368 369 cpu_maps_update_begin(); 370 371 if (cpu_hotplug_disabled) { 372 err = -EBUSY; 373 goto out; 374 } 375 376 err = _cpu_down(cpu, 0); 377 378 out: 379 cpu_maps_update_done(); 380 return err; 381 } 382 EXPORT_SYMBOL(cpu_down); 383 #endif /*CONFIG_HOTPLUG_CPU*/ 384 385 /* Requires cpu_add_remove_lock to be held */ 386 static int _cpu_up(unsigned int cpu, int tasks_frozen) 387 { 388 int ret, nr_calls = 0; 389 void *hcpu = (void *)(long)cpu; 390 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0; 391 struct task_struct *idle; 392 393 cpu_hotplug_begin(); 394 395 if (cpu_online(cpu) || !cpu_present(cpu)) { 396 ret = -EINVAL; 397 goto out; 398 } 399 400 idle = idle_thread_get(cpu); 401 if (IS_ERR(idle)) { 402 ret = PTR_ERR(idle); 403 goto out; 404 } 405 406 ret = smpboot_create_threads(cpu); 407 if (ret) 408 goto out; 409 410 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls); 411 if (ret) { 412 nr_calls--; 413 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n", 414 __func__, cpu); 415 goto out_notify; 416 } 417 418 /* Arch-specific enabling code. */ 419 ret = __cpu_up(cpu, idle); 420 if (ret != 0) 421 goto out_notify; 422 BUG_ON(!cpu_online(cpu)); 423 424 /* Wake the per cpu threads */ 425 smpboot_unpark_threads(cpu); 426 427 /* Now call notifier in preparation. */ 428 cpu_notify(CPU_ONLINE | mod, hcpu); 429 430 out_notify: 431 if (ret != 0) 432 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL); 433 out: 434 cpu_hotplug_done(); 435 436 return ret; 437 } 438 439 int cpu_up(unsigned int cpu) 440 { 441 int err = 0; 442 443 if (!cpu_possible(cpu)) { 444 printk(KERN_ERR "can't online cpu %d because it is not " 445 "configured as may-hotadd at boot time\n", cpu); 446 #if defined(CONFIG_IA64) 447 printk(KERN_ERR "please check additional_cpus= boot " 448 "parameter\n"); 449 #endif 450 return -EINVAL; 451 } 452 453 err = try_online_node(cpu_to_node(cpu)); 454 if (err) 455 return err; 456 457 cpu_maps_update_begin(); 458 459 if (cpu_hotplug_disabled) { 460 err = -EBUSY; 461 goto out; 462 } 463 464 err = _cpu_up(cpu, 0); 465 466 out: 467 cpu_maps_update_done(); 468 return err; 469 } 470 EXPORT_SYMBOL_GPL(cpu_up); 471 472 #ifdef CONFIG_PM_SLEEP_SMP 473 static cpumask_var_t frozen_cpus; 474 475 int disable_nonboot_cpus(void) 476 { 477 int cpu, first_cpu, error = 0; 478 479 cpu_maps_update_begin(); 480 first_cpu = cpumask_first(cpu_online_mask); 481 /* 482 * We take down all of the non-boot CPUs in one shot to avoid races 483 * with the userspace trying to use the CPU hotplug at the same time 484 */ 485 cpumask_clear(frozen_cpus); 486 487 printk("Disabling non-boot CPUs ...\n"); 488 for_each_online_cpu(cpu) { 489 if (cpu == first_cpu) 490 continue; 491 error = _cpu_down(cpu, 1); 492 if (!error) 493 cpumask_set_cpu(cpu, frozen_cpus); 494 else { 495 printk(KERN_ERR "Error taking CPU%d down: %d\n", 496 cpu, error); 497 break; 498 } 499 } 500 501 if (!error) { 502 BUG_ON(num_online_cpus() > 1); 503 /* Make sure the CPUs won't be enabled by someone else */ 504 cpu_hotplug_disabled = 1; 505 } else { 506 printk(KERN_ERR "Non-boot CPUs are not disabled\n"); 507 } 508 cpu_maps_update_done(); 509 return error; 510 } 511 512 void __weak arch_enable_nonboot_cpus_begin(void) 513 { 514 } 515 516 void __weak arch_enable_nonboot_cpus_end(void) 517 { 518 } 519 520 void __ref enable_nonboot_cpus(void) 521 { 522 int cpu, error; 523 524 /* Allow everyone to use the CPU hotplug again */ 525 cpu_maps_update_begin(); 526 cpu_hotplug_disabled = 0; 527 if (cpumask_empty(frozen_cpus)) 528 goto out; 529 530 printk(KERN_INFO "Enabling non-boot CPUs ...\n"); 531 532 arch_enable_nonboot_cpus_begin(); 533 534 for_each_cpu(cpu, frozen_cpus) { 535 error = _cpu_up(cpu, 1); 536 if (!error) { 537 printk(KERN_INFO "CPU%d is up\n", cpu); 538 continue; 539 } 540 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error); 541 } 542 543 arch_enable_nonboot_cpus_end(); 544 545 cpumask_clear(frozen_cpus); 546 out: 547 cpu_maps_update_done(); 548 } 549 550 static int __init alloc_frozen_cpus(void) 551 { 552 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 553 return -ENOMEM; 554 return 0; 555 } 556 core_initcall(alloc_frozen_cpus); 557 558 /* 559 * When callbacks for CPU hotplug notifications are being executed, we must 560 * ensure that the state of the system with respect to the tasks being frozen 561 * or not, as reported by the notification, remains unchanged *throughout the 562 * duration* of the execution of the callbacks. 563 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 564 * 565 * This synchronization is implemented by mutually excluding regular CPU 566 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 567 * Hibernate notifications. 568 */ 569 static int 570 cpu_hotplug_pm_callback(struct notifier_block *nb, 571 unsigned long action, void *ptr) 572 { 573 switch (action) { 574 575 case PM_SUSPEND_PREPARE: 576 case PM_HIBERNATION_PREPARE: 577 cpu_hotplug_disable(); 578 break; 579 580 case PM_POST_SUSPEND: 581 case PM_POST_HIBERNATION: 582 cpu_hotplug_enable(); 583 break; 584 585 default: 586 return NOTIFY_DONE; 587 } 588 589 return NOTIFY_OK; 590 } 591 592 593 static int __init cpu_hotplug_pm_sync_init(void) 594 { 595 /* 596 * cpu_hotplug_pm_callback has higher priority than x86 597 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 598 * to disable cpu hotplug to avoid cpu hotplug race. 599 */ 600 pm_notifier(cpu_hotplug_pm_callback, 0); 601 return 0; 602 } 603 core_initcall(cpu_hotplug_pm_sync_init); 604 605 #endif /* CONFIG_PM_SLEEP_SMP */ 606 607 /** 608 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers 609 * @cpu: cpu that just started 610 * 611 * This function calls the cpu_chain notifiers with CPU_STARTING. 612 * It must be called by the arch code on the new cpu, before the new cpu 613 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 614 */ 615 void notify_cpu_starting(unsigned int cpu) 616 { 617 unsigned long val = CPU_STARTING; 618 619 #ifdef CONFIG_PM_SLEEP_SMP 620 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus)) 621 val = CPU_STARTING_FROZEN; 622 #endif /* CONFIG_PM_SLEEP_SMP */ 623 cpu_notify(val, (void *)(long)cpu); 624 } 625 626 #endif /* CONFIG_SMP */ 627 628 /* 629 * cpu_bit_bitmap[] is a special, "compressed" data structure that 630 * represents all NR_CPUS bits binary values of 1<<nr. 631 * 632 * It is used by cpumask_of() to get a constant address to a CPU 633 * mask value that has a single bit set only. 634 */ 635 636 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 637 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 638 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 639 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 640 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 641 642 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 643 644 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 645 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 646 #if BITS_PER_LONG > 32 647 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 648 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 649 #endif 650 }; 651 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 652 653 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 654 EXPORT_SYMBOL(cpu_all_bits); 655 656 #ifdef CONFIG_INIT_ALL_POSSIBLE 657 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly 658 = CPU_BITS_ALL; 659 #else 660 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly; 661 #endif 662 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits); 663 EXPORT_SYMBOL(cpu_possible_mask); 664 665 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly; 666 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits); 667 EXPORT_SYMBOL(cpu_online_mask); 668 669 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly; 670 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits); 671 EXPORT_SYMBOL(cpu_present_mask); 672 673 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly; 674 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits); 675 EXPORT_SYMBOL(cpu_active_mask); 676 677 void set_cpu_possible(unsigned int cpu, bool possible) 678 { 679 if (possible) 680 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits)); 681 else 682 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits)); 683 } 684 685 void set_cpu_present(unsigned int cpu, bool present) 686 { 687 if (present) 688 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits)); 689 else 690 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits)); 691 } 692 693 void set_cpu_online(unsigned int cpu, bool online) 694 { 695 if (online) 696 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits)); 697 else 698 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits)); 699 } 700 701 void set_cpu_active(unsigned int cpu, bool active) 702 { 703 if (active) 704 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits)); 705 else 706 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits)); 707 } 708 709 void init_cpu_present(const struct cpumask *src) 710 { 711 cpumask_copy(to_cpumask(cpu_present_bits), src); 712 } 713 714 void init_cpu_possible(const struct cpumask *src) 715 { 716 cpumask_copy(to_cpumask(cpu_possible_bits), src); 717 } 718 719 void init_cpu_online(const struct cpumask *src) 720 { 721 cpumask_copy(to_cpumask(cpu_online_bits), src); 722 } 723