xref: /openbmc/linux/kernel/cpu.c (revision b96fc2f3)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 #include <linux/tick.h>
24 #include <linux/irq.h>
25 #include <trace/events/power.h>
26 
27 #include "smpboot.h"
28 
29 #ifdef CONFIG_SMP
30 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
31 static DEFINE_MUTEX(cpu_add_remove_lock);
32 
33 /*
34  * The following two APIs (cpu_maps_update_begin/done) must be used when
35  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
36  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
37  * hotplug callback (un)registration performed using __register_cpu_notifier()
38  * or __unregister_cpu_notifier().
39  */
40 void cpu_maps_update_begin(void)
41 {
42 	mutex_lock(&cpu_add_remove_lock);
43 }
44 EXPORT_SYMBOL(cpu_notifier_register_begin);
45 
46 void cpu_maps_update_done(void)
47 {
48 	mutex_unlock(&cpu_add_remove_lock);
49 }
50 EXPORT_SYMBOL(cpu_notifier_register_done);
51 
52 static RAW_NOTIFIER_HEAD(cpu_chain);
53 
54 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
55  * Should always be manipulated under cpu_add_remove_lock
56  */
57 static int cpu_hotplug_disabled;
58 
59 #ifdef CONFIG_HOTPLUG_CPU
60 
61 static struct {
62 	struct task_struct *active_writer;
63 	/* wait queue to wake up the active_writer */
64 	wait_queue_head_t wq;
65 	/* verifies that no writer will get active while readers are active */
66 	struct mutex lock;
67 	/*
68 	 * Also blocks the new readers during
69 	 * an ongoing cpu hotplug operation.
70 	 */
71 	atomic_t refcount;
72 
73 #ifdef CONFIG_DEBUG_LOCK_ALLOC
74 	struct lockdep_map dep_map;
75 #endif
76 } cpu_hotplug = {
77 	.active_writer = NULL,
78 	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
79 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81 	.dep_map = {.name = "cpu_hotplug.lock" },
82 #endif
83 };
84 
85 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
86 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
87 #define cpuhp_lock_acquire_tryread() \
88 				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
89 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
90 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
91 
92 
93 void get_online_cpus(void)
94 {
95 	might_sleep();
96 	if (cpu_hotplug.active_writer == current)
97 		return;
98 	cpuhp_lock_acquire_read();
99 	mutex_lock(&cpu_hotplug.lock);
100 	atomic_inc(&cpu_hotplug.refcount);
101 	mutex_unlock(&cpu_hotplug.lock);
102 }
103 EXPORT_SYMBOL_GPL(get_online_cpus);
104 
105 bool try_get_online_cpus(void)
106 {
107 	if (cpu_hotplug.active_writer == current)
108 		return true;
109 	if (!mutex_trylock(&cpu_hotplug.lock))
110 		return false;
111 	cpuhp_lock_acquire_tryread();
112 	atomic_inc(&cpu_hotplug.refcount);
113 	mutex_unlock(&cpu_hotplug.lock);
114 	return true;
115 }
116 EXPORT_SYMBOL_GPL(try_get_online_cpus);
117 
118 void put_online_cpus(void)
119 {
120 	int refcount;
121 
122 	if (cpu_hotplug.active_writer == current)
123 		return;
124 
125 	refcount = atomic_dec_return(&cpu_hotplug.refcount);
126 	if (WARN_ON(refcount < 0)) /* try to fix things up */
127 		atomic_inc(&cpu_hotplug.refcount);
128 
129 	if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
130 		wake_up(&cpu_hotplug.wq);
131 
132 	cpuhp_lock_release();
133 
134 }
135 EXPORT_SYMBOL_GPL(put_online_cpus);
136 
137 /*
138  * This ensures that the hotplug operation can begin only when the
139  * refcount goes to zero.
140  *
141  * Note that during a cpu-hotplug operation, the new readers, if any,
142  * will be blocked by the cpu_hotplug.lock
143  *
144  * Since cpu_hotplug_begin() is always called after invoking
145  * cpu_maps_update_begin(), we can be sure that only one writer is active.
146  *
147  * Note that theoretically, there is a possibility of a livelock:
148  * - Refcount goes to zero, last reader wakes up the sleeping
149  *   writer.
150  * - Last reader unlocks the cpu_hotplug.lock.
151  * - A new reader arrives at this moment, bumps up the refcount.
152  * - The writer acquires the cpu_hotplug.lock finds the refcount
153  *   non zero and goes to sleep again.
154  *
155  * However, this is very difficult to achieve in practice since
156  * get_online_cpus() not an api which is called all that often.
157  *
158  */
159 void cpu_hotplug_begin(void)
160 {
161 	DEFINE_WAIT(wait);
162 
163 	cpu_hotplug.active_writer = current;
164 	cpuhp_lock_acquire();
165 
166 	for (;;) {
167 		mutex_lock(&cpu_hotplug.lock);
168 		prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
169 		if (likely(!atomic_read(&cpu_hotplug.refcount)))
170 				break;
171 		mutex_unlock(&cpu_hotplug.lock);
172 		schedule();
173 	}
174 	finish_wait(&cpu_hotplug.wq, &wait);
175 }
176 
177 void cpu_hotplug_done(void)
178 {
179 	cpu_hotplug.active_writer = NULL;
180 	mutex_unlock(&cpu_hotplug.lock);
181 	cpuhp_lock_release();
182 }
183 
184 /*
185  * Wait for currently running CPU hotplug operations to complete (if any) and
186  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
187  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
188  * hotplug path before performing hotplug operations. So acquiring that lock
189  * guarantees mutual exclusion from any currently running hotplug operations.
190  */
191 void cpu_hotplug_disable(void)
192 {
193 	cpu_maps_update_begin();
194 	cpu_hotplug_disabled++;
195 	cpu_maps_update_done();
196 }
197 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
198 
199 void cpu_hotplug_enable(void)
200 {
201 	cpu_maps_update_begin();
202 	WARN_ON(--cpu_hotplug_disabled < 0);
203 	cpu_maps_update_done();
204 }
205 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
206 #endif	/* CONFIG_HOTPLUG_CPU */
207 
208 /* Need to know about CPUs going up/down? */
209 int register_cpu_notifier(struct notifier_block *nb)
210 {
211 	int ret;
212 	cpu_maps_update_begin();
213 	ret = raw_notifier_chain_register(&cpu_chain, nb);
214 	cpu_maps_update_done();
215 	return ret;
216 }
217 
218 int __register_cpu_notifier(struct notifier_block *nb)
219 {
220 	return raw_notifier_chain_register(&cpu_chain, nb);
221 }
222 
223 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
224 			int *nr_calls)
225 {
226 	int ret;
227 
228 	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
229 					nr_calls);
230 
231 	return notifier_to_errno(ret);
232 }
233 
234 static int cpu_notify(unsigned long val, void *v)
235 {
236 	return __cpu_notify(val, v, -1, NULL);
237 }
238 
239 #ifdef CONFIG_HOTPLUG_CPU
240 
241 static void cpu_notify_nofail(unsigned long val, void *v)
242 {
243 	BUG_ON(cpu_notify(val, v));
244 }
245 EXPORT_SYMBOL(register_cpu_notifier);
246 EXPORT_SYMBOL(__register_cpu_notifier);
247 
248 void unregister_cpu_notifier(struct notifier_block *nb)
249 {
250 	cpu_maps_update_begin();
251 	raw_notifier_chain_unregister(&cpu_chain, nb);
252 	cpu_maps_update_done();
253 }
254 EXPORT_SYMBOL(unregister_cpu_notifier);
255 
256 void __unregister_cpu_notifier(struct notifier_block *nb)
257 {
258 	raw_notifier_chain_unregister(&cpu_chain, nb);
259 }
260 EXPORT_SYMBOL(__unregister_cpu_notifier);
261 
262 /**
263  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
264  * @cpu: a CPU id
265  *
266  * This function walks all processes, finds a valid mm struct for each one and
267  * then clears a corresponding bit in mm's cpumask.  While this all sounds
268  * trivial, there are various non-obvious corner cases, which this function
269  * tries to solve in a safe manner.
270  *
271  * Also note that the function uses a somewhat relaxed locking scheme, so it may
272  * be called only for an already offlined CPU.
273  */
274 void clear_tasks_mm_cpumask(int cpu)
275 {
276 	struct task_struct *p;
277 
278 	/*
279 	 * This function is called after the cpu is taken down and marked
280 	 * offline, so its not like new tasks will ever get this cpu set in
281 	 * their mm mask. -- Peter Zijlstra
282 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
283 	 * full-fledged tasklist_lock.
284 	 */
285 	WARN_ON(cpu_online(cpu));
286 	rcu_read_lock();
287 	for_each_process(p) {
288 		struct task_struct *t;
289 
290 		/*
291 		 * Main thread might exit, but other threads may still have
292 		 * a valid mm. Find one.
293 		 */
294 		t = find_lock_task_mm(p);
295 		if (!t)
296 			continue;
297 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
298 		task_unlock(t);
299 	}
300 	rcu_read_unlock();
301 }
302 
303 static inline void check_for_tasks(int dead_cpu)
304 {
305 	struct task_struct *g, *p;
306 
307 	read_lock_irq(&tasklist_lock);
308 	do_each_thread(g, p) {
309 		if (!p->on_rq)
310 			continue;
311 		/*
312 		 * We do the check with unlocked task_rq(p)->lock.
313 		 * Order the reading to do not warn about a task,
314 		 * which was running on this cpu in the past, and
315 		 * it's just been woken on another cpu.
316 		 */
317 		rmb();
318 		if (task_cpu(p) != dead_cpu)
319 			continue;
320 
321 		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
322 			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
323 	} while_each_thread(g, p);
324 	read_unlock_irq(&tasklist_lock);
325 }
326 
327 struct take_cpu_down_param {
328 	unsigned long mod;
329 	void *hcpu;
330 };
331 
332 /* Take this CPU down. */
333 static int take_cpu_down(void *_param)
334 {
335 	struct take_cpu_down_param *param = _param;
336 	int err;
337 
338 	/* Ensure this CPU doesn't handle any more interrupts. */
339 	err = __cpu_disable();
340 	if (err < 0)
341 		return err;
342 
343 	cpu_notify(CPU_DYING | param->mod, param->hcpu);
344 	/* Give up timekeeping duties */
345 	tick_handover_do_timer();
346 	/* Park the stopper thread */
347 	kthread_park(current);
348 	return 0;
349 }
350 
351 /* Requires cpu_add_remove_lock to be held */
352 static int _cpu_down(unsigned int cpu, int tasks_frozen)
353 {
354 	int err, nr_calls = 0;
355 	void *hcpu = (void *)(long)cpu;
356 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
357 	struct take_cpu_down_param tcd_param = {
358 		.mod = mod,
359 		.hcpu = hcpu,
360 	};
361 
362 	if (num_online_cpus() == 1)
363 		return -EBUSY;
364 
365 	if (!cpu_online(cpu))
366 		return -EINVAL;
367 
368 	cpu_hotplug_begin();
369 
370 	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
371 	if (err) {
372 		nr_calls--;
373 		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
374 		pr_warn("%s: attempt to take down CPU %u failed\n",
375 			__func__, cpu);
376 		goto out_release;
377 	}
378 
379 	/*
380 	 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
381 	 * and RCU users of this state to go away such that all new such users
382 	 * will observe it.
383 	 *
384 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
385 	 * not imply sync_sched(), so wait for both.
386 	 *
387 	 * Do sync before park smpboot threads to take care the rcu boost case.
388 	 */
389 	if (IS_ENABLED(CONFIG_PREEMPT))
390 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
391 	else
392 		synchronize_rcu();
393 
394 	smpboot_park_threads(cpu);
395 
396 	/*
397 	 * Prevent irq alloc/free while the dying cpu reorganizes the
398 	 * interrupt affinities.
399 	 */
400 	irq_lock_sparse();
401 
402 	/*
403 	 * So now all preempt/rcu users must observe !cpu_active().
404 	 */
405 	err = stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
406 	if (err) {
407 		/* CPU didn't die: tell everyone.  Can't complain. */
408 		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
409 		irq_unlock_sparse();
410 		goto out_release;
411 	}
412 	BUG_ON(cpu_online(cpu));
413 
414 	/*
415 	 * The migration_call() CPU_DYING callback will have removed all
416 	 * runnable tasks from the cpu, there's only the idle task left now
417 	 * that the migration thread is done doing the stop_machine thing.
418 	 *
419 	 * Wait for the stop thread to go away.
420 	 */
421 	while (!per_cpu(cpu_dead_idle, cpu))
422 		cpu_relax();
423 	smp_mb(); /* Read from cpu_dead_idle before __cpu_die(). */
424 	per_cpu(cpu_dead_idle, cpu) = false;
425 
426 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
427 	irq_unlock_sparse();
428 
429 	hotplug_cpu__broadcast_tick_pull(cpu);
430 	/* This actually kills the CPU. */
431 	__cpu_die(cpu);
432 
433 	/* CPU is completely dead: tell everyone.  Too late to complain. */
434 	tick_cleanup_dead_cpu(cpu);
435 	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
436 
437 	check_for_tasks(cpu);
438 
439 out_release:
440 	cpu_hotplug_done();
441 	if (!err)
442 		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
443 	return err;
444 }
445 
446 int cpu_down(unsigned int cpu)
447 {
448 	int err;
449 
450 	cpu_maps_update_begin();
451 
452 	if (cpu_hotplug_disabled) {
453 		err = -EBUSY;
454 		goto out;
455 	}
456 
457 	err = _cpu_down(cpu, 0);
458 
459 out:
460 	cpu_maps_update_done();
461 	return err;
462 }
463 EXPORT_SYMBOL(cpu_down);
464 #endif /*CONFIG_HOTPLUG_CPU*/
465 
466 /*
467  * Unpark per-CPU smpboot kthreads at CPU-online time.
468  */
469 static int smpboot_thread_call(struct notifier_block *nfb,
470 			       unsigned long action, void *hcpu)
471 {
472 	int cpu = (long)hcpu;
473 
474 	switch (action & ~CPU_TASKS_FROZEN) {
475 
476 	case CPU_DOWN_FAILED:
477 	case CPU_ONLINE:
478 		smpboot_unpark_threads(cpu);
479 		break;
480 
481 	default:
482 		break;
483 	}
484 
485 	return NOTIFY_OK;
486 }
487 
488 static struct notifier_block smpboot_thread_notifier = {
489 	.notifier_call = smpboot_thread_call,
490 	.priority = CPU_PRI_SMPBOOT,
491 };
492 
493 void smpboot_thread_init(void)
494 {
495 	register_cpu_notifier(&smpboot_thread_notifier);
496 }
497 
498 /* Requires cpu_add_remove_lock to be held */
499 static int _cpu_up(unsigned int cpu, int tasks_frozen)
500 {
501 	int ret, nr_calls = 0;
502 	void *hcpu = (void *)(long)cpu;
503 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
504 	struct task_struct *idle;
505 
506 	cpu_hotplug_begin();
507 
508 	if (cpu_online(cpu) || !cpu_present(cpu)) {
509 		ret = -EINVAL;
510 		goto out;
511 	}
512 
513 	idle = idle_thread_get(cpu);
514 	if (IS_ERR(idle)) {
515 		ret = PTR_ERR(idle);
516 		goto out;
517 	}
518 
519 	ret = smpboot_create_threads(cpu);
520 	if (ret)
521 		goto out;
522 
523 	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
524 	if (ret) {
525 		nr_calls--;
526 		pr_warn("%s: attempt to bring up CPU %u failed\n",
527 			__func__, cpu);
528 		goto out_notify;
529 	}
530 
531 	/* Arch-specific enabling code. */
532 	ret = __cpu_up(cpu, idle);
533 
534 	if (ret != 0)
535 		goto out_notify;
536 	BUG_ON(!cpu_online(cpu));
537 
538 	/* Now call notifier in preparation. */
539 	cpu_notify(CPU_ONLINE | mod, hcpu);
540 
541 out_notify:
542 	if (ret != 0)
543 		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
544 out:
545 	cpu_hotplug_done();
546 
547 	return ret;
548 }
549 
550 int cpu_up(unsigned int cpu)
551 {
552 	int err = 0;
553 
554 	if (!cpu_possible(cpu)) {
555 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
556 		       cpu);
557 #if defined(CONFIG_IA64)
558 		pr_err("please check additional_cpus= boot parameter\n");
559 #endif
560 		return -EINVAL;
561 	}
562 
563 	err = try_online_node(cpu_to_node(cpu));
564 	if (err)
565 		return err;
566 
567 	cpu_maps_update_begin();
568 
569 	if (cpu_hotplug_disabled) {
570 		err = -EBUSY;
571 		goto out;
572 	}
573 
574 	err = _cpu_up(cpu, 0);
575 
576 out:
577 	cpu_maps_update_done();
578 	return err;
579 }
580 EXPORT_SYMBOL_GPL(cpu_up);
581 
582 #ifdef CONFIG_PM_SLEEP_SMP
583 static cpumask_var_t frozen_cpus;
584 
585 int disable_nonboot_cpus(void)
586 {
587 	int cpu, first_cpu, error = 0;
588 
589 	cpu_maps_update_begin();
590 	first_cpu = cpumask_first(cpu_online_mask);
591 	/*
592 	 * We take down all of the non-boot CPUs in one shot to avoid races
593 	 * with the userspace trying to use the CPU hotplug at the same time
594 	 */
595 	cpumask_clear(frozen_cpus);
596 
597 	pr_info("Disabling non-boot CPUs ...\n");
598 	for_each_online_cpu(cpu) {
599 		if (cpu == first_cpu)
600 			continue;
601 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
602 		error = _cpu_down(cpu, 1);
603 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
604 		if (!error)
605 			cpumask_set_cpu(cpu, frozen_cpus);
606 		else {
607 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
608 			break;
609 		}
610 	}
611 
612 	if (!error)
613 		BUG_ON(num_online_cpus() > 1);
614 	else
615 		pr_err("Non-boot CPUs are not disabled\n");
616 
617 	/*
618 	 * Make sure the CPUs won't be enabled by someone else. We need to do
619 	 * this even in case of failure as all disable_nonboot_cpus() users are
620 	 * supposed to do enable_nonboot_cpus() on the failure path.
621 	 */
622 	cpu_hotplug_disabled++;
623 
624 	cpu_maps_update_done();
625 	return error;
626 }
627 
628 void __weak arch_enable_nonboot_cpus_begin(void)
629 {
630 }
631 
632 void __weak arch_enable_nonboot_cpus_end(void)
633 {
634 }
635 
636 void enable_nonboot_cpus(void)
637 {
638 	int cpu, error;
639 
640 	/* Allow everyone to use the CPU hotplug again */
641 	cpu_maps_update_begin();
642 	WARN_ON(--cpu_hotplug_disabled < 0);
643 	if (cpumask_empty(frozen_cpus))
644 		goto out;
645 
646 	pr_info("Enabling non-boot CPUs ...\n");
647 
648 	arch_enable_nonboot_cpus_begin();
649 
650 	for_each_cpu(cpu, frozen_cpus) {
651 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
652 		error = _cpu_up(cpu, 1);
653 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
654 		if (!error) {
655 			pr_info("CPU%d is up\n", cpu);
656 			continue;
657 		}
658 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
659 	}
660 
661 	arch_enable_nonboot_cpus_end();
662 
663 	cpumask_clear(frozen_cpus);
664 out:
665 	cpu_maps_update_done();
666 }
667 
668 static int __init alloc_frozen_cpus(void)
669 {
670 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
671 		return -ENOMEM;
672 	return 0;
673 }
674 core_initcall(alloc_frozen_cpus);
675 
676 /*
677  * When callbacks for CPU hotplug notifications are being executed, we must
678  * ensure that the state of the system with respect to the tasks being frozen
679  * or not, as reported by the notification, remains unchanged *throughout the
680  * duration* of the execution of the callbacks.
681  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
682  *
683  * This synchronization is implemented by mutually excluding regular CPU
684  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
685  * Hibernate notifications.
686  */
687 static int
688 cpu_hotplug_pm_callback(struct notifier_block *nb,
689 			unsigned long action, void *ptr)
690 {
691 	switch (action) {
692 
693 	case PM_SUSPEND_PREPARE:
694 	case PM_HIBERNATION_PREPARE:
695 		cpu_hotplug_disable();
696 		break;
697 
698 	case PM_POST_SUSPEND:
699 	case PM_POST_HIBERNATION:
700 		cpu_hotplug_enable();
701 		break;
702 
703 	default:
704 		return NOTIFY_DONE;
705 	}
706 
707 	return NOTIFY_OK;
708 }
709 
710 
711 static int __init cpu_hotplug_pm_sync_init(void)
712 {
713 	/*
714 	 * cpu_hotplug_pm_callback has higher priority than x86
715 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
716 	 * to disable cpu hotplug to avoid cpu hotplug race.
717 	 */
718 	pm_notifier(cpu_hotplug_pm_callback, 0);
719 	return 0;
720 }
721 core_initcall(cpu_hotplug_pm_sync_init);
722 
723 #endif /* CONFIG_PM_SLEEP_SMP */
724 
725 /**
726  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
727  * @cpu: cpu that just started
728  *
729  * This function calls the cpu_chain notifiers with CPU_STARTING.
730  * It must be called by the arch code on the new cpu, before the new cpu
731  * enables interrupts and before the "boot" cpu returns from __cpu_up().
732  */
733 void notify_cpu_starting(unsigned int cpu)
734 {
735 	unsigned long val = CPU_STARTING;
736 
737 #ifdef CONFIG_PM_SLEEP_SMP
738 	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
739 		val = CPU_STARTING_FROZEN;
740 #endif /* CONFIG_PM_SLEEP_SMP */
741 	cpu_notify(val, (void *)(long)cpu);
742 }
743 
744 #endif /* CONFIG_SMP */
745 
746 /*
747  * cpu_bit_bitmap[] is a special, "compressed" data structure that
748  * represents all NR_CPUS bits binary values of 1<<nr.
749  *
750  * It is used by cpumask_of() to get a constant address to a CPU
751  * mask value that has a single bit set only.
752  */
753 
754 /* cpu_bit_bitmap[0] is empty - so we can back into it */
755 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
756 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
757 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
758 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
759 
760 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
761 
762 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
763 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
764 #if BITS_PER_LONG > 32
765 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
766 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
767 #endif
768 };
769 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
770 
771 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
772 EXPORT_SYMBOL(cpu_all_bits);
773 
774 #ifdef CONFIG_INIT_ALL_POSSIBLE
775 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
776 	= CPU_BITS_ALL;
777 #else
778 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
779 #endif
780 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
781 EXPORT_SYMBOL(cpu_possible_mask);
782 
783 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
784 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
785 EXPORT_SYMBOL(cpu_online_mask);
786 
787 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
788 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
789 EXPORT_SYMBOL(cpu_present_mask);
790 
791 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
792 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
793 EXPORT_SYMBOL(cpu_active_mask);
794 
795 void set_cpu_possible(unsigned int cpu, bool possible)
796 {
797 	if (possible)
798 		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
799 	else
800 		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
801 }
802 
803 void set_cpu_present(unsigned int cpu, bool present)
804 {
805 	if (present)
806 		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
807 	else
808 		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
809 }
810 
811 void set_cpu_online(unsigned int cpu, bool online)
812 {
813 	if (online) {
814 		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
815 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
816 	} else {
817 		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
818 	}
819 }
820 
821 void set_cpu_active(unsigned int cpu, bool active)
822 {
823 	if (active)
824 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
825 	else
826 		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
827 }
828 
829 void init_cpu_present(const struct cpumask *src)
830 {
831 	cpumask_copy(to_cpumask(cpu_present_bits), src);
832 }
833 
834 void init_cpu_possible(const struct cpumask *src)
835 {
836 	cpumask_copy(to_cpumask(cpu_possible_bits), src);
837 }
838 
839 void init_cpu_online(const struct cpumask *src)
840 {
841 	cpumask_copy(to_cpumask(cpu_online_bits), src);
842 }
843