xref: /openbmc/linux/kernel/cpu.c (revision b8c5a806)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/isolation.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/smt.h>
15 #include <linux/unistd.h>
16 #include <linux/cpu.h>
17 #include <linux/oom.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bug.h>
21 #include <linux/kthread.h>
22 #include <linux/stop_machine.h>
23 #include <linux/mutex.h>
24 #include <linux/gfp.h>
25 #include <linux/suspend.h>
26 #include <linux/lockdep.h>
27 #include <linux/tick.h>
28 #include <linux/irq.h>
29 #include <linux/nmi.h>
30 #include <linux/smpboot.h>
31 #include <linux/relay.h>
32 #include <linux/slab.h>
33 #include <linux/percpu-rwsem.h>
34 
35 #include <trace/events/power.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/cpuhp.h>
38 
39 #include "smpboot.h"
40 
41 /**
42  * cpuhp_cpu_state - Per cpu hotplug state storage
43  * @state:	The current cpu state
44  * @target:	The target state
45  * @thread:	Pointer to the hotplug thread
46  * @should_run:	Thread should execute
47  * @rollback:	Perform a rollback
48  * @single:	Single callback invocation
49  * @bringup:	Single callback bringup or teardown selector
50  * @cb_state:	The state for a single callback (install/uninstall)
51  * @result:	Result of the operation
52  * @done_up:	Signal completion to the issuer of the task for cpu-up
53  * @done_down:	Signal completion to the issuer of the task for cpu-down
54  */
55 struct cpuhp_cpu_state {
56 	enum cpuhp_state	state;
57 	enum cpuhp_state	target;
58 	enum cpuhp_state	fail;
59 #ifdef CONFIG_SMP
60 	struct task_struct	*thread;
61 	bool			should_run;
62 	bool			rollback;
63 	bool			single;
64 	bool			bringup;
65 	struct hlist_node	*node;
66 	struct hlist_node	*last;
67 	enum cpuhp_state	cb_state;
68 	int			result;
69 	struct completion	done_up;
70 	struct completion	done_down;
71 #endif
72 };
73 
74 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
75 	.fail = CPUHP_INVALID,
76 };
77 
78 #ifdef CONFIG_SMP
79 cpumask_t cpus_booted_once_mask;
80 #endif
81 
82 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
83 static struct lockdep_map cpuhp_state_up_map =
84 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
85 static struct lockdep_map cpuhp_state_down_map =
86 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
87 
88 
89 static inline void cpuhp_lock_acquire(bool bringup)
90 {
91 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93 
94 static inline void cpuhp_lock_release(bool bringup)
95 {
96 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
97 }
98 #else
99 
100 static inline void cpuhp_lock_acquire(bool bringup) { }
101 static inline void cpuhp_lock_release(bool bringup) { }
102 
103 #endif
104 
105 /**
106  * cpuhp_step - Hotplug state machine step
107  * @name:	Name of the step
108  * @startup:	Startup function of the step
109  * @teardown:	Teardown function of the step
110  * @cant_stop:	Bringup/teardown can't be stopped at this step
111  */
112 struct cpuhp_step {
113 	const char		*name;
114 	union {
115 		int		(*single)(unsigned int cpu);
116 		int		(*multi)(unsigned int cpu,
117 					 struct hlist_node *node);
118 	} startup;
119 	union {
120 		int		(*single)(unsigned int cpu);
121 		int		(*multi)(unsigned int cpu,
122 					 struct hlist_node *node);
123 	} teardown;
124 	struct hlist_head	list;
125 	bool			cant_stop;
126 	bool			multi_instance;
127 };
128 
129 static DEFINE_MUTEX(cpuhp_state_mutex);
130 static struct cpuhp_step cpuhp_hp_states[];
131 
132 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
133 {
134 	return cpuhp_hp_states + state;
135 }
136 
137 /**
138  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
139  * @cpu:	The cpu for which the callback should be invoked
140  * @state:	The state to do callbacks for
141  * @bringup:	True if the bringup callback should be invoked
142  * @node:	For multi-instance, do a single entry callback for install/remove
143  * @lastp:	For multi-instance rollback, remember how far we got
144  *
145  * Called from cpu hotplug and from the state register machinery.
146  */
147 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
148 				 bool bringup, struct hlist_node *node,
149 				 struct hlist_node **lastp)
150 {
151 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
152 	struct cpuhp_step *step = cpuhp_get_step(state);
153 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
154 	int (*cb)(unsigned int cpu);
155 	int ret, cnt;
156 
157 	if (st->fail == state) {
158 		st->fail = CPUHP_INVALID;
159 
160 		if (!(bringup ? step->startup.single : step->teardown.single))
161 			return 0;
162 
163 		return -EAGAIN;
164 	}
165 
166 	if (!step->multi_instance) {
167 		WARN_ON_ONCE(lastp && *lastp);
168 		cb = bringup ? step->startup.single : step->teardown.single;
169 		if (!cb)
170 			return 0;
171 		trace_cpuhp_enter(cpu, st->target, state, cb);
172 		ret = cb(cpu);
173 		trace_cpuhp_exit(cpu, st->state, state, ret);
174 		return ret;
175 	}
176 	cbm = bringup ? step->startup.multi : step->teardown.multi;
177 	if (!cbm)
178 		return 0;
179 
180 	/* Single invocation for instance add/remove */
181 	if (node) {
182 		WARN_ON_ONCE(lastp && *lastp);
183 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
184 		ret = cbm(cpu, node);
185 		trace_cpuhp_exit(cpu, st->state, state, ret);
186 		return ret;
187 	}
188 
189 	/* State transition. Invoke on all instances */
190 	cnt = 0;
191 	hlist_for_each(node, &step->list) {
192 		if (lastp && node == *lastp)
193 			break;
194 
195 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
196 		ret = cbm(cpu, node);
197 		trace_cpuhp_exit(cpu, st->state, state, ret);
198 		if (ret) {
199 			if (!lastp)
200 				goto err;
201 
202 			*lastp = node;
203 			return ret;
204 		}
205 		cnt++;
206 	}
207 	if (lastp)
208 		*lastp = NULL;
209 	return 0;
210 err:
211 	/* Rollback the instances if one failed */
212 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
213 	if (!cbm)
214 		return ret;
215 
216 	hlist_for_each(node, &step->list) {
217 		if (!cnt--)
218 			break;
219 
220 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
221 		ret = cbm(cpu, node);
222 		trace_cpuhp_exit(cpu, st->state, state, ret);
223 		/*
224 		 * Rollback must not fail,
225 		 */
226 		WARN_ON_ONCE(ret);
227 	}
228 	return ret;
229 }
230 
231 #ifdef CONFIG_SMP
232 static bool cpuhp_is_ap_state(enum cpuhp_state state)
233 {
234 	/*
235 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
236 	 * purposes as that state is handled explicitly in cpu_down.
237 	 */
238 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
239 }
240 
241 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
242 {
243 	struct completion *done = bringup ? &st->done_up : &st->done_down;
244 	wait_for_completion(done);
245 }
246 
247 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
248 {
249 	struct completion *done = bringup ? &st->done_up : &st->done_down;
250 	complete(done);
251 }
252 
253 /*
254  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
255  */
256 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
257 {
258 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
259 }
260 
261 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
262 static DEFINE_MUTEX(cpu_add_remove_lock);
263 bool cpuhp_tasks_frozen;
264 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
265 
266 /*
267  * The following two APIs (cpu_maps_update_begin/done) must be used when
268  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
269  */
270 void cpu_maps_update_begin(void)
271 {
272 	mutex_lock(&cpu_add_remove_lock);
273 }
274 
275 void cpu_maps_update_done(void)
276 {
277 	mutex_unlock(&cpu_add_remove_lock);
278 }
279 
280 /*
281  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
282  * Should always be manipulated under cpu_add_remove_lock
283  */
284 static int cpu_hotplug_disabled;
285 
286 #ifdef CONFIG_HOTPLUG_CPU
287 
288 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
289 
290 void cpus_read_lock(void)
291 {
292 	percpu_down_read(&cpu_hotplug_lock);
293 }
294 EXPORT_SYMBOL_GPL(cpus_read_lock);
295 
296 int cpus_read_trylock(void)
297 {
298 	return percpu_down_read_trylock(&cpu_hotplug_lock);
299 }
300 EXPORT_SYMBOL_GPL(cpus_read_trylock);
301 
302 void cpus_read_unlock(void)
303 {
304 	percpu_up_read(&cpu_hotplug_lock);
305 }
306 EXPORT_SYMBOL_GPL(cpus_read_unlock);
307 
308 void cpus_write_lock(void)
309 {
310 	percpu_down_write(&cpu_hotplug_lock);
311 }
312 
313 void cpus_write_unlock(void)
314 {
315 	percpu_up_write(&cpu_hotplug_lock);
316 }
317 
318 void lockdep_assert_cpus_held(void)
319 {
320 	/*
321 	 * We can't have hotplug operations before userspace starts running,
322 	 * and some init codepaths will knowingly not take the hotplug lock.
323 	 * This is all valid, so mute lockdep until it makes sense to report
324 	 * unheld locks.
325 	 */
326 	if (system_state < SYSTEM_RUNNING)
327 		return;
328 
329 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
330 }
331 
332 static void lockdep_acquire_cpus_lock(void)
333 {
334 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
335 }
336 
337 static void lockdep_release_cpus_lock(void)
338 {
339 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
340 }
341 
342 /*
343  * Wait for currently running CPU hotplug operations to complete (if any) and
344  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
345  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
346  * hotplug path before performing hotplug operations. So acquiring that lock
347  * guarantees mutual exclusion from any currently running hotplug operations.
348  */
349 void cpu_hotplug_disable(void)
350 {
351 	cpu_maps_update_begin();
352 	cpu_hotplug_disabled++;
353 	cpu_maps_update_done();
354 }
355 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
356 
357 static void __cpu_hotplug_enable(void)
358 {
359 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
360 		return;
361 	cpu_hotplug_disabled--;
362 }
363 
364 void cpu_hotplug_enable(void)
365 {
366 	cpu_maps_update_begin();
367 	__cpu_hotplug_enable();
368 	cpu_maps_update_done();
369 }
370 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
371 
372 #else
373 
374 static void lockdep_acquire_cpus_lock(void)
375 {
376 }
377 
378 static void lockdep_release_cpus_lock(void)
379 {
380 }
381 
382 #endif	/* CONFIG_HOTPLUG_CPU */
383 
384 /*
385  * Architectures that need SMT-specific errata handling during SMT hotplug
386  * should override this.
387  */
388 void __weak arch_smt_update(void) { }
389 
390 #ifdef CONFIG_HOTPLUG_SMT
391 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
392 
393 void __init cpu_smt_disable(bool force)
394 {
395 	if (!cpu_smt_possible())
396 		return;
397 
398 	if (force) {
399 		pr_info("SMT: Force disabled\n");
400 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
401 	} else {
402 		pr_info("SMT: disabled\n");
403 		cpu_smt_control = CPU_SMT_DISABLED;
404 	}
405 }
406 
407 /*
408  * The decision whether SMT is supported can only be done after the full
409  * CPU identification. Called from architecture code.
410  */
411 void __init cpu_smt_check_topology(void)
412 {
413 	if (!topology_smt_supported())
414 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
415 }
416 
417 static int __init smt_cmdline_disable(char *str)
418 {
419 	cpu_smt_disable(str && !strcmp(str, "force"));
420 	return 0;
421 }
422 early_param("nosmt", smt_cmdline_disable);
423 
424 static inline bool cpu_smt_allowed(unsigned int cpu)
425 {
426 	if (cpu_smt_control == CPU_SMT_ENABLED)
427 		return true;
428 
429 	if (topology_is_primary_thread(cpu))
430 		return true;
431 
432 	/*
433 	 * On x86 it's required to boot all logical CPUs at least once so
434 	 * that the init code can get a chance to set CR4.MCE on each
435 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
436 	 * core will shutdown the machine.
437 	 */
438 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
439 }
440 
441 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
442 bool cpu_smt_possible(void)
443 {
444 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
445 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
446 }
447 EXPORT_SYMBOL_GPL(cpu_smt_possible);
448 #else
449 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
450 #endif
451 
452 static inline enum cpuhp_state
453 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
454 {
455 	enum cpuhp_state prev_state = st->state;
456 
457 	st->rollback = false;
458 	st->last = NULL;
459 
460 	st->target = target;
461 	st->single = false;
462 	st->bringup = st->state < target;
463 
464 	return prev_state;
465 }
466 
467 static inline void
468 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
469 {
470 	st->rollback = true;
471 
472 	/*
473 	 * If we have st->last we need to undo partial multi_instance of this
474 	 * state first. Otherwise start undo at the previous state.
475 	 */
476 	if (!st->last) {
477 		if (st->bringup)
478 			st->state--;
479 		else
480 			st->state++;
481 	}
482 
483 	st->target = prev_state;
484 	st->bringup = !st->bringup;
485 }
486 
487 /* Regular hotplug invocation of the AP hotplug thread */
488 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
489 {
490 	if (!st->single && st->state == st->target)
491 		return;
492 
493 	st->result = 0;
494 	/*
495 	 * Make sure the above stores are visible before should_run becomes
496 	 * true. Paired with the mb() above in cpuhp_thread_fun()
497 	 */
498 	smp_mb();
499 	st->should_run = true;
500 	wake_up_process(st->thread);
501 	wait_for_ap_thread(st, st->bringup);
502 }
503 
504 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
505 {
506 	enum cpuhp_state prev_state;
507 	int ret;
508 
509 	prev_state = cpuhp_set_state(st, target);
510 	__cpuhp_kick_ap(st);
511 	if ((ret = st->result)) {
512 		cpuhp_reset_state(st, prev_state);
513 		__cpuhp_kick_ap(st);
514 	}
515 
516 	return ret;
517 }
518 
519 static int bringup_wait_for_ap(unsigned int cpu)
520 {
521 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
522 
523 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
524 	wait_for_ap_thread(st, true);
525 	if (WARN_ON_ONCE((!cpu_online(cpu))))
526 		return -ECANCELED;
527 
528 	/* Unpark the hotplug thread of the target cpu */
529 	kthread_unpark(st->thread);
530 
531 	/*
532 	 * SMT soft disabling on X86 requires to bring the CPU out of the
533 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
534 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
535 	 * cpu_smt_allowed() check will now return false if this is not the
536 	 * primary sibling.
537 	 */
538 	if (!cpu_smt_allowed(cpu))
539 		return -ECANCELED;
540 
541 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
542 		return 0;
543 
544 	return cpuhp_kick_ap(st, st->target);
545 }
546 
547 static int bringup_cpu(unsigned int cpu)
548 {
549 	struct task_struct *idle = idle_thread_get(cpu);
550 	int ret;
551 
552 	/*
553 	 * Some architectures have to walk the irq descriptors to
554 	 * setup the vector space for the cpu which comes online.
555 	 * Prevent irq alloc/free across the bringup.
556 	 */
557 	irq_lock_sparse();
558 
559 	/* Arch-specific enabling code. */
560 	ret = __cpu_up(cpu, idle);
561 	irq_unlock_sparse();
562 	if (ret)
563 		return ret;
564 	return bringup_wait_for_ap(cpu);
565 }
566 
567 /*
568  * Hotplug state machine related functions
569  */
570 
571 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
572 {
573 	for (st->state--; st->state > st->target; st->state--)
574 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
575 }
576 
577 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
578 {
579 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
580 		return true;
581 	/*
582 	 * When CPU hotplug is disabled, then taking the CPU down is not
583 	 * possible because takedown_cpu() and the architecture and
584 	 * subsystem specific mechanisms are not available. So the CPU
585 	 * which would be completely unplugged again needs to stay around
586 	 * in the current state.
587 	 */
588 	return st->state <= CPUHP_BRINGUP_CPU;
589 }
590 
591 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
592 			      enum cpuhp_state target)
593 {
594 	enum cpuhp_state prev_state = st->state;
595 	int ret = 0;
596 
597 	while (st->state < target) {
598 		st->state++;
599 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
600 		if (ret) {
601 			if (can_rollback_cpu(st)) {
602 				st->target = prev_state;
603 				undo_cpu_up(cpu, st);
604 			}
605 			break;
606 		}
607 	}
608 	return ret;
609 }
610 
611 /*
612  * The cpu hotplug threads manage the bringup and teardown of the cpus
613  */
614 static void cpuhp_create(unsigned int cpu)
615 {
616 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
617 
618 	init_completion(&st->done_up);
619 	init_completion(&st->done_down);
620 }
621 
622 static int cpuhp_should_run(unsigned int cpu)
623 {
624 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
625 
626 	return st->should_run;
627 }
628 
629 /*
630  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
631  * callbacks when a state gets [un]installed at runtime.
632  *
633  * Each invocation of this function by the smpboot thread does a single AP
634  * state callback.
635  *
636  * It has 3 modes of operation:
637  *  - single: runs st->cb_state
638  *  - up:     runs ++st->state, while st->state < st->target
639  *  - down:   runs st->state--, while st->state > st->target
640  *
641  * When complete or on error, should_run is cleared and the completion is fired.
642  */
643 static void cpuhp_thread_fun(unsigned int cpu)
644 {
645 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
646 	bool bringup = st->bringup;
647 	enum cpuhp_state state;
648 
649 	if (WARN_ON_ONCE(!st->should_run))
650 		return;
651 
652 	/*
653 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
654 	 * that if we see ->should_run we also see the rest of the state.
655 	 */
656 	smp_mb();
657 
658 	/*
659 	 * The BP holds the hotplug lock, but we're now running on the AP,
660 	 * ensure that anybody asserting the lock is held, will actually find
661 	 * it so.
662 	 */
663 	lockdep_acquire_cpus_lock();
664 	cpuhp_lock_acquire(bringup);
665 
666 	if (st->single) {
667 		state = st->cb_state;
668 		st->should_run = false;
669 	} else {
670 		if (bringup) {
671 			st->state++;
672 			state = st->state;
673 			st->should_run = (st->state < st->target);
674 			WARN_ON_ONCE(st->state > st->target);
675 		} else {
676 			state = st->state;
677 			st->state--;
678 			st->should_run = (st->state > st->target);
679 			WARN_ON_ONCE(st->state < st->target);
680 		}
681 	}
682 
683 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
684 
685 	if (cpuhp_is_atomic_state(state)) {
686 		local_irq_disable();
687 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
688 		local_irq_enable();
689 
690 		/*
691 		 * STARTING/DYING must not fail!
692 		 */
693 		WARN_ON_ONCE(st->result);
694 	} else {
695 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
696 	}
697 
698 	if (st->result) {
699 		/*
700 		 * If we fail on a rollback, we're up a creek without no
701 		 * paddle, no way forward, no way back. We loose, thanks for
702 		 * playing.
703 		 */
704 		WARN_ON_ONCE(st->rollback);
705 		st->should_run = false;
706 	}
707 
708 	cpuhp_lock_release(bringup);
709 	lockdep_release_cpus_lock();
710 
711 	if (!st->should_run)
712 		complete_ap_thread(st, bringup);
713 }
714 
715 /* Invoke a single callback on a remote cpu */
716 static int
717 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
718 			 struct hlist_node *node)
719 {
720 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
721 	int ret;
722 
723 	if (!cpu_online(cpu))
724 		return 0;
725 
726 	cpuhp_lock_acquire(false);
727 	cpuhp_lock_release(false);
728 
729 	cpuhp_lock_acquire(true);
730 	cpuhp_lock_release(true);
731 
732 	/*
733 	 * If we are up and running, use the hotplug thread. For early calls
734 	 * we invoke the thread function directly.
735 	 */
736 	if (!st->thread)
737 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
738 
739 	st->rollback = false;
740 	st->last = NULL;
741 
742 	st->node = node;
743 	st->bringup = bringup;
744 	st->cb_state = state;
745 	st->single = true;
746 
747 	__cpuhp_kick_ap(st);
748 
749 	/*
750 	 * If we failed and did a partial, do a rollback.
751 	 */
752 	if ((ret = st->result) && st->last) {
753 		st->rollback = true;
754 		st->bringup = !bringup;
755 
756 		__cpuhp_kick_ap(st);
757 	}
758 
759 	/*
760 	 * Clean up the leftovers so the next hotplug operation wont use stale
761 	 * data.
762 	 */
763 	st->node = st->last = NULL;
764 	return ret;
765 }
766 
767 static int cpuhp_kick_ap_work(unsigned int cpu)
768 {
769 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
770 	enum cpuhp_state prev_state = st->state;
771 	int ret;
772 
773 	cpuhp_lock_acquire(false);
774 	cpuhp_lock_release(false);
775 
776 	cpuhp_lock_acquire(true);
777 	cpuhp_lock_release(true);
778 
779 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
780 	ret = cpuhp_kick_ap(st, st->target);
781 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
782 
783 	return ret;
784 }
785 
786 static struct smp_hotplug_thread cpuhp_threads = {
787 	.store			= &cpuhp_state.thread,
788 	.create			= &cpuhp_create,
789 	.thread_should_run	= cpuhp_should_run,
790 	.thread_fn		= cpuhp_thread_fun,
791 	.thread_comm		= "cpuhp/%u",
792 	.selfparking		= true,
793 };
794 
795 void __init cpuhp_threads_init(void)
796 {
797 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
798 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
799 }
800 
801 #ifdef CONFIG_HOTPLUG_CPU
802 /**
803  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
804  * @cpu: a CPU id
805  *
806  * This function walks all processes, finds a valid mm struct for each one and
807  * then clears a corresponding bit in mm's cpumask.  While this all sounds
808  * trivial, there are various non-obvious corner cases, which this function
809  * tries to solve in a safe manner.
810  *
811  * Also note that the function uses a somewhat relaxed locking scheme, so it may
812  * be called only for an already offlined CPU.
813  */
814 void clear_tasks_mm_cpumask(int cpu)
815 {
816 	struct task_struct *p;
817 
818 	/*
819 	 * This function is called after the cpu is taken down and marked
820 	 * offline, so its not like new tasks will ever get this cpu set in
821 	 * their mm mask. -- Peter Zijlstra
822 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
823 	 * full-fledged tasklist_lock.
824 	 */
825 	WARN_ON(cpu_online(cpu));
826 	rcu_read_lock();
827 	for_each_process(p) {
828 		struct task_struct *t;
829 
830 		/*
831 		 * Main thread might exit, but other threads may still have
832 		 * a valid mm. Find one.
833 		 */
834 		t = find_lock_task_mm(p);
835 		if (!t)
836 			continue;
837 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
838 		task_unlock(t);
839 	}
840 	rcu_read_unlock();
841 }
842 
843 /* Take this CPU down. */
844 static int take_cpu_down(void *_param)
845 {
846 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
847 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
848 	int err, cpu = smp_processor_id();
849 	int ret;
850 
851 	/* Ensure this CPU doesn't handle any more interrupts. */
852 	err = __cpu_disable();
853 	if (err < 0)
854 		return err;
855 
856 	/*
857 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
858 	 * do this step again.
859 	 */
860 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
861 	st->state--;
862 	/* Invoke the former CPU_DYING callbacks */
863 	for (; st->state > target; st->state--) {
864 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
865 		/*
866 		 * DYING must not fail!
867 		 */
868 		WARN_ON_ONCE(ret);
869 	}
870 
871 	/* Give up timekeeping duties */
872 	tick_handover_do_timer();
873 	/* Remove CPU from timer broadcasting */
874 	tick_offline_cpu(cpu);
875 	/* Park the stopper thread */
876 	stop_machine_park(cpu);
877 	return 0;
878 }
879 
880 static int takedown_cpu(unsigned int cpu)
881 {
882 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
883 	int err;
884 
885 	/* Park the smpboot threads */
886 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
887 
888 	/*
889 	 * Prevent irq alloc/free while the dying cpu reorganizes the
890 	 * interrupt affinities.
891 	 */
892 	irq_lock_sparse();
893 
894 	/*
895 	 * So now all preempt/rcu users must observe !cpu_active().
896 	 */
897 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
898 	if (err) {
899 		/* CPU refused to die */
900 		irq_unlock_sparse();
901 		/* Unpark the hotplug thread so we can rollback there */
902 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
903 		return err;
904 	}
905 	BUG_ON(cpu_online(cpu));
906 
907 	/*
908 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
909 	 * all runnable tasks from the CPU, there's only the idle task left now
910 	 * that the migration thread is done doing the stop_machine thing.
911 	 *
912 	 * Wait for the stop thread to go away.
913 	 */
914 	wait_for_ap_thread(st, false);
915 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
916 
917 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
918 	irq_unlock_sparse();
919 
920 	hotplug_cpu__broadcast_tick_pull(cpu);
921 	/* This actually kills the CPU. */
922 	__cpu_die(cpu);
923 
924 	tick_cleanup_dead_cpu(cpu);
925 	rcutree_migrate_callbacks(cpu);
926 	return 0;
927 }
928 
929 static void cpuhp_complete_idle_dead(void *arg)
930 {
931 	struct cpuhp_cpu_state *st = arg;
932 
933 	complete_ap_thread(st, false);
934 }
935 
936 void cpuhp_report_idle_dead(void)
937 {
938 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
939 
940 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
941 	rcu_report_dead(smp_processor_id());
942 	st->state = CPUHP_AP_IDLE_DEAD;
943 	/*
944 	 * We cannot call complete after rcu_report_dead() so we delegate it
945 	 * to an online cpu.
946 	 */
947 	smp_call_function_single(cpumask_first(cpu_online_mask),
948 				 cpuhp_complete_idle_dead, st, 0);
949 }
950 
951 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
952 {
953 	for (st->state++; st->state < st->target; st->state++)
954 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
955 }
956 
957 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
958 				enum cpuhp_state target)
959 {
960 	enum cpuhp_state prev_state = st->state;
961 	int ret = 0;
962 
963 	for (; st->state > target; st->state--) {
964 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
965 		if (ret) {
966 			st->target = prev_state;
967 			if (st->state < prev_state)
968 				undo_cpu_down(cpu, st);
969 			break;
970 		}
971 	}
972 	return ret;
973 }
974 
975 /* Requires cpu_add_remove_lock to be held */
976 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
977 			   enum cpuhp_state target)
978 {
979 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
980 	int prev_state, ret = 0;
981 
982 	if (num_online_cpus() == 1)
983 		return -EBUSY;
984 
985 	if (!cpu_present(cpu))
986 		return -EINVAL;
987 
988 	cpus_write_lock();
989 
990 	cpuhp_tasks_frozen = tasks_frozen;
991 
992 	prev_state = cpuhp_set_state(st, target);
993 	/*
994 	 * If the current CPU state is in the range of the AP hotplug thread,
995 	 * then we need to kick the thread.
996 	 */
997 	if (st->state > CPUHP_TEARDOWN_CPU) {
998 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
999 		ret = cpuhp_kick_ap_work(cpu);
1000 		/*
1001 		 * The AP side has done the error rollback already. Just
1002 		 * return the error code..
1003 		 */
1004 		if (ret)
1005 			goto out;
1006 
1007 		/*
1008 		 * We might have stopped still in the range of the AP hotplug
1009 		 * thread. Nothing to do anymore.
1010 		 */
1011 		if (st->state > CPUHP_TEARDOWN_CPU)
1012 			goto out;
1013 
1014 		st->target = target;
1015 	}
1016 	/*
1017 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1018 	 * to do the further cleanups.
1019 	 */
1020 	ret = cpuhp_down_callbacks(cpu, st, target);
1021 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1022 		cpuhp_reset_state(st, prev_state);
1023 		__cpuhp_kick_ap(st);
1024 	}
1025 
1026 out:
1027 	cpus_write_unlock();
1028 	/*
1029 	 * Do post unplug cleanup. This is still protected against
1030 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1031 	 */
1032 	lockup_detector_cleanup();
1033 	arch_smt_update();
1034 	return ret;
1035 }
1036 
1037 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1038 {
1039 	if (cpu_hotplug_disabled)
1040 		return -EBUSY;
1041 	return _cpu_down(cpu, 0, target);
1042 }
1043 
1044 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1045 {
1046 	int err;
1047 
1048 	cpu_maps_update_begin();
1049 	err = cpu_down_maps_locked(cpu, target);
1050 	cpu_maps_update_done();
1051 	return err;
1052 }
1053 
1054 /**
1055  * cpu_device_down - Bring down a cpu device
1056  * @dev: Pointer to the cpu device to offline
1057  *
1058  * This function is meant to be used by device core cpu subsystem only.
1059  *
1060  * Other subsystems should use remove_cpu() instead.
1061  */
1062 int cpu_device_down(struct device *dev)
1063 {
1064 	return cpu_down(dev->id, CPUHP_OFFLINE);
1065 }
1066 
1067 int remove_cpu(unsigned int cpu)
1068 {
1069 	int ret;
1070 
1071 	lock_device_hotplug();
1072 	ret = device_offline(get_cpu_device(cpu));
1073 	unlock_device_hotplug();
1074 
1075 	return ret;
1076 }
1077 EXPORT_SYMBOL_GPL(remove_cpu);
1078 
1079 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1080 {
1081 	unsigned int cpu;
1082 	int error;
1083 
1084 	cpu_maps_update_begin();
1085 
1086 	/*
1087 	 * Make certain the cpu I'm about to reboot on is online.
1088 	 *
1089 	 * This is inline to what migrate_to_reboot_cpu() already do.
1090 	 */
1091 	if (!cpu_online(primary_cpu))
1092 		primary_cpu = cpumask_first(cpu_online_mask);
1093 
1094 	for_each_online_cpu(cpu) {
1095 		if (cpu == primary_cpu)
1096 			continue;
1097 
1098 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1099 		if (error) {
1100 			pr_err("Failed to offline CPU%d - error=%d",
1101 				cpu, error);
1102 			break;
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * Ensure all but the reboot CPU are offline.
1108 	 */
1109 	BUG_ON(num_online_cpus() > 1);
1110 
1111 	/*
1112 	 * Make sure the CPUs won't be enabled by someone else after this
1113 	 * point. Kexec will reboot to a new kernel shortly resetting
1114 	 * everything along the way.
1115 	 */
1116 	cpu_hotplug_disabled++;
1117 
1118 	cpu_maps_update_done();
1119 }
1120 
1121 #else
1122 #define takedown_cpu		NULL
1123 #endif /*CONFIG_HOTPLUG_CPU*/
1124 
1125 /**
1126  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1127  * @cpu: cpu that just started
1128  *
1129  * It must be called by the arch code on the new cpu, before the new cpu
1130  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1131  */
1132 void notify_cpu_starting(unsigned int cpu)
1133 {
1134 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1135 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1136 	int ret;
1137 
1138 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1139 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1140 	while (st->state < target) {
1141 		st->state++;
1142 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1143 		/*
1144 		 * STARTING must not fail!
1145 		 */
1146 		WARN_ON_ONCE(ret);
1147 	}
1148 }
1149 
1150 /*
1151  * Called from the idle task. Wake up the controlling task which brings the
1152  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1153  * online bringup to the hotplug thread.
1154  */
1155 void cpuhp_online_idle(enum cpuhp_state state)
1156 {
1157 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1158 
1159 	/* Happens for the boot cpu */
1160 	if (state != CPUHP_AP_ONLINE_IDLE)
1161 		return;
1162 
1163 	/*
1164 	 * Unpart the stopper thread before we start the idle loop (and start
1165 	 * scheduling); this ensures the stopper task is always available.
1166 	 */
1167 	stop_machine_unpark(smp_processor_id());
1168 
1169 	st->state = CPUHP_AP_ONLINE_IDLE;
1170 	complete_ap_thread(st, true);
1171 }
1172 
1173 /* Requires cpu_add_remove_lock to be held */
1174 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1175 {
1176 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1177 	struct task_struct *idle;
1178 	int ret = 0;
1179 
1180 	cpus_write_lock();
1181 
1182 	if (!cpu_present(cpu)) {
1183 		ret = -EINVAL;
1184 		goto out;
1185 	}
1186 
1187 	/*
1188 	 * The caller of cpu_up() might have raced with another
1189 	 * caller. Nothing to do.
1190 	 */
1191 	if (st->state >= target)
1192 		goto out;
1193 
1194 	if (st->state == CPUHP_OFFLINE) {
1195 		/* Let it fail before we try to bring the cpu up */
1196 		idle = idle_thread_get(cpu);
1197 		if (IS_ERR(idle)) {
1198 			ret = PTR_ERR(idle);
1199 			goto out;
1200 		}
1201 	}
1202 
1203 	cpuhp_tasks_frozen = tasks_frozen;
1204 
1205 	cpuhp_set_state(st, target);
1206 	/*
1207 	 * If the current CPU state is in the range of the AP hotplug thread,
1208 	 * then we need to kick the thread once more.
1209 	 */
1210 	if (st->state > CPUHP_BRINGUP_CPU) {
1211 		ret = cpuhp_kick_ap_work(cpu);
1212 		/*
1213 		 * The AP side has done the error rollback already. Just
1214 		 * return the error code..
1215 		 */
1216 		if (ret)
1217 			goto out;
1218 	}
1219 
1220 	/*
1221 	 * Try to reach the target state. We max out on the BP at
1222 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1223 	 * responsible for bringing it up to the target state.
1224 	 */
1225 	target = min((int)target, CPUHP_BRINGUP_CPU);
1226 	ret = cpuhp_up_callbacks(cpu, st, target);
1227 out:
1228 	cpus_write_unlock();
1229 	arch_smt_update();
1230 	return ret;
1231 }
1232 
1233 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1234 {
1235 	int err = 0;
1236 
1237 	if (!cpu_possible(cpu)) {
1238 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1239 		       cpu);
1240 #if defined(CONFIG_IA64)
1241 		pr_err("please check additional_cpus= boot parameter\n");
1242 #endif
1243 		return -EINVAL;
1244 	}
1245 
1246 	err = try_online_node(cpu_to_node(cpu));
1247 	if (err)
1248 		return err;
1249 
1250 	cpu_maps_update_begin();
1251 
1252 	if (cpu_hotplug_disabled) {
1253 		err = -EBUSY;
1254 		goto out;
1255 	}
1256 	if (!cpu_smt_allowed(cpu)) {
1257 		err = -EPERM;
1258 		goto out;
1259 	}
1260 
1261 	err = _cpu_up(cpu, 0, target);
1262 out:
1263 	cpu_maps_update_done();
1264 	return err;
1265 }
1266 
1267 /**
1268  * cpu_device_up - Bring up a cpu device
1269  * @dev: Pointer to the cpu device to online
1270  *
1271  * This function is meant to be used by device core cpu subsystem only.
1272  *
1273  * Other subsystems should use add_cpu() instead.
1274  */
1275 int cpu_device_up(struct device *dev)
1276 {
1277 	return cpu_up(dev->id, CPUHP_ONLINE);
1278 }
1279 
1280 int add_cpu(unsigned int cpu)
1281 {
1282 	int ret;
1283 
1284 	lock_device_hotplug();
1285 	ret = device_online(get_cpu_device(cpu));
1286 	unlock_device_hotplug();
1287 
1288 	return ret;
1289 }
1290 EXPORT_SYMBOL_GPL(add_cpu);
1291 
1292 /**
1293  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1294  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1295  *
1296  * On some architectures like arm64, we can hibernate on any CPU, but on
1297  * wake up the CPU we hibernated on might be offline as a side effect of
1298  * using maxcpus= for example.
1299  */
1300 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1301 {
1302 	int ret;
1303 
1304 	if (!cpu_online(sleep_cpu)) {
1305 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1306 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1307 		if (ret) {
1308 			pr_err("Failed to bring hibernate-CPU up!\n");
1309 			return ret;
1310 		}
1311 	}
1312 	return 0;
1313 }
1314 
1315 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1316 {
1317 	unsigned int cpu;
1318 
1319 	for_each_present_cpu(cpu) {
1320 		if (num_online_cpus() >= setup_max_cpus)
1321 			break;
1322 		if (!cpu_online(cpu))
1323 			cpu_up(cpu, CPUHP_ONLINE);
1324 	}
1325 }
1326 
1327 #ifdef CONFIG_PM_SLEEP_SMP
1328 static cpumask_var_t frozen_cpus;
1329 
1330 int __freeze_secondary_cpus(int primary, bool suspend)
1331 {
1332 	int cpu, error = 0;
1333 
1334 	cpu_maps_update_begin();
1335 	if (primary == -1) {
1336 		primary = cpumask_first(cpu_online_mask);
1337 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1338 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1339 	} else {
1340 		if (!cpu_online(primary))
1341 			primary = cpumask_first(cpu_online_mask);
1342 	}
1343 
1344 	/*
1345 	 * We take down all of the non-boot CPUs in one shot to avoid races
1346 	 * with the userspace trying to use the CPU hotplug at the same time
1347 	 */
1348 	cpumask_clear(frozen_cpus);
1349 
1350 	pr_info("Disabling non-boot CPUs ...\n");
1351 	for_each_online_cpu(cpu) {
1352 		if (cpu == primary)
1353 			continue;
1354 
1355 		if (suspend && pm_wakeup_pending()) {
1356 			pr_info("Wakeup pending. Abort CPU freeze\n");
1357 			error = -EBUSY;
1358 			break;
1359 		}
1360 
1361 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1362 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1363 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1364 		if (!error)
1365 			cpumask_set_cpu(cpu, frozen_cpus);
1366 		else {
1367 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1368 			break;
1369 		}
1370 	}
1371 
1372 	if (!error)
1373 		BUG_ON(num_online_cpus() > 1);
1374 	else
1375 		pr_err("Non-boot CPUs are not disabled\n");
1376 
1377 	/*
1378 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1379 	 * this even in case of failure as all disable_nonboot_cpus() users are
1380 	 * supposed to do enable_nonboot_cpus() on the failure path.
1381 	 */
1382 	cpu_hotplug_disabled++;
1383 
1384 	cpu_maps_update_done();
1385 	return error;
1386 }
1387 
1388 void __weak arch_enable_nonboot_cpus_begin(void)
1389 {
1390 }
1391 
1392 void __weak arch_enable_nonboot_cpus_end(void)
1393 {
1394 }
1395 
1396 void enable_nonboot_cpus(void)
1397 {
1398 	int cpu, error;
1399 
1400 	/* Allow everyone to use the CPU hotplug again */
1401 	cpu_maps_update_begin();
1402 	__cpu_hotplug_enable();
1403 	if (cpumask_empty(frozen_cpus))
1404 		goto out;
1405 
1406 	pr_info("Enabling non-boot CPUs ...\n");
1407 
1408 	arch_enable_nonboot_cpus_begin();
1409 
1410 	for_each_cpu(cpu, frozen_cpus) {
1411 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1412 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1413 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1414 		if (!error) {
1415 			pr_info("CPU%d is up\n", cpu);
1416 			continue;
1417 		}
1418 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1419 	}
1420 
1421 	arch_enable_nonboot_cpus_end();
1422 
1423 	cpumask_clear(frozen_cpus);
1424 out:
1425 	cpu_maps_update_done();
1426 }
1427 
1428 static int __init alloc_frozen_cpus(void)
1429 {
1430 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1431 		return -ENOMEM;
1432 	return 0;
1433 }
1434 core_initcall(alloc_frozen_cpus);
1435 
1436 /*
1437  * When callbacks for CPU hotplug notifications are being executed, we must
1438  * ensure that the state of the system with respect to the tasks being frozen
1439  * or not, as reported by the notification, remains unchanged *throughout the
1440  * duration* of the execution of the callbacks.
1441  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1442  *
1443  * This synchronization is implemented by mutually excluding regular CPU
1444  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1445  * Hibernate notifications.
1446  */
1447 static int
1448 cpu_hotplug_pm_callback(struct notifier_block *nb,
1449 			unsigned long action, void *ptr)
1450 {
1451 	switch (action) {
1452 
1453 	case PM_SUSPEND_PREPARE:
1454 	case PM_HIBERNATION_PREPARE:
1455 		cpu_hotplug_disable();
1456 		break;
1457 
1458 	case PM_POST_SUSPEND:
1459 	case PM_POST_HIBERNATION:
1460 		cpu_hotplug_enable();
1461 		break;
1462 
1463 	default:
1464 		return NOTIFY_DONE;
1465 	}
1466 
1467 	return NOTIFY_OK;
1468 }
1469 
1470 
1471 static int __init cpu_hotplug_pm_sync_init(void)
1472 {
1473 	/*
1474 	 * cpu_hotplug_pm_callback has higher priority than x86
1475 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1476 	 * to disable cpu hotplug to avoid cpu hotplug race.
1477 	 */
1478 	pm_notifier(cpu_hotplug_pm_callback, 0);
1479 	return 0;
1480 }
1481 core_initcall(cpu_hotplug_pm_sync_init);
1482 
1483 #endif /* CONFIG_PM_SLEEP_SMP */
1484 
1485 int __boot_cpu_id;
1486 
1487 #endif /* CONFIG_SMP */
1488 
1489 /* Boot processor state steps */
1490 static struct cpuhp_step cpuhp_hp_states[] = {
1491 	[CPUHP_OFFLINE] = {
1492 		.name			= "offline",
1493 		.startup.single		= NULL,
1494 		.teardown.single	= NULL,
1495 	},
1496 #ifdef CONFIG_SMP
1497 	[CPUHP_CREATE_THREADS]= {
1498 		.name			= "threads:prepare",
1499 		.startup.single		= smpboot_create_threads,
1500 		.teardown.single	= NULL,
1501 		.cant_stop		= true,
1502 	},
1503 	[CPUHP_PERF_PREPARE] = {
1504 		.name			= "perf:prepare",
1505 		.startup.single		= perf_event_init_cpu,
1506 		.teardown.single	= perf_event_exit_cpu,
1507 	},
1508 	[CPUHP_WORKQUEUE_PREP] = {
1509 		.name			= "workqueue:prepare",
1510 		.startup.single		= workqueue_prepare_cpu,
1511 		.teardown.single	= NULL,
1512 	},
1513 	[CPUHP_HRTIMERS_PREPARE] = {
1514 		.name			= "hrtimers:prepare",
1515 		.startup.single		= hrtimers_prepare_cpu,
1516 		.teardown.single	= hrtimers_dead_cpu,
1517 	},
1518 	[CPUHP_SMPCFD_PREPARE] = {
1519 		.name			= "smpcfd:prepare",
1520 		.startup.single		= smpcfd_prepare_cpu,
1521 		.teardown.single	= smpcfd_dead_cpu,
1522 	},
1523 	[CPUHP_RELAY_PREPARE] = {
1524 		.name			= "relay:prepare",
1525 		.startup.single		= relay_prepare_cpu,
1526 		.teardown.single	= NULL,
1527 	},
1528 	[CPUHP_SLAB_PREPARE] = {
1529 		.name			= "slab:prepare",
1530 		.startup.single		= slab_prepare_cpu,
1531 		.teardown.single	= slab_dead_cpu,
1532 	},
1533 	[CPUHP_RCUTREE_PREP] = {
1534 		.name			= "RCU/tree:prepare",
1535 		.startup.single		= rcutree_prepare_cpu,
1536 		.teardown.single	= rcutree_dead_cpu,
1537 	},
1538 	/*
1539 	 * On the tear-down path, timers_dead_cpu() must be invoked
1540 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1541 	 * otherwise a RCU stall occurs.
1542 	 */
1543 	[CPUHP_TIMERS_PREPARE] = {
1544 		.name			= "timers:prepare",
1545 		.startup.single		= timers_prepare_cpu,
1546 		.teardown.single	= timers_dead_cpu,
1547 	},
1548 	/* Kicks the plugged cpu into life */
1549 	[CPUHP_BRINGUP_CPU] = {
1550 		.name			= "cpu:bringup",
1551 		.startup.single		= bringup_cpu,
1552 		.teardown.single	= NULL,
1553 		.cant_stop		= true,
1554 	},
1555 	/* Final state before CPU kills itself */
1556 	[CPUHP_AP_IDLE_DEAD] = {
1557 		.name			= "idle:dead",
1558 	},
1559 	/*
1560 	 * Last state before CPU enters the idle loop to die. Transient state
1561 	 * for synchronization.
1562 	 */
1563 	[CPUHP_AP_OFFLINE] = {
1564 		.name			= "ap:offline",
1565 		.cant_stop		= true,
1566 	},
1567 	/* First state is scheduler control. Interrupts are disabled */
1568 	[CPUHP_AP_SCHED_STARTING] = {
1569 		.name			= "sched:starting",
1570 		.startup.single		= sched_cpu_starting,
1571 		.teardown.single	= sched_cpu_dying,
1572 	},
1573 	[CPUHP_AP_RCUTREE_DYING] = {
1574 		.name			= "RCU/tree:dying",
1575 		.startup.single		= NULL,
1576 		.teardown.single	= rcutree_dying_cpu,
1577 	},
1578 	[CPUHP_AP_SMPCFD_DYING] = {
1579 		.name			= "smpcfd:dying",
1580 		.startup.single		= NULL,
1581 		.teardown.single	= smpcfd_dying_cpu,
1582 	},
1583 	/* Entry state on starting. Interrupts enabled from here on. Transient
1584 	 * state for synchronsization */
1585 	[CPUHP_AP_ONLINE] = {
1586 		.name			= "ap:online",
1587 	},
1588 	/*
1589 	 * Handled on controll processor until the plugged processor manages
1590 	 * this itself.
1591 	 */
1592 	[CPUHP_TEARDOWN_CPU] = {
1593 		.name			= "cpu:teardown",
1594 		.startup.single		= NULL,
1595 		.teardown.single	= takedown_cpu,
1596 		.cant_stop		= true,
1597 	},
1598 	/* Handle smpboot threads park/unpark */
1599 	[CPUHP_AP_SMPBOOT_THREADS] = {
1600 		.name			= "smpboot/threads:online",
1601 		.startup.single		= smpboot_unpark_threads,
1602 		.teardown.single	= smpboot_park_threads,
1603 	},
1604 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1605 		.name			= "irq/affinity:online",
1606 		.startup.single		= irq_affinity_online_cpu,
1607 		.teardown.single	= NULL,
1608 	},
1609 	[CPUHP_AP_PERF_ONLINE] = {
1610 		.name			= "perf:online",
1611 		.startup.single		= perf_event_init_cpu,
1612 		.teardown.single	= perf_event_exit_cpu,
1613 	},
1614 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1615 		.name			= "lockup_detector:online",
1616 		.startup.single		= lockup_detector_online_cpu,
1617 		.teardown.single	= lockup_detector_offline_cpu,
1618 	},
1619 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1620 		.name			= "workqueue:online",
1621 		.startup.single		= workqueue_online_cpu,
1622 		.teardown.single	= workqueue_offline_cpu,
1623 	},
1624 	[CPUHP_AP_RCUTREE_ONLINE] = {
1625 		.name			= "RCU/tree:online",
1626 		.startup.single		= rcutree_online_cpu,
1627 		.teardown.single	= rcutree_offline_cpu,
1628 	},
1629 #endif
1630 	/*
1631 	 * The dynamically registered state space is here
1632 	 */
1633 
1634 #ifdef CONFIG_SMP
1635 	/* Last state is scheduler control setting the cpu active */
1636 	[CPUHP_AP_ACTIVE] = {
1637 		.name			= "sched:active",
1638 		.startup.single		= sched_cpu_activate,
1639 		.teardown.single	= sched_cpu_deactivate,
1640 	},
1641 #endif
1642 
1643 	/* CPU is fully up and running. */
1644 	[CPUHP_ONLINE] = {
1645 		.name			= "online",
1646 		.startup.single		= NULL,
1647 		.teardown.single	= NULL,
1648 	},
1649 };
1650 
1651 /* Sanity check for callbacks */
1652 static int cpuhp_cb_check(enum cpuhp_state state)
1653 {
1654 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1655 		return -EINVAL;
1656 	return 0;
1657 }
1658 
1659 /*
1660  * Returns a free for dynamic slot assignment of the Online state. The states
1661  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1662  * by having no name assigned.
1663  */
1664 static int cpuhp_reserve_state(enum cpuhp_state state)
1665 {
1666 	enum cpuhp_state i, end;
1667 	struct cpuhp_step *step;
1668 
1669 	switch (state) {
1670 	case CPUHP_AP_ONLINE_DYN:
1671 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1672 		end = CPUHP_AP_ONLINE_DYN_END;
1673 		break;
1674 	case CPUHP_BP_PREPARE_DYN:
1675 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1676 		end = CPUHP_BP_PREPARE_DYN_END;
1677 		break;
1678 	default:
1679 		return -EINVAL;
1680 	}
1681 
1682 	for (i = state; i <= end; i++, step++) {
1683 		if (!step->name)
1684 			return i;
1685 	}
1686 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1687 	return -ENOSPC;
1688 }
1689 
1690 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1691 				 int (*startup)(unsigned int cpu),
1692 				 int (*teardown)(unsigned int cpu),
1693 				 bool multi_instance)
1694 {
1695 	/* (Un)Install the callbacks for further cpu hotplug operations */
1696 	struct cpuhp_step *sp;
1697 	int ret = 0;
1698 
1699 	/*
1700 	 * If name is NULL, then the state gets removed.
1701 	 *
1702 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1703 	 * the first allocation from these dynamic ranges, so the removal
1704 	 * would trigger a new allocation and clear the wrong (already
1705 	 * empty) state, leaving the callbacks of the to be cleared state
1706 	 * dangling, which causes wreckage on the next hotplug operation.
1707 	 */
1708 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1709 		     state == CPUHP_BP_PREPARE_DYN)) {
1710 		ret = cpuhp_reserve_state(state);
1711 		if (ret < 0)
1712 			return ret;
1713 		state = ret;
1714 	}
1715 	sp = cpuhp_get_step(state);
1716 	if (name && sp->name)
1717 		return -EBUSY;
1718 
1719 	sp->startup.single = startup;
1720 	sp->teardown.single = teardown;
1721 	sp->name = name;
1722 	sp->multi_instance = multi_instance;
1723 	INIT_HLIST_HEAD(&sp->list);
1724 	return ret;
1725 }
1726 
1727 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1728 {
1729 	return cpuhp_get_step(state)->teardown.single;
1730 }
1731 
1732 /*
1733  * Call the startup/teardown function for a step either on the AP or
1734  * on the current CPU.
1735  */
1736 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1737 			    struct hlist_node *node)
1738 {
1739 	struct cpuhp_step *sp = cpuhp_get_step(state);
1740 	int ret;
1741 
1742 	/*
1743 	 * If there's nothing to do, we done.
1744 	 * Relies on the union for multi_instance.
1745 	 */
1746 	if ((bringup && !sp->startup.single) ||
1747 	    (!bringup && !sp->teardown.single))
1748 		return 0;
1749 	/*
1750 	 * The non AP bound callbacks can fail on bringup. On teardown
1751 	 * e.g. module removal we crash for now.
1752 	 */
1753 #ifdef CONFIG_SMP
1754 	if (cpuhp_is_ap_state(state))
1755 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1756 	else
1757 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1758 #else
1759 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1760 #endif
1761 	BUG_ON(ret && !bringup);
1762 	return ret;
1763 }
1764 
1765 /*
1766  * Called from __cpuhp_setup_state on a recoverable failure.
1767  *
1768  * Note: The teardown callbacks for rollback are not allowed to fail!
1769  */
1770 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1771 				   struct hlist_node *node)
1772 {
1773 	int cpu;
1774 
1775 	/* Roll back the already executed steps on the other cpus */
1776 	for_each_present_cpu(cpu) {
1777 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1778 		int cpustate = st->state;
1779 
1780 		if (cpu >= failedcpu)
1781 			break;
1782 
1783 		/* Did we invoke the startup call on that cpu ? */
1784 		if (cpustate >= state)
1785 			cpuhp_issue_call(cpu, state, false, node);
1786 	}
1787 }
1788 
1789 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1790 					  struct hlist_node *node,
1791 					  bool invoke)
1792 {
1793 	struct cpuhp_step *sp;
1794 	int cpu;
1795 	int ret;
1796 
1797 	lockdep_assert_cpus_held();
1798 
1799 	sp = cpuhp_get_step(state);
1800 	if (sp->multi_instance == false)
1801 		return -EINVAL;
1802 
1803 	mutex_lock(&cpuhp_state_mutex);
1804 
1805 	if (!invoke || !sp->startup.multi)
1806 		goto add_node;
1807 
1808 	/*
1809 	 * Try to call the startup callback for each present cpu
1810 	 * depending on the hotplug state of the cpu.
1811 	 */
1812 	for_each_present_cpu(cpu) {
1813 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1814 		int cpustate = st->state;
1815 
1816 		if (cpustate < state)
1817 			continue;
1818 
1819 		ret = cpuhp_issue_call(cpu, state, true, node);
1820 		if (ret) {
1821 			if (sp->teardown.multi)
1822 				cpuhp_rollback_install(cpu, state, node);
1823 			goto unlock;
1824 		}
1825 	}
1826 add_node:
1827 	ret = 0;
1828 	hlist_add_head(node, &sp->list);
1829 unlock:
1830 	mutex_unlock(&cpuhp_state_mutex);
1831 	return ret;
1832 }
1833 
1834 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1835 			       bool invoke)
1836 {
1837 	int ret;
1838 
1839 	cpus_read_lock();
1840 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1841 	cpus_read_unlock();
1842 	return ret;
1843 }
1844 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1845 
1846 /**
1847  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1848  * @state:		The state to setup
1849  * @invoke:		If true, the startup function is invoked for cpus where
1850  *			cpu state >= @state
1851  * @startup:		startup callback function
1852  * @teardown:		teardown callback function
1853  * @multi_instance:	State is set up for multiple instances which get
1854  *			added afterwards.
1855  *
1856  * The caller needs to hold cpus read locked while calling this function.
1857  * Returns:
1858  *   On success:
1859  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1860  *      0 for all other states
1861  *   On failure: proper (negative) error code
1862  */
1863 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1864 				   const char *name, bool invoke,
1865 				   int (*startup)(unsigned int cpu),
1866 				   int (*teardown)(unsigned int cpu),
1867 				   bool multi_instance)
1868 {
1869 	int cpu, ret = 0;
1870 	bool dynstate;
1871 
1872 	lockdep_assert_cpus_held();
1873 
1874 	if (cpuhp_cb_check(state) || !name)
1875 		return -EINVAL;
1876 
1877 	mutex_lock(&cpuhp_state_mutex);
1878 
1879 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1880 				    multi_instance);
1881 
1882 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1883 	if (ret > 0 && dynstate) {
1884 		state = ret;
1885 		ret = 0;
1886 	}
1887 
1888 	if (ret || !invoke || !startup)
1889 		goto out;
1890 
1891 	/*
1892 	 * Try to call the startup callback for each present cpu
1893 	 * depending on the hotplug state of the cpu.
1894 	 */
1895 	for_each_present_cpu(cpu) {
1896 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1897 		int cpustate = st->state;
1898 
1899 		if (cpustate < state)
1900 			continue;
1901 
1902 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1903 		if (ret) {
1904 			if (teardown)
1905 				cpuhp_rollback_install(cpu, state, NULL);
1906 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1907 			goto out;
1908 		}
1909 	}
1910 out:
1911 	mutex_unlock(&cpuhp_state_mutex);
1912 	/*
1913 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1914 	 * dynamically allocated state in case of success.
1915 	 */
1916 	if (!ret && dynstate)
1917 		return state;
1918 	return ret;
1919 }
1920 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1921 
1922 int __cpuhp_setup_state(enum cpuhp_state state,
1923 			const char *name, bool invoke,
1924 			int (*startup)(unsigned int cpu),
1925 			int (*teardown)(unsigned int cpu),
1926 			bool multi_instance)
1927 {
1928 	int ret;
1929 
1930 	cpus_read_lock();
1931 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1932 					     teardown, multi_instance);
1933 	cpus_read_unlock();
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL(__cpuhp_setup_state);
1937 
1938 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1939 				  struct hlist_node *node, bool invoke)
1940 {
1941 	struct cpuhp_step *sp = cpuhp_get_step(state);
1942 	int cpu;
1943 
1944 	BUG_ON(cpuhp_cb_check(state));
1945 
1946 	if (!sp->multi_instance)
1947 		return -EINVAL;
1948 
1949 	cpus_read_lock();
1950 	mutex_lock(&cpuhp_state_mutex);
1951 
1952 	if (!invoke || !cpuhp_get_teardown_cb(state))
1953 		goto remove;
1954 	/*
1955 	 * Call the teardown callback for each present cpu depending
1956 	 * on the hotplug state of the cpu. This function is not
1957 	 * allowed to fail currently!
1958 	 */
1959 	for_each_present_cpu(cpu) {
1960 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1961 		int cpustate = st->state;
1962 
1963 		if (cpustate >= state)
1964 			cpuhp_issue_call(cpu, state, false, node);
1965 	}
1966 
1967 remove:
1968 	hlist_del(node);
1969 	mutex_unlock(&cpuhp_state_mutex);
1970 	cpus_read_unlock();
1971 
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1975 
1976 /**
1977  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1978  * @state:	The state to remove
1979  * @invoke:	If true, the teardown function is invoked for cpus where
1980  *		cpu state >= @state
1981  *
1982  * The caller needs to hold cpus read locked while calling this function.
1983  * The teardown callback is currently not allowed to fail. Think
1984  * about module removal!
1985  */
1986 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1987 {
1988 	struct cpuhp_step *sp = cpuhp_get_step(state);
1989 	int cpu;
1990 
1991 	BUG_ON(cpuhp_cb_check(state));
1992 
1993 	lockdep_assert_cpus_held();
1994 
1995 	mutex_lock(&cpuhp_state_mutex);
1996 	if (sp->multi_instance) {
1997 		WARN(!hlist_empty(&sp->list),
1998 		     "Error: Removing state %d which has instances left.\n",
1999 		     state);
2000 		goto remove;
2001 	}
2002 
2003 	if (!invoke || !cpuhp_get_teardown_cb(state))
2004 		goto remove;
2005 
2006 	/*
2007 	 * Call the teardown callback for each present cpu depending
2008 	 * on the hotplug state of the cpu. This function is not
2009 	 * allowed to fail currently!
2010 	 */
2011 	for_each_present_cpu(cpu) {
2012 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2013 		int cpustate = st->state;
2014 
2015 		if (cpustate >= state)
2016 			cpuhp_issue_call(cpu, state, false, NULL);
2017 	}
2018 remove:
2019 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2020 	mutex_unlock(&cpuhp_state_mutex);
2021 }
2022 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2023 
2024 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2025 {
2026 	cpus_read_lock();
2027 	__cpuhp_remove_state_cpuslocked(state, invoke);
2028 	cpus_read_unlock();
2029 }
2030 EXPORT_SYMBOL(__cpuhp_remove_state);
2031 
2032 #ifdef CONFIG_HOTPLUG_SMT
2033 static void cpuhp_offline_cpu_device(unsigned int cpu)
2034 {
2035 	struct device *dev = get_cpu_device(cpu);
2036 
2037 	dev->offline = true;
2038 	/* Tell user space about the state change */
2039 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2040 }
2041 
2042 static void cpuhp_online_cpu_device(unsigned int cpu)
2043 {
2044 	struct device *dev = get_cpu_device(cpu);
2045 
2046 	dev->offline = false;
2047 	/* Tell user space about the state change */
2048 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2049 }
2050 
2051 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2052 {
2053 	int cpu, ret = 0;
2054 
2055 	cpu_maps_update_begin();
2056 	for_each_online_cpu(cpu) {
2057 		if (topology_is_primary_thread(cpu))
2058 			continue;
2059 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2060 		if (ret)
2061 			break;
2062 		/*
2063 		 * As this needs to hold the cpu maps lock it's impossible
2064 		 * to call device_offline() because that ends up calling
2065 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2066 		 * needs to be held as this might race against in kernel
2067 		 * abusers of the hotplug machinery (thermal management).
2068 		 *
2069 		 * So nothing would update device:offline state. That would
2070 		 * leave the sysfs entry stale and prevent onlining after
2071 		 * smt control has been changed to 'off' again. This is
2072 		 * called under the sysfs hotplug lock, so it is properly
2073 		 * serialized against the regular offline usage.
2074 		 */
2075 		cpuhp_offline_cpu_device(cpu);
2076 	}
2077 	if (!ret)
2078 		cpu_smt_control = ctrlval;
2079 	cpu_maps_update_done();
2080 	return ret;
2081 }
2082 
2083 int cpuhp_smt_enable(void)
2084 {
2085 	int cpu, ret = 0;
2086 
2087 	cpu_maps_update_begin();
2088 	cpu_smt_control = CPU_SMT_ENABLED;
2089 	for_each_present_cpu(cpu) {
2090 		/* Skip online CPUs and CPUs on offline nodes */
2091 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2092 			continue;
2093 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2094 		if (ret)
2095 			break;
2096 		/* See comment in cpuhp_smt_disable() */
2097 		cpuhp_online_cpu_device(cpu);
2098 	}
2099 	cpu_maps_update_done();
2100 	return ret;
2101 }
2102 #endif
2103 
2104 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2105 static ssize_t show_cpuhp_state(struct device *dev,
2106 				struct device_attribute *attr, char *buf)
2107 {
2108 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2109 
2110 	return sprintf(buf, "%d\n", st->state);
2111 }
2112 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2113 
2114 static ssize_t write_cpuhp_target(struct device *dev,
2115 				  struct device_attribute *attr,
2116 				  const char *buf, size_t count)
2117 {
2118 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2119 	struct cpuhp_step *sp;
2120 	int target, ret;
2121 
2122 	ret = kstrtoint(buf, 10, &target);
2123 	if (ret)
2124 		return ret;
2125 
2126 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2127 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2128 		return -EINVAL;
2129 #else
2130 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2131 		return -EINVAL;
2132 #endif
2133 
2134 	ret = lock_device_hotplug_sysfs();
2135 	if (ret)
2136 		return ret;
2137 
2138 	mutex_lock(&cpuhp_state_mutex);
2139 	sp = cpuhp_get_step(target);
2140 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2141 	mutex_unlock(&cpuhp_state_mutex);
2142 	if (ret)
2143 		goto out;
2144 
2145 	if (st->state < target)
2146 		ret = cpu_up(dev->id, target);
2147 	else
2148 		ret = cpu_down(dev->id, target);
2149 out:
2150 	unlock_device_hotplug();
2151 	return ret ? ret : count;
2152 }
2153 
2154 static ssize_t show_cpuhp_target(struct device *dev,
2155 				 struct device_attribute *attr, char *buf)
2156 {
2157 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2158 
2159 	return sprintf(buf, "%d\n", st->target);
2160 }
2161 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2162 
2163 
2164 static ssize_t write_cpuhp_fail(struct device *dev,
2165 				struct device_attribute *attr,
2166 				const char *buf, size_t count)
2167 {
2168 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2169 	struct cpuhp_step *sp;
2170 	int fail, ret;
2171 
2172 	ret = kstrtoint(buf, 10, &fail);
2173 	if (ret)
2174 		return ret;
2175 
2176 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2177 		return -EINVAL;
2178 
2179 	/*
2180 	 * Cannot fail STARTING/DYING callbacks.
2181 	 */
2182 	if (cpuhp_is_atomic_state(fail))
2183 		return -EINVAL;
2184 
2185 	/*
2186 	 * Cannot fail anything that doesn't have callbacks.
2187 	 */
2188 	mutex_lock(&cpuhp_state_mutex);
2189 	sp = cpuhp_get_step(fail);
2190 	if (!sp->startup.single && !sp->teardown.single)
2191 		ret = -EINVAL;
2192 	mutex_unlock(&cpuhp_state_mutex);
2193 	if (ret)
2194 		return ret;
2195 
2196 	st->fail = fail;
2197 
2198 	return count;
2199 }
2200 
2201 static ssize_t show_cpuhp_fail(struct device *dev,
2202 			       struct device_attribute *attr, char *buf)
2203 {
2204 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2205 
2206 	return sprintf(buf, "%d\n", st->fail);
2207 }
2208 
2209 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2210 
2211 static struct attribute *cpuhp_cpu_attrs[] = {
2212 	&dev_attr_state.attr,
2213 	&dev_attr_target.attr,
2214 	&dev_attr_fail.attr,
2215 	NULL
2216 };
2217 
2218 static const struct attribute_group cpuhp_cpu_attr_group = {
2219 	.attrs = cpuhp_cpu_attrs,
2220 	.name = "hotplug",
2221 	NULL
2222 };
2223 
2224 static ssize_t show_cpuhp_states(struct device *dev,
2225 				 struct device_attribute *attr, char *buf)
2226 {
2227 	ssize_t cur, res = 0;
2228 	int i;
2229 
2230 	mutex_lock(&cpuhp_state_mutex);
2231 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2232 		struct cpuhp_step *sp = cpuhp_get_step(i);
2233 
2234 		if (sp->name) {
2235 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2236 			buf += cur;
2237 			res += cur;
2238 		}
2239 	}
2240 	mutex_unlock(&cpuhp_state_mutex);
2241 	return res;
2242 }
2243 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2244 
2245 static struct attribute *cpuhp_cpu_root_attrs[] = {
2246 	&dev_attr_states.attr,
2247 	NULL
2248 };
2249 
2250 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2251 	.attrs = cpuhp_cpu_root_attrs,
2252 	.name = "hotplug",
2253 	NULL
2254 };
2255 
2256 #ifdef CONFIG_HOTPLUG_SMT
2257 
2258 static ssize_t
2259 __store_smt_control(struct device *dev, struct device_attribute *attr,
2260 		    const char *buf, size_t count)
2261 {
2262 	int ctrlval, ret;
2263 
2264 	if (sysfs_streq(buf, "on"))
2265 		ctrlval = CPU_SMT_ENABLED;
2266 	else if (sysfs_streq(buf, "off"))
2267 		ctrlval = CPU_SMT_DISABLED;
2268 	else if (sysfs_streq(buf, "forceoff"))
2269 		ctrlval = CPU_SMT_FORCE_DISABLED;
2270 	else
2271 		return -EINVAL;
2272 
2273 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2274 		return -EPERM;
2275 
2276 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2277 		return -ENODEV;
2278 
2279 	ret = lock_device_hotplug_sysfs();
2280 	if (ret)
2281 		return ret;
2282 
2283 	if (ctrlval != cpu_smt_control) {
2284 		switch (ctrlval) {
2285 		case CPU_SMT_ENABLED:
2286 			ret = cpuhp_smt_enable();
2287 			break;
2288 		case CPU_SMT_DISABLED:
2289 		case CPU_SMT_FORCE_DISABLED:
2290 			ret = cpuhp_smt_disable(ctrlval);
2291 			break;
2292 		}
2293 	}
2294 
2295 	unlock_device_hotplug();
2296 	return ret ? ret : count;
2297 }
2298 
2299 #else /* !CONFIG_HOTPLUG_SMT */
2300 static ssize_t
2301 __store_smt_control(struct device *dev, struct device_attribute *attr,
2302 		    const char *buf, size_t count)
2303 {
2304 	return -ENODEV;
2305 }
2306 #endif /* CONFIG_HOTPLUG_SMT */
2307 
2308 static const char *smt_states[] = {
2309 	[CPU_SMT_ENABLED]		= "on",
2310 	[CPU_SMT_DISABLED]		= "off",
2311 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2312 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2313 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2314 };
2315 
2316 static ssize_t
2317 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2318 {
2319 	const char *state = smt_states[cpu_smt_control];
2320 
2321 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2322 }
2323 
2324 static ssize_t
2325 store_smt_control(struct device *dev, struct device_attribute *attr,
2326 		  const char *buf, size_t count)
2327 {
2328 	return __store_smt_control(dev, attr, buf, count);
2329 }
2330 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2331 
2332 static ssize_t
2333 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2334 {
2335 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2336 }
2337 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2338 
2339 static struct attribute *cpuhp_smt_attrs[] = {
2340 	&dev_attr_control.attr,
2341 	&dev_attr_active.attr,
2342 	NULL
2343 };
2344 
2345 static const struct attribute_group cpuhp_smt_attr_group = {
2346 	.attrs = cpuhp_smt_attrs,
2347 	.name = "smt",
2348 	NULL
2349 };
2350 
2351 static int __init cpu_smt_sysfs_init(void)
2352 {
2353 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2354 				  &cpuhp_smt_attr_group);
2355 }
2356 
2357 static int __init cpuhp_sysfs_init(void)
2358 {
2359 	int cpu, ret;
2360 
2361 	ret = cpu_smt_sysfs_init();
2362 	if (ret)
2363 		return ret;
2364 
2365 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2366 				 &cpuhp_cpu_root_attr_group);
2367 	if (ret)
2368 		return ret;
2369 
2370 	for_each_possible_cpu(cpu) {
2371 		struct device *dev = get_cpu_device(cpu);
2372 
2373 		if (!dev)
2374 			continue;
2375 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2376 		if (ret)
2377 			return ret;
2378 	}
2379 	return 0;
2380 }
2381 device_initcall(cpuhp_sysfs_init);
2382 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2383 
2384 /*
2385  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2386  * represents all NR_CPUS bits binary values of 1<<nr.
2387  *
2388  * It is used by cpumask_of() to get a constant address to a CPU
2389  * mask value that has a single bit set only.
2390  */
2391 
2392 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2393 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2394 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2395 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2396 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2397 
2398 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2399 
2400 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2401 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2402 #if BITS_PER_LONG > 32
2403 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2404 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2405 #endif
2406 };
2407 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2408 
2409 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2410 EXPORT_SYMBOL(cpu_all_bits);
2411 
2412 #ifdef CONFIG_INIT_ALL_POSSIBLE
2413 struct cpumask __cpu_possible_mask __read_mostly
2414 	= {CPU_BITS_ALL};
2415 #else
2416 struct cpumask __cpu_possible_mask __read_mostly;
2417 #endif
2418 EXPORT_SYMBOL(__cpu_possible_mask);
2419 
2420 struct cpumask __cpu_online_mask __read_mostly;
2421 EXPORT_SYMBOL(__cpu_online_mask);
2422 
2423 struct cpumask __cpu_present_mask __read_mostly;
2424 EXPORT_SYMBOL(__cpu_present_mask);
2425 
2426 struct cpumask __cpu_active_mask __read_mostly;
2427 EXPORT_SYMBOL(__cpu_active_mask);
2428 
2429 atomic_t __num_online_cpus __read_mostly;
2430 EXPORT_SYMBOL(__num_online_cpus);
2431 
2432 void init_cpu_present(const struct cpumask *src)
2433 {
2434 	cpumask_copy(&__cpu_present_mask, src);
2435 }
2436 
2437 void init_cpu_possible(const struct cpumask *src)
2438 {
2439 	cpumask_copy(&__cpu_possible_mask, src);
2440 }
2441 
2442 void init_cpu_online(const struct cpumask *src)
2443 {
2444 	cpumask_copy(&__cpu_online_mask, src);
2445 }
2446 
2447 void set_cpu_online(unsigned int cpu, bool online)
2448 {
2449 	/*
2450 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2451 	 * function by the reboot and kexec code which invoke it from
2452 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2453 	 * regular CPU hotplug is properly serialized.
2454 	 *
2455 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2456 	 * does not protect readers which are not serialized against
2457 	 * concurrent hotplug operations.
2458 	 */
2459 	if (online) {
2460 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2461 			atomic_inc(&__num_online_cpus);
2462 	} else {
2463 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2464 			atomic_dec(&__num_online_cpus);
2465 	}
2466 }
2467 
2468 /*
2469  * Activate the first processor.
2470  */
2471 void __init boot_cpu_init(void)
2472 {
2473 	int cpu = smp_processor_id();
2474 
2475 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2476 	set_cpu_online(cpu, true);
2477 	set_cpu_active(cpu, true);
2478 	set_cpu_present(cpu, true);
2479 	set_cpu_possible(cpu, true);
2480 
2481 #ifdef CONFIG_SMP
2482 	__boot_cpu_id = cpu;
2483 #endif
2484 }
2485 
2486 /*
2487  * Must be called _AFTER_ setting up the per_cpu areas
2488  */
2489 void __init boot_cpu_hotplug_init(void)
2490 {
2491 #ifdef CONFIG_SMP
2492 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2493 #endif
2494 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2495 }
2496 
2497 /*
2498  * These are used for a global "mitigations=" cmdline option for toggling
2499  * optional CPU mitigations.
2500  */
2501 enum cpu_mitigations {
2502 	CPU_MITIGATIONS_OFF,
2503 	CPU_MITIGATIONS_AUTO,
2504 	CPU_MITIGATIONS_AUTO_NOSMT,
2505 };
2506 
2507 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2508 	CPU_MITIGATIONS_AUTO;
2509 
2510 static int __init mitigations_parse_cmdline(char *arg)
2511 {
2512 	if (!strcmp(arg, "off"))
2513 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2514 	else if (!strcmp(arg, "auto"))
2515 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2516 	else if (!strcmp(arg, "auto,nosmt"))
2517 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2518 	else
2519 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2520 			arg);
2521 
2522 	return 0;
2523 }
2524 early_param("mitigations", mitigations_parse_cmdline);
2525 
2526 /* mitigations=off */
2527 bool cpu_mitigations_off(void)
2528 {
2529 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2530 }
2531 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2532 
2533 /* mitigations=auto,nosmt */
2534 bool cpu_mitigations_auto_nosmt(void)
2535 {
2536 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2537 }
2538 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2539