xref: /openbmc/linux/kernel/cpu.c (revision b608dd67)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40 
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44 
45 #include "smpboot.h"
46 
47 /**
48  * struct cpuhp_cpu_state - Per cpu hotplug state storage
49  * @state:	The current cpu state
50  * @target:	The target state
51  * @fail:	Current CPU hotplug callback state
52  * @thread:	Pointer to the hotplug thread
53  * @should_run:	Thread should execute
54  * @rollback:	Perform a rollback
55  * @single:	Single callback invocation
56  * @bringup:	Single callback bringup or teardown selector
57  * @cpu:	CPU number
58  * @node:	Remote CPU node; for multi-instance, do a
59  *		single entry callback for install/remove
60  * @last:	For multi-instance rollback, remember how far we got
61  * @cb_state:	The state for a single callback (install/uninstall)
62  * @result:	Result of the operation
63  * @ap_sync_state:	State for AP synchronization
64  * @done_up:	Signal completion to the issuer of the task for cpu-up
65  * @done_down:	Signal completion to the issuer of the task for cpu-down
66  */
67 struct cpuhp_cpu_state {
68 	enum cpuhp_state	state;
69 	enum cpuhp_state	target;
70 	enum cpuhp_state	fail;
71 #ifdef CONFIG_SMP
72 	struct task_struct	*thread;
73 	bool			should_run;
74 	bool			rollback;
75 	bool			single;
76 	bool			bringup;
77 	struct hlist_node	*node;
78 	struct hlist_node	*last;
79 	enum cpuhp_state	cb_state;
80 	int			result;
81 	atomic_t		ap_sync_state;
82 	struct completion	done_up;
83 	struct completion	done_down;
84 #endif
85 };
86 
87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88 	.fail = CPUHP_INVALID,
89 };
90 
91 #ifdef CONFIG_SMP
92 cpumask_t cpus_booted_once_mask;
93 #endif
94 
95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96 static struct lockdep_map cpuhp_state_up_map =
97 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98 static struct lockdep_map cpuhp_state_down_map =
99 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100 
101 
102 static inline void cpuhp_lock_acquire(bool bringup)
103 {
104 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106 
107 static inline void cpuhp_lock_release(bool bringup)
108 {
109 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110 }
111 #else
112 
113 static inline void cpuhp_lock_acquire(bool bringup) { }
114 static inline void cpuhp_lock_release(bool bringup) { }
115 
116 #endif
117 
118 /**
119  * struct cpuhp_step - Hotplug state machine step
120  * @name:	Name of the step
121  * @startup:	Startup function of the step
122  * @teardown:	Teardown function of the step
123  * @cant_stop:	Bringup/teardown can't be stopped at this step
124  * @multi_instance:	State has multiple instances which get added afterwards
125  */
126 struct cpuhp_step {
127 	const char		*name;
128 	union {
129 		int		(*single)(unsigned int cpu);
130 		int		(*multi)(unsigned int cpu,
131 					 struct hlist_node *node);
132 	} startup;
133 	union {
134 		int		(*single)(unsigned int cpu);
135 		int		(*multi)(unsigned int cpu,
136 					 struct hlist_node *node);
137 	} teardown;
138 	/* private: */
139 	struct hlist_head	list;
140 	/* public: */
141 	bool			cant_stop;
142 	bool			multi_instance;
143 };
144 
145 static DEFINE_MUTEX(cpuhp_state_mutex);
146 static struct cpuhp_step cpuhp_hp_states[];
147 
148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149 {
150 	return cpuhp_hp_states + state;
151 }
152 
153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154 {
155 	return bringup ? !step->startup.single : !step->teardown.single;
156 }
157 
158 /**
159  * cpuhp_invoke_callback - Invoke the callbacks for a given state
160  * @cpu:	The cpu for which the callback should be invoked
161  * @state:	The state to do callbacks for
162  * @bringup:	True if the bringup callback should be invoked
163  * @node:	For multi-instance, do a single entry callback for install/remove
164  * @lastp:	For multi-instance rollback, remember how far we got
165  *
166  * Called from cpu hotplug and from the state register machinery.
167  *
168  * Return: %0 on success or a negative errno code
169  */
170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171 				 bool bringup, struct hlist_node *node,
172 				 struct hlist_node **lastp)
173 {
174 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175 	struct cpuhp_step *step = cpuhp_get_step(state);
176 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
177 	int (*cb)(unsigned int cpu);
178 	int ret, cnt;
179 
180 	if (st->fail == state) {
181 		st->fail = CPUHP_INVALID;
182 		return -EAGAIN;
183 	}
184 
185 	if (cpuhp_step_empty(bringup, step)) {
186 		WARN_ON_ONCE(1);
187 		return 0;
188 	}
189 
190 	if (!step->multi_instance) {
191 		WARN_ON_ONCE(lastp && *lastp);
192 		cb = bringup ? step->startup.single : step->teardown.single;
193 
194 		trace_cpuhp_enter(cpu, st->target, state, cb);
195 		ret = cb(cpu);
196 		trace_cpuhp_exit(cpu, st->state, state, ret);
197 		return ret;
198 	}
199 	cbm = bringup ? step->startup.multi : step->teardown.multi;
200 
201 	/* Single invocation for instance add/remove */
202 	if (node) {
203 		WARN_ON_ONCE(lastp && *lastp);
204 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205 		ret = cbm(cpu, node);
206 		trace_cpuhp_exit(cpu, st->state, state, ret);
207 		return ret;
208 	}
209 
210 	/* State transition. Invoke on all instances */
211 	cnt = 0;
212 	hlist_for_each(node, &step->list) {
213 		if (lastp && node == *lastp)
214 			break;
215 
216 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217 		ret = cbm(cpu, node);
218 		trace_cpuhp_exit(cpu, st->state, state, ret);
219 		if (ret) {
220 			if (!lastp)
221 				goto err;
222 
223 			*lastp = node;
224 			return ret;
225 		}
226 		cnt++;
227 	}
228 	if (lastp)
229 		*lastp = NULL;
230 	return 0;
231 err:
232 	/* Rollback the instances if one failed */
233 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
234 	if (!cbm)
235 		return ret;
236 
237 	hlist_for_each(node, &step->list) {
238 		if (!cnt--)
239 			break;
240 
241 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242 		ret = cbm(cpu, node);
243 		trace_cpuhp_exit(cpu, st->state, state, ret);
244 		/*
245 		 * Rollback must not fail,
246 		 */
247 		WARN_ON_ONCE(ret);
248 	}
249 	return ret;
250 }
251 
252 #ifdef CONFIG_SMP
253 static bool cpuhp_is_ap_state(enum cpuhp_state state)
254 {
255 	/*
256 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257 	 * purposes as that state is handled explicitly in cpu_down.
258 	 */
259 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260 }
261 
262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263 {
264 	struct completion *done = bringup ? &st->done_up : &st->done_down;
265 	wait_for_completion(done);
266 }
267 
268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269 {
270 	struct completion *done = bringup ? &st->done_up : &st->done_down;
271 	complete(done);
272 }
273 
274 /*
275  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276  */
277 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278 {
279 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280 }
281 
282 /* Synchronization state management */
283 enum cpuhp_sync_state {
284 	SYNC_STATE_DEAD,
285 	SYNC_STATE_KICKED,
286 	SYNC_STATE_SHOULD_DIE,
287 	SYNC_STATE_ALIVE,
288 	SYNC_STATE_SHOULD_ONLINE,
289 	SYNC_STATE_ONLINE,
290 };
291 
292 #ifdef CONFIG_HOTPLUG_CORE_SYNC
293 /**
294  * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295  * @state:	The synchronization state to set
296  *
297  * No synchronization point. Just update of the synchronization state, but implies
298  * a full barrier so that the AP changes are visible before the control CPU proceeds.
299  */
300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301 {
302 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303 
304 	(void)atomic_xchg(st, state);
305 }
306 
307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308 
309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310 				      enum cpuhp_sync_state next_state)
311 {
312 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313 	ktime_t now, end, start = ktime_get();
314 	int sync;
315 
316 	end = start + 10ULL * NSEC_PER_SEC;
317 
318 	sync = atomic_read(st);
319 	while (1) {
320 		if (sync == state) {
321 			if (!atomic_try_cmpxchg(st, &sync, next_state))
322 				continue;
323 			return true;
324 		}
325 
326 		now = ktime_get();
327 		if (now > end) {
328 			/* Timeout. Leave the state unchanged */
329 			return false;
330 		} else if (now - start < NSEC_PER_MSEC) {
331 			/* Poll for one millisecond */
332 			arch_cpuhp_sync_state_poll();
333 		} else {
334 			usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE);
335 		}
336 		sync = atomic_read(st);
337 	}
338 	return true;
339 }
340 #else  /* CONFIG_HOTPLUG_CORE_SYNC */
341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343 
344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345 /**
346  * cpuhp_ap_report_dead - Update synchronization state to DEAD
347  *
348  * No synchronization point. Just update of the synchronization state.
349  */
350 void cpuhp_ap_report_dead(void)
351 {
352 	cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353 }
354 
355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356 
357 /*
358  * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359  * because the AP cannot issue complete() at this stage.
360  */
361 static void cpuhp_bp_sync_dead(unsigned int cpu)
362 {
363 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364 	int sync = atomic_read(st);
365 
366 	do {
367 		/* CPU can have reported dead already. Don't overwrite that! */
368 		if (sync == SYNC_STATE_DEAD)
369 			break;
370 	} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371 
372 	if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373 		/* CPU reached dead state. Invoke the cleanup function */
374 		arch_cpuhp_cleanup_dead_cpu(cpu);
375 		return;
376 	}
377 
378 	/* No further action possible. Emit message and give up. */
379 	pr_err("CPU%u failed to report dead state\n", cpu);
380 }
381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384 
385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386 /**
387  * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388  *
389  * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390  * for the BP to release it.
391  */
392 void cpuhp_ap_sync_alive(void)
393 {
394 	atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395 
396 	cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397 
398 	/* Wait for the control CPU to release it. */
399 	while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400 		cpu_relax();
401 }
402 
403 static bool cpuhp_can_boot_ap(unsigned int cpu)
404 {
405 	atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406 	int sync = atomic_read(st);
407 
408 again:
409 	switch (sync) {
410 	case SYNC_STATE_DEAD:
411 		/* CPU is properly dead */
412 		break;
413 	case SYNC_STATE_KICKED:
414 		/* CPU did not come up in previous attempt */
415 		break;
416 	case SYNC_STATE_ALIVE:
417 		/* CPU is stuck cpuhp_ap_sync_alive(). */
418 		break;
419 	default:
420 		/* CPU failed to report online or dead and is in limbo state. */
421 		return false;
422 	}
423 
424 	/* Prepare for booting */
425 	if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426 		goto again;
427 
428 	return true;
429 }
430 
431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432 
433 /*
434  * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435  * because the AP cannot issue complete() so early in the bringup.
436  */
437 static int cpuhp_bp_sync_alive(unsigned int cpu)
438 {
439 	int ret = 0;
440 
441 	if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442 		return 0;
443 
444 	if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445 		pr_err("CPU%u failed to report alive state\n", cpu);
446 		ret = -EIO;
447 	}
448 
449 	/* Let the architecture cleanup the kick alive mechanics. */
450 	arch_cpuhp_cleanup_kick_cpu(cpu);
451 	return ret;
452 }
453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457 
458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
459 static DEFINE_MUTEX(cpu_add_remove_lock);
460 bool cpuhp_tasks_frozen;
461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462 
463 /*
464  * The following two APIs (cpu_maps_update_begin/done) must be used when
465  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466  */
467 void cpu_maps_update_begin(void)
468 {
469 	mutex_lock(&cpu_add_remove_lock);
470 }
471 
472 void cpu_maps_update_done(void)
473 {
474 	mutex_unlock(&cpu_add_remove_lock);
475 }
476 
477 /*
478  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479  * Should always be manipulated under cpu_add_remove_lock
480  */
481 static int cpu_hotplug_disabled;
482 
483 #ifdef CONFIG_HOTPLUG_CPU
484 
485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486 
487 void cpus_read_lock(void)
488 {
489 	percpu_down_read(&cpu_hotplug_lock);
490 }
491 EXPORT_SYMBOL_GPL(cpus_read_lock);
492 
493 int cpus_read_trylock(void)
494 {
495 	return percpu_down_read_trylock(&cpu_hotplug_lock);
496 }
497 EXPORT_SYMBOL_GPL(cpus_read_trylock);
498 
499 void cpus_read_unlock(void)
500 {
501 	percpu_up_read(&cpu_hotplug_lock);
502 }
503 EXPORT_SYMBOL_GPL(cpus_read_unlock);
504 
505 void cpus_write_lock(void)
506 {
507 	percpu_down_write(&cpu_hotplug_lock);
508 }
509 
510 void cpus_write_unlock(void)
511 {
512 	percpu_up_write(&cpu_hotplug_lock);
513 }
514 
515 void lockdep_assert_cpus_held(void)
516 {
517 	/*
518 	 * We can't have hotplug operations before userspace starts running,
519 	 * and some init codepaths will knowingly not take the hotplug lock.
520 	 * This is all valid, so mute lockdep until it makes sense to report
521 	 * unheld locks.
522 	 */
523 	if (system_state < SYSTEM_RUNNING)
524 		return;
525 
526 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
527 }
528 
529 #ifdef CONFIG_LOCKDEP
530 int lockdep_is_cpus_held(void)
531 {
532 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
533 }
534 #endif
535 
536 static void lockdep_acquire_cpus_lock(void)
537 {
538 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
539 }
540 
541 static void lockdep_release_cpus_lock(void)
542 {
543 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
544 }
545 
546 /*
547  * Wait for currently running CPU hotplug operations to complete (if any) and
548  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
549  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
550  * hotplug path before performing hotplug operations. So acquiring that lock
551  * guarantees mutual exclusion from any currently running hotplug operations.
552  */
553 void cpu_hotplug_disable(void)
554 {
555 	cpu_maps_update_begin();
556 	cpu_hotplug_disabled++;
557 	cpu_maps_update_done();
558 }
559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
560 
561 static void __cpu_hotplug_enable(void)
562 {
563 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
564 		return;
565 	cpu_hotplug_disabled--;
566 }
567 
568 void cpu_hotplug_enable(void)
569 {
570 	cpu_maps_update_begin();
571 	__cpu_hotplug_enable();
572 	cpu_maps_update_done();
573 }
574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
575 
576 #else
577 
578 static void lockdep_acquire_cpus_lock(void)
579 {
580 }
581 
582 static void lockdep_release_cpus_lock(void)
583 {
584 }
585 
586 #endif	/* CONFIG_HOTPLUG_CPU */
587 
588 /*
589  * Architectures that need SMT-specific errata handling during SMT hotplug
590  * should override this.
591  */
592 void __weak arch_smt_update(void) { }
593 
594 #ifdef CONFIG_HOTPLUG_SMT
595 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
596 
597 void __init cpu_smt_disable(bool force)
598 {
599 	if (!cpu_smt_possible())
600 		return;
601 
602 	if (force) {
603 		pr_info("SMT: Force disabled\n");
604 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
605 	} else {
606 		pr_info("SMT: disabled\n");
607 		cpu_smt_control = CPU_SMT_DISABLED;
608 	}
609 }
610 
611 /*
612  * The decision whether SMT is supported can only be done after the full
613  * CPU identification. Called from architecture code.
614  */
615 void __init cpu_smt_check_topology(void)
616 {
617 	if (!topology_smt_supported())
618 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
619 }
620 
621 static int __init smt_cmdline_disable(char *str)
622 {
623 	cpu_smt_disable(str && !strcmp(str, "force"));
624 	return 0;
625 }
626 early_param("nosmt", smt_cmdline_disable);
627 
628 static inline bool cpu_smt_allowed(unsigned int cpu)
629 {
630 	if (cpu_smt_control == CPU_SMT_ENABLED)
631 		return true;
632 
633 	if (topology_is_primary_thread(cpu))
634 		return true;
635 
636 	/*
637 	 * On x86 it's required to boot all logical CPUs at least once so
638 	 * that the init code can get a chance to set CR4.MCE on each
639 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
640 	 * core will shutdown the machine.
641 	 */
642 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
643 }
644 
645 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
646 bool cpu_smt_possible(void)
647 {
648 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
649 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
650 }
651 EXPORT_SYMBOL_GPL(cpu_smt_possible);
652 
653 static inline bool cpuhp_smt_aware(void)
654 {
655 	return topology_smt_supported();
656 }
657 
658 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
659 {
660 	return cpu_primary_thread_mask;
661 }
662 #else
663 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
664 static inline bool cpuhp_smt_aware(void) { return false; }
665 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
666 {
667 	return cpu_present_mask;
668 }
669 #endif
670 
671 static inline enum cpuhp_state
672 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
673 {
674 	enum cpuhp_state prev_state = st->state;
675 	bool bringup = st->state < target;
676 
677 	st->rollback = false;
678 	st->last = NULL;
679 
680 	st->target = target;
681 	st->single = false;
682 	st->bringup = bringup;
683 	if (cpu_dying(cpu) != !bringup)
684 		set_cpu_dying(cpu, !bringup);
685 
686 	return prev_state;
687 }
688 
689 static inline void
690 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
691 		  enum cpuhp_state prev_state)
692 {
693 	bool bringup = !st->bringup;
694 
695 	st->target = prev_state;
696 
697 	/*
698 	 * Already rolling back. No need invert the bringup value or to change
699 	 * the current state.
700 	 */
701 	if (st->rollback)
702 		return;
703 
704 	st->rollback = true;
705 
706 	/*
707 	 * If we have st->last we need to undo partial multi_instance of this
708 	 * state first. Otherwise start undo at the previous state.
709 	 */
710 	if (!st->last) {
711 		if (st->bringup)
712 			st->state--;
713 		else
714 			st->state++;
715 	}
716 
717 	st->bringup = bringup;
718 	if (cpu_dying(cpu) != !bringup)
719 		set_cpu_dying(cpu, !bringup);
720 }
721 
722 /* Regular hotplug invocation of the AP hotplug thread */
723 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
724 {
725 	if (!st->single && st->state == st->target)
726 		return;
727 
728 	st->result = 0;
729 	/*
730 	 * Make sure the above stores are visible before should_run becomes
731 	 * true. Paired with the mb() above in cpuhp_thread_fun()
732 	 */
733 	smp_mb();
734 	st->should_run = true;
735 	wake_up_process(st->thread);
736 	wait_for_ap_thread(st, st->bringup);
737 }
738 
739 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
740 			 enum cpuhp_state target)
741 {
742 	enum cpuhp_state prev_state;
743 	int ret;
744 
745 	prev_state = cpuhp_set_state(cpu, st, target);
746 	__cpuhp_kick_ap(st);
747 	if ((ret = st->result)) {
748 		cpuhp_reset_state(cpu, st, prev_state);
749 		__cpuhp_kick_ap(st);
750 	}
751 
752 	return ret;
753 }
754 
755 static int bringup_wait_for_ap_online(unsigned int cpu)
756 {
757 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
758 
759 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
760 	wait_for_ap_thread(st, true);
761 	if (WARN_ON_ONCE((!cpu_online(cpu))))
762 		return -ECANCELED;
763 
764 	/* Unpark the hotplug thread of the target cpu */
765 	kthread_unpark(st->thread);
766 
767 	/*
768 	 * SMT soft disabling on X86 requires to bring the CPU out of the
769 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
770 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
771 	 * cpu_smt_allowed() check will now return false if this is not the
772 	 * primary sibling.
773 	 */
774 	if (!cpu_smt_allowed(cpu))
775 		return -ECANCELED;
776 	return 0;
777 }
778 
779 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
780 static int cpuhp_kick_ap_alive(unsigned int cpu)
781 {
782 	if (!cpuhp_can_boot_ap(cpu))
783 		return -EAGAIN;
784 
785 	return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
786 }
787 
788 static int cpuhp_bringup_ap(unsigned int cpu)
789 {
790 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
791 	int ret;
792 
793 	/*
794 	 * Some architectures have to walk the irq descriptors to
795 	 * setup the vector space for the cpu which comes online.
796 	 * Prevent irq alloc/free across the bringup.
797 	 */
798 	irq_lock_sparse();
799 
800 	ret = cpuhp_bp_sync_alive(cpu);
801 	if (ret)
802 		goto out_unlock;
803 
804 	ret = bringup_wait_for_ap_online(cpu);
805 	if (ret)
806 		goto out_unlock;
807 
808 	irq_unlock_sparse();
809 
810 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
811 		return 0;
812 
813 	return cpuhp_kick_ap(cpu, st, st->target);
814 
815 out_unlock:
816 	irq_unlock_sparse();
817 	return ret;
818 }
819 #else
820 static int bringup_cpu(unsigned int cpu)
821 {
822 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
823 	struct task_struct *idle = idle_thread_get(cpu);
824 	int ret;
825 
826 	if (!cpuhp_can_boot_ap(cpu))
827 		return -EAGAIN;
828 
829 	/*
830 	 * Some architectures have to walk the irq descriptors to
831 	 * setup the vector space for the cpu which comes online.
832 	 *
833 	 * Prevent irq alloc/free across the bringup by acquiring the
834 	 * sparse irq lock. Hold it until the upcoming CPU completes the
835 	 * startup in cpuhp_online_idle() which allows to avoid
836 	 * intermediate synchronization points in the architecture code.
837 	 */
838 	irq_lock_sparse();
839 
840 	ret = __cpu_up(cpu, idle);
841 	if (ret)
842 		goto out_unlock;
843 
844 	ret = cpuhp_bp_sync_alive(cpu);
845 	if (ret)
846 		goto out_unlock;
847 
848 	ret = bringup_wait_for_ap_online(cpu);
849 	if (ret)
850 		goto out_unlock;
851 
852 	irq_unlock_sparse();
853 
854 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
855 		return 0;
856 
857 	return cpuhp_kick_ap(cpu, st, st->target);
858 
859 out_unlock:
860 	irq_unlock_sparse();
861 	return ret;
862 }
863 #endif
864 
865 static int finish_cpu(unsigned int cpu)
866 {
867 	struct task_struct *idle = idle_thread_get(cpu);
868 	struct mm_struct *mm = idle->active_mm;
869 
870 	/*
871 	 * idle_task_exit() will have switched to &init_mm, now
872 	 * clean up any remaining active_mm state.
873 	 */
874 	if (mm != &init_mm)
875 		idle->active_mm = &init_mm;
876 	mmdrop_lazy_tlb(mm);
877 	return 0;
878 }
879 
880 /*
881  * Hotplug state machine related functions
882  */
883 
884 /*
885  * Get the next state to run. Empty ones will be skipped. Returns true if a
886  * state must be run.
887  *
888  * st->state will be modified ahead of time, to match state_to_run, as if it
889  * has already ran.
890  */
891 static bool cpuhp_next_state(bool bringup,
892 			     enum cpuhp_state *state_to_run,
893 			     struct cpuhp_cpu_state *st,
894 			     enum cpuhp_state target)
895 {
896 	do {
897 		if (bringup) {
898 			if (st->state >= target)
899 				return false;
900 
901 			*state_to_run = ++st->state;
902 		} else {
903 			if (st->state <= target)
904 				return false;
905 
906 			*state_to_run = st->state--;
907 		}
908 
909 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
910 			break;
911 	} while (true);
912 
913 	return true;
914 }
915 
916 static int __cpuhp_invoke_callback_range(bool bringup,
917 					 unsigned int cpu,
918 					 struct cpuhp_cpu_state *st,
919 					 enum cpuhp_state target,
920 					 bool nofail)
921 {
922 	enum cpuhp_state state;
923 	int ret = 0;
924 
925 	while (cpuhp_next_state(bringup, &state, st, target)) {
926 		int err;
927 
928 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
929 		if (!err)
930 			continue;
931 
932 		if (nofail) {
933 			pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
934 				cpu, bringup ? "UP" : "DOWN",
935 				cpuhp_get_step(st->state)->name,
936 				st->state, err);
937 			ret = -1;
938 		} else {
939 			ret = err;
940 			break;
941 		}
942 	}
943 
944 	return ret;
945 }
946 
947 static inline int cpuhp_invoke_callback_range(bool bringup,
948 					      unsigned int cpu,
949 					      struct cpuhp_cpu_state *st,
950 					      enum cpuhp_state target)
951 {
952 	return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
953 }
954 
955 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
956 						      unsigned int cpu,
957 						      struct cpuhp_cpu_state *st,
958 						      enum cpuhp_state target)
959 {
960 	__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
961 }
962 
963 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
964 {
965 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
966 		return true;
967 	/*
968 	 * When CPU hotplug is disabled, then taking the CPU down is not
969 	 * possible because takedown_cpu() and the architecture and
970 	 * subsystem specific mechanisms are not available. So the CPU
971 	 * which would be completely unplugged again needs to stay around
972 	 * in the current state.
973 	 */
974 	return st->state <= CPUHP_BRINGUP_CPU;
975 }
976 
977 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
978 			      enum cpuhp_state target)
979 {
980 	enum cpuhp_state prev_state = st->state;
981 	int ret = 0;
982 
983 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
984 	if (ret) {
985 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
986 			 ret, cpu, cpuhp_get_step(st->state)->name,
987 			 st->state);
988 
989 		cpuhp_reset_state(cpu, st, prev_state);
990 		if (can_rollback_cpu(st))
991 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
992 							    prev_state));
993 	}
994 	return ret;
995 }
996 
997 /*
998  * The cpu hotplug threads manage the bringup and teardown of the cpus
999  */
1000 static int cpuhp_should_run(unsigned int cpu)
1001 {
1002 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1003 
1004 	return st->should_run;
1005 }
1006 
1007 /*
1008  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1009  * callbacks when a state gets [un]installed at runtime.
1010  *
1011  * Each invocation of this function by the smpboot thread does a single AP
1012  * state callback.
1013  *
1014  * It has 3 modes of operation:
1015  *  - single: runs st->cb_state
1016  *  - up:     runs ++st->state, while st->state < st->target
1017  *  - down:   runs st->state--, while st->state > st->target
1018  *
1019  * When complete or on error, should_run is cleared and the completion is fired.
1020  */
1021 static void cpuhp_thread_fun(unsigned int cpu)
1022 {
1023 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1024 	bool bringup = st->bringup;
1025 	enum cpuhp_state state;
1026 
1027 	if (WARN_ON_ONCE(!st->should_run))
1028 		return;
1029 
1030 	/*
1031 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1032 	 * that if we see ->should_run we also see the rest of the state.
1033 	 */
1034 	smp_mb();
1035 
1036 	/*
1037 	 * The BP holds the hotplug lock, but we're now running on the AP,
1038 	 * ensure that anybody asserting the lock is held, will actually find
1039 	 * it so.
1040 	 */
1041 	lockdep_acquire_cpus_lock();
1042 	cpuhp_lock_acquire(bringup);
1043 
1044 	if (st->single) {
1045 		state = st->cb_state;
1046 		st->should_run = false;
1047 	} else {
1048 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1049 		if (!st->should_run)
1050 			goto end;
1051 	}
1052 
1053 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1054 
1055 	if (cpuhp_is_atomic_state(state)) {
1056 		local_irq_disable();
1057 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1058 		local_irq_enable();
1059 
1060 		/*
1061 		 * STARTING/DYING must not fail!
1062 		 */
1063 		WARN_ON_ONCE(st->result);
1064 	} else {
1065 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1066 	}
1067 
1068 	if (st->result) {
1069 		/*
1070 		 * If we fail on a rollback, we're up a creek without no
1071 		 * paddle, no way forward, no way back. We loose, thanks for
1072 		 * playing.
1073 		 */
1074 		WARN_ON_ONCE(st->rollback);
1075 		st->should_run = false;
1076 	}
1077 
1078 end:
1079 	cpuhp_lock_release(bringup);
1080 	lockdep_release_cpus_lock();
1081 
1082 	if (!st->should_run)
1083 		complete_ap_thread(st, bringup);
1084 }
1085 
1086 /* Invoke a single callback on a remote cpu */
1087 static int
1088 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1089 			 struct hlist_node *node)
1090 {
1091 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1092 	int ret;
1093 
1094 	if (!cpu_online(cpu))
1095 		return 0;
1096 
1097 	cpuhp_lock_acquire(false);
1098 	cpuhp_lock_release(false);
1099 
1100 	cpuhp_lock_acquire(true);
1101 	cpuhp_lock_release(true);
1102 
1103 	/*
1104 	 * If we are up and running, use the hotplug thread. For early calls
1105 	 * we invoke the thread function directly.
1106 	 */
1107 	if (!st->thread)
1108 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1109 
1110 	st->rollback = false;
1111 	st->last = NULL;
1112 
1113 	st->node = node;
1114 	st->bringup = bringup;
1115 	st->cb_state = state;
1116 	st->single = true;
1117 
1118 	__cpuhp_kick_ap(st);
1119 
1120 	/*
1121 	 * If we failed and did a partial, do a rollback.
1122 	 */
1123 	if ((ret = st->result) && st->last) {
1124 		st->rollback = true;
1125 		st->bringup = !bringup;
1126 
1127 		__cpuhp_kick_ap(st);
1128 	}
1129 
1130 	/*
1131 	 * Clean up the leftovers so the next hotplug operation wont use stale
1132 	 * data.
1133 	 */
1134 	st->node = st->last = NULL;
1135 	return ret;
1136 }
1137 
1138 static int cpuhp_kick_ap_work(unsigned int cpu)
1139 {
1140 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1141 	enum cpuhp_state prev_state = st->state;
1142 	int ret;
1143 
1144 	cpuhp_lock_acquire(false);
1145 	cpuhp_lock_release(false);
1146 
1147 	cpuhp_lock_acquire(true);
1148 	cpuhp_lock_release(true);
1149 
1150 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1151 	ret = cpuhp_kick_ap(cpu, st, st->target);
1152 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1153 
1154 	return ret;
1155 }
1156 
1157 static struct smp_hotplug_thread cpuhp_threads = {
1158 	.store			= &cpuhp_state.thread,
1159 	.thread_should_run	= cpuhp_should_run,
1160 	.thread_fn		= cpuhp_thread_fun,
1161 	.thread_comm		= "cpuhp/%u",
1162 	.selfparking		= true,
1163 };
1164 
1165 static __init void cpuhp_init_state(void)
1166 {
1167 	struct cpuhp_cpu_state *st;
1168 	int cpu;
1169 
1170 	for_each_possible_cpu(cpu) {
1171 		st = per_cpu_ptr(&cpuhp_state, cpu);
1172 		init_completion(&st->done_up);
1173 		init_completion(&st->done_down);
1174 	}
1175 }
1176 
1177 void __init cpuhp_threads_init(void)
1178 {
1179 	cpuhp_init_state();
1180 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1181 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
1182 }
1183 
1184 /*
1185  *
1186  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
1187  * protected region.
1188  *
1189  * The operation is still serialized against concurrent CPU hotplug via
1190  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
1191  * serialized against other hotplug related activity like adding or
1192  * removing of state callbacks and state instances, which invoke either the
1193  * startup or the teardown callback of the affected state.
1194  *
1195  * This is required for subsystems which are unfixable vs. CPU hotplug and
1196  * evade lock inversion problems by scheduling work which has to be
1197  * completed _before_ cpu_up()/_cpu_down() returns.
1198  *
1199  * Don't even think about adding anything to this for any new code or even
1200  * drivers. It's only purpose is to keep existing lock order trainwrecks
1201  * working.
1202  *
1203  * For cpu_down() there might be valid reasons to finish cleanups which are
1204  * not required to be done under cpu_hotplug_lock, but that's a different
1205  * story and would be not invoked via this.
1206  */
1207 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
1208 {
1209 	/*
1210 	 * cpusets delegate hotplug operations to a worker to "solve" the
1211 	 * lock order problems. Wait for the worker, but only if tasks are
1212 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
1213 	 *
1214 	 * The wait is required because otherwise the hotplug operation
1215 	 * returns with inconsistent state, which could even be observed in
1216 	 * user space when a new CPU is brought up. The CPU plug uevent
1217 	 * would be delivered and user space reacting on it would fail to
1218 	 * move tasks to the newly plugged CPU up to the point where the
1219 	 * work has finished because up to that point the newly plugged CPU
1220 	 * is not assignable in cpusets/cgroups. On unplug that's not
1221 	 * necessarily a visible issue, but it is still inconsistent state,
1222 	 * which is the real problem which needs to be "fixed". This can't
1223 	 * prevent the transient state between scheduling the work and
1224 	 * returning from waiting for it.
1225 	 */
1226 	if (!tasks_frozen)
1227 		cpuset_wait_for_hotplug();
1228 }
1229 
1230 #ifdef CONFIG_HOTPLUG_CPU
1231 #ifndef arch_clear_mm_cpumask_cpu
1232 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1233 #endif
1234 
1235 /**
1236  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1237  * @cpu: a CPU id
1238  *
1239  * This function walks all processes, finds a valid mm struct for each one and
1240  * then clears a corresponding bit in mm's cpumask.  While this all sounds
1241  * trivial, there are various non-obvious corner cases, which this function
1242  * tries to solve in a safe manner.
1243  *
1244  * Also note that the function uses a somewhat relaxed locking scheme, so it may
1245  * be called only for an already offlined CPU.
1246  */
1247 void clear_tasks_mm_cpumask(int cpu)
1248 {
1249 	struct task_struct *p;
1250 
1251 	/*
1252 	 * This function is called after the cpu is taken down and marked
1253 	 * offline, so its not like new tasks will ever get this cpu set in
1254 	 * their mm mask. -- Peter Zijlstra
1255 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
1256 	 * full-fledged tasklist_lock.
1257 	 */
1258 	WARN_ON(cpu_online(cpu));
1259 	rcu_read_lock();
1260 	for_each_process(p) {
1261 		struct task_struct *t;
1262 
1263 		/*
1264 		 * Main thread might exit, but other threads may still have
1265 		 * a valid mm. Find one.
1266 		 */
1267 		t = find_lock_task_mm(p);
1268 		if (!t)
1269 			continue;
1270 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
1271 		task_unlock(t);
1272 	}
1273 	rcu_read_unlock();
1274 }
1275 
1276 /* Take this CPU down. */
1277 static int take_cpu_down(void *_param)
1278 {
1279 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1280 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1281 	int err, cpu = smp_processor_id();
1282 
1283 	/* Ensure this CPU doesn't handle any more interrupts. */
1284 	err = __cpu_disable();
1285 	if (err < 0)
1286 		return err;
1287 
1288 	/*
1289 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1290 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1291 	 */
1292 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1293 
1294 	/*
1295 	 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1296 	 */
1297 	cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1298 
1299 	/* Give up timekeeping duties */
1300 	tick_handover_do_timer();
1301 	/* Remove CPU from timer broadcasting */
1302 	tick_offline_cpu(cpu);
1303 	/* Park the stopper thread */
1304 	stop_machine_park(cpu);
1305 	return 0;
1306 }
1307 
1308 static int takedown_cpu(unsigned int cpu)
1309 {
1310 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1311 	int err;
1312 
1313 	/* Park the smpboot threads */
1314 	kthread_park(st->thread);
1315 
1316 	/*
1317 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1318 	 * interrupt affinities.
1319 	 */
1320 	irq_lock_sparse();
1321 
1322 	/*
1323 	 * So now all preempt/rcu users must observe !cpu_active().
1324 	 */
1325 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1326 	if (err) {
1327 		/* CPU refused to die */
1328 		irq_unlock_sparse();
1329 		/* Unpark the hotplug thread so we can rollback there */
1330 		kthread_unpark(st->thread);
1331 		return err;
1332 	}
1333 	BUG_ON(cpu_online(cpu));
1334 
1335 	/*
1336 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1337 	 * all runnable tasks from the CPU, there's only the idle task left now
1338 	 * that the migration thread is done doing the stop_machine thing.
1339 	 *
1340 	 * Wait for the stop thread to go away.
1341 	 */
1342 	wait_for_ap_thread(st, false);
1343 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1344 
1345 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1346 	irq_unlock_sparse();
1347 
1348 	hotplug_cpu__broadcast_tick_pull(cpu);
1349 	/* This actually kills the CPU. */
1350 	__cpu_die(cpu);
1351 
1352 	cpuhp_bp_sync_dead(cpu);
1353 
1354 	tick_cleanup_dead_cpu(cpu);
1355 	rcutree_migrate_callbacks(cpu);
1356 	return 0;
1357 }
1358 
1359 static void cpuhp_complete_idle_dead(void *arg)
1360 {
1361 	struct cpuhp_cpu_state *st = arg;
1362 
1363 	complete_ap_thread(st, false);
1364 }
1365 
1366 void cpuhp_report_idle_dead(void)
1367 {
1368 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1369 
1370 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1371 	rcu_report_dead(smp_processor_id());
1372 	st->state = CPUHP_AP_IDLE_DEAD;
1373 	/*
1374 	 * We cannot call complete after rcu_report_dead() so we delegate it
1375 	 * to an online cpu.
1376 	 */
1377 	smp_call_function_single(cpumask_first(cpu_online_mask),
1378 				 cpuhp_complete_idle_dead, st, 0);
1379 }
1380 
1381 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1382 				enum cpuhp_state target)
1383 {
1384 	enum cpuhp_state prev_state = st->state;
1385 	int ret = 0;
1386 
1387 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1388 	if (ret) {
1389 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1390 			 ret, cpu, cpuhp_get_step(st->state)->name,
1391 			 st->state);
1392 
1393 		cpuhp_reset_state(cpu, st, prev_state);
1394 
1395 		if (st->state < prev_state)
1396 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1397 							    prev_state));
1398 	}
1399 
1400 	return ret;
1401 }
1402 
1403 /* Requires cpu_add_remove_lock to be held */
1404 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1405 			   enum cpuhp_state target)
1406 {
1407 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1408 	int prev_state, ret = 0;
1409 
1410 	if (num_online_cpus() == 1)
1411 		return -EBUSY;
1412 
1413 	if (!cpu_present(cpu))
1414 		return -EINVAL;
1415 
1416 	cpus_write_lock();
1417 
1418 	cpuhp_tasks_frozen = tasks_frozen;
1419 
1420 	prev_state = cpuhp_set_state(cpu, st, target);
1421 	/*
1422 	 * If the current CPU state is in the range of the AP hotplug thread,
1423 	 * then we need to kick the thread.
1424 	 */
1425 	if (st->state > CPUHP_TEARDOWN_CPU) {
1426 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1427 		ret = cpuhp_kick_ap_work(cpu);
1428 		/*
1429 		 * The AP side has done the error rollback already. Just
1430 		 * return the error code..
1431 		 */
1432 		if (ret)
1433 			goto out;
1434 
1435 		/*
1436 		 * We might have stopped still in the range of the AP hotplug
1437 		 * thread. Nothing to do anymore.
1438 		 */
1439 		if (st->state > CPUHP_TEARDOWN_CPU)
1440 			goto out;
1441 
1442 		st->target = target;
1443 	}
1444 	/*
1445 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1446 	 * to do the further cleanups.
1447 	 */
1448 	ret = cpuhp_down_callbacks(cpu, st, target);
1449 	if (ret && st->state < prev_state) {
1450 		if (st->state == CPUHP_TEARDOWN_CPU) {
1451 			cpuhp_reset_state(cpu, st, prev_state);
1452 			__cpuhp_kick_ap(st);
1453 		} else {
1454 			WARN(1, "DEAD callback error for CPU%d", cpu);
1455 		}
1456 	}
1457 
1458 out:
1459 	cpus_write_unlock();
1460 	/*
1461 	 * Do post unplug cleanup. This is still protected against
1462 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1463 	 */
1464 	lockup_detector_cleanup();
1465 	arch_smt_update();
1466 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1467 	return ret;
1468 }
1469 
1470 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1471 {
1472 	/*
1473 	 * If the platform does not support hotplug, report it explicitly to
1474 	 * differentiate it from a transient offlining failure.
1475 	 */
1476 	if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1477 		return -EOPNOTSUPP;
1478 	if (cpu_hotplug_disabled)
1479 		return -EBUSY;
1480 	return _cpu_down(cpu, 0, target);
1481 }
1482 
1483 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1484 {
1485 	int err;
1486 
1487 	cpu_maps_update_begin();
1488 	err = cpu_down_maps_locked(cpu, target);
1489 	cpu_maps_update_done();
1490 	return err;
1491 }
1492 
1493 /**
1494  * cpu_device_down - Bring down a cpu device
1495  * @dev: Pointer to the cpu device to offline
1496  *
1497  * This function is meant to be used by device core cpu subsystem only.
1498  *
1499  * Other subsystems should use remove_cpu() instead.
1500  *
1501  * Return: %0 on success or a negative errno code
1502  */
1503 int cpu_device_down(struct device *dev)
1504 {
1505 	return cpu_down(dev->id, CPUHP_OFFLINE);
1506 }
1507 
1508 int remove_cpu(unsigned int cpu)
1509 {
1510 	int ret;
1511 
1512 	lock_device_hotplug();
1513 	ret = device_offline(get_cpu_device(cpu));
1514 	unlock_device_hotplug();
1515 
1516 	return ret;
1517 }
1518 EXPORT_SYMBOL_GPL(remove_cpu);
1519 
1520 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1521 {
1522 	unsigned int cpu;
1523 	int error;
1524 
1525 	cpu_maps_update_begin();
1526 
1527 	/*
1528 	 * Make certain the cpu I'm about to reboot on is online.
1529 	 *
1530 	 * This is inline to what migrate_to_reboot_cpu() already do.
1531 	 */
1532 	if (!cpu_online(primary_cpu))
1533 		primary_cpu = cpumask_first(cpu_online_mask);
1534 
1535 	for_each_online_cpu(cpu) {
1536 		if (cpu == primary_cpu)
1537 			continue;
1538 
1539 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1540 		if (error) {
1541 			pr_err("Failed to offline CPU%d - error=%d",
1542 				cpu, error);
1543 			break;
1544 		}
1545 	}
1546 
1547 	/*
1548 	 * Ensure all but the reboot CPU are offline.
1549 	 */
1550 	BUG_ON(num_online_cpus() > 1);
1551 
1552 	/*
1553 	 * Make sure the CPUs won't be enabled by someone else after this
1554 	 * point. Kexec will reboot to a new kernel shortly resetting
1555 	 * everything along the way.
1556 	 */
1557 	cpu_hotplug_disabled++;
1558 
1559 	cpu_maps_update_done();
1560 }
1561 
1562 #else
1563 #define takedown_cpu		NULL
1564 #endif /*CONFIG_HOTPLUG_CPU*/
1565 
1566 /**
1567  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1568  * @cpu: cpu that just started
1569  *
1570  * It must be called by the arch code on the new cpu, before the new cpu
1571  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1572  */
1573 void notify_cpu_starting(unsigned int cpu)
1574 {
1575 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1576 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1577 
1578 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1579 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1580 
1581 	/*
1582 	 * STARTING must not fail!
1583 	 */
1584 	cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1585 }
1586 
1587 /*
1588  * Called from the idle task. Wake up the controlling task which brings the
1589  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1590  * online bringup to the hotplug thread.
1591  */
1592 void cpuhp_online_idle(enum cpuhp_state state)
1593 {
1594 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1595 
1596 	/* Happens for the boot cpu */
1597 	if (state != CPUHP_AP_ONLINE_IDLE)
1598 		return;
1599 
1600 	cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1601 
1602 	/*
1603 	 * Unpark the stopper thread before we start the idle loop (and start
1604 	 * scheduling); this ensures the stopper task is always available.
1605 	 */
1606 	stop_machine_unpark(smp_processor_id());
1607 
1608 	st->state = CPUHP_AP_ONLINE_IDLE;
1609 	complete_ap_thread(st, true);
1610 }
1611 
1612 /* Requires cpu_add_remove_lock to be held */
1613 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1614 {
1615 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1616 	struct task_struct *idle;
1617 	int ret = 0;
1618 
1619 	cpus_write_lock();
1620 
1621 	if (!cpu_present(cpu)) {
1622 		ret = -EINVAL;
1623 		goto out;
1624 	}
1625 
1626 	/*
1627 	 * The caller of cpu_up() might have raced with another
1628 	 * caller. Nothing to do.
1629 	 */
1630 	if (st->state >= target)
1631 		goto out;
1632 
1633 	if (st->state == CPUHP_OFFLINE) {
1634 		/* Let it fail before we try to bring the cpu up */
1635 		idle = idle_thread_get(cpu);
1636 		if (IS_ERR(idle)) {
1637 			ret = PTR_ERR(idle);
1638 			goto out;
1639 		}
1640 
1641 		/*
1642 		 * Reset stale stack state from the last time this CPU was online.
1643 		 */
1644 		scs_task_reset(idle);
1645 		kasan_unpoison_task_stack(idle);
1646 	}
1647 
1648 	cpuhp_tasks_frozen = tasks_frozen;
1649 
1650 	cpuhp_set_state(cpu, st, target);
1651 	/*
1652 	 * If the current CPU state is in the range of the AP hotplug thread,
1653 	 * then we need to kick the thread once more.
1654 	 */
1655 	if (st->state > CPUHP_BRINGUP_CPU) {
1656 		ret = cpuhp_kick_ap_work(cpu);
1657 		/*
1658 		 * The AP side has done the error rollback already. Just
1659 		 * return the error code..
1660 		 */
1661 		if (ret)
1662 			goto out;
1663 	}
1664 
1665 	/*
1666 	 * Try to reach the target state. We max out on the BP at
1667 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1668 	 * responsible for bringing it up to the target state.
1669 	 */
1670 	target = min((int)target, CPUHP_BRINGUP_CPU);
1671 	ret = cpuhp_up_callbacks(cpu, st, target);
1672 out:
1673 	cpus_write_unlock();
1674 	arch_smt_update();
1675 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1676 	return ret;
1677 }
1678 
1679 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1680 {
1681 	int err = 0;
1682 
1683 	if (!cpu_possible(cpu)) {
1684 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1685 		       cpu);
1686 #if defined(CONFIG_IA64)
1687 		pr_err("please check additional_cpus= boot parameter\n");
1688 #endif
1689 		return -EINVAL;
1690 	}
1691 
1692 	err = try_online_node(cpu_to_node(cpu));
1693 	if (err)
1694 		return err;
1695 
1696 	cpu_maps_update_begin();
1697 
1698 	if (cpu_hotplug_disabled) {
1699 		err = -EBUSY;
1700 		goto out;
1701 	}
1702 	if (!cpu_smt_allowed(cpu)) {
1703 		err = -EPERM;
1704 		goto out;
1705 	}
1706 
1707 	err = _cpu_up(cpu, 0, target);
1708 out:
1709 	cpu_maps_update_done();
1710 	return err;
1711 }
1712 
1713 /**
1714  * cpu_device_up - Bring up a cpu device
1715  * @dev: Pointer to the cpu device to online
1716  *
1717  * This function is meant to be used by device core cpu subsystem only.
1718  *
1719  * Other subsystems should use add_cpu() instead.
1720  *
1721  * Return: %0 on success or a negative errno code
1722  */
1723 int cpu_device_up(struct device *dev)
1724 {
1725 	return cpu_up(dev->id, CPUHP_ONLINE);
1726 }
1727 
1728 int add_cpu(unsigned int cpu)
1729 {
1730 	int ret;
1731 
1732 	lock_device_hotplug();
1733 	ret = device_online(get_cpu_device(cpu));
1734 	unlock_device_hotplug();
1735 
1736 	return ret;
1737 }
1738 EXPORT_SYMBOL_GPL(add_cpu);
1739 
1740 /**
1741  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1742  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1743  *
1744  * On some architectures like arm64, we can hibernate on any CPU, but on
1745  * wake up the CPU we hibernated on might be offline as a side effect of
1746  * using maxcpus= for example.
1747  *
1748  * Return: %0 on success or a negative errno code
1749  */
1750 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1751 {
1752 	int ret;
1753 
1754 	if (!cpu_online(sleep_cpu)) {
1755 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1756 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1757 		if (ret) {
1758 			pr_err("Failed to bring hibernate-CPU up!\n");
1759 			return ret;
1760 		}
1761 	}
1762 	return 0;
1763 }
1764 
1765 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1766 				      enum cpuhp_state target)
1767 {
1768 	unsigned int cpu;
1769 
1770 	for_each_cpu(cpu, mask) {
1771 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1772 
1773 		if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1774 			/*
1775 			 * If this failed then cpu_up() might have only
1776 			 * rolled back to CPUHP_BP_KICK_AP for the final
1777 			 * online. Clean it up. NOOP if already rolled back.
1778 			 */
1779 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1780 		}
1781 
1782 		if (!--ncpus)
1783 			break;
1784 	}
1785 }
1786 
1787 #ifdef CONFIG_HOTPLUG_PARALLEL
1788 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1789 
1790 static int __init parallel_bringup_parse_param(char *arg)
1791 {
1792 	return kstrtobool(arg, &__cpuhp_parallel_bringup);
1793 }
1794 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1795 
1796 /*
1797  * On architectures which have enabled parallel bringup this invokes all BP
1798  * prepare states for each of the to be onlined APs first. The last state
1799  * sends the startup IPI to the APs. The APs proceed through the low level
1800  * bringup code in parallel and then wait for the control CPU to release
1801  * them one by one for the final onlining procedure.
1802  *
1803  * This avoids waiting for each AP to respond to the startup IPI in
1804  * CPUHP_BRINGUP_CPU.
1805  */
1806 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1807 {
1808 	const struct cpumask *mask = cpu_present_mask;
1809 
1810 	if (__cpuhp_parallel_bringup)
1811 		__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1812 	if (!__cpuhp_parallel_bringup)
1813 		return false;
1814 
1815 	if (cpuhp_smt_aware()) {
1816 		const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1817 		static struct cpumask tmp_mask __initdata;
1818 
1819 		/*
1820 		 * X86 requires to prevent that SMT siblings stopped while
1821 		 * the primary thread does a microcode update for various
1822 		 * reasons. Bring the primary threads up first.
1823 		 */
1824 		cpumask_and(&tmp_mask, mask, pmask);
1825 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1826 		cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1827 		/* Account for the online CPUs */
1828 		ncpus -= num_online_cpus();
1829 		if (!ncpus)
1830 			return true;
1831 		/* Create the mask for secondary CPUs */
1832 		cpumask_andnot(&tmp_mask, mask, pmask);
1833 		mask = &tmp_mask;
1834 	}
1835 
1836 	/* Bring the not-yet started CPUs up */
1837 	cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1838 	cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1839 	return true;
1840 }
1841 #else
1842 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1843 #endif /* CONFIG_HOTPLUG_PARALLEL */
1844 
1845 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus)
1846 {
1847 	/* Try parallel bringup optimization if enabled */
1848 	if (cpuhp_bringup_cpus_parallel(setup_max_cpus))
1849 		return;
1850 
1851 	/* Full per CPU serialized bringup */
1852 	cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE);
1853 }
1854 
1855 #ifdef CONFIG_PM_SLEEP_SMP
1856 static cpumask_var_t frozen_cpus;
1857 
1858 int freeze_secondary_cpus(int primary)
1859 {
1860 	int cpu, error = 0;
1861 
1862 	cpu_maps_update_begin();
1863 	if (primary == -1) {
1864 		primary = cpumask_first(cpu_online_mask);
1865 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1866 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1867 	} else {
1868 		if (!cpu_online(primary))
1869 			primary = cpumask_first(cpu_online_mask);
1870 	}
1871 
1872 	/*
1873 	 * We take down all of the non-boot CPUs in one shot to avoid races
1874 	 * with the userspace trying to use the CPU hotplug at the same time
1875 	 */
1876 	cpumask_clear(frozen_cpus);
1877 
1878 	pr_info("Disabling non-boot CPUs ...\n");
1879 	for_each_online_cpu(cpu) {
1880 		if (cpu == primary)
1881 			continue;
1882 
1883 		if (pm_wakeup_pending()) {
1884 			pr_info("Wakeup pending. Abort CPU freeze\n");
1885 			error = -EBUSY;
1886 			break;
1887 		}
1888 
1889 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1890 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1891 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1892 		if (!error)
1893 			cpumask_set_cpu(cpu, frozen_cpus);
1894 		else {
1895 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1896 			break;
1897 		}
1898 	}
1899 
1900 	if (!error)
1901 		BUG_ON(num_online_cpus() > 1);
1902 	else
1903 		pr_err("Non-boot CPUs are not disabled\n");
1904 
1905 	/*
1906 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1907 	 * this even in case of failure as all freeze_secondary_cpus() users are
1908 	 * supposed to do thaw_secondary_cpus() on the failure path.
1909 	 */
1910 	cpu_hotplug_disabled++;
1911 
1912 	cpu_maps_update_done();
1913 	return error;
1914 }
1915 
1916 void __weak arch_thaw_secondary_cpus_begin(void)
1917 {
1918 }
1919 
1920 void __weak arch_thaw_secondary_cpus_end(void)
1921 {
1922 }
1923 
1924 void thaw_secondary_cpus(void)
1925 {
1926 	int cpu, error;
1927 
1928 	/* Allow everyone to use the CPU hotplug again */
1929 	cpu_maps_update_begin();
1930 	__cpu_hotplug_enable();
1931 	if (cpumask_empty(frozen_cpus))
1932 		goto out;
1933 
1934 	pr_info("Enabling non-boot CPUs ...\n");
1935 
1936 	arch_thaw_secondary_cpus_begin();
1937 
1938 	for_each_cpu(cpu, frozen_cpus) {
1939 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1940 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1941 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1942 		if (!error) {
1943 			pr_info("CPU%d is up\n", cpu);
1944 			continue;
1945 		}
1946 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1947 	}
1948 
1949 	arch_thaw_secondary_cpus_end();
1950 
1951 	cpumask_clear(frozen_cpus);
1952 out:
1953 	cpu_maps_update_done();
1954 }
1955 
1956 static int __init alloc_frozen_cpus(void)
1957 {
1958 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1959 		return -ENOMEM;
1960 	return 0;
1961 }
1962 core_initcall(alloc_frozen_cpus);
1963 
1964 /*
1965  * When callbacks for CPU hotplug notifications are being executed, we must
1966  * ensure that the state of the system with respect to the tasks being frozen
1967  * or not, as reported by the notification, remains unchanged *throughout the
1968  * duration* of the execution of the callbacks.
1969  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1970  *
1971  * This synchronization is implemented by mutually excluding regular CPU
1972  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1973  * Hibernate notifications.
1974  */
1975 static int
1976 cpu_hotplug_pm_callback(struct notifier_block *nb,
1977 			unsigned long action, void *ptr)
1978 {
1979 	switch (action) {
1980 
1981 	case PM_SUSPEND_PREPARE:
1982 	case PM_HIBERNATION_PREPARE:
1983 		cpu_hotplug_disable();
1984 		break;
1985 
1986 	case PM_POST_SUSPEND:
1987 	case PM_POST_HIBERNATION:
1988 		cpu_hotplug_enable();
1989 		break;
1990 
1991 	default:
1992 		return NOTIFY_DONE;
1993 	}
1994 
1995 	return NOTIFY_OK;
1996 }
1997 
1998 
1999 static int __init cpu_hotplug_pm_sync_init(void)
2000 {
2001 	/*
2002 	 * cpu_hotplug_pm_callback has higher priority than x86
2003 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2004 	 * to disable cpu hotplug to avoid cpu hotplug race.
2005 	 */
2006 	pm_notifier(cpu_hotplug_pm_callback, 0);
2007 	return 0;
2008 }
2009 core_initcall(cpu_hotplug_pm_sync_init);
2010 
2011 #endif /* CONFIG_PM_SLEEP_SMP */
2012 
2013 int __boot_cpu_id;
2014 
2015 #endif /* CONFIG_SMP */
2016 
2017 /* Boot processor state steps */
2018 static struct cpuhp_step cpuhp_hp_states[] = {
2019 	[CPUHP_OFFLINE] = {
2020 		.name			= "offline",
2021 		.startup.single		= NULL,
2022 		.teardown.single	= NULL,
2023 	},
2024 #ifdef CONFIG_SMP
2025 	[CPUHP_CREATE_THREADS]= {
2026 		.name			= "threads:prepare",
2027 		.startup.single		= smpboot_create_threads,
2028 		.teardown.single	= NULL,
2029 		.cant_stop		= true,
2030 	},
2031 	[CPUHP_PERF_PREPARE] = {
2032 		.name			= "perf:prepare",
2033 		.startup.single		= perf_event_init_cpu,
2034 		.teardown.single	= perf_event_exit_cpu,
2035 	},
2036 	[CPUHP_RANDOM_PREPARE] = {
2037 		.name			= "random:prepare",
2038 		.startup.single		= random_prepare_cpu,
2039 		.teardown.single	= NULL,
2040 	},
2041 	[CPUHP_WORKQUEUE_PREP] = {
2042 		.name			= "workqueue:prepare",
2043 		.startup.single		= workqueue_prepare_cpu,
2044 		.teardown.single	= NULL,
2045 	},
2046 	[CPUHP_HRTIMERS_PREPARE] = {
2047 		.name			= "hrtimers:prepare",
2048 		.startup.single		= hrtimers_prepare_cpu,
2049 		.teardown.single	= hrtimers_dead_cpu,
2050 	},
2051 	[CPUHP_SMPCFD_PREPARE] = {
2052 		.name			= "smpcfd:prepare",
2053 		.startup.single		= smpcfd_prepare_cpu,
2054 		.teardown.single	= smpcfd_dead_cpu,
2055 	},
2056 	[CPUHP_RELAY_PREPARE] = {
2057 		.name			= "relay:prepare",
2058 		.startup.single		= relay_prepare_cpu,
2059 		.teardown.single	= NULL,
2060 	},
2061 	[CPUHP_SLAB_PREPARE] = {
2062 		.name			= "slab:prepare",
2063 		.startup.single		= slab_prepare_cpu,
2064 		.teardown.single	= slab_dead_cpu,
2065 	},
2066 	[CPUHP_RCUTREE_PREP] = {
2067 		.name			= "RCU/tree:prepare",
2068 		.startup.single		= rcutree_prepare_cpu,
2069 		.teardown.single	= rcutree_dead_cpu,
2070 	},
2071 	/*
2072 	 * On the tear-down path, timers_dead_cpu() must be invoked
2073 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
2074 	 * otherwise a RCU stall occurs.
2075 	 */
2076 	[CPUHP_TIMERS_PREPARE] = {
2077 		.name			= "timers:prepare",
2078 		.startup.single		= timers_prepare_cpu,
2079 		.teardown.single	= timers_dead_cpu,
2080 	},
2081 
2082 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2083 	/*
2084 	 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2085 	 * the next step will release it.
2086 	 */
2087 	[CPUHP_BP_KICK_AP] = {
2088 		.name			= "cpu:kick_ap",
2089 		.startup.single		= cpuhp_kick_ap_alive,
2090 	},
2091 
2092 	/*
2093 	 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2094 	 * releases it for the complete bringup.
2095 	 */
2096 	[CPUHP_BRINGUP_CPU] = {
2097 		.name			= "cpu:bringup",
2098 		.startup.single		= cpuhp_bringup_ap,
2099 		.teardown.single	= finish_cpu,
2100 		.cant_stop		= true,
2101 	},
2102 #else
2103 	/*
2104 	 * All-in-one CPU bringup state which includes the kick alive.
2105 	 */
2106 	[CPUHP_BRINGUP_CPU] = {
2107 		.name			= "cpu:bringup",
2108 		.startup.single		= bringup_cpu,
2109 		.teardown.single	= finish_cpu,
2110 		.cant_stop		= true,
2111 	},
2112 #endif
2113 	/* Final state before CPU kills itself */
2114 	[CPUHP_AP_IDLE_DEAD] = {
2115 		.name			= "idle:dead",
2116 	},
2117 	/*
2118 	 * Last state before CPU enters the idle loop to die. Transient state
2119 	 * for synchronization.
2120 	 */
2121 	[CPUHP_AP_OFFLINE] = {
2122 		.name			= "ap:offline",
2123 		.cant_stop		= true,
2124 	},
2125 	/* First state is scheduler control. Interrupts are disabled */
2126 	[CPUHP_AP_SCHED_STARTING] = {
2127 		.name			= "sched:starting",
2128 		.startup.single		= sched_cpu_starting,
2129 		.teardown.single	= sched_cpu_dying,
2130 	},
2131 	[CPUHP_AP_RCUTREE_DYING] = {
2132 		.name			= "RCU/tree:dying",
2133 		.startup.single		= NULL,
2134 		.teardown.single	= rcutree_dying_cpu,
2135 	},
2136 	[CPUHP_AP_SMPCFD_DYING] = {
2137 		.name			= "smpcfd:dying",
2138 		.startup.single		= NULL,
2139 		.teardown.single	= smpcfd_dying_cpu,
2140 	},
2141 	/* Entry state on starting. Interrupts enabled from here on. Transient
2142 	 * state for synchronsization */
2143 	[CPUHP_AP_ONLINE] = {
2144 		.name			= "ap:online",
2145 	},
2146 	/*
2147 	 * Handled on control processor until the plugged processor manages
2148 	 * this itself.
2149 	 */
2150 	[CPUHP_TEARDOWN_CPU] = {
2151 		.name			= "cpu:teardown",
2152 		.startup.single		= NULL,
2153 		.teardown.single	= takedown_cpu,
2154 		.cant_stop		= true,
2155 	},
2156 
2157 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2158 		.name			= "sched:waitempty",
2159 		.startup.single		= NULL,
2160 		.teardown.single	= sched_cpu_wait_empty,
2161 	},
2162 
2163 	/* Handle smpboot threads park/unpark */
2164 	[CPUHP_AP_SMPBOOT_THREADS] = {
2165 		.name			= "smpboot/threads:online",
2166 		.startup.single		= smpboot_unpark_threads,
2167 		.teardown.single	= smpboot_park_threads,
2168 	},
2169 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2170 		.name			= "irq/affinity:online",
2171 		.startup.single		= irq_affinity_online_cpu,
2172 		.teardown.single	= NULL,
2173 	},
2174 	[CPUHP_AP_PERF_ONLINE] = {
2175 		.name			= "perf:online",
2176 		.startup.single		= perf_event_init_cpu,
2177 		.teardown.single	= perf_event_exit_cpu,
2178 	},
2179 	[CPUHP_AP_WATCHDOG_ONLINE] = {
2180 		.name			= "lockup_detector:online",
2181 		.startup.single		= lockup_detector_online_cpu,
2182 		.teardown.single	= lockup_detector_offline_cpu,
2183 	},
2184 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
2185 		.name			= "workqueue:online",
2186 		.startup.single		= workqueue_online_cpu,
2187 		.teardown.single	= workqueue_offline_cpu,
2188 	},
2189 	[CPUHP_AP_RANDOM_ONLINE] = {
2190 		.name			= "random:online",
2191 		.startup.single		= random_online_cpu,
2192 		.teardown.single	= NULL,
2193 	},
2194 	[CPUHP_AP_RCUTREE_ONLINE] = {
2195 		.name			= "RCU/tree:online",
2196 		.startup.single		= rcutree_online_cpu,
2197 		.teardown.single	= rcutree_offline_cpu,
2198 	},
2199 #endif
2200 	/*
2201 	 * The dynamically registered state space is here
2202 	 */
2203 
2204 #ifdef CONFIG_SMP
2205 	/* Last state is scheduler control setting the cpu active */
2206 	[CPUHP_AP_ACTIVE] = {
2207 		.name			= "sched:active",
2208 		.startup.single		= sched_cpu_activate,
2209 		.teardown.single	= sched_cpu_deactivate,
2210 	},
2211 #endif
2212 
2213 	/* CPU is fully up and running. */
2214 	[CPUHP_ONLINE] = {
2215 		.name			= "online",
2216 		.startup.single		= NULL,
2217 		.teardown.single	= NULL,
2218 	},
2219 };
2220 
2221 /* Sanity check for callbacks */
2222 static int cpuhp_cb_check(enum cpuhp_state state)
2223 {
2224 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2225 		return -EINVAL;
2226 	return 0;
2227 }
2228 
2229 /*
2230  * Returns a free for dynamic slot assignment of the Online state. The states
2231  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2232  * by having no name assigned.
2233  */
2234 static int cpuhp_reserve_state(enum cpuhp_state state)
2235 {
2236 	enum cpuhp_state i, end;
2237 	struct cpuhp_step *step;
2238 
2239 	switch (state) {
2240 	case CPUHP_AP_ONLINE_DYN:
2241 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2242 		end = CPUHP_AP_ONLINE_DYN_END;
2243 		break;
2244 	case CPUHP_BP_PREPARE_DYN:
2245 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2246 		end = CPUHP_BP_PREPARE_DYN_END;
2247 		break;
2248 	default:
2249 		return -EINVAL;
2250 	}
2251 
2252 	for (i = state; i <= end; i++, step++) {
2253 		if (!step->name)
2254 			return i;
2255 	}
2256 	WARN(1, "No more dynamic states available for CPU hotplug\n");
2257 	return -ENOSPC;
2258 }
2259 
2260 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2261 				 int (*startup)(unsigned int cpu),
2262 				 int (*teardown)(unsigned int cpu),
2263 				 bool multi_instance)
2264 {
2265 	/* (Un)Install the callbacks for further cpu hotplug operations */
2266 	struct cpuhp_step *sp;
2267 	int ret = 0;
2268 
2269 	/*
2270 	 * If name is NULL, then the state gets removed.
2271 	 *
2272 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2273 	 * the first allocation from these dynamic ranges, so the removal
2274 	 * would trigger a new allocation and clear the wrong (already
2275 	 * empty) state, leaving the callbacks of the to be cleared state
2276 	 * dangling, which causes wreckage on the next hotplug operation.
2277 	 */
2278 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
2279 		     state == CPUHP_BP_PREPARE_DYN)) {
2280 		ret = cpuhp_reserve_state(state);
2281 		if (ret < 0)
2282 			return ret;
2283 		state = ret;
2284 	}
2285 	sp = cpuhp_get_step(state);
2286 	if (name && sp->name)
2287 		return -EBUSY;
2288 
2289 	sp->startup.single = startup;
2290 	sp->teardown.single = teardown;
2291 	sp->name = name;
2292 	sp->multi_instance = multi_instance;
2293 	INIT_HLIST_HEAD(&sp->list);
2294 	return ret;
2295 }
2296 
2297 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2298 {
2299 	return cpuhp_get_step(state)->teardown.single;
2300 }
2301 
2302 /*
2303  * Call the startup/teardown function for a step either on the AP or
2304  * on the current CPU.
2305  */
2306 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2307 			    struct hlist_node *node)
2308 {
2309 	struct cpuhp_step *sp = cpuhp_get_step(state);
2310 	int ret;
2311 
2312 	/*
2313 	 * If there's nothing to do, we done.
2314 	 * Relies on the union for multi_instance.
2315 	 */
2316 	if (cpuhp_step_empty(bringup, sp))
2317 		return 0;
2318 	/*
2319 	 * The non AP bound callbacks can fail on bringup. On teardown
2320 	 * e.g. module removal we crash for now.
2321 	 */
2322 #ifdef CONFIG_SMP
2323 	if (cpuhp_is_ap_state(state))
2324 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2325 	else
2326 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2327 #else
2328 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2329 #endif
2330 	BUG_ON(ret && !bringup);
2331 	return ret;
2332 }
2333 
2334 /*
2335  * Called from __cpuhp_setup_state on a recoverable failure.
2336  *
2337  * Note: The teardown callbacks for rollback are not allowed to fail!
2338  */
2339 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2340 				   struct hlist_node *node)
2341 {
2342 	int cpu;
2343 
2344 	/* Roll back the already executed steps on the other cpus */
2345 	for_each_present_cpu(cpu) {
2346 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2347 		int cpustate = st->state;
2348 
2349 		if (cpu >= failedcpu)
2350 			break;
2351 
2352 		/* Did we invoke the startup call on that cpu ? */
2353 		if (cpustate >= state)
2354 			cpuhp_issue_call(cpu, state, false, node);
2355 	}
2356 }
2357 
2358 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2359 					  struct hlist_node *node,
2360 					  bool invoke)
2361 {
2362 	struct cpuhp_step *sp;
2363 	int cpu;
2364 	int ret;
2365 
2366 	lockdep_assert_cpus_held();
2367 
2368 	sp = cpuhp_get_step(state);
2369 	if (sp->multi_instance == false)
2370 		return -EINVAL;
2371 
2372 	mutex_lock(&cpuhp_state_mutex);
2373 
2374 	if (!invoke || !sp->startup.multi)
2375 		goto add_node;
2376 
2377 	/*
2378 	 * Try to call the startup callback for each present cpu
2379 	 * depending on the hotplug state of the cpu.
2380 	 */
2381 	for_each_present_cpu(cpu) {
2382 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2383 		int cpustate = st->state;
2384 
2385 		if (cpustate < state)
2386 			continue;
2387 
2388 		ret = cpuhp_issue_call(cpu, state, true, node);
2389 		if (ret) {
2390 			if (sp->teardown.multi)
2391 				cpuhp_rollback_install(cpu, state, node);
2392 			goto unlock;
2393 		}
2394 	}
2395 add_node:
2396 	ret = 0;
2397 	hlist_add_head(node, &sp->list);
2398 unlock:
2399 	mutex_unlock(&cpuhp_state_mutex);
2400 	return ret;
2401 }
2402 
2403 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2404 			       bool invoke)
2405 {
2406 	int ret;
2407 
2408 	cpus_read_lock();
2409 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2410 	cpus_read_unlock();
2411 	return ret;
2412 }
2413 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2414 
2415 /**
2416  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2417  * @state:		The state to setup
2418  * @name:		Name of the step
2419  * @invoke:		If true, the startup function is invoked for cpus where
2420  *			cpu state >= @state
2421  * @startup:		startup callback function
2422  * @teardown:		teardown callback function
2423  * @multi_instance:	State is set up for multiple instances which get
2424  *			added afterwards.
2425  *
2426  * The caller needs to hold cpus read locked while calling this function.
2427  * Return:
2428  *   On success:
2429  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2430  *      0 for all other states
2431  *   On failure: proper (negative) error code
2432  */
2433 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2434 				   const char *name, bool invoke,
2435 				   int (*startup)(unsigned int cpu),
2436 				   int (*teardown)(unsigned int cpu),
2437 				   bool multi_instance)
2438 {
2439 	int cpu, ret = 0;
2440 	bool dynstate;
2441 
2442 	lockdep_assert_cpus_held();
2443 
2444 	if (cpuhp_cb_check(state) || !name)
2445 		return -EINVAL;
2446 
2447 	mutex_lock(&cpuhp_state_mutex);
2448 
2449 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2450 				    multi_instance);
2451 
2452 	dynstate = state == CPUHP_AP_ONLINE_DYN;
2453 	if (ret > 0 && dynstate) {
2454 		state = ret;
2455 		ret = 0;
2456 	}
2457 
2458 	if (ret || !invoke || !startup)
2459 		goto out;
2460 
2461 	/*
2462 	 * Try to call the startup callback for each present cpu
2463 	 * depending on the hotplug state of the cpu.
2464 	 */
2465 	for_each_present_cpu(cpu) {
2466 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2467 		int cpustate = st->state;
2468 
2469 		if (cpustate < state)
2470 			continue;
2471 
2472 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2473 		if (ret) {
2474 			if (teardown)
2475 				cpuhp_rollback_install(cpu, state, NULL);
2476 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2477 			goto out;
2478 		}
2479 	}
2480 out:
2481 	mutex_unlock(&cpuhp_state_mutex);
2482 	/*
2483 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2484 	 * dynamically allocated state in case of success.
2485 	 */
2486 	if (!ret && dynstate)
2487 		return state;
2488 	return ret;
2489 }
2490 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2491 
2492 int __cpuhp_setup_state(enum cpuhp_state state,
2493 			const char *name, bool invoke,
2494 			int (*startup)(unsigned int cpu),
2495 			int (*teardown)(unsigned int cpu),
2496 			bool multi_instance)
2497 {
2498 	int ret;
2499 
2500 	cpus_read_lock();
2501 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2502 					     teardown, multi_instance);
2503 	cpus_read_unlock();
2504 	return ret;
2505 }
2506 EXPORT_SYMBOL(__cpuhp_setup_state);
2507 
2508 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2509 				  struct hlist_node *node, bool invoke)
2510 {
2511 	struct cpuhp_step *sp = cpuhp_get_step(state);
2512 	int cpu;
2513 
2514 	BUG_ON(cpuhp_cb_check(state));
2515 
2516 	if (!sp->multi_instance)
2517 		return -EINVAL;
2518 
2519 	cpus_read_lock();
2520 	mutex_lock(&cpuhp_state_mutex);
2521 
2522 	if (!invoke || !cpuhp_get_teardown_cb(state))
2523 		goto remove;
2524 	/*
2525 	 * Call the teardown callback for each present cpu depending
2526 	 * on the hotplug state of the cpu. This function is not
2527 	 * allowed to fail currently!
2528 	 */
2529 	for_each_present_cpu(cpu) {
2530 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2531 		int cpustate = st->state;
2532 
2533 		if (cpustate >= state)
2534 			cpuhp_issue_call(cpu, state, false, node);
2535 	}
2536 
2537 remove:
2538 	hlist_del(node);
2539 	mutex_unlock(&cpuhp_state_mutex);
2540 	cpus_read_unlock();
2541 
2542 	return 0;
2543 }
2544 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2545 
2546 /**
2547  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2548  * @state:	The state to remove
2549  * @invoke:	If true, the teardown function is invoked for cpus where
2550  *		cpu state >= @state
2551  *
2552  * The caller needs to hold cpus read locked while calling this function.
2553  * The teardown callback is currently not allowed to fail. Think
2554  * about module removal!
2555  */
2556 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2557 {
2558 	struct cpuhp_step *sp = cpuhp_get_step(state);
2559 	int cpu;
2560 
2561 	BUG_ON(cpuhp_cb_check(state));
2562 
2563 	lockdep_assert_cpus_held();
2564 
2565 	mutex_lock(&cpuhp_state_mutex);
2566 	if (sp->multi_instance) {
2567 		WARN(!hlist_empty(&sp->list),
2568 		     "Error: Removing state %d which has instances left.\n",
2569 		     state);
2570 		goto remove;
2571 	}
2572 
2573 	if (!invoke || !cpuhp_get_teardown_cb(state))
2574 		goto remove;
2575 
2576 	/*
2577 	 * Call the teardown callback for each present cpu depending
2578 	 * on the hotplug state of the cpu. This function is not
2579 	 * allowed to fail currently!
2580 	 */
2581 	for_each_present_cpu(cpu) {
2582 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2583 		int cpustate = st->state;
2584 
2585 		if (cpustate >= state)
2586 			cpuhp_issue_call(cpu, state, false, NULL);
2587 	}
2588 remove:
2589 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2590 	mutex_unlock(&cpuhp_state_mutex);
2591 }
2592 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2593 
2594 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2595 {
2596 	cpus_read_lock();
2597 	__cpuhp_remove_state_cpuslocked(state, invoke);
2598 	cpus_read_unlock();
2599 }
2600 EXPORT_SYMBOL(__cpuhp_remove_state);
2601 
2602 #ifdef CONFIG_HOTPLUG_SMT
2603 static void cpuhp_offline_cpu_device(unsigned int cpu)
2604 {
2605 	struct device *dev = get_cpu_device(cpu);
2606 
2607 	dev->offline = true;
2608 	/* Tell user space about the state change */
2609 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2610 }
2611 
2612 static void cpuhp_online_cpu_device(unsigned int cpu)
2613 {
2614 	struct device *dev = get_cpu_device(cpu);
2615 
2616 	dev->offline = false;
2617 	/* Tell user space about the state change */
2618 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2619 }
2620 
2621 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2622 {
2623 	int cpu, ret = 0;
2624 
2625 	cpu_maps_update_begin();
2626 	for_each_online_cpu(cpu) {
2627 		if (topology_is_primary_thread(cpu))
2628 			continue;
2629 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2630 		if (ret)
2631 			break;
2632 		/*
2633 		 * As this needs to hold the cpu maps lock it's impossible
2634 		 * to call device_offline() because that ends up calling
2635 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2636 		 * needs to be held as this might race against in kernel
2637 		 * abusers of the hotplug machinery (thermal management).
2638 		 *
2639 		 * So nothing would update device:offline state. That would
2640 		 * leave the sysfs entry stale and prevent onlining after
2641 		 * smt control has been changed to 'off' again. This is
2642 		 * called under the sysfs hotplug lock, so it is properly
2643 		 * serialized against the regular offline usage.
2644 		 */
2645 		cpuhp_offline_cpu_device(cpu);
2646 	}
2647 	if (!ret)
2648 		cpu_smt_control = ctrlval;
2649 	cpu_maps_update_done();
2650 	return ret;
2651 }
2652 
2653 int cpuhp_smt_enable(void)
2654 {
2655 	int cpu, ret = 0;
2656 
2657 	cpu_maps_update_begin();
2658 	cpu_smt_control = CPU_SMT_ENABLED;
2659 	for_each_present_cpu(cpu) {
2660 		/* Skip online CPUs and CPUs on offline nodes */
2661 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2662 			continue;
2663 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2664 		if (ret)
2665 			break;
2666 		/* See comment in cpuhp_smt_disable() */
2667 		cpuhp_online_cpu_device(cpu);
2668 	}
2669 	cpu_maps_update_done();
2670 	return ret;
2671 }
2672 #endif
2673 
2674 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2675 static ssize_t state_show(struct device *dev,
2676 			  struct device_attribute *attr, char *buf)
2677 {
2678 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2679 
2680 	return sprintf(buf, "%d\n", st->state);
2681 }
2682 static DEVICE_ATTR_RO(state);
2683 
2684 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2685 			    const char *buf, size_t count)
2686 {
2687 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2688 	struct cpuhp_step *sp;
2689 	int target, ret;
2690 
2691 	ret = kstrtoint(buf, 10, &target);
2692 	if (ret)
2693 		return ret;
2694 
2695 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2696 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2697 		return -EINVAL;
2698 #else
2699 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2700 		return -EINVAL;
2701 #endif
2702 
2703 	ret = lock_device_hotplug_sysfs();
2704 	if (ret)
2705 		return ret;
2706 
2707 	mutex_lock(&cpuhp_state_mutex);
2708 	sp = cpuhp_get_step(target);
2709 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2710 	mutex_unlock(&cpuhp_state_mutex);
2711 	if (ret)
2712 		goto out;
2713 
2714 	if (st->state < target)
2715 		ret = cpu_up(dev->id, target);
2716 	else if (st->state > target)
2717 		ret = cpu_down(dev->id, target);
2718 	else if (WARN_ON(st->target != target))
2719 		st->target = target;
2720 out:
2721 	unlock_device_hotplug();
2722 	return ret ? ret : count;
2723 }
2724 
2725 static ssize_t target_show(struct device *dev,
2726 			   struct device_attribute *attr, char *buf)
2727 {
2728 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2729 
2730 	return sprintf(buf, "%d\n", st->target);
2731 }
2732 static DEVICE_ATTR_RW(target);
2733 
2734 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2735 			  const char *buf, size_t count)
2736 {
2737 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2738 	struct cpuhp_step *sp;
2739 	int fail, ret;
2740 
2741 	ret = kstrtoint(buf, 10, &fail);
2742 	if (ret)
2743 		return ret;
2744 
2745 	if (fail == CPUHP_INVALID) {
2746 		st->fail = fail;
2747 		return count;
2748 	}
2749 
2750 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2751 		return -EINVAL;
2752 
2753 	/*
2754 	 * Cannot fail STARTING/DYING callbacks.
2755 	 */
2756 	if (cpuhp_is_atomic_state(fail))
2757 		return -EINVAL;
2758 
2759 	/*
2760 	 * DEAD callbacks cannot fail...
2761 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2762 	 * triggering STARTING callbacks, a failure in this state would
2763 	 * hinder rollback.
2764 	 */
2765 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2766 		return -EINVAL;
2767 
2768 	/*
2769 	 * Cannot fail anything that doesn't have callbacks.
2770 	 */
2771 	mutex_lock(&cpuhp_state_mutex);
2772 	sp = cpuhp_get_step(fail);
2773 	if (!sp->startup.single && !sp->teardown.single)
2774 		ret = -EINVAL;
2775 	mutex_unlock(&cpuhp_state_mutex);
2776 	if (ret)
2777 		return ret;
2778 
2779 	st->fail = fail;
2780 
2781 	return count;
2782 }
2783 
2784 static ssize_t fail_show(struct device *dev,
2785 			 struct device_attribute *attr, char *buf)
2786 {
2787 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2788 
2789 	return sprintf(buf, "%d\n", st->fail);
2790 }
2791 
2792 static DEVICE_ATTR_RW(fail);
2793 
2794 static struct attribute *cpuhp_cpu_attrs[] = {
2795 	&dev_attr_state.attr,
2796 	&dev_attr_target.attr,
2797 	&dev_attr_fail.attr,
2798 	NULL
2799 };
2800 
2801 static const struct attribute_group cpuhp_cpu_attr_group = {
2802 	.attrs = cpuhp_cpu_attrs,
2803 	.name = "hotplug",
2804 	NULL
2805 };
2806 
2807 static ssize_t states_show(struct device *dev,
2808 				 struct device_attribute *attr, char *buf)
2809 {
2810 	ssize_t cur, res = 0;
2811 	int i;
2812 
2813 	mutex_lock(&cpuhp_state_mutex);
2814 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2815 		struct cpuhp_step *sp = cpuhp_get_step(i);
2816 
2817 		if (sp->name) {
2818 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2819 			buf += cur;
2820 			res += cur;
2821 		}
2822 	}
2823 	mutex_unlock(&cpuhp_state_mutex);
2824 	return res;
2825 }
2826 static DEVICE_ATTR_RO(states);
2827 
2828 static struct attribute *cpuhp_cpu_root_attrs[] = {
2829 	&dev_attr_states.attr,
2830 	NULL
2831 };
2832 
2833 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2834 	.attrs = cpuhp_cpu_root_attrs,
2835 	.name = "hotplug",
2836 	NULL
2837 };
2838 
2839 #ifdef CONFIG_HOTPLUG_SMT
2840 
2841 static ssize_t
2842 __store_smt_control(struct device *dev, struct device_attribute *attr,
2843 		    const char *buf, size_t count)
2844 {
2845 	int ctrlval, ret;
2846 
2847 	if (sysfs_streq(buf, "on"))
2848 		ctrlval = CPU_SMT_ENABLED;
2849 	else if (sysfs_streq(buf, "off"))
2850 		ctrlval = CPU_SMT_DISABLED;
2851 	else if (sysfs_streq(buf, "forceoff"))
2852 		ctrlval = CPU_SMT_FORCE_DISABLED;
2853 	else
2854 		return -EINVAL;
2855 
2856 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2857 		return -EPERM;
2858 
2859 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2860 		return -ENODEV;
2861 
2862 	ret = lock_device_hotplug_sysfs();
2863 	if (ret)
2864 		return ret;
2865 
2866 	if (ctrlval != cpu_smt_control) {
2867 		switch (ctrlval) {
2868 		case CPU_SMT_ENABLED:
2869 			ret = cpuhp_smt_enable();
2870 			break;
2871 		case CPU_SMT_DISABLED:
2872 		case CPU_SMT_FORCE_DISABLED:
2873 			ret = cpuhp_smt_disable(ctrlval);
2874 			break;
2875 		}
2876 	}
2877 
2878 	unlock_device_hotplug();
2879 	return ret ? ret : count;
2880 }
2881 
2882 #else /* !CONFIG_HOTPLUG_SMT */
2883 static ssize_t
2884 __store_smt_control(struct device *dev, struct device_attribute *attr,
2885 		    const char *buf, size_t count)
2886 {
2887 	return -ENODEV;
2888 }
2889 #endif /* CONFIG_HOTPLUG_SMT */
2890 
2891 static const char *smt_states[] = {
2892 	[CPU_SMT_ENABLED]		= "on",
2893 	[CPU_SMT_DISABLED]		= "off",
2894 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2895 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2896 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2897 };
2898 
2899 static ssize_t control_show(struct device *dev,
2900 			    struct device_attribute *attr, char *buf)
2901 {
2902 	const char *state = smt_states[cpu_smt_control];
2903 
2904 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2905 }
2906 
2907 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2908 			     const char *buf, size_t count)
2909 {
2910 	return __store_smt_control(dev, attr, buf, count);
2911 }
2912 static DEVICE_ATTR_RW(control);
2913 
2914 static ssize_t active_show(struct device *dev,
2915 			   struct device_attribute *attr, char *buf)
2916 {
2917 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2918 }
2919 static DEVICE_ATTR_RO(active);
2920 
2921 static struct attribute *cpuhp_smt_attrs[] = {
2922 	&dev_attr_control.attr,
2923 	&dev_attr_active.attr,
2924 	NULL
2925 };
2926 
2927 static const struct attribute_group cpuhp_smt_attr_group = {
2928 	.attrs = cpuhp_smt_attrs,
2929 	.name = "smt",
2930 	NULL
2931 };
2932 
2933 static int __init cpu_smt_sysfs_init(void)
2934 {
2935 	struct device *dev_root;
2936 	int ret = -ENODEV;
2937 
2938 	dev_root = bus_get_dev_root(&cpu_subsys);
2939 	if (dev_root) {
2940 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
2941 		put_device(dev_root);
2942 	}
2943 	return ret;
2944 }
2945 
2946 static int __init cpuhp_sysfs_init(void)
2947 {
2948 	struct device *dev_root;
2949 	int cpu, ret;
2950 
2951 	ret = cpu_smt_sysfs_init();
2952 	if (ret)
2953 		return ret;
2954 
2955 	dev_root = bus_get_dev_root(&cpu_subsys);
2956 	if (dev_root) {
2957 		ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
2958 		put_device(dev_root);
2959 		if (ret)
2960 			return ret;
2961 	}
2962 
2963 	for_each_possible_cpu(cpu) {
2964 		struct device *dev = get_cpu_device(cpu);
2965 
2966 		if (!dev)
2967 			continue;
2968 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2969 		if (ret)
2970 			return ret;
2971 	}
2972 	return 0;
2973 }
2974 device_initcall(cpuhp_sysfs_init);
2975 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2976 
2977 /*
2978  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2979  * represents all NR_CPUS bits binary values of 1<<nr.
2980  *
2981  * It is used by cpumask_of() to get a constant address to a CPU
2982  * mask value that has a single bit set only.
2983  */
2984 
2985 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2986 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2987 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2988 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2989 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2990 
2991 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2992 
2993 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2994 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2995 #if BITS_PER_LONG > 32
2996 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2997 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2998 #endif
2999 };
3000 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3001 
3002 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3003 EXPORT_SYMBOL(cpu_all_bits);
3004 
3005 #ifdef CONFIG_INIT_ALL_POSSIBLE
3006 struct cpumask __cpu_possible_mask __read_mostly
3007 	= {CPU_BITS_ALL};
3008 #else
3009 struct cpumask __cpu_possible_mask __read_mostly;
3010 #endif
3011 EXPORT_SYMBOL(__cpu_possible_mask);
3012 
3013 struct cpumask __cpu_online_mask __read_mostly;
3014 EXPORT_SYMBOL(__cpu_online_mask);
3015 
3016 struct cpumask __cpu_present_mask __read_mostly;
3017 EXPORT_SYMBOL(__cpu_present_mask);
3018 
3019 struct cpumask __cpu_active_mask __read_mostly;
3020 EXPORT_SYMBOL(__cpu_active_mask);
3021 
3022 struct cpumask __cpu_dying_mask __read_mostly;
3023 EXPORT_SYMBOL(__cpu_dying_mask);
3024 
3025 atomic_t __num_online_cpus __read_mostly;
3026 EXPORT_SYMBOL(__num_online_cpus);
3027 
3028 void init_cpu_present(const struct cpumask *src)
3029 {
3030 	cpumask_copy(&__cpu_present_mask, src);
3031 }
3032 
3033 void init_cpu_possible(const struct cpumask *src)
3034 {
3035 	cpumask_copy(&__cpu_possible_mask, src);
3036 }
3037 
3038 void init_cpu_online(const struct cpumask *src)
3039 {
3040 	cpumask_copy(&__cpu_online_mask, src);
3041 }
3042 
3043 void set_cpu_online(unsigned int cpu, bool online)
3044 {
3045 	/*
3046 	 * atomic_inc/dec() is required to handle the horrid abuse of this
3047 	 * function by the reboot and kexec code which invoke it from
3048 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3049 	 * regular CPU hotplug is properly serialized.
3050 	 *
3051 	 * Note, that the fact that __num_online_cpus is of type atomic_t
3052 	 * does not protect readers which are not serialized against
3053 	 * concurrent hotplug operations.
3054 	 */
3055 	if (online) {
3056 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3057 			atomic_inc(&__num_online_cpus);
3058 	} else {
3059 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3060 			atomic_dec(&__num_online_cpus);
3061 	}
3062 }
3063 
3064 /*
3065  * Activate the first processor.
3066  */
3067 void __init boot_cpu_init(void)
3068 {
3069 	int cpu = smp_processor_id();
3070 
3071 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3072 	set_cpu_online(cpu, true);
3073 	set_cpu_active(cpu, true);
3074 	set_cpu_present(cpu, true);
3075 	set_cpu_possible(cpu, true);
3076 
3077 #ifdef CONFIG_SMP
3078 	__boot_cpu_id = cpu;
3079 #endif
3080 }
3081 
3082 /*
3083  * Must be called _AFTER_ setting up the per_cpu areas
3084  */
3085 void __init boot_cpu_hotplug_init(void)
3086 {
3087 #ifdef CONFIG_SMP
3088 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3089 	atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3090 #endif
3091 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3092 	this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3093 }
3094 
3095 /*
3096  * These are used for a global "mitigations=" cmdline option for toggling
3097  * optional CPU mitigations.
3098  */
3099 enum cpu_mitigations {
3100 	CPU_MITIGATIONS_OFF,
3101 	CPU_MITIGATIONS_AUTO,
3102 	CPU_MITIGATIONS_AUTO_NOSMT,
3103 };
3104 
3105 static enum cpu_mitigations cpu_mitigations __ro_after_init =
3106 	CPU_MITIGATIONS_AUTO;
3107 
3108 static int __init mitigations_parse_cmdline(char *arg)
3109 {
3110 	if (!strcmp(arg, "off"))
3111 		cpu_mitigations = CPU_MITIGATIONS_OFF;
3112 	else if (!strcmp(arg, "auto"))
3113 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
3114 	else if (!strcmp(arg, "auto,nosmt"))
3115 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3116 	else
3117 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3118 			arg);
3119 
3120 	return 0;
3121 }
3122 early_param("mitigations", mitigations_parse_cmdline);
3123 
3124 /* mitigations=off */
3125 bool cpu_mitigations_off(void)
3126 {
3127 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
3128 }
3129 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3130 
3131 /* mitigations=auto,nosmt */
3132 bool cpu_mitigations_auto_nosmt(void)
3133 {
3134 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3135 }
3136 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3137