xref: /openbmc/linux/kernel/cpu.c (revision b48dbb99)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 #include <linux/cc_platform.h>
39 
40 #include <trace/events/power.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/cpuhp.h>
43 
44 #include "smpboot.h"
45 
46 /**
47  * struct cpuhp_cpu_state - Per cpu hotplug state storage
48  * @state:	The current cpu state
49  * @target:	The target state
50  * @fail:	Current CPU hotplug callback state
51  * @thread:	Pointer to the hotplug thread
52  * @should_run:	Thread should execute
53  * @rollback:	Perform a rollback
54  * @single:	Single callback invocation
55  * @bringup:	Single callback bringup or teardown selector
56  * @cpu:	CPU number
57  * @node:	Remote CPU node; for multi-instance, do a
58  *		single entry callback for install/remove
59  * @last:	For multi-instance rollback, remember how far we got
60  * @cb_state:	The state for a single callback (install/uninstall)
61  * @result:	Result of the operation
62  * @done_up:	Signal completion to the issuer of the task for cpu-up
63  * @done_down:	Signal completion to the issuer of the task for cpu-down
64  */
65 struct cpuhp_cpu_state {
66 	enum cpuhp_state	state;
67 	enum cpuhp_state	target;
68 	enum cpuhp_state	fail;
69 #ifdef CONFIG_SMP
70 	struct task_struct	*thread;
71 	bool			should_run;
72 	bool			rollback;
73 	bool			single;
74 	bool			bringup;
75 	struct hlist_node	*node;
76 	struct hlist_node	*last;
77 	enum cpuhp_state	cb_state;
78 	int			result;
79 	struct completion	done_up;
80 	struct completion	done_down;
81 #endif
82 };
83 
84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
85 	.fail = CPUHP_INVALID,
86 };
87 
88 #ifdef CONFIG_SMP
89 cpumask_t cpus_booted_once_mask;
90 #endif
91 
92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
93 static struct lockdep_map cpuhp_state_up_map =
94 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
95 static struct lockdep_map cpuhp_state_down_map =
96 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
97 
98 
99 static inline void cpuhp_lock_acquire(bool bringup)
100 {
101 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
102 }
103 
104 static inline void cpuhp_lock_release(bool bringup)
105 {
106 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 }
108 #else
109 
110 static inline void cpuhp_lock_acquire(bool bringup) { }
111 static inline void cpuhp_lock_release(bool bringup) { }
112 
113 #endif
114 
115 /**
116  * struct cpuhp_step - Hotplug state machine step
117  * @name:	Name of the step
118  * @startup:	Startup function of the step
119  * @teardown:	Teardown function of the step
120  * @cant_stop:	Bringup/teardown can't be stopped at this step
121  * @multi_instance:	State has multiple instances which get added afterwards
122  */
123 struct cpuhp_step {
124 	const char		*name;
125 	union {
126 		int		(*single)(unsigned int cpu);
127 		int		(*multi)(unsigned int cpu,
128 					 struct hlist_node *node);
129 	} startup;
130 	union {
131 		int		(*single)(unsigned int cpu);
132 		int		(*multi)(unsigned int cpu,
133 					 struct hlist_node *node);
134 	} teardown;
135 	/* private: */
136 	struct hlist_head	list;
137 	/* public: */
138 	bool			cant_stop;
139 	bool			multi_instance;
140 };
141 
142 static DEFINE_MUTEX(cpuhp_state_mutex);
143 static struct cpuhp_step cpuhp_hp_states[];
144 
145 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
146 {
147 	return cpuhp_hp_states + state;
148 }
149 
150 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
151 {
152 	return bringup ? !step->startup.single : !step->teardown.single;
153 }
154 
155 /**
156  * cpuhp_invoke_callback - Invoke the callbacks for a given state
157  * @cpu:	The cpu for which the callback should be invoked
158  * @state:	The state to do callbacks for
159  * @bringup:	True if the bringup callback should be invoked
160  * @node:	For multi-instance, do a single entry callback for install/remove
161  * @lastp:	For multi-instance rollback, remember how far we got
162  *
163  * Called from cpu hotplug and from the state register machinery.
164  *
165  * Return: %0 on success or a negative errno code
166  */
167 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
168 				 bool bringup, struct hlist_node *node,
169 				 struct hlist_node **lastp)
170 {
171 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
172 	struct cpuhp_step *step = cpuhp_get_step(state);
173 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
174 	int (*cb)(unsigned int cpu);
175 	int ret, cnt;
176 
177 	if (st->fail == state) {
178 		st->fail = CPUHP_INVALID;
179 		return -EAGAIN;
180 	}
181 
182 	if (cpuhp_step_empty(bringup, step)) {
183 		WARN_ON_ONCE(1);
184 		return 0;
185 	}
186 
187 	if (!step->multi_instance) {
188 		WARN_ON_ONCE(lastp && *lastp);
189 		cb = bringup ? step->startup.single : step->teardown.single;
190 
191 		trace_cpuhp_enter(cpu, st->target, state, cb);
192 		ret = cb(cpu);
193 		trace_cpuhp_exit(cpu, st->state, state, ret);
194 		return ret;
195 	}
196 	cbm = bringup ? step->startup.multi : step->teardown.multi;
197 
198 	/* Single invocation for instance add/remove */
199 	if (node) {
200 		WARN_ON_ONCE(lastp && *lastp);
201 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202 		ret = cbm(cpu, node);
203 		trace_cpuhp_exit(cpu, st->state, state, ret);
204 		return ret;
205 	}
206 
207 	/* State transition. Invoke on all instances */
208 	cnt = 0;
209 	hlist_for_each(node, &step->list) {
210 		if (lastp && node == *lastp)
211 			break;
212 
213 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
214 		ret = cbm(cpu, node);
215 		trace_cpuhp_exit(cpu, st->state, state, ret);
216 		if (ret) {
217 			if (!lastp)
218 				goto err;
219 
220 			*lastp = node;
221 			return ret;
222 		}
223 		cnt++;
224 	}
225 	if (lastp)
226 		*lastp = NULL;
227 	return 0;
228 err:
229 	/* Rollback the instances if one failed */
230 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
231 	if (!cbm)
232 		return ret;
233 
234 	hlist_for_each(node, &step->list) {
235 		if (!cnt--)
236 			break;
237 
238 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
239 		ret = cbm(cpu, node);
240 		trace_cpuhp_exit(cpu, st->state, state, ret);
241 		/*
242 		 * Rollback must not fail,
243 		 */
244 		WARN_ON_ONCE(ret);
245 	}
246 	return ret;
247 }
248 
249 #ifdef CONFIG_SMP
250 static bool cpuhp_is_ap_state(enum cpuhp_state state)
251 {
252 	/*
253 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
254 	 * purposes as that state is handled explicitly in cpu_down.
255 	 */
256 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
257 }
258 
259 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
260 {
261 	struct completion *done = bringup ? &st->done_up : &st->done_down;
262 	wait_for_completion(done);
263 }
264 
265 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
266 {
267 	struct completion *done = bringup ? &st->done_up : &st->done_down;
268 	complete(done);
269 }
270 
271 /*
272  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
273  */
274 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
275 {
276 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
277 }
278 
279 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
280 static DEFINE_MUTEX(cpu_add_remove_lock);
281 bool cpuhp_tasks_frozen;
282 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
283 
284 /*
285  * The following two APIs (cpu_maps_update_begin/done) must be used when
286  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
287  */
288 void cpu_maps_update_begin(void)
289 {
290 	mutex_lock(&cpu_add_remove_lock);
291 }
292 
293 void cpu_maps_update_done(void)
294 {
295 	mutex_unlock(&cpu_add_remove_lock);
296 }
297 
298 /*
299  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
300  * Should always be manipulated under cpu_add_remove_lock
301  */
302 static int cpu_hotplug_disabled;
303 
304 #ifdef CONFIG_HOTPLUG_CPU
305 
306 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
307 
308 void cpus_read_lock(void)
309 {
310 	percpu_down_read(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_lock);
313 
314 int cpus_read_trylock(void)
315 {
316 	return percpu_down_read_trylock(&cpu_hotplug_lock);
317 }
318 EXPORT_SYMBOL_GPL(cpus_read_trylock);
319 
320 void cpus_read_unlock(void)
321 {
322 	percpu_up_read(&cpu_hotplug_lock);
323 }
324 EXPORT_SYMBOL_GPL(cpus_read_unlock);
325 
326 void cpus_write_lock(void)
327 {
328 	percpu_down_write(&cpu_hotplug_lock);
329 }
330 
331 void cpus_write_unlock(void)
332 {
333 	percpu_up_write(&cpu_hotplug_lock);
334 }
335 
336 void lockdep_assert_cpus_held(void)
337 {
338 	/*
339 	 * We can't have hotplug operations before userspace starts running,
340 	 * and some init codepaths will knowingly not take the hotplug lock.
341 	 * This is all valid, so mute lockdep until it makes sense to report
342 	 * unheld locks.
343 	 */
344 	if (system_state < SYSTEM_RUNNING)
345 		return;
346 
347 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
348 }
349 
350 #ifdef CONFIG_LOCKDEP
351 int lockdep_is_cpus_held(void)
352 {
353 	return percpu_rwsem_is_held(&cpu_hotplug_lock);
354 }
355 #endif
356 
357 static void lockdep_acquire_cpus_lock(void)
358 {
359 	rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
360 }
361 
362 static void lockdep_release_cpus_lock(void)
363 {
364 	rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
365 }
366 
367 /*
368  * Wait for currently running CPU hotplug operations to complete (if any) and
369  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
370  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
371  * hotplug path before performing hotplug operations. So acquiring that lock
372  * guarantees mutual exclusion from any currently running hotplug operations.
373  */
374 void cpu_hotplug_disable(void)
375 {
376 	cpu_maps_update_begin();
377 	cpu_hotplug_disabled++;
378 	cpu_maps_update_done();
379 }
380 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
381 
382 static void __cpu_hotplug_enable(void)
383 {
384 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
385 		return;
386 	cpu_hotplug_disabled--;
387 }
388 
389 void cpu_hotplug_enable(void)
390 {
391 	cpu_maps_update_begin();
392 	__cpu_hotplug_enable();
393 	cpu_maps_update_done();
394 }
395 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
396 
397 #else
398 
399 static void lockdep_acquire_cpus_lock(void)
400 {
401 }
402 
403 static void lockdep_release_cpus_lock(void)
404 {
405 }
406 
407 #endif	/* CONFIG_HOTPLUG_CPU */
408 
409 /*
410  * Architectures that need SMT-specific errata handling during SMT hotplug
411  * should override this.
412  */
413 void __weak arch_smt_update(void) { }
414 
415 #ifdef CONFIG_HOTPLUG_SMT
416 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
417 
418 void __init cpu_smt_disable(bool force)
419 {
420 	if (!cpu_smt_possible())
421 		return;
422 
423 	if (force) {
424 		pr_info("SMT: Force disabled\n");
425 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
426 	} else {
427 		pr_info("SMT: disabled\n");
428 		cpu_smt_control = CPU_SMT_DISABLED;
429 	}
430 }
431 
432 /*
433  * The decision whether SMT is supported can only be done after the full
434  * CPU identification. Called from architecture code.
435  */
436 void __init cpu_smt_check_topology(void)
437 {
438 	if (!topology_smt_supported())
439 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
440 }
441 
442 static int __init smt_cmdline_disable(char *str)
443 {
444 	cpu_smt_disable(str && !strcmp(str, "force"));
445 	return 0;
446 }
447 early_param("nosmt", smt_cmdline_disable);
448 
449 static inline bool cpu_smt_allowed(unsigned int cpu)
450 {
451 	if (cpu_smt_control == CPU_SMT_ENABLED)
452 		return true;
453 
454 	if (topology_is_primary_thread(cpu))
455 		return true;
456 
457 	/*
458 	 * On x86 it's required to boot all logical CPUs at least once so
459 	 * that the init code can get a chance to set CR4.MCE on each
460 	 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
461 	 * core will shutdown the machine.
462 	 */
463 	return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
464 }
465 
466 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
467 bool cpu_smt_possible(void)
468 {
469 	return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
470 		cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
471 }
472 EXPORT_SYMBOL_GPL(cpu_smt_possible);
473 #else
474 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
475 #endif
476 
477 static inline enum cpuhp_state
478 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
479 {
480 	enum cpuhp_state prev_state = st->state;
481 	bool bringup = st->state < target;
482 
483 	st->rollback = false;
484 	st->last = NULL;
485 
486 	st->target = target;
487 	st->single = false;
488 	st->bringup = bringup;
489 	if (cpu_dying(cpu) != !bringup)
490 		set_cpu_dying(cpu, !bringup);
491 
492 	return prev_state;
493 }
494 
495 static inline void
496 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
497 		  enum cpuhp_state prev_state)
498 {
499 	bool bringup = !st->bringup;
500 
501 	st->target = prev_state;
502 
503 	/*
504 	 * Already rolling back. No need invert the bringup value or to change
505 	 * the current state.
506 	 */
507 	if (st->rollback)
508 		return;
509 
510 	st->rollback = true;
511 
512 	/*
513 	 * If we have st->last we need to undo partial multi_instance of this
514 	 * state first. Otherwise start undo at the previous state.
515 	 */
516 	if (!st->last) {
517 		if (st->bringup)
518 			st->state--;
519 		else
520 			st->state++;
521 	}
522 
523 	st->bringup = bringup;
524 	if (cpu_dying(cpu) != !bringup)
525 		set_cpu_dying(cpu, !bringup);
526 }
527 
528 /* Regular hotplug invocation of the AP hotplug thread */
529 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
530 {
531 	if (!st->single && st->state == st->target)
532 		return;
533 
534 	st->result = 0;
535 	/*
536 	 * Make sure the above stores are visible before should_run becomes
537 	 * true. Paired with the mb() above in cpuhp_thread_fun()
538 	 */
539 	smp_mb();
540 	st->should_run = true;
541 	wake_up_process(st->thread);
542 	wait_for_ap_thread(st, st->bringup);
543 }
544 
545 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
546 			 enum cpuhp_state target)
547 {
548 	enum cpuhp_state prev_state;
549 	int ret;
550 
551 	prev_state = cpuhp_set_state(cpu, st, target);
552 	__cpuhp_kick_ap(st);
553 	if ((ret = st->result)) {
554 		cpuhp_reset_state(cpu, st, prev_state);
555 		__cpuhp_kick_ap(st);
556 	}
557 
558 	return ret;
559 }
560 
561 static int bringup_wait_for_ap(unsigned int cpu)
562 {
563 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
564 
565 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
566 	wait_for_ap_thread(st, true);
567 	if (WARN_ON_ONCE((!cpu_online(cpu))))
568 		return -ECANCELED;
569 
570 	/* Unpark the hotplug thread of the target cpu */
571 	kthread_unpark(st->thread);
572 
573 	/*
574 	 * SMT soft disabling on X86 requires to bring the CPU out of the
575 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
576 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
577 	 * cpu_smt_allowed() check will now return false if this is not the
578 	 * primary sibling.
579 	 */
580 	if (!cpu_smt_allowed(cpu))
581 		return -ECANCELED;
582 
583 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
584 		return 0;
585 
586 	return cpuhp_kick_ap(cpu, st, st->target);
587 }
588 
589 static int bringup_cpu(unsigned int cpu)
590 {
591 	struct task_struct *idle = idle_thread_get(cpu);
592 	int ret;
593 
594 	/*
595 	 * Reset stale stack state from the last time this CPU was online.
596 	 */
597 	scs_task_reset(idle);
598 	kasan_unpoison_task_stack(idle);
599 
600 	/*
601 	 * Some architectures have to walk the irq descriptors to
602 	 * setup the vector space for the cpu which comes online.
603 	 * Prevent irq alloc/free across the bringup.
604 	 */
605 	irq_lock_sparse();
606 
607 	/* Arch-specific enabling code. */
608 	ret = __cpu_up(cpu, idle);
609 	irq_unlock_sparse();
610 	if (ret)
611 		return ret;
612 	return bringup_wait_for_ap(cpu);
613 }
614 
615 static int finish_cpu(unsigned int cpu)
616 {
617 	struct task_struct *idle = idle_thread_get(cpu);
618 	struct mm_struct *mm = idle->active_mm;
619 
620 	/*
621 	 * idle_task_exit() will have switched to &init_mm, now
622 	 * clean up any remaining active_mm state.
623 	 */
624 	if (mm != &init_mm)
625 		idle->active_mm = &init_mm;
626 	mmdrop(mm);
627 	return 0;
628 }
629 
630 /*
631  * Hotplug state machine related functions
632  */
633 
634 /*
635  * Get the next state to run. Empty ones will be skipped. Returns true if a
636  * state must be run.
637  *
638  * st->state will be modified ahead of time, to match state_to_run, as if it
639  * has already ran.
640  */
641 static bool cpuhp_next_state(bool bringup,
642 			     enum cpuhp_state *state_to_run,
643 			     struct cpuhp_cpu_state *st,
644 			     enum cpuhp_state target)
645 {
646 	do {
647 		if (bringup) {
648 			if (st->state >= target)
649 				return false;
650 
651 			*state_to_run = ++st->state;
652 		} else {
653 			if (st->state <= target)
654 				return false;
655 
656 			*state_to_run = st->state--;
657 		}
658 
659 		if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
660 			break;
661 	} while (true);
662 
663 	return true;
664 }
665 
666 static int cpuhp_invoke_callback_range(bool bringup,
667 				       unsigned int cpu,
668 				       struct cpuhp_cpu_state *st,
669 				       enum cpuhp_state target)
670 {
671 	enum cpuhp_state state;
672 	int err = 0;
673 
674 	while (cpuhp_next_state(bringup, &state, st, target)) {
675 		err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
676 		if (err)
677 			break;
678 	}
679 
680 	return err;
681 }
682 
683 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
684 {
685 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
686 		return true;
687 	/*
688 	 * When CPU hotplug is disabled, then taking the CPU down is not
689 	 * possible because takedown_cpu() and the architecture and
690 	 * subsystem specific mechanisms are not available. So the CPU
691 	 * which would be completely unplugged again needs to stay around
692 	 * in the current state.
693 	 */
694 	return st->state <= CPUHP_BRINGUP_CPU;
695 }
696 
697 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
698 			      enum cpuhp_state target)
699 {
700 	enum cpuhp_state prev_state = st->state;
701 	int ret = 0;
702 
703 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
704 	if (ret) {
705 		pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
706 			 ret, cpu, cpuhp_get_step(st->state)->name,
707 			 st->state);
708 
709 		cpuhp_reset_state(cpu, st, prev_state);
710 		if (can_rollback_cpu(st))
711 			WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
712 							    prev_state));
713 	}
714 	return ret;
715 }
716 
717 /*
718  * The cpu hotplug threads manage the bringup and teardown of the cpus
719  */
720 static int cpuhp_should_run(unsigned int cpu)
721 {
722 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
723 
724 	return st->should_run;
725 }
726 
727 /*
728  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
729  * callbacks when a state gets [un]installed at runtime.
730  *
731  * Each invocation of this function by the smpboot thread does a single AP
732  * state callback.
733  *
734  * It has 3 modes of operation:
735  *  - single: runs st->cb_state
736  *  - up:     runs ++st->state, while st->state < st->target
737  *  - down:   runs st->state--, while st->state > st->target
738  *
739  * When complete or on error, should_run is cleared and the completion is fired.
740  */
741 static void cpuhp_thread_fun(unsigned int cpu)
742 {
743 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
744 	bool bringup = st->bringup;
745 	enum cpuhp_state state;
746 
747 	if (WARN_ON_ONCE(!st->should_run))
748 		return;
749 
750 	/*
751 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
752 	 * that if we see ->should_run we also see the rest of the state.
753 	 */
754 	smp_mb();
755 
756 	/*
757 	 * The BP holds the hotplug lock, but we're now running on the AP,
758 	 * ensure that anybody asserting the lock is held, will actually find
759 	 * it so.
760 	 */
761 	lockdep_acquire_cpus_lock();
762 	cpuhp_lock_acquire(bringup);
763 
764 	if (st->single) {
765 		state = st->cb_state;
766 		st->should_run = false;
767 	} else {
768 		st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
769 		if (!st->should_run)
770 			goto end;
771 	}
772 
773 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
774 
775 	if (cpuhp_is_atomic_state(state)) {
776 		local_irq_disable();
777 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
778 		local_irq_enable();
779 
780 		/*
781 		 * STARTING/DYING must not fail!
782 		 */
783 		WARN_ON_ONCE(st->result);
784 	} else {
785 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
786 	}
787 
788 	if (st->result) {
789 		/*
790 		 * If we fail on a rollback, we're up a creek without no
791 		 * paddle, no way forward, no way back. We loose, thanks for
792 		 * playing.
793 		 */
794 		WARN_ON_ONCE(st->rollback);
795 		st->should_run = false;
796 	}
797 
798 end:
799 	cpuhp_lock_release(bringup);
800 	lockdep_release_cpus_lock();
801 
802 	if (!st->should_run)
803 		complete_ap_thread(st, bringup);
804 }
805 
806 /* Invoke a single callback on a remote cpu */
807 static int
808 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
809 			 struct hlist_node *node)
810 {
811 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
812 	int ret;
813 
814 	if (!cpu_online(cpu))
815 		return 0;
816 
817 	cpuhp_lock_acquire(false);
818 	cpuhp_lock_release(false);
819 
820 	cpuhp_lock_acquire(true);
821 	cpuhp_lock_release(true);
822 
823 	/*
824 	 * If we are up and running, use the hotplug thread. For early calls
825 	 * we invoke the thread function directly.
826 	 */
827 	if (!st->thread)
828 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
829 
830 	st->rollback = false;
831 	st->last = NULL;
832 
833 	st->node = node;
834 	st->bringup = bringup;
835 	st->cb_state = state;
836 	st->single = true;
837 
838 	__cpuhp_kick_ap(st);
839 
840 	/*
841 	 * If we failed and did a partial, do a rollback.
842 	 */
843 	if ((ret = st->result) && st->last) {
844 		st->rollback = true;
845 		st->bringup = !bringup;
846 
847 		__cpuhp_kick_ap(st);
848 	}
849 
850 	/*
851 	 * Clean up the leftovers so the next hotplug operation wont use stale
852 	 * data.
853 	 */
854 	st->node = st->last = NULL;
855 	return ret;
856 }
857 
858 static int cpuhp_kick_ap_work(unsigned int cpu)
859 {
860 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
861 	enum cpuhp_state prev_state = st->state;
862 	int ret;
863 
864 	cpuhp_lock_acquire(false);
865 	cpuhp_lock_release(false);
866 
867 	cpuhp_lock_acquire(true);
868 	cpuhp_lock_release(true);
869 
870 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
871 	ret = cpuhp_kick_ap(cpu, st, st->target);
872 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
873 
874 	return ret;
875 }
876 
877 static struct smp_hotplug_thread cpuhp_threads = {
878 	.store			= &cpuhp_state.thread,
879 	.thread_should_run	= cpuhp_should_run,
880 	.thread_fn		= cpuhp_thread_fun,
881 	.thread_comm		= "cpuhp/%u",
882 	.selfparking		= true,
883 };
884 
885 static __init void cpuhp_init_state(void)
886 {
887 	struct cpuhp_cpu_state *st;
888 	int cpu;
889 
890 	for_each_possible_cpu(cpu) {
891 		st = per_cpu_ptr(&cpuhp_state, cpu);
892 		init_completion(&st->done_up);
893 		init_completion(&st->done_down);
894 	}
895 }
896 
897 void __init cpuhp_threads_init(void)
898 {
899 	cpuhp_init_state();
900 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
901 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
902 }
903 
904 /*
905  *
906  * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
907  * protected region.
908  *
909  * The operation is still serialized against concurrent CPU hotplug via
910  * cpu_add_remove_lock, i.e. CPU map protection.  But it is _not_
911  * serialized against other hotplug related activity like adding or
912  * removing of state callbacks and state instances, which invoke either the
913  * startup or the teardown callback of the affected state.
914  *
915  * This is required for subsystems which are unfixable vs. CPU hotplug and
916  * evade lock inversion problems by scheduling work which has to be
917  * completed _before_ cpu_up()/_cpu_down() returns.
918  *
919  * Don't even think about adding anything to this for any new code or even
920  * drivers. It's only purpose is to keep existing lock order trainwrecks
921  * working.
922  *
923  * For cpu_down() there might be valid reasons to finish cleanups which are
924  * not required to be done under cpu_hotplug_lock, but that's a different
925  * story and would be not invoked via this.
926  */
927 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
928 {
929 	/*
930 	 * cpusets delegate hotplug operations to a worker to "solve" the
931 	 * lock order problems. Wait for the worker, but only if tasks are
932 	 * _not_ frozen (suspend, hibernate) as that would wait forever.
933 	 *
934 	 * The wait is required because otherwise the hotplug operation
935 	 * returns with inconsistent state, which could even be observed in
936 	 * user space when a new CPU is brought up. The CPU plug uevent
937 	 * would be delivered and user space reacting on it would fail to
938 	 * move tasks to the newly plugged CPU up to the point where the
939 	 * work has finished because up to that point the newly plugged CPU
940 	 * is not assignable in cpusets/cgroups. On unplug that's not
941 	 * necessarily a visible issue, but it is still inconsistent state,
942 	 * which is the real problem which needs to be "fixed". This can't
943 	 * prevent the transient state between scheduling the work and
944 	 * returning from waiting for it.
945 	 */
946 	if (!tasks_frozen)
947 		cpuset_wait_for_hotplug();
948 }
949 
950 #ifdef CONFIG_HOTPLUG_CPU
951 #ifndef arch_clear_mm_cpumask_cpu
952 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
953 #endif
954 
955 /**
956  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
957  * @cpu: a CPU id
958  *
959  * This function walks all processes, finds a valid mm struct for each one and
960  * then clears a corresponding bit in mm's cpumask.  While this all sounds
961  * trivial, there are various non-obvious corner cases, which this function
962  * tries to solve in a safe manner.
963  *
964  * Also note that the function uses a somewhat relaxed locking scheme, so it may
965  * be called only for an already offlined CPU.
966  */
967 void clear_tasks_mm_cpumask(int cpu)
968 {
969 	struct task_struct *p;
970 
971 	/*
972 	 * This function is called after the cpu is taken down and marked
973 	 * offline, so its not like new tasks will ever get this cpu set in
974 	 * their mm mask. -- Peter Zijlstra
975 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
976 	 * full-fledged tasklist_lock.
977 	 */
978 	WARN_ON(cpu_online(cpu));
979 	rcu_read_lock();
980 	for_each_process(p) {
981 		struct task_struct *t;
982 
983 		/*
984 		 * Main thread might exit, but other threads may still have
985 		 * a valid mm. Find one.
986 		 */
987 		t = find_lock_task_mm(p);
988 		if (!t)
989 			continue;
990 		arch_clear_mm_cpumask_cpu(cpu, t->mm);
991 		task_unlock(t);
992 	}
993 	rcu_read_unlock();
994 }
995 
996 /* Take this CPU down. */
997 static int take_cpu_down(void *_param)
998 {
999 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1000 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1001 	int err, cpu = smp_processor_id();
1002 	int ret;
1003 
1004 	/* Ensure this CPU doesn't handle any more interrupts. */
1005 	err = __cpu_disable();
1006 	if (err < 0)
1007 		return err;
1008 
1009 	/*
1010 	 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1011 	 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1012 	 */
1013 	WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1014 
1015 	/* Invoke the former CPU_DYING callbacks */
1016 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1017 
1018 	/*
1019 	 * DYING must not fail!
1020 	 */
1021 	WARN_ON_ONCE(ret);
1022 
1023 	/* Give up timekeeping duties */
1024 	tick_handover_do_timer();
1025 	/* Remove CPU from timer broadcasting */
1026 	tick_offline_cpu(cpu);
1027 	/* Park the stopper thread */
1028 	stop_machine_park(cpu);
1029 	return 0;
1030 }
1031 
1032 static int takedown_cpu(unsigned int cpu)
1033 {
1034 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1035 	int err;
1036 
1037 	/* Park the smpboot threads */
1038 	kthread_park(st->thread);
1039 
1040 	/*
1041 	 * Prevent irq alloc/free while the dying cpu reorganizes the
1042 	 * interrupt affinities.
1043 	 */
1044 	irq_lock_sparse();
1045 
1046 	/*
1047 	 * So now all preempt/rcu users must observe !cpu_active().
1048 	 */
1049 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1050 	if (err) {
1051 		/* CPU refused to die */
1052 		irq_unlock_sparse();
1053 		/* Unpark the hotplug thread so we can rollback there */
1054 		kthread_unpark(st->thread);
1055 		return err;
1056 	}
1057 	BUG_ON(cpu_online(cpu));
1058 
1059 	/*
1060 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1061 	 * all runnable tasks from the CPU, there's only the idle task left now
1062 	 * that the migration thread is done doing the stop_machine thing.
1063 	 *
1064 	 * Wait for the stop thread to go away.
1065 	 */
1066 	wait_for_ap_thread(st, false);
1067 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1068 
1069 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1070 	irq_unlock_sparse();
1071 
1072 	hotplug_cpu__broadcast_tick_pull(cpu);
1073 	/* This actually kills the CPU. */
1074 	__cpu_die(cpu);
1075 
1076 	tick_cleanup_dead_cpu(cpu);
1077 	rcutree_migrate_callbacks(cpu);
1078 	return 0;
1079 }
1080 
1081 static void cpuhp_complete_idle_dead(void *arg)
1082 {
1083 	struct cpuhp_cpu_state *st = arg;
1084 
1085 	complete_ap_thread(st, false);
1086 }
1087 
1088 void cpuhp_report_idle_dead(void)
1089 {
1090 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1091 
1092 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
1093 	rcu_report_dead(smp_processor_id());
1094 	st->state = CPUHP_AP_IDLE_DEAD;
1095 	/*
1096 	 * We cannot call complete after rcu_report_dead() so we delegate it
1097 	 * to an online cpu.
1098 	 */
1099 	smp_call_function_single(cpumask_first(cpu_online_mask),
1100 				 cpuhp_complete_idle_dead, st, 0);
1101 }
1102 
1103 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1104 				enum cpuhp_state target)
1105 {
1106 	enum cpuhp_state prev_state = st->state;
1107 	int ret = 0;
1108 
1109 	ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1110 	if (ret) {
1111 		pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1112 			 ret, cpu, cpuhp_get_step(st->state)->name,
1113 			 st->state);
1114 
1115 		cpuhp_reset_state(cpu, st, prev_state);
1116 
1117 		if (st->state < prev_state)
1118 			WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1119 							    prev_state));
1120 	}
1121 
1122 	return ret;
1123 }
1124 
1125 /* Requires cpu_add_remove_lock to be held */
1126 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1127 			   enum cpuhp_state target)
1128 {
1129 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1130 	int prev_state, ret = 0;
1131 
1132 	if (num_online_cpus() == 1)
1133 		return -EBUSY;
1134 
1135 	if (!cpu_present(cpu))
1136 		return -EINVAL;
1137 
1138 	cpus_write_lock();
1139 
1140 	cpuhp_tasks_frozen = tasks_frozen;
1141 
1142 	prev_state = cpuhp_set_state(cpu, st, target);
1143 	/*
1144 	 * If the current CPU state is in the range of the AP hotplug thread,
1145 	 * then we need to kick the thread.
1146 	 */
1147 	if (st->state > CPUHP_TEARDOWN_CPU) {
1148 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1149 		ret = cpuhp_kick_ap_work(cpu);
1150 		/*
1151 		 * The AP side has done the error rollback already. Just
1152 		 * return the error code..
1153 		 */
1154 		if (ret)
1155 			goto out;
1156 
1157 		/*
1158 		 * We might have stopped still in the range of the AP hotplug
1159 		 * thread. Nothing to do anymore.
1160 		 */
1161 		if (st->state > CPUHP_TEARDOWN_CPU)
1162 			goto out;
1163 
1164 		st->target = target;
1165 	}
1166 	/*
1167 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1168 	 * to do the further cleanups.
1169 	 */
1170 	ret = cpuhp_down_callbacks(cpu, st, target);
1171 	if (ret && st->state < prev_state) {
1172 		if (st->state == CPUHP_TEARDOWN_CPU) {
1173 			cpuhp_reset_state(cpu, st, prev_state);
1174 			__cpuhp_kick_ap(st);
1175 		} else {
1176 			WARN(1, "DEAD callback error for CPU%d", cpu);
1177 		}
1178 	}
1179 
1180 out:
1181 	cpus_write_unlock();
1182 	/*
1183 	 * Do post unplug cleanup. This is still protected against
1184 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1185 	 */
1186 	lockup_detector_cleanup();
1187 	arch_smt_update();
1188 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1189 	return ret;
1190 }
1191 
1192 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1193 {
1194 	/*
1195 	 * If the platform does not support hotplug, report it explicitly to
1196 	 * differentiate it from a transient offlining failure.
1197 	 */
1198 	if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1199 		return -EOPNOTSUPP;
1200 	if (cpu_hotplug_disabled)
1201 		return -EBUSY;
1202 	return _cpu_down(cpu, 0, target);
1203 }
1204 
1205 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1206 {
1207 	int err;
1208 
1209 	cpu_maps_update_begin();
1210 	err = cpu_down_maps_locked(cpu, target);
1211 	cpu_maps_update_done();
1212 	return err;
1213 }
1214 
1215 /**
1216  * cpu_device_down - Bring down a cpu device
1217  * @dev: Pointer to the cpu device to offline
1218  *
1219  * This function is meant to be used by device core cpu subsystem only.
1220  *
1221  * Other subsystems should use remove_cpu() instead.
1222  *
1223  * Return: %0 on success or a negative errno code
1224  */
1225 int cpu_device_down(struct device *dev)
1226 {
1227 	return cpu_down(dev->id, CPUHP_OFFLINE);
1228 }
1229 
1230 int remove_cpu(unsigned int cpu)
1231 {
1232 	int ret;
1233 
1234 	lock_device_hotplug();
1235 	ret = device_offline(get_cpu_device(cpu));
1236 	unlock_device_hotplug();
1237 
1238 	return ret;
1239 }
1240 EXPORT_SYMBOL_GPL(remove_cpu);
1241 
1242 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1243 {
1244 	unsigned int cpu;
1245 	int error;
1246 
1247 	cpu_maps_update_begin();
1248 
1249 	/*
1250 	 * Make certain the cpu I'm about to reboot on is online.
1251 	 *
1252 	 * This is inline to what migrate_to_reboot_cpu() already do.
1253 	 */
1254 	if (!cpu_online(primary_cpu))
1255 		primary_cpu = cpumask_first(cpu_online_mask);
1256 
1257 	for_each_online_cpu(cpu) {
1258 		if (cpu == primary_cpu)
1259 			continue;
1260 
1261 		error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1262 		if (error) {
1263 			pr_err("Failed to offline CPU%d - error=%d",
1264 				cpu, error);
1265 			break;
1266 		}
1267 	}
1268 
1269 	/*
1270 	 * Ensure all but the reboot CPU are offline.
1271 	 */
1272 	BUG_ON(num_online_cpus() > 1);
1273 
1274 	/*
1275 	 * Make sure the CPUs won't be enabled by someone else after this
1276 	 * point. Kexec will reboot to a new kernel shortly resetting
1277 	 * everything along the way.
1278 	 */
1279 	cpu_hotplug_disabled++;
1280 
1281 	cpu_maps_update_done();
1282 }
1283 
1284 #else
1285 #define takedown_cpu		NULL
1286 #endif /*CONFIG_HOTPLUG_CPU*/
1287 
1288 /**
1289  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1290  * @cpu: cpu that just started
1291  *
1292  * It must be called by the arch code on the new cpu, before the new cpu
1293  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1294  */
1295 void notify_cpu_starting(unsigned int cpu)
1296 {
1297 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1298 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1299 	int ret;
1300 
1301 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1302 	cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1303 	ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1304 
1305 	/*
1306 	 * STARTING must not fail!
1307 	 */
1308 	WARN_ON_ONCE(ret);
1309 }
1310 
1311 /*
1312  * Called from the idle task. Wake up the controlling task which brings the
1313  * hotplug thread of the upcoming CPU up and then delegates the rest of the
1314  * online bringup to the hotplug thread.
1315  */
1316 void cpuhp_online_idle(enum cpuhp_state state)
1317 {
1318 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1319 
1320 	/* Happens for the boot cpu */
1321 	if (state != CPUHP_AP_ONLINE_IDLE)
1322 		return;
1323 
1324 	/*
1325 	 * Unpart the stopper thread before we start the idle loop (and start
1326 	 * scheduling); this ensures the stopper task is always available.
1327 	 */
1328 	stop_machine_unpark(smp_processor_id());
1329 
1330 	st->state = CPUHP_AP_ONLINE_IDLE;
1331 	complete_ap_thread(st, true);
1332 }
1333 
1334 /* Requires cpu_add_remove_lock to be held */
1335 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1336 {
1337 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1338 	struct task_struct *idle;
1339 	int ret = 0;
1340 
1341 	cpus_write_lock();
1342 
1343 	if (!cpu_present(cpu)) {
1344 		ret = -EINVAL;
1345 		goto out;
1346 	}
1347 
1348 	/*
1349 	 * The caller of cpu_up() might have raced with another
1350 	 * caller. Nothing to do.
1351 	 */
1352 	if (st->state >= target)
1353 		goto out;
1354 
1355 	if (st->state == CPUHP_OFFLINE) {
1356 		/* Let it fail before we try to bring the cpu up */
1357 		idle = idle_thread_get(cpu);
1358 		if (IS_ERR(idle)) {
1359 			ret = PTR_ERR(idle);
1360 			goto out;
1361 		}
1362 	}
1363 
1364 	cpuhp_tasks_frozen = tasks_frozen;
1365 
1366 	cpuhp_set_state(cpu, st, target);
1367 	/*
1368 	 * If the current CPU state is in the range of the AP hotplug thread,
1369 	 * then we need to kick the thread once more.
1370 	 */
1371 	if (st->state > CPUHP_BRINGUP_CPU) {
1372 		ret = cpuhp_kick_ap_work(cpu);
1373 		/*
1374 		 * The AP side has done the error rollback already. Just
1375 		 * return the error code..
1376 		 */
1377 		if (ret)
1378 			goto out;
1379 	}
1380 
1381 	/*
1382 	 * Try to reach the target state. We max out on the BP at
1383 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1384 	 * responsible for bringing it up to the target state.
1385 	 */
1386 	target = min((int)target, CPUHP_BRINGUP_CPU);
1387 	ret = cpuhp_up_callbacks(cpu, st, target);
1388 out:
1389 	cpus_write_unlock();
1390 	arch_smt_update();
1391 	cpu_up_down_serialize_trainwrecks(tasks_frozen);
1392 	return ret;
1393 }
1394 
1395 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1396 {
1397 	int err = 0;
1398 
1399 	if (!cpu_possible(cpu)) {
1400 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1401 		       cpu);
1402 #if defined(CONFIG_IA64)
1403 		pr_err("please check additional_cpus= boot parameter\n");
1404 #endif
1405 		return -EINVAL;
1406 	}
1407 
1408 	err = try_online_node(cpu_to_node(cpu));
1409 	if (err)
1410 		return err;
1411 
1412 	cpu_maps_update_begin();
1413 
1414 	if (cpu_hotplug_disabled) {
1415 		err = -EBUSY;
1416 		goto out;
1417 	}
1418 	if (!cpu_smt_allowed(cpu)) {
1419 		err = -EPERM;
1420 		goto out;
1421 	}
1422 
1423 	err = _cpu_up(cpu, 0, target);
1424 out:
1425 	cpu_maps_update_done();
1426 	return err;
1427 }
1428 
1429 /**
1430  * cpu_device_up - Bring up a cpu device
1431  * @dev: Pointer to the cpu device to online
1432  *
1433  * This function is meant to be used by device core cpu subsystem only.
1434  *
1435  * Other subsystems should use add_cpu() instead.
1436  *
1437  * Return: %0 on success or a negative errno code
1438  */
1439 int cpu_device_up(struct device *dev)
1440 {
1441 	return cpu_up(dev->id, CPUHP_ONLINE);
1442 }
1443 
1444 int add_cpu(unsigned int cpu)
1445 {
1446 	int ret;
1447 
1448 	lock_device_hotplug();
1449 	ret = device_online(get_cpu_device(cpu));
1450 	unlock_device_hotplug();
1451 
1452 	return ret;
1453 }
1454 EXPORT_SYMBOL_GPL(add_cpu);
1455 
1456 /**
1457  * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1458  * @sleep_cpu: The cpu we hibernated on and should be brought up.
1459  *
1460  * On some architectures like arm64, we can hibernate on any CPU, but on
1461  * wake up the CPU we hibernated on might be offline as a side effect of
1462  * using maxcpus= for example.
1463  *
1464  * Return: %0 on success or a negative errno code
1465  */
1466 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1467 {
1468 	int ret;
1469 
1470 	if (!cpu_online(sleep_cpu)) {
1471 		pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1472 		ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1473 		if (ret) {
1474 			pr_err("Failed to bring hibernate-CPU up!\n");
1475 			return ret;
1476 		}
1477 	}
1478 	return 0;
1479 }
1480 
1481 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1482 {
1483 	unsigned int cpu;
1484 
1485 	for_each_present_cpu(cpu) {
1486 		if (num_online_cpus() >= setup_max_cpus)
1487 			break;
1488 		if (!cpu_online(cpu))
1489 			cpu_up(cpu, CPUHP_ONLINE);
1490 	}
1491 }
1492 
1493 #ifdef CONFIG_PM_SLEEP_SMP
1494 static cpumask_var_t frozen_cpus;
1495 
1496 int freeze_secondary_cpus(int primary)
1497 {
1498 	int cpu, error = 0;
1499 
1500 	cpu_maps_update_begin();
1501 	if (primary == -1) {
1502 		primary = cpumask_first(cpu_online_mask);
1503 		if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1504 			primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1505 	} else {
1506 		if (!cpu_online(primary))
1507 			primary = cpumask_first(cpu_online_mask);
1508 	}
1509 
1510 	/*
1511 	 * We take down all of the non-boot CPUs in one shot to avoid races
1512 	 * with the userspace trying to use the CPU hotplug at the same time
1513 	 */
1514 	cpumask_clear(frozen_cpus);
1515 
1516 	pr_info("Disabling non-boot CPUs ...\n");
1517 	for_each_online_cpu(cpu) {
1518 		if (cpu == primary)
1519 			continue;
1520 
1521 		if (pm_wakeup_pending()) {
1522 			pr_info("Wakeup pending. Abort CPU freeze\n");
1523 			error = -EBUSY;
1524 			break;
1525 		}
1526 
1527 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1528 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1529 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1530 		if (!error)
1531 			cpumask_set_cpu(cpu, frozen_cpus);
1532 		else {
1533 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1534 			break;
1535 		}
1536 	}
1537 
1538 	if (!error)
1539 		BUG_ON(num_online_cpus() > 1);
1540 	else
1541 		pr_err("Non-boot CPUs are not disabled\n");
1542 
1543 	/*
1544 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1545 	 * this even in case of failure as all freeze_secondary_cpus() users are
1546 	 * supposed to do thaw_secondary_cpus() on the failure path.
1547 	 */
1548 	cpu_hotplug_disabled++;
1549 
1550 	cpu_maps_update_done();
1551 	return error;
1552 }
1553 
1554 void __weak arch_thaw_secondary_cpus_begin(void)
1555 {
1556 }
1557 
1558 void __weak arch_thaw_secondary_cpus_end(void)
1559 {
1560 }
1561 
1562 void thaw_secondary_cpus(void)
1563 {
1564 	int cpu, error;
1565 
1566 	/* Allow everyone to use the CPU hotplug again */
1567 	cpu_maps_update_begin();
1568 	__cpu_hotplug_enable();
1569 	if (cpumask_empty(frozen_cpus))
1570 		goto out;
1571 
1572 	pr_info("Enabling non-boot CPUs ...\n");
1573 
1574 	arch_thaw_secondary_cpus_begin();
1575 
1576 	for_each_cpu(cpu, frozen_cpus) {
1577 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1578 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1579 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1580 		if (!error) {
1581 			pr_info("CPU%d is up\n", cpu);
1582 			continue;
1583 		}
1584 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1585 	}
1586 
1587 	arch_thaw_secondary_cpus_end();
1588 
1589 	cpumask_clear(frozen_cpus);
1590 out:
1591 	cpu_maps_update_done();
1592 }
1593 
1594 static int __init alloc_frozen_cpus(void)
1595 {
1596 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1597 		return -ENOMEM;
1598 	return 0;
1599 }
1600 core_initcall(alloc_frozen_cpus);
1601 
1602 /*
1603  * When callbacks for CPU hotplug notifications are being executed, we must
1604  * ensure that the state of the system with respect to the tasks being frozen
1605  * or not, as reported by the notification, remains unchanged *throughout the
1606  * duration* of the execution of the callbacks.
1607  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1608  *
1609  * This synchronization is implemented by mutually excluding regular CPU
1610  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1611  * Hibernate notifications.
1612  */
1613 static int
1614 cpu_hotplug_pm_callback(struct notifier_block *nb,
1615 			unsigned long action, void *ptr)
1616 {
1617 	switch (action) {
1618 
1619 	case PM_SUSPEND_PREPARE:
1620 	case PM_HIBERNATION_PREPARE:
1621 		cpu_hotplug_disable();
1622 		break;
1623 
1624 	case PM_POST_SUSPEND:
1625 	case PM_POST_HIBERNATION:
1626 		cpu_hotplug_enable();
1627 		break;
1628 
1629 	default:
1630 		return NOTIFY_DONE;
1631 	}
1632 
1633 	return NOTIFY_OK;
1634 }
1635 
1636 
1637 static int __init cpu_hotplug_pm_sync_init(void)
1638 {
1639 	/*
1640 	 * cpu_hotplug_pm_callback has higher priority than x86
1641 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1642 	 * to disable cpu hotplug to avoid cpu hotplug race.
1643 	 */
1644 	pm_notifier(cpu_hotplug_pm_callback, 0);
1645 	return 0;
1646 }
1647 core_initcall(cpu_hotplug_pm_sync_init);
1648 
1649 #endif /* CONFIG_PM_SLEEP_SMP */
1650 
1651 int __boot_cpu_id;
1652 
1653 #endif /* CONFIG_SMP */
1654 
1655 /* Boot processor state steps */
1656 static struct cpuhp_step cpuhp_hp_states[] = {
1657 	[CPUHP_OFFLINE] = {
1658 		.name			= "offline",
1659 		.startup.single		= NULL,
1660 		.teardown.single	= NULL,
1661 	},
1662 #ifdef CONFIG_SMP
1663 	[CPUHP_CREATE_THREADS]= {
1664 		.name			= "threads:prepare",
1665 		.startup.single		= smpboot_create_threads,
1666 		.teardown.single	= NULL,
1667 		.cant_stop		= true,
1668 	},
1669 	[CPUHP_PERF_PREPARE] = {
1670 		.name			= "perf:prepare",
1671 		.startup.single		= perf_event_init_cpu,
1672 		.teardown.single	= perf_event_exit_cpu,
1673 	},
1674 	[CPUHP_RANDOM_PREPARE] = {
1675 		.name			= "random:prepare",
1676 		.startup.single		= random_prepare_cpu,
1677 		.teardown.single	= NULL,
1678 	},
1679 	[CPUHP_WORKQUEUE_PREP] = {
1680 		.name			= "workqueue:prepare",
1681 		.startup.single		= workqueue_prepare_cpu,
1682 		.teardown.single	= NULL,
1683 	},
1684 	[CPUHP_HRTIMERS_PREPARE] = {
1685 		.name			= "hrtimers:prepare",
1686 		.startup.single		= hrtimers_prepare_cpu,
1687 		.teardown.single	= hrtimers_dead_cpu,
1688 	},
1689 	[CPUHP_SMPCFD_PREPARE] = {
1690 		.name			= "smpcfd:prepare",
1691 		.startup.single		= smpcfd_prepare_cpu,
1692 		.teardown.single	= smpcfd_dead_cpu,
1693 	},
1694 	[CPUHP_RELAY_PREPARE] = {
1695 		.name			= "relay:prepare",
1696 		.startup.single		= relay_prepare_cpu,
1697 		.teardown.single	= NULL,
1698 	},
1699 	[CPUHP_SLAB_PREPARE] = {
1700 		.name			= "slab:prepare",
1701 		.startup.single		= slab_prepare_cpu,
1702 		.teardown.single	= slab_dead_cpu,
1703 	},
1704 	[CPUHP_RCUTREE_PREP] = {
1705 		.name			= "RCU/tree:prepare",
1706 		.startup.single		= rcutree_prepare_cpu,
1707 		.teardown.single	= rcutree_dead_cpu,
1708 	},
1709 	/*
1710 	 * On the tear-down path, timers_dead_cpu() must be invoked
1711 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1712 	 * otherwise a RCU stall occurs.
1713 	 */
1714 	[CPUHP_TIMERS_PREPARE] = {
1715 		.name			= "timers:prepare",
1716 		.startup.single		= timers_prepare_cpu,
1717 		.teardown.single	= timers_dead_cpu,
1718 	},
1719 	/* Kicks the plugged cpu into life */
1720 	[CPUHP_BRINGUP_CPU] = {
1721 		.name			= "cpu:bringup",
1722 		.startup.single		= bringup_cpu,
1723 		.teardown.single	= finish_cpu,
1724 		.cant_stop		= true,
1725 	},
1726 	/* Final state before CPU kills itself */
1727 	[CPUHP_AP_IDLE_DEAD] = {
1728 		.name			= "idle:dead",
1729 	},
1730 	/*
1731 	 * Last state before CPU enters the idle loop to die. Transient state
1732 	 * for synchronization.
1733 	 */
1734 	[CPUHP_AP_OFFLINE] = {
1735 		.name			= "ap:offline",
1736 		.cant_stop		= true,
1737 	},
1738 	/* First state is scheduler control. Interrupts are disabled */
1739 	[CPUHP_AP_SCHED_STARTING] = {
1740 		.name			= "sched:starting",
1741 		.startup.single		= sched_cpu_starting,
1742 		.teardown.single	= sched_cpu_dying,
1743 	},
1744 	[CPUHP_AP_RCUTREE_DYING] = {
1745 		.name			= "RCU/tree:dying",
1746 		.startup.single		= NULL,
1747 		.teardown.single	= rcutree_dying_cpu,
1748 	},
1749 	[CPUHP_AP_SMPCFD_DYING] = {
1750 		.name			= "smpcfd:dying",
1751 		.startup.single		= NULL,
1752 		.teardown.single	= smpcfd_dying_cpu,
1753 	},
1754 	/* Entry state on starting. Interrupts enabled from here on. Transient
1755 	 * state for synchronsization */
1756 	[CPUHP_AP_ONLINE] = {
1757 		.name			= "ap:online",
1758 	},
1759 	/*
1760 	 * Handled on control processor until the plugged processor manages
1761 	 * this itself.
1762 	 */
1763 	[CPUHP_TEARDOWN_CPU] = {
1764 		.name			= "cpu:teardown",
1765 		.startup.single		= NULL,
1766 		.teardown.single	= takedown_cpu,
1767 		.cant_stop		= true,
1768 	},
1769 
1770 	[CPUHP_AP_SCHED_WAIT_EMPTY] = {
1771 		.name			= "sched:waitempty",
1772 		.startup.single		= NULL,
1773 		.teardown.single	= sched_cpu_wait_empty,
1774 	},
1775 
1776 	/* Handle smpboot threads park/unpark */
1777 	[CPUHP_AP_SMPBOOT_THREADS] = {
1778 		.name			= "smpboot/threads:online",
1779 		.startup.single		= smpboot_unpark_threads,
1780 		.teardown.single	= smpboot_park_threads,
1781 	},
1782 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1783 		.name			= "irq/affinity:online",
1784 		.startup.single		= irq_affinity_online_cpu,
1785 		.teardown.single	= NULL,
1786 	},
1787 	[CPUHP_AP_PERF_ONLINE] = {
1788 		.name			= "perf:online",
1789 		.startup.single		= perf_event_init_cpu,
1790 		.teardown.single	= perf_event_exit_cpu,
1791 	},
1792 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1793 		.name			= "lockup_detector:online",
1794 		.startup.single		= lockup_detector_online_cpu,
1795 		.teardown.single	= lockup_detector_offline_cpu,
1796 	},
1797 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1798 		.name			= "workqueue:online",
1799 		.startup.single		= workqueue_online_cpu,
1800 		.teardown.single	= workqueue_offline_cpu,
1801 	},
1802 	[CPUHP_AP_RANDOM_ONLINE] = {
1803 		.name			= "random:online",
1804 		.startup.single		= random_online_cpu,
1805 		.teardown.single	= NULL,
1806 	},
1807 	[CPUHP_AP_RCUTREE_ONLINE] = {
1808 		.name			= "RCU/tree:online",
1809 		.startup.single		= rcutree_online_cpu,
1810 		.teardown.single	= rcutree_offline_cpu,
1811 	},
1812 #endif
1813 	/*
1814 	 * The dynamically registered state space is here
1815 	 */
1816 
1817 #ifdef CONFIG_SMP
1818 	/* Last state is scheduler control setting the cpu active */
1819 	[CPUHP_AP_ACTIVE] = {
1820 		.name			= "sched:active",
1821 		.startup.single		= sched_cpu_activate,
1822 		.teardown.single	= sched_cpu_deactivate,
1823 	},
1824 #endif
1825 
1826 	/* CPU is fully up and running. */
1827 	[CPUHP_ONLINE] = {
1828 		.name			= "online",
1829 		.startup.single		= NULL,
1830 		.teardown.single	= NULL,
1831 	},
1832 };
1833 
1834 /* Sanity check for callbacks */
1835 static int cpuhp_cb_check(enum cpuhp_state state)
1836 {
1837 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1838 		return -EINVAL;
1839 	return 0;
1840 }
1841 
1842 /*
1843  * Returns a free for dynamic slot assignment of the Online state. The states
1844  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1845  * by having no name assigned.
1846  */
1847 static int cpuhp_reserve_state(enum cpuhp_state state)
1848 {
1849 	enum cpuhp_state i, end;
1850 	struct cpuhp_step *step;
1851 
1852 	switch (state) {
1853 	case CPUHP_AP_ONLINE_DYN:
1854 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1855 		end = CPUHP_AP_ONLINE_DYN_END;
1856 		break;
1857 	case CPUHP_BP_PREPARE_DYN:
1858 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1859 		end = CPUHP_BP_PREPARE_DYN_END;
1860 		break;
1861 	default:
1862 		return -EINVAL;
1863 	}
1864 
1865 	for (i = state; i <= end; i++, step++) {
1866 		if (!step->name)
1867 			return i;
1868 	}
1869 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1870 	return -ENOSPC;
1871 }
1872 
1873 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1874 				 int (*startup)(unsigned int cpu),
1875 				 int (*teardown)(unsigned int cpu),
1876 				 bool multi_instance)
1877 {
1878 	/* (Un)Install the callbacks for further cpu hotplug operations */
1879 	struct cpuhp_step *sp;
1880 	int ret = 0;
1881 
1882 	/*
1883 	 * If name is NULL, then the state gets removed.
1884 	 *
1885 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1886 	 * the first allocation from these dynamic ranges, so the removal
1887 	 * would trigger a new allocation and clear the wrong (already
1888 	 * empty) state, leaving the callbacks of the to be cleared state
1889 	 * dangling, which causes wreckage on the next hotplug operation.
1890 	 */
1891 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1892 		     state == CPUHP_BP_PREPARE_DYN)) {
1893 		ret = cpuhp_reserve_state(state);
1894 		if (ret < 0)
1895 			return ret;
1896 		state = ret;
1897 	}
1898 	sp = cpuhp_get_step(state);
1899 	if (name && sp->name)
1900 		return -EBUSY;
1901 
1902 	sp->startup.single = startup;
1903 	sp->teardown.single = teardown;
1904 	sp->name = name;
1905 	sp->multi_instance = multi_instance;
1906 	INIT_HLIST_HEAD(&sp->list);
1907 	return ret;
1908 }
1909 
1910 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1911 {
1912 	return cpuhp_get_step(state)->teardown.single;
1913 }
1914 
1915 /*
1916  * Call the startup/teardown function for a step either on the AP or
1917  * on the current CPU.
1918  */
1919 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1920 			    struct hlist_node *node)
1921 {
1922 	struct cpuhp_step *sp = cpuhp_get_step(state);
1923 	int ret;
1924 
1925 	/*
1926 	 * If there's nothing to do, we done.
1927 	 * Relies on the union for multi_instance.
1928 	 */
1929 	if (cpuhp_step_empty(bringup, sp))
1930 		return 0;
1931 	/*
1932 	 * The non AP bound callbacks can fail on bringup. On teardown
1933 	 * e.g. module removal we crash for now.
1934 	 */
1935 #ifdef CONFIG_SMP
1936 	if (cpuhp_is_ap_state(state))
1937 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1938 	else
1939 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1940 #else
1941 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1942 #endif
1943 	BUG_ON(ret && !bringup);
1944 	return ret;
1945 }
1946 
1947 /*
1948  * Called from __cpuhp_setup_state on a recoverable failure.
1949  *
1950  * Note: The teardown callbacks for rollback are not allowed to fail!
1951  */
1952 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1953 				   struct hlist_node *node)
1954 {
1955 	int cpu;
1956 
1957 	/* Roll back the already executed steps on the other cpus */
1958 	for_each_present_cpu(cpu) {
1959 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1960 		int cpustate = st->state;
1961 
1962 		if (cpu >= failedcpu)
1963 			break;
1964 
1965 		/* Did we invoke the startup call on that cpu ? */
1966 		if (cpustate >= state)
1967 			cpuhp_issue_call(cpu, state, false, node);
1968 	}
1969 }
1970 
1971 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1972 					  struct hlist_node *node,
1973 					  bool invoke)
1974 {
1975 	struct cpuhp_step *sp;
1976 	int cpu;
1977 	int ret;
1978 
1979 	lockdep_assert_cpus_held();
1980 
1981 	sp = cpuhp_get_step(state);
1982 	if (sp->multi_instance == false)
1983 		return -EINVAL;
1984 
1985 	mutex_lock(&cpuhp_state_mutex);
1986 
1987 	if (!invoke || !sp->startup.multi)
1988 		goto add_node;
1989 
1990 	/*
1991 	 * Try to call the startup callback for each present cpu
1992 	 * depending on the hotplug state of the cpu.
1993 	 */
1994 	for_each_present_cpu(cpu) {
1995 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1996 		int cpustate = st->state;
1997 
1998 		if (cpustate < state)
1999 			continue;
2000 
2001 		ret = cpuhp_issue_call(cpu, state, true, node);
2002 		if (ret) {
2003 			if (sp->teardown.multi)
2004 				cpuhp_rollback_install(cpu, state, node);
2005 			goto unlock;
2006 		}
2007 	}
2008 add_node:
2009 	ret = 0;
2010 	hlist_add_head(node, &sp->list);
2011 unlock:
2012 	mutex_unlock(&cpuhp_state_mutex);
2013 	return ret;
2014 }
2015 
2016 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2017 			       bool invoke)
2018 {
2019 	int ret;
2020 
2021 	cpus_read_lock();
2022 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2023 	cpus_read_unlock();
2024 	return ret;
2025 }
2026 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2027 
2028 /**
2029  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2030  * @state:		The state to setup
2031  * @name:		Name of the step
2032  * @invoke:		If true, the startup function is invoked for cpus where
2033  *			cpu state >= @state
2034  * @startup:		startup callback function
2035  * @teardown:		teardown callback function
2036  * @multi_instance:	State is set up for multiple instances which get
2037  *			added afterwards.
2038  *
2039  * The caller needs to hold cpus read locked while calling this function.
2040  * Return:
2041  *   On success:
2042  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2043  *      0 for all other states
2044  *   On failure: proper (negative) error code
2045  */
2046 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2047 				   const char *name, bool invoke,
2048 				   int (*startup)(unsigned int cpu),
2049 				   int (*teardown)(unsigned int cpu),
2050 				   bool multi_instance)
2051 {
2052 	int cpu, ret = 0;
2053 	bool dynstate;
2054 
2055 	lockdep_assert_cpus_held();
2056 
2057 	if (cpuhp_cb_check(state) || !name)
2058 		return -EINVAL;
2059 
2060 	mutex_lock(&cpuhp_state_mutex);
2061 
2062 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
2063 				    multi_instance);
2064 
2065 	dynstate = state == CPUHP_AP_ONLINE_DYN;
2066 	if (ret > 0 && dynstate) {
2067 		state = ret;
2068 		ret = 0;
2069 	}
2070 
2071 	if (ret || !invoke || !startup)
2072 		goto out;
2073 
2074 	/*
2075 	 * Try to call the startup callback for each present cpu
2076 	 * depending on the hotplug state of the cpu.
2077 	 */
2078 	for_each_present_cpu(cpu) {
2079 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2080 		int cpustate = st->state;
2081 
2082 		if (cpustate < state)
2083 			continue;
2084 
2085 		ret = cpuhp_issue_call(cpu, state, true, NULL);
2086 		if (ret) {
2087 			if (teardown)
2088 				cpuhp_rollback_install(cpu, state, NULL);
2089 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2090 			goto out;
2091 		}
2092 	}
2093 out:
2094 	mutex_unlock(&cpuhp_state_mutex);
2095 	/*
2096 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2097 	 * dynamically allocated state in case of success.
2098 	 */
2099 	if (!ret && dynstate)
2100 		return state;
2101 	return ret;
2102 }
2103 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2104 
2105 int __cpuhp_setup_state(enum cpuhp_state state,
2106 			const char *name, bool invoke,
2107 			int (*startup)(unsigned int cpu),
2108 			int (*teardown)(unsigned int cpu),
2109 			bool multi_instance)
2110 {
2111 	int ret;
2112 
2113 	cpus_read_lock();
2114 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2115 					     teardown, multi_instance);
2116 	cpus_read_unlock();
2117 	return ret;
2118 }
2119 EXPORT_SYMBOL(__cpuhp_setup_state);
2120 
2121 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2122 				  struct hlist_node *node, bool invoke)
2123 {
2124 	struct cpuhp_step *sp = cpuhp_get_step(state);
2125 	int cpu;
2126 
2127 	BUG_ON(cpuhp_cb_check(state));
2128 
2129 	if (!sp->multi_instance)
2130 		return -EINVAL;
2131 
2132 	cpus_read_lock();
2133 	mutex_lock(&cpuhp_state_mutex);
2134 
2135 	if (!invoke || !cpuhp_get_teardown_cb(state))
2136 		goto remove;
2137 	/*
2138 	 * Call the teardown callback for each present cpu depending
2139 	 * on the hotplug state of the cpu. This function is not
2140 	 * allowed to fail currently!
2141 	 */
2142 	for_each_present_cpu(cpu) {
2143 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2144 		int cpustate = st->state;
2145 
2146 		if (cpustate >= state)
2147 			cpuhp_issue_call(cpu, state, false, node);
2148 	}
2149 
2150 remove:
2151 	hlist_del(node);
2152 	mutex_unlock(&cpuhp_state_mutex);
2153 	cpus_read_unlock();
2154 
2155 	return 0;
2156 }
2157 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2158 
2159 /**
2160  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2161  * @state:	The state to remove
2162  * @invoke:	If true, the teardown function is invoked for cpus where
2163  *		cpu state >= @state
2164  *
2165  * The caller needs to hold cpus read locked while calling this function.
2166  * The teardown callback is currently not allowed to fail. Think
2167  * about module removal!
2168  */
2169 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2170 {
2171 	struct cpuhp_step *sp = cpuhp_get_step(state);
2172 	int cpu;
2173 
2174 	BUG_ON(cpuhp_cb_check(state));
2175 
2176 	lockdep_assert_cpus_held();
2177 
2178 	mutex_lock(&cpuhp_state_mutex);
2179 	if (sp->multi_instance) {
2180 		WARN(!hlist_empty(&sp->list),
2181 		     "Error: Removing state %d which has instances left.\n",
2182 		     state);
2183 		goto remove;
2184 	}
2185 
2186 	if (!invoke || !cpuhp_get_teardown_cb(state))
2187 		goto remove;
2188 
2189 	/*
2190 	 * Call the teardown callback for each present cpu depending
2191 	 * on the hotplug state of the cpu. This function is not
2192 	 * allowed to fail currently!
2193 	 */
2194 	for_each_present_cpu(cpu) {
2195 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2196 		int cpustate = st->state;
2197 
2198 		if (cpustate >= state)
2199 			cpuhp_issue_call(cpu, state, false, NULL);
2200 	}
2201 remove:
2202 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2203 	mutex_unlock(&cpuhp_state_mutex);
2204 }
2205 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2206 
2207 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2208 {
2209 	cpus_read_lock();
2210 	__cpuhp_remove_state_cpuslocked(state, invoke);
2211 	cpus_read_unlock();
2212 }
2213 EXPORT_SYMBOL(__cpuhp_remove_state);
2214 
2215 #ifdef CONFIG_HOTPLUG_SMT
2216 static void cpuhp_offline_cpu_device(unsigned int cpu)
2217 {
2218 	struct device *dev = get_cpu_device(cpu);
2219 
2220 	dev->offline = true;
2221 	/* Tell user space about the state change */
2222 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2223 }
2224 
2225 static void cpuhp_online_cpu_device(unsigned int cpu)
2226 {
2227 	struct device *dev = get_cpu_device(cpu);
2228 
2229 	dev->offline = false;
2230 	/* Tell user space about the state change */
2231 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2232 }
2233 
2234 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2235 {
2236 	int cpu, ret = 0;
2237 
2238 	cpu_maps_update_begin();
2239 	for_each_online_cpu(cpu) {
2240 		if (topology_is_primary_thread(cpu))
2241 			continue;
2242 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2243 		if (ret)
2244 			break;
2245 		/*
2246 		 * As this needs to hold the cpu maps lock it's impossible
2247 		 * to call device_offline() because that ends up calling
2248 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2249 		 * needs to be held as this might race against in kernel
2250 		 * abusers of the hotplug machinery (thermal management).
2251 		 *
2252 		 * So nothing would update device:offline state. That would
2253 		 * leave the sysfs entry stale and prevent onlining after
2254 		 * smt control has been changed to 'off' again. This is
2255 		 * called under the sysfs hotplug lock, so it is properly
2256 		 * serialized against the regular offline usage.
2257 		 */
2258 		cpuhp_offline_cpu_device(cpu);
2259 	}
2260 	if (!ret)
2261 		cpu_smt_control = ctrlval;
2262 	cpu_maps_update_done();
2263 	return ret;
2264 }
2265 
2266 int cpuhp_smt_enable(void)
2267 {
2268 	int cpu, ret = 0;
2269 
2270 	cpu_maps_update_begin();
2271 	cpu_smt_control = CPU_SMT_ENABLED;
2272 	for_each_present_cpu(cpu) {
2273 		/* Skip online CPUs and CPUs on offline nodes */
2274 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2275 			continue;
2276 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2277 		if (ret)
2278 			break;
2279 		/* See comment in cpuhp_smt_disable() */
2280 		cpuhp_online_cpu_device(cpu);
2281 	}
2282 	cpu_maps_update_done();
2283 	return ret;
2284 }
2285 #endif
2286 
2287 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2288 static ssize_t state_show(struct device *dev,
2289 			  struct device_attribute *attr, char *buf)
2290 {
2291 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2292 
2293 	return sprintf(buf, "%d\n", st->state);
2294 }
2295 static DEVICE_ATTR_RO(state);
2296 
2297 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2298 			    const char *buf, size_t count)
2299 {
2300 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2301 	struct cpuhp_step *sp;
2302 	int target, ret;
2303 
2304 	ret = kstrtoint(buf, 10, &target);
2305 	if (ret)
2306 		return ret;
2307 
2308 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2309 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2310 		return -EINVAL;
2311 #else
2312 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2313 		return -EINVAL;
2314 #endif
2315 
2316 	ret = lock_device_hotplug_sysfs();
2317 	if (ret)
2318 		return ret;
2319 
2320 	mutex_lock(&cpuhp_state_mutex);
2321 	sp = cpuhp_get_step(target);
2322 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2323 	mutex_unlock(&cpuhp_state_mutex);
2324 	if (ret)
2325 		goto out;
2326 
2327 	if (st->state < target)
2328 		ret = cpu_up(dev->id, target);
2329 	else
2330 		ret = cpu_down(dev->id, target);
2331 out:
2332 	unlock_device_hotplug();
2333 	return ret ? ret : count;
2334 }
2335 
2336 static ssize_t target_show(struct device *dev,
2337 			   struct device_attribute *attr, char *buf)
2338 {
2339 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2340 
2341 	return sprintf(buf, "%d\n", st->target);
2342 }
2343 static DEVICE_ATTR_RW(target);
2344 
2345 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2346 			  const char *buf, size_t count)
2347 {
2348 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2349 	struct cpuhp_step *sp;
2350 	int fail, ret;
2351 
2352 	ret = kstrtoint(buf, 10, &fail);
2353 	if (ret)
2354 		return ret;
2355 
2356 	if (fail == CPUHP_INVALID) {
2357 		st->fail = fail;
2358 		return count;
2359 	}
2360 
2361 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2362 		return -EINVAL;
2363 
2364 	/*
2365 	 * Cannot fail STARTING/DYING callbacks.
2366 	 */
2367 	if (cpuhp_is_atomic_state(fail))
2368 		return -EINVAL;
2369 
2370 	/*
2371 	 * DEAD callbacks cannot fail...
2372 	 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2373 	 * triggering STARTING callbacks, a failure in this state would
2374 	 * hinder rollback.
2375 	 */
2376 	if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2377 		return -EINVAL;
2378 
2379 	/*
2380 	 * Cannot fail anything that doesn't have callbacks.
2381 	 */
2382 	mutex_lock(&cpuhp_state_mutex);
2383 	sp = cpuhp_get_step(fail);
2384 	if (!sp->startup.single && !sp->teardown.single)
2385 		ret = -EINVAL;
2386 	mutex_unlock(&cpuhp_state_mutex);
2387 	if (ret)
2388 		return ret;
2389 
2390 	st->fail = fail;
2391 
2392 	return count;
2393 }
2394 
2395 static ssize_t fail_show(struct device *dev,
2396 			 struct device_attribute *attr, char *buf)
2397 {
2398 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2399 
2400 	return sprintf(buf, "%d\n", st->fail);
2401 }
2402 
2403 static DEVICE_ATTR_RW(fail);
2404 
2405 static struct attribute *cpuhp_cpu_attrs[] = {
2406 	&dev_attr_state.attr,
2407 	&dev_attr_target.attr,
2408 	&dev_attr_fail.attr,
2409 	NULL
2410 };
2411 
2412 static const struct attribute_group cpuhp_cpu_attr_group = {
2413 	.attrs = cpuhp_cpu_attrs,
2414 	.name = "hotplug",
2415 	NULL
2416 };
2417 
2418 static ssize_t states_show(struct device *dev,
2419 				 struct device_attribute *attr, char *buf)
2420 {
2421 	ssize_t cur, res = 0;
2422 	int i;
2423 
2424 	mutex_lock(&cpuhp_state_mutex);
2425 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2426 		struct cpuhp_step *sp = cpuhp_get_step(i);
2427 
2428 		if (sp->name) {
2429 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2430 			buf += cur;
2431 			res += cur;
2432 		}
2433 	}
2434 	mutex_unlock(&cpuhp_state_mutex);
2435 	return res;
2436 }
2437 static DEVICE_ATTR_RO(states);
2438 
2439 static struct attribute *cpuhp_cpu_root_attrs[] = {
2440 	&dev_attr_states.attr,
2441 	NULL
2442 };
2443 
2444 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2445 	.attrs = cpuhp_cpu_root_attrs,
2446 	.name = "hotplug",
2447 	NULL
2448 };
2449 
2450 #ifdef CONFIG_HOTPLUG_SMT
2451 
2452 static ssize_t
2453 __store_smt_control(struct device *dev, struct device_attribute *attr,
2454 		    const char *buf, size_t count)
2455 {
2456 	int ctrlval, ret;
2457 
2458 	if (sysfs_streq(buf, "on"))
2459 		ctrlval = CPU_SMT_ENABLED;
2460 	else if (sysfs_streq(buf, "off"))
2461 		ctrlval = CPU_SMT_DISABLED;
2462 	else if (sysfs_streq(buf, "forceoff"))
2463 		ctrlval = CPU_SMT_FORCE_DISABLED;
2464 	else
2465 		return -EINVAL;
2466 
2467 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2468 		return -EPERM;
2469 
2470 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2471 		return -ENODEV;
2472 
2473 	ret = lock_device_hotplug_sysfs();
2474 	if (ret)
2475 		return ret;
2476 
2477 	if (ctrlval != cpu_smt_control) {
2478 		switch (ctrlval) {
2479 		case CPU_SMT_ENABLED:
2480 			ret = cpuhp_smt_enable();
2481 			break;
2482 		case CPU_SMT_DISABLED:
2483 		case CPU_SMT_FORCE_DISABLED:
2484 			ret = cpuhp_smt_disable(ctrlval);
2485 			break;
2486 		}
2487 	}
2488 
2489 	unlock_device_hotplug();
2490 	return ret ? ret : count;
2491 }
2492 
2493 #else /* !CONFIG_HOTPLUG_SMT */
2494 static ssize_t
2495 __store_smt_control(struct device *dev, struct device_attribute *attr,
2496 		    const char *buf, size_t count)
2497 {
2498 	return -ENODEV;
2499 }
2500 #endif /* CONFIG_HOTPLUG_SMT */
2501 
2502 static const char *smt_states[] = {
2503 	[CPU_SMT_ENABLED]		= "on",
2504 	[CPU_SMT_DISABLED]		= "off",
2505 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2506 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2507 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2508 };
2509 
2510 static ssize_t control_show(struct device *dev,
2511 			    struct device_attribute *attr, char *buf)
2512 {
2513 	const char *state = smt_states[cpu_smt_control];
2514 
2515 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2516 }
2517 
2518 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2519 			     const char *buf, size_t count)
2520 {
2521 	return __store_smt_control(dev, attr, buf, count);
2522 }
2523 static DEVICE_ATTR_RW(control);
2524 
2525 static ssize_t active_show(struct device *dev,
2526 			   struct device_attribute *attr, char *buf)
2527 {
2528 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2529 }
2530 static DEVICE_ATTR_RO(active);
2531 
2532 static struct attribute *cpuhp_smt_attrs[] = {
2533 	&dev_attr_control.attr,
2534 	&dev_attr_active.attr,
2535 	NULL
2536 };
2537 
2538 static const struct attribute_group cpuhp_smt_attr_group = {
2539 	.attrs = cpuhp_smt_attrs,
2540 	.name = "smt",
2541 	NULL
2542 };
2543 
2544 static int __init cpu_smt_sysfs_init(void)
2545 {
2546 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2547 				  &cpuhp_smt_attr_group);
2548 }
2549 
2550 static int __init cpuhp_sysfs_init(void)
2551 {
2552 	int cpu, ret;
2553 
2554 	ret = cpu_smt_sysfs_init();
2555 	if (ret)
2556 		return ret;
2557 
2558 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2559 				 &cpuhp_cpu_root_attr_group);
2560 	if (ret)
2561 		return ret;
2562 
2563 	for_each_possible_cpu(cpu) {
2564 		struct device *dev = get_cpu_device(cpu);
2565 
2566 		if (!dev)
2567 			continue;
2568 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2569 		if (ret)
2570 			return ret;
2571 	}
2572 	return 0;
2573 }
2574 device_initcall(cpuhp_sysfs_init);
2575 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2576 
2577 /*
2578  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2579  * represents all NR_CPUS bits binary values of 1<<nr.
2580  *
2581  * It is used by cpumask_of() to get a constant address to a CPU
2582  * mask value that has a single bit set only.
2583  */
2584 
2585 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2586 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2587 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2588 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2589 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2590 
2591 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2592 
2593 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2594 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2595 #if BITS_PER_LONG > 32
2596 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2597 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2598 #endif
2599 };
2600 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2601 
2602 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2603 EXPORT_SYMBOL(cpu_all_bits);
2604 
2605 #ifdef CONFIG_INIT_ALL_POSSIBLE
2606 struct cpumask __cpu_possible_mask __read_mostly
2607 	= {CPU_BITS_ALL};
2608 #else
2609 struct cpumask __cpu_possible_mask __read_mostly;
2610 #endif
2611 EXPORT_SYMBOL(__cpu_possible_mask);
2612 
2613 struct cpumask __cpu_online_mask __read_mostly;
2614 EXPORT_SYMBOL(__cpu_online_mask);
2615 
2616 struct cpumask __cpu_present_mask __read_mostly;
2617 EXPORT_SYMBOL(__cpu_present_mask);
2618 
2619 struct cpumask __cpu_active_mask __read_mostly;
2620 EXPORT_SYMBOL(__cpu_active_mask);
2621 
2622 struct cpumask __cpu_dying_mask __read_mostly;
2623 EXPORT_SYMBOL(__cpu_dying_mask);
2624 
2625 atomic_t __num_online_cpus __read_mostly;
2626 EXPORT_SYMBOL(__num_online_cpus);
2627 
2628 void init_cpu_present(const struct cpumask *src)
2629 {
2630 	cpumask_copy(&__cpu_present_mask, src);
2631 }
2632 
2633 void init_cpu_possible(const struct cpumask *src)
2634 {
2635 	cpumask_copy(&__cpu_possible_mask, src);
2636 }
2637 
2638 void init_cpu_online(const struct cpumask *src)
2639 {
2640 	cpumask_copy(&__cpu_online_mask, src);
2641 }
2642 
2643 void set_cpu_online(unsigned int cpu, bool online)
2644 {
2645 	/*
2646 	 * atomic_inc/dec() is required to handle the horrid abuse of this
2647 	 * function by the reboot and kexec code which invoke it from
2648 	 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2649 	 * regular CPU hotplug is properly serialized.
2650 	 *
2651 	 * Note, that the fact that __num_online_cpus is of type atomic_t
2652 	 * does not protect readers which are not serialized against
2653 	 * concurrent hotplug operations.
2654 	 */
2655 	if (online) {
2656 		if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2657 			atomic_inc(&__num_online_cpus);
2658 	} else {
2659 		if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2660 			atomic_dec(&__num_online_cpus);
2661 	}
2662 }
2663 
2664 /*
2665  * Activate the first processor.
2666  */
2667 void __init boot_cpu_init(void)
2668 {
2669 	int cpu = smp_processor_id();
2670 
2671 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2672 	set_cpu_online(cpu, true);
2673 	set_cpu_active(cpu, true);
2674 	set_cpu_present(cpu, true);
2675 	set_cpu_possible(cpu, true);
2676 
2677 #ifdef CONFIG_SMP
2678 	__boot_cpu_id = cpu;
2679 #endif
2680 }
2681 
2682 /*
2683  * Must be called _AFTER_ setting up the per_cpu areas
2684  */
2685 void __init boot_cpu_hotplug_init(void)
2686 {
2687 #ifdef CONFIG_SMP
2688 	cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2689 #endif
2690 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2691 }
2692 
2693 /*
2694  * These are used for a global "mitigations=" cmdline option for toggling
2695  * optional CPU mitigations.
2696  */
2697 enum cpu_mitigations {
2698 	CPU_MITIGATIONS_OFF,
2699 	CPU_MITIGATIONS_AUTO,
2700 	CPU_MITIGATIONS_AUTO_NOSMT,
2701 };
2702 
2703 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2704 	CPU_MITIGATIONS_AUTO;
2705 
2706 static int __init mitigations_parse_cmdline(char *arg)
2707 {
2708 	if (!strcmp(arg, "off"))
2709 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2710 	else if (!strcmp(arg, "auto"))
2711 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2712 	else if (!strcmp(arg, "auto,nosmt"))
2713 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2714 	else
2715 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2716 			arg);
2717 
2718 	return 0;
2719 }
2720 early_param("mitigations", mitigations_parse_cmdline);
2721 
2722 /* mitigations=off */
2723 bool cpu_mitigations_off(void)
2724 {
2725 	return cpu_mitigations == CPU_MITIGATIONS_OFF;
2726 }
2727 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2728 
2729 /* mitigations=auto,nosmt */
2730 bool cpu_mitigations_auto_nosmt(void)
2731 {
2732 	return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2733 }
2734 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2735