xref: /openbmc/linux/kernel/cpu.c (revision b34e08d5)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22 #include <linux/lockdep.h>
23 
24 #include "smpboot.h"
25 
26 #ifdef CONFIG_SMP
27 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
28 static DEFINE_MUTEX(cpu_add_remove_lock);
29 
30 /*
31  * The following two APIs (cpu_maps_update_begin/done) must be used when
32  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
33  * The APIs cpu_notifier_register_begin/done() must be used to protect CPU
34  * hotplug callback (un)registration performed using __register_cpu_notifier()
35  * or __unregister_cpu_notifier().
36  */
37 void cpu_maps_update_begin(void)
38 {
39 	mutex_lock(&cpu_add_remove_lock);
40 }
41 EXPORT_SYMBOL(cpu_notifier_register_begin);
42 
43 void cpu_maps_update_done(void)
44 {
45 	mutex_unlock(&cpu_add_remove_lock);
46 }
47 EXPORT_SYMBOL(cpu_notifier_register_done);
48 
49 static RAW_NOTIFIER_HEAD(cpu_chain);
50 
51 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
52  * Should always be manipulated under cpu_add_remove_lock
53  */
54 static int cpu_hotplug_disabled;
55 
56 #ifdef CONFIG_HOTPLUG_CPU
57 
58 static struct {
59 	struct task_struct *active_writer;
60 	struct mutex lock; /* Synchronizes accesses to refcount, */
61 	/*
62 	 * Also blocks the new readers during
63 	 * an ongoing cpu hotplug operation.
64 	 */
65 	int refcount;
66 
67 #ifdef CONFIG_DEBUG_LOCK_ALLOC
68 	struct lockdep_map dep_map;
69 #endif
70 } cpu_hotplug = {
71 	.active_writer = NULL,
72 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
73 	.refcount = 0,
74 #ifdef CONFIG_DEBUG_LOCK_ALLOC
75 	.dep_map = {.name = "cpu_hotplug.lock" },
76 #endif
77 };
78 
79 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
80 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
81 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
82 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
83 
84 void get_online_cpus(void)
85 {
86 	might_sleep();
87 	if (cpu_hotplug.active_writer == current)
88 		return;
89 	cpuhp_lock_acquire_read();
90 	mutex_lock(&cpu_hotplug.lock);
91 	cpu_hotplug.refcount++;
92 	mutex_unlock(&cpu_hotplug.lock);
93 
94 }
95 EXPORT_SYMBOL_GPL(get_online_cpus);
96 
97 void put_online_cpus(void)
98 {
99 	if (cpu_hotplug.active_writer == current)
100 		return;
101 	mutex_lock(&cpu_hotplug.lock);
102 
103 	if (WARN_ON(!cpu_hotplug.refcount))
104 		cpu_hotplug.refcount++; /* try to fix things up */
105 
106 	if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
107 		wake_up_process(cpu_hotplug.active_writer);
108 	mutex_unlock(&cpu_hotplug.lock);
109 	cpuhp_lock_release();
110 
111 }
112 EXPORT_SYMBOL_GPL(put_online_cpus);
113 
114 /*
115  * This ensures that the hotplug operation can begin only when the
116  * refcount goes to zero.
117  *
118  * Note that during a cpu-hotplug operation, the new readers, if any,
119  * will be blocked by the cpu_hotplug.lock
120  *
121  * Since cpu_hotplug_begin() is always called after invoking
122  * cpu_maps_update_begin(), we can be sure that only one writer is active.
123  *
124  * Note that theoretically, there is a possibility of a livelock:
125  * - Refcount goes to zero, last reader wakes up the sleeping
126  *   writer.
127  * - Last reader unlocks the cpu_hotplug.lock.
128  * - A new reader arrives at this moment, bumps up the refcount.
129  * - The writer acquires the cpu_hotplug.lock finds the refcount
130  *   non zero and goes to sleep again.
131  *
132  * However, this is very difficult to achieve in practice since
133  * get_online_cpus() not an api which is called all that often.
134  *
135  */
136 void cpu_hotplug_begin(void)
137 {
138 	cpu_hotplug.active_writer = current;
139 
140 	cpuhp_lock_acquire();
141 	for (;;) {
142 		mutex_lock(&cpu_hotplug.lock);
143 		if (likely(!cpu_hotplug.refcount))
144 			break;
145 		__set_current_state(TASK_UNINTERRUPTIBLE);
146 		mutex_unlock(&cpu_hotplug.lock);
147 		schedule();
148 	}
149 }
150 
151 void cpu_hotplug_done(void)
152 {
153 	cpu_hotplug.active_writer = NULL;
154 	mutex_unlock(&cpu_hotplug.lock);
155 	cpuhp_lock_release();
156 }
157 
158 /*
159  * Wait for currently running CPU hotplug operations to complete (if any) and
160  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
161  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
162  * hotplug path before performing hotplug operations. So acquiring that lock
163  * guarantees mutual exclusion from any currently running hotplug operations.
164  */
165 void cpu_hotplug_disable(void)
166 {
167 	cpu_maps_update_begin();
168 	cpu_hotplug_disabled = 1;
169 	cpu_maps_update_done();
170 }
171 
172 void cpu_hotplug_enable(void)
173 {
174 	cpu_maps_update_begin();
175 	cpu_hotplug_disabled = 0;
176 	cpu_maps_update_done();
177 }
178 
179 #endif	/* CONFIG_HOTPLUG_CPU */
180 
181 /* Need to know about CPUs going up/down? */
182 int __ref register_cpu_notifier(struct notifier_block *nb)
183 {
184 	int ret;
185 	cpu_maps_update_begin();
186 	ret = raw_notifier_chain_register(&cpu_chain, nb);
187 	cpu_maps_update_done();
188 	return ret;
189 }
190 
191 int __ref __register_cpu_notifier(struct notifier_block *nb)
192 {
193 	return raw_notifier_chain_register(&cpu_chain, nb);
194 }
195 
196 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
197 			int *nr_calls)
198 {
199 	int ret;
200 
201 	ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
202 					nr_calls);
203 
204 	return notifier_to_errno(ret);
205 }
206 
207 static int cpu_notify(unsigned long val, void *v)
208 {
209 	return __cpu_notify(val, v, -1, NULL);
210 }
211 
212 #ifdef CONFIG_HOTPLUG_CPU
213 
214 static void cpu_notify_nofail(unsigned long val, void *v)
215 {
216 	BUG_ON(cpu_notify(val, v));
217 }
218 EXPORT_SYMBOL(register_cpu_notifier);
219 EXPORT_SYMBOL(__register_cpu_notifier);
220 
221 void __ref unregister_cpu_notifier(struct notifier_block *nb)
222 {
223 	cpu_maps_update_begin();
224 	raw_notifier_chain_unregister(&cpu_chain, nb);
225 	cpu_maps_update_done();
226 }
227 EXPORT_SYMBOL(unregister_cpu_notifier);
228 
229 void __ref __unregister_cpu_notifier(struct notifier_block *nb)
230 {
231 	raw_notifier_chain_unregister(&cpu_chain, nb);
232 }
233 EXPORT_SYMBOL(__unregister_cpu_notifier);
234 
235 /**
236  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
237  * @cpu: a CPU id
238  *
239  * This function walks all processes, finds a valid mm struct for each one and
240  * then clears a corresponding bit in mm's cpumask.  While this all sounds
241  * trivial, there are various non-obvious corner cases, which this function
242  * tries to solve in a safe manner.
243  *
244  * Also note that the function uses a somewhat relaxed locking scheme, so it may
245  * be called only for an already offlined CPU.
246  */
247 void clear_tasks_mm_cpumask(int cpu)
248 {
249 	struct task_struct *p;
250 
251 	/*
252 	 * This function is called after the cpu is taken down and marked
253 	 * offline, so its not like new tasks will ever get this cpu set in
254 	 * their mm mask. -- Peter Zijlstra
255 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
256 	 * full-fledged tasklist_lock.
257 	 */
258 	WARN_ON(cpu_online(cpu));
259 	rcu_read_lock();
260 	for_each_process(p) {
261 		struct task_struct *t;
262 
263 		/*
264 		 * Main thread might exit, but other threads may still have
265 		 * a valid mm. Find one.
266 		 */
267 		t = find_lock_task_mm(p);
268 		if (!t)
269 			continue;
270 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
271 		task_unlock(t);
272 	}
273 	rcu_read_unlock();
274 }
275 
276 static inline void check_for_tasks(int cpu)
277 {
278 	struct task_struct *p;
279 	cputime_t utime, stime;
280 
281 	write_lock_irq(&tasklist_lock);
282 	for_each_process(p) {
283 		task_cputime(p, &utime, &stime);
284 		if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
285 		    (utime || stime))
286 			printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
287 				"(state = %ld, flags = %x)\n",
288 				p->comm, task_pid_nr(p), cpu,
289 				p->state, p->flags);
290 	}
291 	write_unlock_irq(&tasklist_lock);
292 }
293 
294 struct take_cpu_down_param {
295 	unsigned long mod;
296 	void *hcpu;
297 };
298 
299 /* Take this CPU down. */
300 static int __ref take_cpu_down(void *_param)
301 {
302 	struct take_cpu_down_param *param = _param;
303 	int err;
304 
305 	/* Ensure this CPU doesn't handle any more interrupts. */
306 	err = __cpu_disable();
307 	if (err < 0)
308 		return err;
309 
310 	cpu_notify(CPU_DYING | param->mod, param->hcpu);
311 	/* Park the stopper thread */
312 	kthread_park(current);
313 	return 0;
314 }
315 
316 /* Requires cpu_add_remove_lock to be held */
317 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
318 {
319 	int err, nr_calls = 0;
320 	void *hcpu = (void *)(long)cpu;
321 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
322 	struct take_cpu_down_param tcd_param = {
323 		.mod = mod,
324 		.hcpu = hcpu,
325 	};
326 
327 	if (num_online_cpus() == 1)
328 		return -EBUSY;
329 
330 	if (!cpu_online(cpu))
331 		return -EINVAL;
332 
333 	cpu_hotplug_begin();
334 
335 	err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
336 	if (err) {
337 		nr_calls--;
338 		__cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
339 		printk("%s: attempt to take down CPU %u failed\n",
340 				__func__, cpu);
341 		goto out_release;
342 	}
343 
344 	/*
345 	 * By now we've cleared cpu_active_mask, wait for all preempt-disabled
346 	 * and RCU users of this state to go away such that all new such users
347 	 * will observe it.
348 	 *
349 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
350 	 * not imply sync_sched(), so explicitly call both.
351 	 *
352 	 * Do sync before park smpboot threads to take care the rcu boost case.
353 	 */
354 #ifdef CONFIG_PREEMPT
355 	synchronize_sched();
356 #endif
357 	synchronize_rcu();
358 
359 	smpboot_park_threads(cpu);
360 
361 	/*
362 	 * So now all preempt/rcu users must observe !cpu_active().
363 	 */
364 
365 	err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
366 	if (err) {
367 		/* CPU didn't die: tell everyone.  Can't complain. */
368 		smpboot_unpark_threads(cpu);
369 		cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
370 		goto out_release;
371 	}
372 	BUG_ON(cpu_online(cpu));
373 
374 	/*
375 	 * The migration_call() CPU_DYING callback will have removed all
376 	 * runnable tasks from the cpu, there's only the idle task left now
377 	 * that the migration thread is done doing the stop_machine thing.
378 	 *
379 	 * Wait for the stop thread to go away.
380 	 */
381 	while (!idle_cpu(cpu))
382 		cpu_relax();
383 
384 	/* This actually kills the CPU. */
385 	__cpu_die(cpu);
386 
387 	/* CPU is completely dead: tell everyone.  Too late to complain. */
388 	cpu_notify_nofail(CPU_DEAD | mod, hcpu);
389 
390 	check_for_tasks(cpu);
391 
392 out_release:
393 	cpu_hotplug_done();
394 	if (!err)
395 		cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
396 	return err;
397 }
398 
399 int __ref cpu_down(unsigned int cpu)
400 {
401 	int err;
402 
403 	cpu_maps_update_begin();
404 
405 	if (cpu_hotplug_disabled) {
406 		err = -EBUSY;
407 		goto out;
408 	}
409 
410 	err = _cpu_down(cpu, 0);
411 
412 out:
413 	cpu_maps_update_done();
414 	return err;
415 }
416 EXPORT_SYMBOL(cpu_down);
417 #endif /*CONFIG_HOTPLUG_CPU*/
418 
419 /* Requires cpu_add_remove_lock to be held */
420 static int _cpu_up(unsigned int cpu, int tasks_frozen)
421 {
422 	int ret, nr_calls = 0;
423 	void *hcpu = (void *)(long)cpu;
424 	unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
425 	struct task_struct *idle;
426 
427 	cpu_hotplug_begin();
428 
429 	if (cpu_online(cpu) || !cpu_present(cpu)) {
430 		ret = -EINVAL;
431 		goto out;
432 	}
433 
434 	idle = idle_thread_get(cpu);
435 	if (IS_ERR(idle)) {
436 		ret = PTR_ERR(idle);
437 		goto out;
438 	}
439 
440 	ret = smpboot_create_threads(cpu);
441 	if (ret)
442 		goto out;
443 
444 	ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
445 	if (ret) {
446 		nr_calls--;
447 		printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
448 				__func__, cpu);
449 		goto out_notify;
450 	}
451 
452 	/* Arch-specific enabling code. */
453 	ret = __cpu_up(cpu, idle);
454 	if (ret != 0)
455 		goto out_notify;
456 	BUG_ON(!cpu_online(cpu));
457 
458 	/* Wake the per cpu threads */
459 	smpboot_unpark_threads(cpu);
460 
461 	/* Now call notifier in preparation. */
462 	cpu_notify(CPU_ONLINE | mod, hcpu);
463 
464 out_notify:
465 	if (ret != 0)
466 		__cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
467 out:
468 	cpu_hotplug_done();
469 
470 	return ret;
471 }
472 
473 int cpu_up(unsigned int cpu)
474 {
475 	int err = 0;
476 
477 	if (!cpu_possible(cpu)) {
478 		printk(KERN_ERR "can't online cpu %d because it is not "
479 			"configured as may-hotadd at boot time\n", cpu);
480 #if defined(CONFIG_IA64)
481 		printk(KERN_ERR "please check additional_cpus= boot "
482 				"parameter\n");
483 #endif
484 		return -EINVAL;
485 	}
486 
487 	err = try_online_node(cpu_to_node(cpu));
488 	if (err)
489 		return err;
490 
491 	cpu_maps_update_begin();
492 
493 	if (cpu_hotplug_disabled) {
494 		err = -EBUSY;
495 		goto out;
496 	}
497 
498 	err = _cpu_up(cpu, 0);
499 
500 out:
501 	cpu_maps_update_done();
502 	return err;
503 }
504 EXPORT_SYMBOL_GPL(cpu_up);
505 
506 #ifdef CONFIG_PM_SLEEP_SMP
507 static cpumask_var_t frozen_cpus;
508 
509 int disable_nonboot_cpus(void)
510 {
511 	int cpu, first_cpu, error = 0;
512 
513 	cpu_maps_update_begin();
514 	first_cpu = cpumask_first(cpu_online_mask);
515 	/*
516 	 * We take down all of the non-boot CPUs in one shot to avoid races
517 	 * with the userspace trying to use the CPU hotplug at the same time
518 	 */
519 	cpumask_clear(frozen_cpus);
520 
521 	printk("Disabling non-boot CPUs ...\n");
522 	for_each_online_cpu(cpu) {
523 		if (cpu == first_cpu)
524 			continue;
525 		error = _cpu_down(cpu, 1);
526 		if (!error)
527 			cpumask_set_cpu(cpu, frozen_cpus);
528 		else {
529 			printk(KERN_ERR "Error taking CPU%d down: %d\n",
530 				cpu, error);
531 			break;
532 		}
533 	}
534 
535 	if (!error) {
536 		BUG_ON(num_online_cpus() > 1);
537 		/* Make sure the CPUs won't be enabled by someone else */
538 		cpu_hotplug_disabled = 1;
539 	} else {
540 		printk(KERN_ERR "Non-boot CPUs are not disabled\n");
541 	}
542 	cpu_maps_update_done();
543 	return error;
544 }
545 
546 void __weak arch_enable_nonboot_cpus_begin(void)
547 {
548 }
549 
550 void __weak arch_enable_nonboot_cpus_end(void)
551 {
552 }
553 
554 void __ref enable_nonboot_cpus(void)
555 {
556 	int cpu, error;
557 
558 	/* Allow everyone to use the CPU hotplug again */
559 	cpu_maps_update_begin();
560 	cpu_hotplug_disabled = 0;
561 	if (cpumask_empty(frozen_cpus))
562 		goto out;
563 
564 	printk(KERN_INFO "Enabling non-boot CPUs ...\n");
565 
566 	arch_enable_nonboot_cpus_begin();
567 
568 	for_each_cpu(cpu, frozen_cpus) {
569 		error = _cpu_up(cpu, 1);
570 		if (!error) {
571 			printk(KERN_INFO "CPU%d is up\n", cpu);
572 			continue;
573 		}
574 		printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
575 	}
576 
577 	arch_enable_nonboot_cpus_end();
578 
579 	cpumask_clear(frozen_cpus);
580 out:
581 	cpu_maps_update_done();
582 }
583 
584 static int __init alloc_frozen_cpus(void)
585 {
586 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
587 		return -ENOMEM;
588 	return 0;
589 }
590 core_initcall(alloc_frozen_cpus);
591 
592 /*
593  * When callbacks for CPU hotplug notifications are being executed, we must
594  * ensure that the state of the system with respect to the tasks being frozen
595  * or not, as reported by the notification, remains unchanged *throughout the
596  * duration* of the execution of the callbacks.
597  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
598  *
599  * This synchronization is implemented by mutually excluding regular CPU
600  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
601  * Hibernate notifications.
602  */
603 static int
604 cpu_hotplug_pm_callback(struct notifier_block *nb,
605 			unsigned long action, void *ptr)
606 {
607 	switch (action) {
608 
609 	case PM_SUSPEND_PREPARE:
610 	case PM_HIBERNATION_PREPARE:
611 		cpu_hotplug_disable();
612 		break;
613 
614 	case PM_POST_SUSPEND:
615 	case PM_POST_HIBERNATION:
616 		cpu_hotplug_enable();
617 		break;
618 
619 	default:
620 		return NOTIFY_DONE;
621 	}
622 
623 	return NOTIFY_OK;
624 }
625 
626 
627 static int __init cpu_hotplug_pm_sync_init(void)
628 {
629 	/*
630 	 * cpu_hotplug_pm_callback has higher priority than x86
631 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
632 	 * to disable cpu hotplug to avoid cpu hotplug race.
633 	 */
634 	pm_notifier(cpu_hotplug_pm_callback, 0);
635 	return 0;
636 }
637 core_initcall(cpu_hotplug_pm_sync_init);
638 
639 #endif /* CONFIG_PM_SLEEP_SMP */
640 
641 /**
642  * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
643  * @cpu: cpu that just started
644  *
645  * This function calls the cpu_chain notifiers with CPU_STARTING.
646  * It must be called by the arch code on the new cpu, before the new cpu
647  * enables interrupts and before the "boot" cpu returns from __cpu_up().
648  */
649 void notify_cpu_starting(unsigned int cpu)
650 {
651 	unsigned long val = CPU_STARTING;
652 
653 #ifdef CONFIG_PM_SLEEP_SMP
654 	if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
655 		val = CPU_STARTING_FROZEN;
656 #endif /* CONFIG_PM_SLEEP_SMP */
657 	cpu_notify(val, (void *)(long)cpu);
658 }
659 
660 #endif /* CONFIG_SMP */
661 
662 /*
663  * cpu_bit_bitmap[] is a special, "compressed" data structure that
664  * represents all NR_CPUS bits binary values of 1<<nr.
665  *
666  * It is used by cpumask_of() to get a constant address to a CPU
667  * mask value that has a single bit set only.
668  */
669 
670 /* cpu_bit_bitmap[0] is empty - so we can back into it */
671 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
672 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
673 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
674 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
675 
676 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
677 
678 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
679 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
680 #if BITS_PER_LONG > 32
681 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
682 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
683 #endif
684 };
685 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
686 
687 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
688 EXPORT_SYMBOL(cpu_all_bits);
689 
690 #ifdef CONFIG_INIT_ALL_POSSIBLE
691 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
692 	= CPU_BITS_ALL;
693 #else
694 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
695 #endif
696 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
697 EXPORT_SYMBOL(cpu_possible_mask);
698 
699 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
700 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
701 EXPORT_SYMBOL(cpu_online_mask);
702 
703 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
704 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
705 EXPORT_SYMBOL(cpu_present_mask);
706 
707 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
708 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
709 EXPORT_SYMBOL(cpu_active_mask);
710 
711 void set_cpu_possible(unsigned int cpu, bool possible)
712 {
713 	if (possible)
714 		cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
715 	else
716 		cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
717 }
718 
719 void set_cpu_present(unsigned int cpu, bool present)
720 {
721 	if (present)
722 		cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
723 	else
724 		cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
725 }
726 
727 void set_cpu_online(unsigned int cpu, bool online)
728 {
729 	if (online)
730 		cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
731 	else
732 		cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
733 }
734 
735 void set_cpu_active(unsigned int cpu, bool active)
736 {
737 	if (active)
738 		cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
739 	else
740 		cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
741 }
742 
743 void init_cpu_present(const struct cpumask *src)
744 {
745 	cpumask_copy(to_cpumask(cpu_present_bits), src);
746 }
747 
748 void init_cpu_possible(const struct cpumask *src)
749 {
750 	cpumask_copy(to_cpumask(cpu_possible_bits), src);
751 }
752 
753 void init_cpu_online(const struct cpumask *src)
754 {
755 	cpumask_copy(to_cpumask(cpu_online_bits), src);
756 }
757