1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/delay.h> 21 #include <linux/export.h> 22 #include <linux/bug.h> 23 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 26 #include <linux/gfp.h> 27 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 29 #include <linux/tick.h> 30 #include <linux/irq.h> 31 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 33 #include <linux/relay.h> 34 #include <linux/slab.h> 35 #include <linux/scs.h> 36 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> 38 #include <linux/random.h> 39 #include <linux/cc_platform.h> 40 41 #include <trace/events/power.h> 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/cpuhp.h> 44 45 #include "smpboot.h" 46 47 /** 48 * struct cpuhp_cpu_state - Per cpu hotplug state storage 49 * @state: The current cpu state 50 * @target: The target state 51 * @fail: Current CPU hotplug callback state 52 * @thread: Pointer to the hotplug thread 53 * @should_run: Thread should execute 54 * @rollback: Perform a rollback 55 * @single: Single callback invocation 56 * @bringup: Single callback bringup or teardown selector 57 * @cpu: CPU number 58 * @node: Remote CPU node; for multi-instance, do a 59 * single entry callback for install/remove 60 * @last: For multi-instance rollback, remember how far we got 61 * @cb_state: The state for a single callback (install/uninstall) 62 * @result: Result of the operation 63 * @ap_sync_state: State for AP synchronization 64 * @done_up: Signal completion to the issuer of the task for cpu-up 65 * @done_down: Signal completion to the issuer of the task for cpu-down 66 */ 67 struct cpuhp_cpu_state { 68 enum cpuhp_state state; 69 enum cpuhp_state target; 70 enum cpuhp_state fail; 71 #ifdef CONFIG_SMP 72 struct task_struct *thread; 73 bool should_run; 74 bool rollback; 75 bool single; 76 bool bringup; 77 struct hlist_node *node; 78 struct hlist_node *last; 79 enum cpuhp_state cb_state; 80 int result; 81 atomic_t ap_sync_state; 82 struct completion done_up; 83 struct completion done_down; 84 #endif 85 }; 86 87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 88 .fail = CPUHP_INVALID, 89 }; 90 91 #ifdef CONFIG_SMP 92 cpumask_t cpus_booted_once_mask; 93 #endif 94 95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 96 static struct lockdep_map cpuhp_state_up_map = 97 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 98 static struct lockdep_map cpuhp_state_down_map = 99 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 100 101 102 static inline void cpuhp_lock_acquire(bool bringup) 103 { 104 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 105 } 106 107 static inline void cpuhp_lock_release(bool bringup) 108 { 109 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 110 } 111 #else 112 113 static inline void cpuhp_lock_acquire(bool bringup) { } 114 static inline void cpuhp_lock_release(bool bringup) { } 115 116 #endif 117 118 /** 119 * struct cpuhp_step - Hotplug state machine step 120 * @name: Name of the step 121 * @startup: Startup function of the step 122 * @teardown: Teardown function of the step 123 * @cant_stop: Bringup/teardown can't be stopped at this step 124 * @multi_instance: State has multiple instances which get added afterwards 125 */ 126 struct cpuhp_step { 127 const char *name; 128 union { 129 int (*single)(unsigned int cpu); 130 int (*multi)(unsigned int cpu, 131 struct hlist_node *node); 132 } startup; 133 union { 134 int (*single)(unsigned int cpu); 135 int (*multi)(unsigned int cpu, 136 struct hlist_node *node); 137 } teardown; 138 /* private: */ 139 struct hlist_head list; 140 /* public: */ 141 bool cant_stop; 142 bool multi_instance; 143 }; 144 145 static DEFINE_MUTEX(cpuhp_state_mutex); 146 static struct cpuhp_step cpuhp_hp_states[]; 147 148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 149 { 150 return cpuhp_hp_states + state; 151 } 152 153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 154 { 155 return bringup ? !step->startup.single : !step->teardown.single; 156 } 157 158 /** 159 * cpuhp_invoke_callback - Invoke the callbacks for a given state 160 * @cpu: The cpu for which the callback should be invoked 161 * @state: The state to do callbacks for 162 * @bringup: True if the bringup callback should be invoked 163 * @node: For multi-instance, do a single entry callback for install/remove 164 * @lastp: For multi-instance rollback, remember how far we got 165 * 166 * Called from cpu hotplug and from the state register machinery. 167 * 168 * Return: %0 on success or a negative errno code 169 */ 170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 171 bool bringup, struct hlist_node *node, 172 struct hlist_node **lastp) 173 { 174 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 175 struct cpuhp_step *step = cpuhp_get_step(state); 176 int (*cbm)(unsigned int cpu, struct hlist_node *node); 177 int (*cb)(unsigned int cpu); 178 int ret, cnt; 179 180 if (st->fail == state) { 181 st->fail = CPUHP_INVALID; 182 return -EAGAIN; 183 } 184 185 if (cpuhp_step_empty(bringup, step)) { 186 WARN_ON_ONCE(1); 187 return 0; 188 } 189 190 if (!step->multi_instance) { 191 WARN_ON_ONCE(lastp && *lastp); 192 cb = bringup ? step->startup.single : step->teardown.single; 193 194 trace_cpuhp_enter(cpu, st->target, state, cb); 195 ret = cb(cpu); 196 trace_cpuhp_exit(cpu, st->state, state, ret); 197 return ret; 198 } 199 cbm = bringup ? step->startup.multi : step->teardown.multi; 200 201 /* Single invocation for instance add/remove */ 202 if (node) { 203 WARN_ON_ONCE(lastp && *lastp); 204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 205 ret = cbm(cpu, node); 206 trace_cpuhp_exit(cpu, st->state, state, ret); 207 return ret; 208 } 209 210 /* State transition. Invoke on all instances */ 211 cnt = 0; 212 hlist_for_each(node, &step->list) { 213 if (lastp && node == *lastp) 214 break; 215 216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 217 ret = cbm(cpu, node); 218 trace_cpuhp_exit(cpu, st->state, state, ret); 219 if (ret) { 220 if (!lastp) 221 goto err; 222 223 *lastp = node; 224 return ret; 225 } 226 cnt++; 227 } 228 if (lastp) 229 *lastp = NULL; 230 return 0; 231 err: 232 /* Rollback the instances if one failed */ 233 cbm = !bringup ? step->startup.multi : step->teardown.multi; 234 if (!cbm) 235 return ret; 236 237 hlist_for_each(node, &step->list) { 238 if (!cnt--) 239 break; 240 241 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 242 ret = cbm(cpu, node); 243 trace_cpuhp_exit(cpu, st->state, state, ret); 244 /* 245 * Rollback must not fail, 246 */ 247 WARN_ON_ONCE(ret); 248 } 249 return ret; 250 } 251 252 #ifdef CONFIG_SMP 253 static bool cpuhp_is_ap_state(enum cpuhp_state state) 254 { 255 /* 256 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 257 * purposes as that state is handled explicitly in cpu_down. 258 */ 259 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 260 } 261 262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 263 { 264 struct completion *done = bringup ? &st->done_up : &st->done_down; 265 wait_for_completion(done); 266 } 267 268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 269 { 270 struct completion *done = bringup ? &st->done_up : &st->done_down; 271 complete(done); 272 } 273 274 /* 275 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 276 */ 277 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 278 { 279 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 280 } 281 282 /* Synchronization state management */ 283 enum cpuhp_sync_state { 284 SYNC_STATE_DEAD, 285 SYNC_STATE_KICKED, 286 SYNC_STATE_SHOULD_DIE, 287 SYNC_STATE_ALIVE, 288 SYNC_STATE_SHOULD_ONLINE, 289 SYNC_STATE_ONLINE, 290 }; 291 292 #ifdef CONFIG_HOTPLUG_CORE_SYNC 293 /** 294 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 295 * @state: The synchronization state to set 296 * 297 * No synchronization point. Just update of the synchronization state, but implies 298 * a full barrier so that the AP changes are visible before the control CPU proceeds. 299 */ 300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 301 { 302 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 303 304 (void)atomic_xchg(st, state); 305 } 306 307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 308 309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 310 enum cpuhp_sync_state next_state) 311 { 312 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 313 ktime_t now, end, start = ktime_get(); 314 int sync; 315 316 end = start + 10ULL * NSEC_PER_SEC; 317 318 sync = atomic_read(st); 319 while (1) { 320 if (sync == state) { 321 if (!atomic_try_cmpxchg(st, &sync, next_state)) 322 continue; 323 return true; 324 } 325 326 now = ktime_get(); 327 if (now > end) { 328 /* Timeout. Leave the state unchanged */ 329 return false; 330 } else if (now - start < NSEC_PER_MSEC) { 331 /* Poll for one millisecond */ 332 arch_cpuhp_sync_state_poll(); 333 } else { 334 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE); 335 } 336 sync = atomic_read(st); 337 } 338 return true; 339 } 340 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 343 344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 345 /** 346 * cpuhp_ap_report_dead - Update synchronization state to DEAD 347 * 348 * No synchronization point. Just update of the synchronization state. 349 */ 350 void cpuhp_ap_report_dead(void) 351 { 352 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 353 } 354 355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 356 357 /* 358 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 359 * because the AP cannot issue complete() at this stage. 360 */ 361 static void cpuhp_bp_sync_dead(unsigned int cpu) 362 { 363 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 364 int sync = atomic_read(st); 365 366 do { 367 /* CPU can have reported dead already. Don't overwrite that! */ 368 if (sync == SYNC_STATE_DEAD) 369 break; 370 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 371 372 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 373 /* CPU reached dead state. Invoke the cleanup function */ 374 arch_cpuhp_cleanup_dead_cpu(cpu); 375 return; 376 } 377 378 /* No further action possible. Emit message and give up. */ 379 pr_err("CPU%u failed to report dead state\n", cpu); 380 } 381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 384 385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 386 /** 387 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 388 * 389 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 390 * for the BP to release it. 391 */ 392 void cpuhp_ap_sync_alive(void) 393 { 394 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 395 396 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 397 398 /* Wait for the control CPU to release it. */ 399 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 400 cpu_relax(); 401 } 402 403 static bool cpuhp_can_boot_ap(unsigned int cpu) 404 { 405 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 406 int sync = atomic_read(st); 407 408 again: 409 switch (sync) { 410 case SYNC_STATE_DEAD: 411 /* CPU is properly dead */ 412 break; 413 case SYNC_STATE_KICKED: 414 /* CPU did not come up in previous attempt */ 415 break; 416 case SYNC_STATE_ALIVE: 417 /* CPU is stuck cpuhp_ap_sync_alive(). */ 418 break; 419 default: 420 /* CPU failed to report online or dead and is in limbo state. */ 421 return false; 422 } 423 424 /* Prepare for booting */ 425 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 426 goto again; 427 428 return true; 429 } 430 431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 432 433 /* 434 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 435 * because the AP cannot issue complete() so early in the bringup. 436 */ 437 static int cpuhp_bp_sync_alive(unsigned int cpu) 438 { 439 int ret = 0; 440 441 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 442 return 0; 443 444 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 445 pr_err("CPU%u failed to report alive state\n", cpu); 446 ret = -EIO; 447 } 448 449 /* Let the architecture cleanup the kick alive mechanics. */ 450 arch_cpuhp_cleanup_kick_cpu(cpu); 451 return ret; 452 } 453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 457 458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 459 static DEFINE_MUTEX(cpu_add_remove_lock); 460 bool cpuhp_tasks_frozen; 461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 462 463 /* 464 * The following two APIs (cpu_maps_update_begin/done) must be used when 465 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 466 */ 467 void cpu_maps_update_begin(void) 468 { 469 mutex_lock(&cpu_add_remove_lock); 470 } 471 472 void cpu_maps_update_done(void) 473 { 474 mutex_unlock(&cpu_add_remove_lock); 475 } 476 477 /* 478 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 479 * Should always be manipulated under cpu_add_remove_lock 480 */ 481 static int cpu_hotplug_disabled; 482 483 #ifdef CONFIG_HOTPLUG_CPU 484 485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 486 487 void cpus_read_lock(void) 488 { 489 percpu_down_read(&cpu_hotplug_lock); 490 } 491 EXPORT_SYMBOL_GPL(cpus_read_lock); 492 493 int cpus_read_trylock(void) 494 { 495 return percpu_down_read_trylock(&cpu_hotplug_lock); 496 } 497 EXPORT_SYMBOL_GPL(cpus_read_trylock); 498 499 void cpus_read_unlock(void) 500 { 501 percpu_up_read(&cpu_hotplug_lock); 502 } 503 EXPORT_SYMBOL_GPL(cpus_read_unlock); 504 505 void cpus_write_lock(void) 506 { 507 percpu_down_write(&cpu_hotplug_lock); 508 } 509 510 void cpus_write_unlock(void) 511 { 512 percpu_up_write(&cpu_hotplug_lock); 513 } 514 515 void lockdep_assert_cpus_held(void) 516 { 517 /* 518 * We can't have hotplug operations before userspace starts running, 519 * and some init codepaths will knowingly not take the hotplug lock. 520 * This is all valid, so mute lockdep until it makes sense to report 521 * unheld locks. 522 */ 523 if (system_state < SYSTEM_RUNNING) 524 return; 525 526 percpu_rwsem_assert_held(&cpu_hotplug_lock); 527 } 528 529 #ifdef CONFIG_LOCKDEP 530 int lockdep_is_cpus_held(void) 531 { 532 return percpu_rwsem_is_held(&cpu_hotplug_lock); 533 } 534 #endif 535 536 static void lockdep_acquire_cpus_lock(void) 537 { 538 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 539 } 540 541 static void lockdep_release_cpus_lock(void) 542 { 543 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 544 } 545 546 /* 547 * Wait for currently running CPU hotplug operations to complete (if any) and 548 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 549 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 550 * hotplug path before performing hotplug operations. So acquiring that lock 551 * guarantees mutual exclusion from any currently running hotplug operations. 552 */ 553 void cpu_hotplug_disable(void) 554 { 555 cpu_maps_update_begin(); 556 cpu_hotplug_disabled++; 557 cpu_maps_update_done(); 558 } 559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 560 561 static void __cpu_hotplug_enable(void) 562 { 563 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 564 return; 565 cpu_hotplug_disabled--; 566 } 567 568 void cpu_hotplug_enable(void) 569 { 570 cpu_maps_update_begin(); 571 __cpu_hotplug_enable(); 572 cpu_maps_update_done(); 573 } 574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 575 576 #else 577 578 static void lockdep_acquire_cpus_lock(void) 579 { 580 } 581 582 static void lockdep_release_cpus_lock(void) 583 { 584 } 585 586 #endif /* CONFIG_HOTPLUG_CPU */ 587 588 /* 589 * Architectures that need SMT-specific errata handling during SMT hotplug 590 * should override this. 591 */ 592 void __weak arch_smt_update(void) { } 593 594 #ifdef CONFIG_HOTPLUG_SMT 595 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 596 597 void __init cpu_smt_disable(bool force) 598 { 599 if (!cpu_smt_possible()) 600 return; 601 602 if (force) { 603 pr_info("SMT: Force disabled\n"); 604 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 605 } else { 606 pr_info("SMT: disabled\n"); 607 cpu_smt_control = CPU_SMT_DISABLED; 608 } 609 } 610 611 /* 612 * The decision whether SMT is supported can only be done after the full 613 * CPU identification. Called from architecture code. 614 */ 615 void __init cpu_smt_check_topology(void) 616 { 617 if (!topology_smt_supported()) 618 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 619 } 620 621 static int __init smt_cmdline_disable(char *str) 622 { 623 cpu_smt_disable(str && !strcmp(str, "force")); 624 return 0; 625 } 626 early_param("nosmt", smt_cmdline_disable); 627 628 static inline bool cpu_smt_allowed(unsigned int cpu) 629 { 630 if (cpu_smt_control == CPU_SMT_ENABLED) 631 return true; 632 633 if (topology_is_primary_thread(cpu)) 634 return true; 635 636 /* 637 * On x86 it's required to boot all logical CPUs at least once so 638 * that the init code can get a chance to set CR4.MCE on each 639 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 640 * core will shutdown the machine. 641 */ 642 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 643 } 644 645 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 646 bool cpu_smt_possible(void) 647 { 648 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 649 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 650 } 651 EXPORT_SYMBOL_GPL(cpu_smt_possible); 652 653 static inline bool cpuhp_smt_aware(void) 654 { 655 return topology_smt_supported(); 656 } 657 658 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 659 { 660 return cpu_primary_thread_mask; 661 } 662 #else 663 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 664 static inline bool cpuhp_smt_aware(void) { return false; } 665 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 666 { 667 return cpu_present_mask; 668 } 669 #endif 670 671 static inline enum cpuhp_state 672 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 673 { 674 enum cpuhp_state prev_state = st->state; 675 bool bringup = st->state < target; 676 677 st->rollback = false; 678 st->last = NULL; 679 680 st->target = target; 681 st->single = false; 682 st->bringup = bringup; 683 if (cpu_dying(cpu) != !bringup) 684 set_cpu_dying(cpu, !bringup); 685 686 return prev_state; 687 } 688 689 static inline void 690 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 691 enum cpuhp_state prev_state) 692 { 693 bool bringup = !st->bringup; 694 695 st->target = prev_state; 696 697 /* 698 * Already rolling back. No need invert the bringup value or to change 699 * the current state. 700 */ 701 if (st->rollback) 702 return; 703 704 st->rollback = true; 705 706 /* 707 * If we have st->last we need to undo partial multi_instance of this 708 * state first. Otherwise start undo at the previous state. 709 */ 710 if (!st->last) { 711 if (st->bringup) 712 st->state--; 713 else 714 st->state++; 715 } 716 717 st->bringup = bringup; 718 if (cpu_dying(cpu) != !bringup) 719 set_cpu_dying(cpu, !bringup); 720 } 721 722 /* Regular hotplug invocation of the AP hotplug thread */ 723 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 724 { 725 if (!st->single && st->state == st->target) 726 return; 727 728 st->result = 0; 729 /* 730 * Make sure the above stores are visible before should_run becomes 731 * true. Paired with the mb() above in cpuhp_thread_fun() 732 */ 733 smp_mb(); 734 st->should_run = true; 735 wake_up_process(st->thread); 736 wait_for_ap_thread(st, st->bringup); 737 } 738 739 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 740 enum cpuhp_state target) 741 { 742 enum cpuhp_state prev_state; 743 int ret; 744 745 prev_state = cpuhp_set_state(cpu, st, target); 746 __cpuhp_kick_ap(st); 747 if ((ret = st->result)) { 748 cpuhp_reset_state(cpu, st, prev_state); 749 __cpuhp_kick_ap(st); 750 } 751 752 return ret; 753 } 754 755 static int bringup_wait_for_ap_online(unsigned int cpu) 756 { 757 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 758 759 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 760 wait_for_ap_thread(st, true); 761 if (WARN_ON_ONCE((!cpu_online(cpu)))) 762 return -ECANCELED; 763 764 /* Unpark the hotplug thread of the target cpu */ 765 kthread_unpark(st->thread); 766 767 /* 768 * SMT soft disabling on X86 requires to bring the CPU out of the 769 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 770 * CPU marked itself as booted_once in notify_cpu_starting() so the 771 * cpu_smt_allowed() check will now return false if this is not the 772 * primary sibling. 773 */ 774 if (!cpu_smt_allowed(cpu)) 775 return -ECANCELED; 776 return 0; 777 } 778 779 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 780 static int cpuhp_kick_ap_alive(unsigned int cpu) 781 { 782 if (!cpuhp_can_boot_ap(cpu)) 783 return -EAGAIN; 784 785 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 786 } 787 788 static int cpuhp_bringup_ap(unsigned int cpu) 789 { 790 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 791 int ret; 792 793 /* 794 * Some architectures have to walk the irq descriptors to 795 * setup the vector space for the cpu which comes online. 796 * Prevent irq alloc/free across the bringup. 797 */ 798 irq_lock_sparse(); 799 800 ret = cpuhp_bp_sync_alive(cpu); 801 if (ret) 802 goto out_unlock; 803 804 ret = bringup_wait_for_ap_online(cpu); 805 if (ret) 806 goto out_unlock; 807 808 irq_unlock_sparse(); 809 810 if (st->target <= CPUHP_AP_ONLINE_IDLE) 811 return 0; 812 813 return cpuhp_kick_ap(cpu, st, st->target); 814 815 out_unlock: 816 irq_unlock_sparse(); 817 return ret; 818 } 819 #else 820 static int bringup_cpu(unsigned int cpu) 821 { 822 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 823 struct task_struct *idle = idle_thread_get(cpu); 824 int ret; 825 826 if (!cpuhp_can_boot_ap(cpu)) 827 return -EAGAIN; 828 829 /* 830 * Some architectures have to walk the irq descriptors to 831 * setup the vector space for the cpu which comes online. 832 * 833 * Prevent irq alloc/free across the bringup by acquiring the 834 * sparse irq lock. Hold it until the upcoming CPU completes the 835 * startup in cpuhp_online_idle() which allows to avoid 836 * intermediate synchronization points in the architecture code. 837 */ 838 irq_lock_sparse(); 839 840 ret = __cpu_up(cpu, idle); 841 if (ret) 842 goto out_unlock; 843 844 ret = cpuhp_bp_sync_alive(cpu); 845 if (ret) 846 goto out_unlock; 847 848 ret = bringup_wait_for_ap_online(cpu); 849 if (ret) 850 goto out_unlock; 851 852 irq_unlock_sparse(); 853 854 if (st->target <= CPUHP_AP_ONLINE_IDLE) 855 return 0; 856 857 return cpuhp_kick_ap(cpu, st, st->target); 858 859 out_unlock: 860 irq_unlock_sparse(); 861 return ret; 862 } 863 #endif 864 865 static int finish_cpu(unsigned int cpu) 866 { 867 struct task_struct *idle = idle_thread_get(cpu); 868 struct mm_struct *mm = idle->active_mm; 869 870 /* 871 * idle_task_exit() will have switched to &init_mm, now 872 * clean up any remaining active_mm state. 873 */ 874 if (mm != &init_mm) 875 idle->active_mm = &init_mm; 876 mmdrop_lazy_tlb(mm); 877 return 0; 878 } 879 880 /* 881 * Hotplug state machine related functions 882 */ 883 884 /* 885 * Get the next state to run. Empty ones will be skipped. Returns true if a 886 * state must be run. 887 * 888 * st->state will be modified ahead of time, to match state_to_run, as if it 889 * has already ran. 890 */ 891 static bool cpuhp_next_state(bool bringup, 892 enum cpuhp_state *state_to_run, 893 struct cpuhp_cpu_state *st, 894 enum cpuhp_state target) 895 { 896 do { 897 if (bringup) { 898 if (st->state >= target) 899 return false; 900 901 *state_to_run = ++st->state; 902 } else { 903 if (st->state <= target) 904 return false; 905 906 *state_to_run = st->state--; 907 } 908 909 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 910 break; 911 } while (true); 912 913 return true; 914 } 915 916 static int __cpuhp_invoke_callback_range(bool bringup, 917 unsigned int cpu, 918 struct cpuhp_cpu_state *st, 919 enum cpuhp_state target, 920 bool nofail) 921 { 922 enum cpuhp_state state; 923 int ret = 0; 924 925 while (cpuhp_next_state(bringup, &state, st, target)) { 926 int err; 927 928 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 929 if (!err) 930 continue; 931 932 if (nofail) { 933 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 934 cpu, bringup ? "UP" : "DOWN", 935 cpuhp_get_step(st->state)->name, 936 st->state, err); 937 ret = -1; 938 } else { 939 ret = err; 940 break; 941 } 942 } 943 944 return ret; 945 } 946 947 static inline int cpuhp_invoke_callback_range(bool bringup, 948 unsigned int cpu, 949 struct cpuhp_cpu_state *st, 950 enum cpuhp_state target) 951 { 952 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 953 } 954 955 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 956 unsigned int cpu, 957 struct cpuhp_cpu_state *st, 958 enum cpuhp_state target) 959 { 960 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 961 } 962 963 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 964 { 965 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 966 return true; 967 /* 968 * When CPU hotplug is disabled, then taking the CPU down is not 969 * possible because takedown_cpu() and the architecture and 970 * subsystem specific mechanisms are not available. So the CPU 971 * which would be completely unplugged again needs to stay around 972 * in the current state. 973 */ 974 return st->state <= CPUHP_BRINGUP_CPU; 975 } 976 977 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 978 enum cpuhp_state target) 979 { 980 enum cpuhp_state prev_state = st->state; 981 int ret = 0; 982 983 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 984 if (ret) { 985 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 986 ret, cpu, cpuhp_get_step(st->state)->name, 987 st->state); 988 989 cpuhp_reset_state(cpu, st, prev_state); 990 if (can_rollback_cpu(st)) 991 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 992 prev_state)); 993 } 994 return ret; 995 } 996 997 /* 998 * The cpu hotplug threads manage the bringup and teardown of the cpus 999 */ 1000 static int cpuhp_should_run(unsigned int cpu) 1001 { 1002 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1003 1004 return st->should_run; 1005 } 1006 1007 /* 1008 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1009 * callbacks when a state gets [un]installed at runtime. 1010 * 1011 * Each invocation of this function by the smpboot thread does a single AP 1012 * state callback. 1013 * 1014 * It has 3 modes of operation: 1015 * - single: runs st->cb_state 1016 * - up: runs ++st->state, while st->state < st->target 1017 * - down: runs st->state--, while st->state > st->target 1018 * 1019 * When complete or on error, should_run is cleared and the completion is fired. 1020 */ 1021 static void cpuhp_thread_fun(unsigned int cpu) 1022 { 1023 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1024 bool bringup = st->bringup; 1025 enum cpuhp_state state; 1026 1027 if (WARN_ON_ONCE(!st->should_run)) 1028 return; 1029 1030 /* 1031 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1032 * that if we see ->should_run we also see the rest of the state. 1033 */ 1034 smp_mb(); 1035 1036 /* 1037 * The BP holds the hotplug lock, but we're now running on the AP, 1038 * ensure that anybody asserting the lock is held, will actually find 1039 * it so. 1040 */ 1041 lockdep_acquire_cpus_lock(); 1042 cpuhp_lock_acquire(bringup); 1043 1044 if (st->single) { 1045 state = st->cb_state; 1046 st->should_run = false; 1047 } else { 1048 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1049 if (!st->should_run) 1050 goto end; 1051 } 1052 1053 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1054 1055 if (cpuhp_is_atomic_state(state)) { 1056 local_irq_disable(); 1057 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1058 local_irq_enable(); 1059 1060 /* 1061 * STARTING/DYING must not fail! 1062 */ 1063 WARN_ON_ONCE(st->result); 1064 } else { 1065 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1066 } 1067 1068 if (st->result) { 1069 /* 1070 * If we fail on a rollback, we're up a creek without no 1071 * paddle, no way forward, no way back. We loose, thanks for 1072 * playing. 1073 */ 1074 WARN_ON_ONCE(st->rollback); 1075 st->should_run = false; 1076 } 1077 1078 end: 1079 cpuhp_lock_release(bringup); 1080 lockdep_release_cpus_lock(); 1081 1082 if (!st->should_run) 1083 complete_ap_thread(st, bringup); 1084 } 1085 1086 /* Invoke a single callback on a remote cpu */ 1087 static int 1088 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1089 struct hlist_node *node) 1090 { 1091 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1092 int ret; 1093 1094 if (!cpu_online(cpu)) 1095 return 0; 1096 1097 cpuhp_lock_acquire(false); 1098 cpuhp_lock_release(false); 1099 1100 cpuhp_lock_acquire(true); 1101 cpuhp_lock_release(true); 1102 1103 /* 1104 * If we are up and running, use the hotplug thread. For early calls 1105 * we invoke the thread function directly. 1106 */ 1107 if (!st->thread) 1108 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1109 1110 st->rollback = false; 1111 st->last = NULL; 1112 1113 st->node = node; 1114 st->bringup = bringup; 1115 st->cb_state = state; 1116 st->single = true; 1117 1118 __cpuhp_kick_ap(st); 1119 1120 /* 1121 * If we failed and did a partial, do a rollback. 1122 */ 1123 if ((ret = st->result) && st->last) { 1124 st->rollback = true; 1125 st->bringup = !bringup; 1126 1127 __cpuhp_kick_ap(st); 1128 } 1129 1130 /* 1131 * Clean up the leftovers so the next hotplug operation wont use stale 1132 * data. 1133 */ 1134 st->node = st->last = NULL; 1135 return ret; 1136 } 1137 1138 static int cpuhp_kick_ap_work(unsigned int cpu) 1139 { 1140 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1141 enum cpuhp_state prev_state = st->state; 1142 int ret; 1143 1144 cpuhp_lock_acquire(false); 1145 cpuhp_lock_release(false); 1146 1147 cpuhp_lock_acquire(true); 1148 cpuhp_lock_release(true); 1149 1150 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1151 ret = cpuhp_kick_ap(cpu, st, st->target); 1152 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1153 1154 return ret; 1155 } 1156 1157 static struct smp_hotplug_thread cpuhp_threads = { 1158 .store = &cpuhp_state.thread, 1159 .thread_should_run = cpuhp_should_run, 1160 .thread_fn = cpuhp_thread_fun, 1161 .thread_comm = "cpuhp/%u", 1162 .selfparking = true, 1163 }; 1164 1165 static __init void cpuhp_init_state(void) 1166 { 1167 struct cpuhp_cpu_state *st; 1168 int cpu; 1169 1170 for_each_possible_cpu(cpu) { 1171 st = per_cpu_ptr(&cpuhp_state, cpu); 1172 init_completion(&st->done_up); 1173 init_completion(&st->done_down); 1174 } 1175 } 1176 1177 void __init cpuhp_threads_init(void) 1178 { 1179 cpuhp_init_state(); 1180 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1181 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1182 } 1183 1184 /* 1185 * 1186 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock 1187 * protected region. 1188 * 1189 * The operation is still serialized against concurrent CPU hotplug via 1190 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_ 1191 * serialized against other hotplug related activity like adding or 1192 * removing of state callbacks and state instances, which invoke either the 1193 * startup or the teardown callback of the affected state. 1194 * 1195 * This is required for subsystems which are unfixable vs. CPU hotplug and 1196 * evade lock inversion problems by scheduling work which has to be 1197 * completed _before_ cpu_up()/_cpu_down() returns. 1198 * 1199 * Don't even think about adding anything to this for any new code or even 1200 * drivers. It's only purpose is to keep existing lock order trainwrecks 1201 * working. 1202 * 1203 * For cpu_down() there might be valid reasons to finish cleanups which are 1204 * not required to be done under cpu_hotplug_lock, but that's a different 1205 * story and would be not invoked via this. 1206 */ 1207 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen) 1208 { 1209 /* 1210 * cpusets delegate hotplug operations to a worker to "solve" the 1211 * lock order problems. Wait for the worker, but only if tasks are 1212 * _not_ frozen (suspend, hibernate) as that would wait forever. 1213 * 1214 * The wait is required because otherwise the hotplug operation 1215 * returns with inconsistent state, which could even be observed in 1216 * user space when a new CPU is brought up. The CPU plug uevent 1217 * would be delivered and user space reacting on it would fail to 1218 * move tasks to the newly plugged CPU up to the point where the 1219 * work has finished because up to that point the newly plugged CPU 1220 * is not assignable in cpusets/cgroups. On unplug that's not 1221 * necessarily a visible issue, but it is still inconsistent state, 1222 * which is the real problem which needs to be "fixed". This can't 1223 * prevent the transient state between scheduling the work and 1224 * returning from waiting for it. 1225 */ 1226 if (!tasks_frozen) 1227 cpuset_wait_for_hotplug(); 1228 } 1229 1230 #ifdef CONFIG_HOTPLUG_CPU 1231 #ifndef arch_clear_mm_cpumask_cpu 1232 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1233 #endif 1234 1235 /** 1236 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1237 * @cpu: a CPU id 1238 * 1239 * This function walks all processes, finds a valid mm struct for each one and 1240 * then clears a corresponding bit in mm's cpumask. While this all sounds 1241 * trivial, there are various non-obvious corner cases, which this function 1242 * tries to solve in a safe manner. 1243 * 1244 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1245 * be called only for an already offlined CPU. 1246 */ 1247 void clear_tasks_mm_cpumask(int cpu) 1248 { 1249 struct task_struct *p; 1250 1251 /* 1252 * This function is called after the cpu is taken down and marked 1253 * offline, so its not like new tasks will ever get this cpu set in 1254 * their mm mask. -- Peter Zijlstra 1255 * Thus, we may use rcu_read_lock() here, instead of grabbing 1256 * full-fledged tasklist_lock. 1257 */ 1258 WARN_ON(cpu_online(cpu)); 1259 rcu_read_lock(); 1260 for_each_process(p) { 1261 struct task_struct *t; 1262 1263 /* 1264 * Main thread might exit, but other threads may still have 1265 * a valid mm. Find one. 1266 */ 1267 t = find_lock_task_mm(p); 1268 if (!t) 1269 continue; 1270 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1271 task_unlock(t); 1272 } 1273 rcu_read_unlock(); 1274 } 1275 1276 /* Take this CPU down. */ 1277 static int take_cpu_down(void *_param) 1278 { 1279 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1280 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1281 int err, cpu = smp_processor_id(); 1282 1283 /* Ensure this CPU doesn't handle any more interrupts. */ 1284 err = __cpu_disable(); 1285 if (err < 0) 1286 return err; 1287 1288 /* 1289 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1290 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1291 */ 1292 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1293 1294 /* 1295 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1296 */ 1297 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1298 1299 /* Give up timekeeping duties */ 1300 tick_handover_do_timer(); 1301 /* Remove CPU from timer broadcasting */ 1302 tick_offline_cpu(cpu); 1303 /* Park the stopper thread */ 1304 stop_machine_park(cpu); 1305 return 0; 1306 } 1307 1308 static int takedown_cpu(unsigned int cpu) 1309 { 1310 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1311 int err; 1312 1313 /* Park the smpboot threads */ 1314 kthread_park(st->thread); 1315 1316 /* 1317 * Prevent irq alloc/free while the dying cpu reorganizes the 1318 * interrupt affinities. 1319 */ 1320 irq_lock_sparse(); 1321 1322 /* 1323 * So now all preempt/rcu users must observe !cpu_active(). 1324 */ 1325 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1326 if (err) { 1327 /* CPU refused to die */ 1328 irq_unlock_sparse(); 1329 /* Unpark the hotplug thread so we can rollback there */ 1330 kthread_unpark(st->thread); 1331 return err; 1332 } 1333 BUG_ON(cpu_online(cpu)); 1334 1335 /* 1336 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1337 * all runnable tasks from the CPU, there's only the idle task left now 1338 * that the migration thread is done doing the stop_machine thing. 1339 * 1340 * Wait for the stop thread to go away. 1341 */ 1342 wait_for_ap_thread(st, false); 1343 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1344 1345 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1346 irq_unlock_sparse(); 1347 1348 hotplug_cpu__broadcast_tick_pull(cpu); 1349 /* This actually kills the CPU. */ 1350 __cpu_die(cpu); 1351 1352 cpuhp_bp_sync_dead(cpu); 1353 1354 tick_cleanup_dead_cpu(cpu); 1355 rcutree_migrate_callbacks(cpu); 1356 return 0; 1357 } 1358 1359 static void cpuhp_complete_idle_dead(void *arg) 1360 { 1361 struct cpuhp_cpu_state *st = arg; 1362 1363 complete_ap_thread(st, false); 1364 } 1365 1366 void cpuhp_report_idle_dead(void) 1367 { 1368 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1369 1370 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1371 rcu_report_dead(smp_processor_id()); 1372 st->state = CPUHP_AP_IDLE_DEAD; 1373 /* 1374 * We cannot call complete after rcu_report_dead() so we delegate it 1375 * to an online cpu. 1376 */ 1377 smp_call_function_single(cpumask_first(cpu_online_mask), 1378 cpuhp_complete_idle_dead, st, 0); 1379 } 1380 1381 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1382 enum cpuhp_state target) 1383 { 1384 enum cpuhp_state prev_state = st->state; 1385 int ret = 0; 1386 1387 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1388 if (ret) { 1389 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1390 ret, cpu, cpuhp_get_step(st->state)->name, 1391 st->state); 1392 1393 cpuhp_reset_state(cpu, st, prev_state); 1394 1395 if (st->state < prev_state) 1396 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1397 prev_state)); 1398 } 1399 1400 return ret; 1401 } 1402 1403 /* Requires cpu_add_remove_lock to be held */ 1404 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1405 enum cpuhp_state target) 1406 { 1407 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1408 int prev_state, ret = 0; 1409 1410 if (num_online_cpus() == 1) 1411 return -EBUSY; 1412 1413 if (!cpu_present(cpu)) 1414 return -EINVAL; 1415 1416 cpus_write_lock(); 1417 1418 cpuhp_tasks_frozen = tasks_frozen; 1419 1420 prev_state = cpuhp_set_state(cpu, st, target); 1421 /* 1422 * If the current CPU state is in the range of the AP hotplug thread, 1423 * then we need to kick the thread. 1424 */ 1425 if (st->state > CPUHP_TEARDOWN_CPU) { 1426 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1427 ret = cpuhp_kick_ap_work(cpu); 1428 /* 1429 * The AP side has done the error rollback already. Just 1430 * return the error code.. 1431 */ 1432 if (ret) 1433 goto out; 1434 1435 /* 1436 * We might have stopped still in the range of the AP hotplug 1437 * thread. Nothing to do anymore. 1438 */ 1439 if (st->state > CPUHP_TEARDOWN_CPU) 1440 goto out; 1441 1442 st->target = target; 1443 } 1444 /* 1445 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1446 * to do the further cleanups. 1447 */ 1448 ret = cpuhp_down_callbacks(cpu, st, target); 1449 if (ret && st->state < prev_state) { 1450 if (st->state == CPUHP_TEARDOWN_CPU) { 1451 cpuhp_reset_state(cpu, st, prev_state); 1452 __cpuhp_kick_ap(st); 1453 } else { 1454 WARN(1, "DEAD callback error for CPU%d", cpu); 1455 } 1456 } 1457 1458 out: 1459 cpus_write_unlock(); 1460 /* 1461 * Do post unplug cleanup. This is still protected against 1462 * concurrent CPU hotplug via cpu_add_remove_lock. 1463 */ 1464 lockup_detector_cleanup(); 1465 arch_smt_update(); 1466 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1467 return ret; 1468 } 1469 1470 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1471 { 1472 /* 1473 * If the platform does not support hotplug, report it explicitly to 1474 * differentiate it from a transient offlining failure. 1475 */ 1476 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED)) 1477 return -EOPNOTSUPP; 1478 if (cpu_hotplug_disabled) 1479 return -EBUSY; 1480 return _cpu_down(cpu, 0, target); 1481 } 1482 1483 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1484 { 1485 int err; 1486 1487 cpu_maps_update_begin(); 1488 err = cpu_down_maps_locked(cpu, target); 1489 cpu_maps_update_done(); 1490 return err; 1491 } 1492 1493 /** 1494 * cpu_device_down - Bring down a cpu device 1495 * @dev: Pointer to the cpu device to offline 1496 * 1497 * This function is meant to be used by device core cpu subsystem only. 1498 * 1499 * Other subsystems should use remove_cpu() instead. 1500 * 1501 * Return: %0 on success or a negative errno code 1502 */ 1503 int cpu_device_down(struct device *dev) 1504 { 1505 return cpu_down(dev->id, CPUHP_OFFLINE); 1506 } 1507 1508 int remove_cpu(unsigned int cpu) 1509 { 1510 int ret; 1511 1512 lock_device_hotplug(); 1513 ret = device_offline(get_cpu_device(cpu)); 1514 unlock_device_hotplug(); 1515 1516 return ret; 1517 } 1518 EXPORT_SYMBOL_GPL(remove_cpu); 1519 1520 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1521 { 1522 unsigned int cpu; 1523 int error; 1524 1525 cpu_maps_update_begin(); 1526 1527 /* 1528 * Make certain the cpu I'm about to reboot on is online. 1529 * 1530 * This is inline to what migrate_to_reboot_cpu() already do. 1531 */ 1532 if (!cpu_online(primary_cpu)) 1533 primary_cpu = cpumask_first(cpu_online_mask); 1534 1535 for_each_online_cpu(cpu) { 1536 if (cpu == primary_cpu) 1537 continue; 1538 1539 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1540 if (error) { 1541 pr_err("Failed to offline CPU%d - error=%d", 1542 cpu, error); 1543 break; 1544 } 1545 } 1546 1547 /* 1548 * Ensure all but the reboot CPU are offline. 1549 */ 1550 BUG_ON(num_online_cpus() > 1); 1551 1552 /* 1553 * Make sure the CPUs won't be enabled by someone else after this 1554 * point. Kexec will reboot to a new kernel shortly resetting 1555 * everything along the way. 1556 */ 1557 cpu_hotplug_disabled++; 1558 1559 cpu_maps_update_done(); 1560 } 1561 1562 #else 1563 #define takedown_cpu NULL 1564 #endif /*CONFIG_HOTPLUG_CPU*/ 1565 1566 /** 1567 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1568 * @cpu: cpu that just started 1569 * 1570 * It must be called by the arch code on the new cpu, before the new cpu 1571 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1572 */ 1573 void notify_cpu_starting(unsigned int cpu) 1574 { 1575 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1576 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1577 1578 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1579 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1580 1581 /* 1582 * STARTING must not fail! 1583 */ 1584 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1585 } 1586 1587 /* 1588 * Called from the idle task. Wake up the controlling task which brings the 1589 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1590 * online bringup to the hotplug thread. 1591 */ 1592 void cpuhp_online_idle(enum cpuhp_state state) 1593 { 1594 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1595 1596 /* Happens for the boot cpu */ 1597 if (state != CPUHP_AP_ONLINE_IDLE) 1598 return; 1599 1600 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1601 1602 /* 1603 * Unpark the stopper thread before we start the idle loop (and start 1604 * scheduling); this ensures the stopper task is always available. 1605 */ 1606 stop_machine_unpark(smp_processor_id()); 1607 1608 st->state = CPUHP_AP_ONLINE_IDLE; 1609 complete_ap_thread(st, true); 1610 } 1611 1612 /* Requires cpu_add_remove_lock to be held */ 1613 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1614 { 1615 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1616 struct task_struct *idle; 1617 int ret = 0; 1618 1619 cpus_write_lock(); 1620 1621 if (!cpu_present(cpu)) { 1622 ret = -EINVAL; 1623 goto out; 1624 } 1625 1626 /* 1627 * The caller of cpu_up() might have raced with another 1628 * caller. Nothing to do. 1629 */ 1630 if (st->state >= target) 1631 goto out; 1632 1633 if (st->state == CPUHP_OFFLINE) { 1634 /* Let it fail before we try to bring the cpu up */ 1635 idle = idle_thread_get(cpu); 1636 if (IS_ERR(idle)) { 1637 ret = PTR_ERR(idle); 1638 goto out; 1639 } 1640 1641 /* 1642 * Reset stale stack state from the last time this CPU was online. 1643 */ 1644 scs_task_reset(idle); 1645 kasan_unpoison_task_stack(idle); 1646 } 1647 1648 cpuhp_tasks_frozen = tasks_frozen; 1649 1650 cpuhp_set_state(cpu, st, target); 1651 /* 1652 * If the current CPU state is in the range of the AP hotplug thread, 1653 * then we need to kick the thread once more. 1654 */ 1655 if (st->state > CPUHP_BRINGUP_CPU) { 1656 ret = cpuhp_kick_ap_work(cpu); 1657 /* 1658 * The AP side has done the error rollback already. Just 1659 * return the error code.. 1660 */ 1661 if (ret) 1662 goto out; 1663 } 1664 1665 /* 1666 * Try to reach the target state. We max out on the BP at 1667 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1668 * responsible for bringing it up to the target state. 1669 */ 1670 target = min((int)target, CPUHP_BRINGUP_CPU); 1671 ret = cpuhp_up_callbacks(cpu, st, target); 1672 out: 1673 cpus_write_unlock(); 1674 arch_smt_update(); 1675 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1676 return ret; 1677 } 1678 1679 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1680 { 1681 int err = 0; 1682 1683 if (!cpu_possible(cpu)) { 1684 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1685 cpu); 1686 #if defined(CONFIG_IA64) 1687 pr_err("please check additional_cpus= boot parameter\n"); 1688 #endif 1689 return -EINVAL; 1690 } 1691 1692 err = try_online_node(cpu_to_node(cpu)); 1693 if (err) 1694 return err; 1695 1696 cpu_maps_update_begin(); 1697 1698 if (cpu_hotplug_disabled) { 1699 err = -EBUSY; 1700 goto out; 1701 } 1702 if (!cpu_smt_allowed(cpu)) { 1703 err = -EPERM; 1704 goto out; 1705 } 1706 1707 err = _cpu_up(cpu, 0, target); 1708 out: 1709 cpu_maps_update_done(); 1710 return err; 1711 } 1712 1713 /** 1714 * cpu_device_up - Bring up a cpu device 1715 * @dev: Pointer to the cpu device to online 1716 * 1717 * This function is meant to be used by device core cpu subsystem only. 1718 * 1719 * Other subsystems should use add_cpu() instead. 1720 * 1721 * Return: %0 on success or a negative errno code 1722 */ 1723 int cpu_device_up(struct device *dev) 1724 { 1725 return cpu_up(dev->id, CPUHP_ONLINE); 1726 } 1727 1728 int add_cpu(unsigned int cpu) 1729 { 1730 int ret; 1731 1732 lock_device_hotplug(); 1733 ret = device_online(get_cpu_device(cpu)); 1734 unlock_device_hotplug(); 1735 1736 return ret; 1737 } 1738 EXPORT_SYMBOL_GPL(add_cpu); 1739 1740 /** 1741 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1742 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1743 * 1744 * On some architectures like arm64, we can hibernate on any CPU, but on 1745 * wake up the CPU we hibernated on might be offline as a side effect of 1746 * using maxcpus= for example. 1747 * 1748 * Return: %0 on success or a negative errno code 1749 */ 1750 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1751 { 1752 int ret; 1753 1754 if (!cpu_online(sleep_cpu)) { 1755 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1756 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1757 if (ret) { 1758 pr_err("Failed to bring hibernate-CPU up!\n"); 1759 return ret; 1760 } 1761 } 1762 return 0; 1763 } 1764 1765 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1766 enum cpuhp_state target) 1767 { 1768 unsigned int cpu; 1769 1770 for_each_cpu(cpu, mask) { 1771 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1772 1773 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1774 /* 1775 * If this failed then cpu_up() might have only 1776 * rolled back to CPUHP_BP_KICK_AP for the final 1777 * online. Clean it up. NOOP if already rolled back. 1778 */ 1779 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1780 } 1781 1782 if (!--ncpus) 1783 break; 1784 } 1785 } 1786 1787 #ifdef CONFIG_HOTPLUG_PARALLEL 1788 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1789 1790 static int __init parallel_bringup_parse_param(char *arg) 1791 { 1792 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1793 } 1794 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1795 1796 /* 1797 * On architectures which have enabled parallel bringup this invokes all BP 1798 * prepare states for each of the to be onlined APs first. The last state 1799 * sends the startup IPI to the APs. The APs proceed through the low level 1800 * bringup code in parallel and then wait for the control CPU to release 1801 * them one by one for the final onlining procedure. 1802 * 1803 * This avoids waiting for each AP to respond to the startup IPI in 1804 * CPUHP_BRINGUP_CPU. 1805 */ 1806 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1807 { 1808 const struct cpumask *mask = cpu_present_mask; 1809 1810 if (__cpuhp_parallel_bringup) 1811 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1812 if (!__cpuhp_parallel_bringup) 1813 return false; 1814 1815 if (cpuhp_smt_aware()) { 1816 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1817 static struct cpumask tmp_mask __initdata; 1818 1819 /* 1820 * X86 requires to prevent that SMT siblings stopped while 1821 * the primary thread does a microcode update for various 1822 * reasons. Bring the primary threads up first. 1823 */ 1824 cpumask_and(&tmp_mask, mask, pmask); 1825 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1826 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1827 /* Account for the online CPUs */ 1828 ncpus -= num_online_cpus(); 1829 if (!ncpus) 1830 return true; 1831 /* Create the mask for secondary CPUs */ 1832 cpumask_andnot(&tmp_mask, mask, pmask); 1833 mask = &tmp_mask; 1834 } 1835 1836 /* Bring the not-yet started CPUs up */ 1837 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1838 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1839 return true; 1840 } 1841 #else 1842 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1843 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1844 1845 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus) 1846 { 1847 /* Try parallel bringup optimization if enabled */ 1848 if (cpuhp_bringup_cpus_parallel(setup_max_cpus)) 1849 return; 1850 1851 /* Full per CPU serialized bringup */ 1852 cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE); 1853 } 1854 1855 #ifdef CONFIG_PM_SLEEP_SMP 1856 static cpumask_var_t frozen_cpus; 1857 1858 int freeze_secondary_cpus(int primary) 1859 { 1860 int cpu, error = 0; 1861 1862 cpu_maps_update_begin(); 1863 if (primary == -1) { 1864 primary = cpumask_first(cpu_online_mask); 1865 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1866 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1867 } else { 1868 if (!cpu_online(primary)) 1869 primary = cpumask_first(cpu_online_mask); 1870 } 1871 1872 /* 1873 * We take down all of the non-boot CPUs in one shot to avoid races 1874 * with the userspace trying to use the CPU hotplug at the same time 1875 */ 1876 cpumask_clear(frozen_cpus); 1877 1878 pr_info("Disabling non-boot CPUs ...\n"); 1879 for_each_online_cpu(cpu) { 1880 if (cpu == primary) 1881 continue; 1882 1883 if (pm_wakeup_pending()) { 1884 pr_info("Wakeup pending. Abort CPU freeze\n"); 1885 error = -EBUSY; 1886 break; 1887 } 1888 1889 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1890 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1891 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1892 if (!error) 1893 cpumask_set_cpu(cpu, frozen_cpus); 1894 else { 1895 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1896 break; 1897 } 1898 } 1899 1900 if (!error) 1901 BUG_ON(num_online_cpus() > 1); 1902 else 1903 pr_err("Non-boot CPUs are not disabled\n"); 1904 1905 /* 1906 * Make sure the CPUs won't be enabled by someone else. We need to do 1907 * this even in case of failure as all freeze_secondary_cpus() users are 1908 * supposed to do thaw_secondary_cpus() on the failure path. 1909 */ 1910 cpu_hotplug_disabled++; 1911 1912 cpu_maps_update_done(); 1913 return error; 1914 } 1915 1916 void __weak arch_thaw_secondary_cpus_begin(void) 1917 { 1918 } 1919 1920 void __weak arch_thaw_secondary_cpus_end(void) 1921 { 1922 } 1923 1924 void thaw_secondary_cpus(void) 1925 { 1926 int cpu, error; 1927 1928 /* Allow everyone to use the CPU hotplug again */ 1929 cpu_maps_update_begin(); 1930 __cpu_hotplug_enable(); 1931 if (cpumask_empty(frozen_cpus)) 1932 goto out; 1933 1934 pr_info("Enabling non-boot CPUs ...\n"); 1935 1936 arch_thaw_secondary_cpus_begin(); 1937 1938 for_each_cpu(cpu, frozen_cpus) { 1939 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1940 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1941 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1942 if (!error) { 1943 pr_info("CPU%d is up\n", cpu); 1944 continue; 1945 } 1946 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1947 } 1948 1949 arch_thaw_secondary_cpus_end(); 1950 1951 cpumask_clear(frozen_cpus); 1952 out: 1953 cpu_maps_update_done(); 1954 } 1955 1956 static int __init alloc_frozen_cpus(void) 1957 { 1958 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1959 return -ENOMEM; 1960 return 0; 1961 } 1962 core_initcall(alloc_frozen_cpus); 1963 1964 /* 1965 * When callbacks for CPU hotplug notifications are being executed, we must 1966 * ensure that the state of the system with respect to the tasks being frozen 1967 * or not, as reported by the notification, remains unchanged *throughout the 1968 * duration* of the execution of the callbacks. 1969 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1970 * 1971 * This synchronization is implemented by mutually excluding regular CPU 1972 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1973 * Hibernate notifications. 1974 */ 1975 static int 1976 cpu_hotplug_pm_callback(struct notifier_block *nb, 1977 unsigned long action, void *ptr) 1978 { 1979 switch (action) { 1980 1981 case PM_SUSPEND_PREPARE: 1982 case PM_HIBERNATION_PREPARE: 1983 cpu_hotplug_disable(); 1984 break; 1985 1986 case PM_POST_SUSPEND: 1987 case PM_POST_HIBERNATION: 1988 cpu_hotplug_enable(); 1989 break; 1990 1991 default: 1992 return NOTIFY_DONE; 1993 } 1994 1995 return NOTIFY_OK; 1996 } 1997 1998 1999 static int __init cpu_hotplug_pm_sync_init(void) 2000 { 2001 /* 2002 * cpu_hotplug_pm_callback has higher priority than x86 2003 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2004 * to disable cpu hotplug to avoid cpu hotplug race. 2005 */ 2006 pm_notifier(cpu_hotplug_pm_callback, 0); 2007 return 0; 2008 } 2009 core_initcall(cpu_hotplug_pm_sync_init); 2010 2011 #endif /* CONFIG_PM_SLEEP_SMP */ 2012 2013 int __boot_cpu_id; 2014 2015 #endif /* CONFIG_SMP */ 2016 2017 /* Boot processor state steps */ 2018 static struct cpuhp_step cpuhp_hp_states[] = { 2019 [CPUHP_OFFLINE] = { 2020 .name = "offline", 2021 .startup.single = NULL, 2022 .teardown.single = NULL, 2023 }, 2024 #ifdef CONFIG_SMP 2025 [CPUHP_CREATE_THREADS]= { 2026 .name = "threads:prepare", 2027 .startup.single = smpboot_create_threads, 2028 .teardown.single = NULL, 2029 .cant_stop = true, 2030 }, 2031 [CPUHP_PERF_PREPARE] = { 2032 .name = "perf:prepare", 2033 .startup.single = perf_event_init_cpu, 2034 .teardown.single = perf_event_exit_cpu, 2035 }, 2036 [CPUHP_RANDOM_PREPARE] = { 2037 .name = "random:prepare", 2038 .startup.single = random_prepare_cpu, 2039 .teardown.single = NULL, 2040 }, 2041 [CPUHP_WORKQUEUE_PREP] = { 2042 .name = "workqueue:prepare", 2043 .startup.single = workqueue_prepare_cpu, 2044 .teardown.single = NULL, 2045 }, 2046 [CPUHP_HRTIMERS_PREPARE] = { 2047 .name = "hrtimers:prepare", 2048 .startup.single = hrtimers_prepare_cpu, 2049 .teardown.single = hrtimers_dead_cpu, 2050 }, 2051 [CPUHP_SMPCFD_PREPARE] = { 2052 .name = "smpcfd:prepare", 2053 .startup.single = smpcfd_prepare_cpu, 2054 .teardown.single = smpcfd_dead_cpu, 2055 }, 2056 [CPUHP_RELAY_PREPARE] = { 2057 .name = "relay:prepare", 2058 .startup.single = relay_prepare_cpu, 2059 .teardown.single = NULL, 2060 }, 2061 [CPUHP_SLAB_PREPARE] = { 2062 .name = "slab:prepare", 2063 .startup.single = slab_prepare_cpu, 2064 .teardown.single = slab_dead_cpu, 2065 }, 2066 [CPUHP_RCUTREE_PREP] = { 2067 .name = "RCU/tree:prepare", 2068 .startup.single = rcutree_prepare_cpu, 2069 .teardown.single = rcutree_dead_cpu, 2070 }, 2071 /* 2072 * On the tear-down path, timers_dead_cpu() must be invoked 2073 * before blk_mq_queue_reinit_notify() from notify_dead(), 2074 * otherwise a RCU stall occurs. 2075 */ 2076 [CPUHP_TIMERS_PREPARE] = { 2077 .name = "timers:prepare", 2078 .startup.single = timers_prepare_cpu, 2079 .teardown.single = timers_dead_cpu, 2080 }, 2081 2082 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2083 /* 2084 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2085 * the next step will release it. 2086 */ 2087 [CPUHP_BP_KICK_AP] = { 2088 .name = "cpu:kick_ap", 2089 .startup.single = cpuhp_kick_ap_alive, 2090 }, 2091 2092 /* 2093 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2094 * releases it for the complete bringup. 2095 */ 2096 [CPUHP_BRINGUP_CPU] = { 2097 .name = "cpu:bringup", 2098 .startup.single = cpuhp_bringup_ap, 2099 .teardown.single = finish_cpu, 2100 .cant_stop = true, 2101 }, 2102 #else 2103 /* 2104 * All-in-one CPU bringup state which includes the kick alive. 2105 */ 2106 [CPUHP_BRINGUP_CPU] = { 2107 .name = "cpu:bringup", 2108 .startup.single = bringup_cpu, 2109 .teardown.single = finish_cpu, 2110 .cant_stop = true, 2111 }, 2112 #endif 2113 /* Final state before CPU kills itself */ 2114 [CPUHP_AP_IDLE_DEAD] = { 2115 .name = "idle:dead", 2116 }, 2117 /* 2118 * Last state before CPU enters the idle loop to die. Transient state 2119 * for synchronization. 2120 */ 2121 [CPUHP_AP_OFFLINE] = { 2122 .name = "ap:offline", 2123 .cant_stop = true, 2124 }, 2125 /* First state is scheduler control. Interrupts are disabled */ 2126 [CPUHP_AP_SCHED_STARTING] = { 2127 .name = "sched:starting", 2128 .startup.single = sched_cpu_starting, 2129 .teardown.single = sched_cpu_dying, 2130 }, 2131 [CPUHP_AP_RCUTREE_DYING] = { 2132 .name = "RCU/tree:dying", 2133 .startup.single = NULL, 2134 .teardown.single = rcutree_dying_cpu, 2135 }, 2136 [CPUHP_AP_SMPCFD_DYING] = { 2137 .name = "smpcfd:dying", 2138 .startup.single = NULL, 2139 .teardown.single = smpcfd_dying_cpu, 2140 }, 2141 /* Entry state on starting. Interrupts enabled from here on. Transient 2142 * state for synchronsization */ 2143 [CPUHP_AP_ONLINE] = { 2144 .name = "ap:online", 2145 }, 2146 /* 2147 * Handled on control processor until the plugged processor manages 2148 * this itself. 2149 */ 2150 [CPUHP_TEARDOWN_CPU] = { 2151 .name = "cpu:teardown", 2152 .startup.single = NULL, 2153 .teardown.single = takedown_cpu, 2154 .cant_stop = true, 2155 }, 2156 2157 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2158 .name = "sched:waitempty", 2159 .startup.single = NULL, 2160 .teardown.single = sched_cpu_wait_empty, 2161 }, 2162 2163 /* Handle smpboot threads park/unpark */ 2164 [CPUHP_AP_SMPBOOT_THREADS] = { 2165 .name = "smpboot/threads:online", 2166 .startup.single = smpboot_unpark_threads, 2167 .teardown.single = smpboot_park_threads, 2168 }, 2169 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2170 .name = "irq/affinity:online", 2171 .startup.single = irq_affinity_online_cpu, 2172 .teardown.single = NULL, 2173 }, 2174 [CPUHP_AP_PERF_ONLINE] = { 2175 .name = "perf:online", 2176 .startup.single = perf_event_init_cpu, 2177 .teardown.single = perf_event_exit_cpu, 2178 }, 2179 [CPUHP_AP_WATCHDOG_ONLINE] = { 2180 .name = "lockup_detector:online", 2181 .startup.single = lockup_detector_online_cpu, 2182 .teardown.single = lockup_detector_offline_cpu, 2183 }, 2184 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2185 .name = "workqueue:online", 2186 .startup.single = workqueue_online_cpu, 2187 .teardown.single = workqueue_offline_cpu, 2188 }, 2189 [CPUHP_AP_RANDOM_ONLINE] = { 2190 .name = "random:online", 2191 .startup.single = random_online_cpu, 2192 .teardown.single = NULL, 2193 }, 2194 [CPUHP_AP_RCUTREE_ONLINE] = { 2195 .name = "RCU/tree:online", 2196 .startup.single = rcutree_online_cpu, 2197 .teardown.single = rcutree_offline_cpu, 2198 }, 2199 #endif 2200 /* 2201 * The dynamically registered state space is here 2202 */ 2203 2204 #ifdef CONFIG_SMP 2205 /* Last state is scheduler control setting the cpu active */ 2206 [CPUHP_AP_ACTIVE] = { 2207 .name = "sched:active", 2208 .startup.single = sched_cpu_activate, 2209 .teardown.single = sched_cpu_deactivate, 2210 }, 2211 #endif 2212 2213 /* CPU is fully up and running. */ 2214 [CPUHP_ONLINE] = { 2215 .name = "online", 2216 .startup.single = NULL, 2217 .teardown.single = NULL, 2218 }, 2219 }; 2220 2221 /* Sanity check for callbacks */ 2222 static int cpuhp_cb_check(enum cpuhp_state state) 2223 { 2224 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2225 return -EINVAL; 2226 return 0; 2227 } 2228 2229 /* 2230 * Returns a free for dynamic slot assignment of the Online state. The states 2231 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2232 * by having no name assigned. 2233 */ 2234 static int cpuhp_reserve_state(enum cpuhp_state state) 2235 { 2236 enum cpuhp_state i, end; 2237 struct cpuhp_step *step; 2238 2239 switch (state) { 2240 case CPUHP_AP_ONLINE_DYN: 2241 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2242 end = CPUHP_AP_ONLINE_DYN_END; 2243 break; 2244 case CPUHP_BP_PREPARE_DYN: 2245 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2246 end = CPUHP_BP_PREPARE_DYN_END; 2247 break; 2248 default: 2249 return -EINVAL; 2250 } 2251 2252 for (i = state; i <= end; i++, step++) { 2253 if (!step->name) 2254 return i; 2255 } 2256 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2257 return -ENOSPC; 2258 } 2259 2260 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2261 int (*startup)(unsigned int cpu), 2262 int (*teardown)(unsigned int cpu), 2263 bool multi_instance) 2264 { 2265 /* (Un)Install the callbacks for further cpu hotplug operations */ 2266 struct cpuhp_step *sp; 2267 int ret = 0; 2268 2269 /* 2270 * If name is NULL, then the state gets removed. 2271 * 2272 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2273 * the first allocation from these dynamic ranges, so the removal 2274 * would trigger a new allocation and clear the wrong (already 2275 * empty) state, leaving the callbacks of the to be cleared state 2276 * dangling, which causes wreckage on the next hotplug operation. 2277 */ 2278 if (name && (state == CPUHP_AP_ONLINE_DYN || 2279 state == CPUHP_BP_PREPARE_DYN)) { 2280 ret = cpuhp_reserve_state(state); 2281 if (ret < 0) 2282 return ret; 2283 state = ret; 2284 } 2285 sp = cpuhp_get_step(state); 2286 if (name && sp->name) 2287 return -EBUSY; 2288 2289 sp->startup.single = startup; 2290 sp->teardown.single = teardown; 2291 sp->name = name; 2292 sp->multi_instance = multi_instance; 2293 INIT_HLIST_HEAD(&sp->list); 2294 return ret; 2295 } 2296 2297 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2298 { 2299 return cpuhp_get_step(state)->teardown.single; 2300 } 2301 2302 /* 2303 * Call the startup/teardown function for a step either on the AP or 2304 * on the current CPU. 2305 */ 2306 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2307 struct hlist_node *node) 2308 { 2309 struct cpuhp_step *sp = cpuhp_get_step(state); 2310 int ret; 2311 2312 /* 2313 * If there's nothing to do, we done. 2314 * Relies on the union for multi_instance. 2315 */ 2316 if (cpuhp_step_empty(bringup, sp)) 2317 return 0; 2318 /* 2319 * The non AP bound callbacks can fail on bringup. On teardown 2320 * e.g. module removal we crash for now. 2321 */ 2322 #ifdef CONFIG_SMP 2323 if (cpuhp_is_ap_state(state)) 2324 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2325 else 2326 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2327 #else 2328 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2329 #endif 2330 BUG_ON(ret && !bringup); 2331 return ret; 2332 } 2333 2334 /* 2335 * Called from __cpuhp_setup_state on a recoverable failure. 2336 * 2337 * Note: The teardown callbacks for rollback are not allowed to fail! 2338 */ 2339 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2340 struct hlist_node *node) 2341 { 2342 int cpu; 2343 2344 /* Roll back the already executed steps on the other cpus */ 2345 for_each_present_cpu(cpu) { 2346 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2347 int cpustate = st->state; 2348 2349 if (cpu >= failedcpu) 2350 break; 2351 2352 /* Did we invoke the startup call on that cpu ? */ 2353 if (cpustate >= state) 2354 cpuhp_issue_call(cpu, state, false, node); 2355 } 2356 } 2357 2358 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2359 struct hlist_node *node, 2360 bool invoke) 2361 { 2362 struct cpuhp_step *sp; 2363 int cpu; 2364 int ret; 2365 2366 lockdep_assert_cpus_held(); 2367 2368 sp = cpuhp_get_step(state); 2369 if (sp->multi_instance == false) 2370 return -EINVAL; 2371 2372 mutex_lock(&cpuhp_state_mutex); 2373 2374 if (!invoke || !sp->startup.multi) 2375 goto add_node; 2376 2377 /* 2378 * Try to call the startup callback for each present cpu 2379 * depending on the hotplug state of the cpu. 2380 */ 2381 for_each_present_cpu(cpu) { 2382 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2383 int cpustate = st->state; 2384 2385 if (cpustate < state) 2386 continue; 2387 2388 ret = cpuhp_issue_call(cpu, state, true, node); 2389 if (ret) { 2390 if (sp->teardown.multi) 2391 cpuhp_rollback_install(cpu, state, node); 2392 goto unlock; 2393 } 2394 } 2395 add_node: 2396 ret = 0; 2397 hlist_add_head(node, &sp->list); 2398 unlock: 2399 mutex_unlock(&cpuhp_state_mutex); 2400 return ret; 2401 } 2402 2403 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2404 bool invoke) 2405 { 2406 int ret; 2407 2408 cpus_read_lock(); 2409 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2410 cpus_read_unlock(); 2411 return ret; 2412 } 2413 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2414 2415 /** 2416 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2417 * @state: The state to setup 2418 * @name: Name of the step 2419 * @invoke: If true, the startup function is invoked for cpus where 2420 * cpu state >= @state 2421 * @startup: startup callback function 2422 * @teardown: teardown callback function 2423 * @multi_instance: State is set up for multiple instances which get 2424 * added afterwards. 2425 * 2426 * The caller needs to hold cpus read locked while calling this function. 2427 * Return: 2428 * On success: 2429 * Positive state number if @state is CPUHP_AP_ONLINE_DYN; 2430 * 0 for all other states 2431 * On failure: proper (negative) error code 2432 */ 2433 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2434 const char *name, bool invoke, 2435 int (*startup)(unsigned int cpu), 2436 int (*teardown)(unsigned int cpu), 2437 bool multi_instance) 2438 { 2439 int cpu, ret = 0; 2440 bool dynstate; 2441 2442 lockdep_assert_cpus_held(); 2443 2444 if (cpuhp_cb_check(state) || !name) 2445 return -EINVAL; 2446 2447 mutex_lock(&cpuhp_state_mutex); 2448 2449 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2450 multi_instance); 2451 2452 dynstate = state == CPUHP_AP_ONLINE_DYN; 2453 if (ret > 0 && dynstate) { 2454 state = ret; 2455 ret = 0; 2456 } 2457 2458 if (ret || !invoke || !startup) 2459 goto out; 2460 2461 /* 2462 * Try to call the startup callback for each present cpu 2463 * depending on the hotplug state of the cpu. 2464 */ 2465 for_each_present_cpu(cpu) { 2466 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2467 int cpustate = st->state; 2468 2469 if (cpustate < state) 2470 continue; 2471 2472 ret = cpuhp_issue_call(cpu, state, true, NULL); 2473 if (ret) { 2474 if (teardown) 2475 cpuhp_rollback_install(cpu, state, NULL); 2476 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2477 goto out; 2478 } 2479 } 2480 out: 2481 mutex_unlock(&cpuhp_state_mutex); 2482 /* 2483 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 2484 * dynamically allocated state in case of success. 2485 */ 2486 if (!ret && dynstate) 2487 return state; 2488 return ret; 2489 } 2490 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2491 2492 int __cpuhp_setup_state(enum cpuhp_state state, 2493 const char *name, bool invoke, 2494 int (*startup)(unsigned int cpu), 2495 int (*teardown)(unsigned int cpu), 2496 bool multi_instance) 2497 { 2498 int ret; 2499 2500 cpus_read_lock(); 2501 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2502 teardown, multi_instance); 2503 cpus_read_unlock(); 2504 return ret; 2505 } 2506 EXPORT_SYMBOL(__cpuhp_setup_state); 2507 2508 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2509 struct hlist_node *node, bool invoke) 2510 { 2511 struct cpuhp_step *sp = cpuhp_get_step(state); 2512 int cpu; 2513 2514 BUG_ON(cpuhp_cb_check(state)); 2515 2516 if (!sp->multi_instance) 2517 return -EINVAL; 2518 2519 cpus_read_lock(); 2520 mutex_lock(&cpuhp_state_mutex); 2521 2522 if (!invoke || !cpuhp_get_teardown_cb(state)) 2523 goto remove; 2524 /* 2525 * Call the teardown callback for each present cpu depending 2526 * on the hotplug state of the cpu. This function is not 2527 * allowed to fail currently! 2528 */ 2529 for_each_present_cpu(cpu) { 2530 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2531 int cpustate = st->state; 2532 2533 if (cpustate >= state) 2534 cpuhp_issue_call(cpu, state, false, node); 2535 } 2536 2537 remove: 2538 hlist_del(node); 2539 mutex_unlock(&cpuhp_state_mutex); 2540 cpus_read_unlock(); 2541 2542 return 0; 2543 } 2544 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2545 2546 /** 2547 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2548 * @state: The state to remove 2549 * @invoke: If true, the teardown function is invoked for cpus where 2550 * cpu state >= @state 2551 * 2552 * The caller needs to hold cpus read locked while calling this function. 2553 * The teardown callback is currently not allowed to fail. Think 2554 * about module removal! 2555 */ 2556 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2557 { 2558 struct cpuhp_step *sp = cpuhp_get_step(state); 2559 int cpu; 2560 2561 BUG_ON(cpuhp_cb_check(state)); 2562 2563 lockdep_assert_cpus_held(); 2564 2565 mutex_lock(&cpuhp_state_mutex); 2566 if (sp->multi_instance) { 2567 WARN(!hlist_empty(&sp->list), 2568 "Error: Removing state %d which has instances left.\n", 2569 state); 2570 goto remove; 2571 } 2572 2573 if (!invoke || !cpuhp_get_teardown_cb(state)) 2574 goto remove; 2575 2576 /* 2577 * Call the teardown callback for each present cpu depending 2578 * on the hotplug state of the cpu. This function is not 2579 * allowed to fail currently! 2580 */ 2581 for_each_present_cpu(cpu) { 2582 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2583 int cpustate = st->state; 2584 2585 if (cpustate >= state) 2586 cpuhp_issue_call(cpu, state, false, NULL); 2587 } 2588 remove: 2589 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2590 mutex_unlock(&cpuhp_state_mutex); 2591 } 2592 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2593 2594 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2595 { 2596 cpus_read_lock(); 2597 __cpuhp_remove_state_cpuslocked(state, invoke); 2598 cpus_read_unlock(); 2599 } 2600 EXPORT_SYMBOL(__cpuhp_remove_state); 2601 2602 #ifdef CONFIG_HOTPLUG_SMT 2603 static void cpuhp_offline_cpu_device(unsigned int cpu) 2604 { 2605 struct device *dev = get_cpu_device(cpu); 2606 2607 dev->offline = true; 2608 /* Tell user space about the state change */ 2609 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2610 } 2611 2612 static void cpuhp_online_cpu_device(unsigned int cpu) 2613 { 2614 struct device *dev = get_cpu_device(cpu); 2615 2616 dev->offline = false; 2617 /* Tell user space about the state change */ 2618 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2619 } 2620 2621 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2622 { 2623 int cpu, ret = 0; 2624 2625 cpu_maps_update_begin(); 2626 for_each_online_cpu(cpu) { 2627 if (topology_is_primary_thread(cpu)) 2628 continue; 2629 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2630 if (ret) 2631 break; 2632 /* 2633 * As this needs to hold the cpu maps lock it's impossible 2634 * to call device_offline() because that ends up calling 2635 * cpu_down() which takes cpu maps lock. cpu maps lock 2636 * needs to be held as this might race against in kernel 2637 * abusers of the hotplug machinery (thermal management). 2638 * 2639 * So nothing would update device:offline state. That would 2640 * leave the sysfs entry stale and prevent onlining after 2641 * smt control has been changed to 'off' again. This is 2642 * called under the sysfs hotplug lock, so it is properly 2643 * serialized against the regular offline usage. 2644 */ 2645 cpuhp_offline_cpu_device(cpu); 2646 } 2647 if (!ret) 2648 cpu_smt_control = ctrlval; 2649 cpu_maps_update_done(); 2650 return ret; 2651 } 2652 2653 int cpuhp_smt_enable(void) 2654 { 2655 int cpu, ret = 0; 2656 2657 cpu_maps_update_begin(); 2658 cpu_smt_control = CPU_SMT_ENABLED; 2659 for_each_present_cpu(cpu) { 2660 /* Skip online CPUs and CPUs on offline nodes */ 2661 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2662 continue; 2663 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2664 if (ret) 2665 break; 2666 /* See comment in cpuhp_smt_disable() */ 2667 cpuhp_online_cpu_device(cpu); 2668 } 2669 cpu_maps_update_done(); 2670 return ret; 2671 } 2672 #endif 2673 2674 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2675 static ssize_t state_show(struct device *dev, 2676 struct device_attribute *attr, char *buf) 2677 { 2678 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2679 2680 return sprintf(buf, "%d\n", st->state); 2681 } 2682 static DEVICE_ATTR_RO(state); 2683 2684 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2685 const char *buf, size_t count) 2686 { 2687 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2688 struct cpuhp_step *sp; 2689 int target, ret; 2690 2691 ret = kstrtoint(buf, 10, &target); 2692 if (ret) 2693 return ret; 2694 2695 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2696 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2697 return -EINVAL; 2698 #else 2699 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2700 return -EINVAL; 2701 #endif 2702 2703 ret = lock_device_hotplug_sysfs(); 2704 if (ret) 2705 return ret; 2706 2707 mutex_lock(&cpuhp_state_mutex); 2708 sp = cpuhp_get_step(target); 2709 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2710 mutex_unlock(&cpuhp_state_mutex); 2711 if (ret) 2712 goto out; 2713 2714 if (st->state < target) 2715 ret = cpu_up(dev->id, target); 2716 else if (st->state > target) 2717 ret = cpu_down(dev->id, target); 2718 else if (WARN_ON(st->target != target)) 2719 st->target = target; 2720 out: 2721 unlock_device_hotplug(); 2722 return ret ? ret : count; 2723 } 2724 2725 static ssize_t target_show(struct device *dev, 2726 struct device_attribute *attr, char *buf) 2727 { 2728 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2729 2730 return sprintf(buf, "%d\n", st->target); 2731 } 2732 static DEVICE_ATTR_RW(target); 2733 2734 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2735 const char *buf, size_t count) 2736 { 2737 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2738 struct cpuhp_step *sp; 2739 int fail, ret; 2740 2741 ret = kstrtoint(buf, 10, &fail); 2742 if (ret) 2743 return ret; 2744 2745 if (fail == CPUHP_INVALID) { 2746 st->fail = fail; 2747 return count; 2748 } 2749 2750 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2751 return -EINVAL; 2752 2753 /* 2754 * Cannot fail STARTING/DYING callbacks. 2755 */ 2756 if (cpuhp_is_atomic_state(fail)) 2757 return -EINVAL; 2758 2759 /* 2760 * DEAD callbacks cannot fail... 2761 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2762 * triggering STARTING callbacks, a failure in this state would 2763 * hinder rollback. 2764 */ 2765 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2766 return -EINVAL; 2767 2768 /* 2769 * Cannot fail anything that doesn't have callbacks. 2770 */ 2771 mutex_lock(&cpuhp_state_mutex); 2772 sp = cpuhp_get_step(fail); 2773 if (!sp->startup.single && !sp->teardown.single) 2774 ret = -EINVAL; 2775 mutex_unlock(&cpuhp_state_mutex); 2776 if (ret) 2777 return ret; 2778 2779 st->fail = fail; 2780 2781 return count; 2782 } 2783 2784 static ssize_t fail_show(struct device *dev, 2785 struct device_attribute *attr, char *buf) 2786 { 2787 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2788 2789 return sprintf(buf, "%d\n", st->fail); 2790 } 2791 2792 static DEVICE_ATTR_RW(fail); 2793 2794 static struct attribute *cpuhp_cpu_attrs[] = { 2795 &dev_attr_state.attr, 2796 &dev_attr_target.attr, 2797 &dev_attr_fail.attr, 2798 NULL 2799 }; 2800 2801 static const struct attribute_group cpuhp_cpu_attr_group = { 2802 .attrs = cpuhp_cpu_attrs, 2803 .name = "hotplug", 2804 NULL 2805 }; 2806 2807 static ssize_t states_show(struct device *dev, 2808 struct device_attribute *attr, char *buf) 2809 { 2810 ssize_t cur, res = 0; 2811 int i; 2812 2813 mutex_lock(&cpuhp_state_mutex); 2814 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2815 struct cpuhp_step *sp = cpuhp_get_step(i); 2816 2817 if (sp->name) { 2818 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2819 buf += cur; 2820 res += cur; 2821 } 2822 } 2823 mutex_unlock(&cpuhp_state_mutex); 2824 return res; 2825 } 2826 static DEVICE_ATTR_RO(states); 2827 2828 static struct attribute *cpuhp_cpu_root_attrs[] = { 2829 &dev_attr_states.attr, 2830 NULL 2831 }; 2832 2833 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2834 .attrs = cpuhp_cpu_root_attrs, 2835 .name = "hotplug", 2836 NULL 2837 }; 2838 2839 #ifdef CONFIG_HOTPLUG_SMT 2840 2841 static ssize_t 2842 __store_smt_control(struct device *dev, struct device_attribute *attr, 2843 const char *buf, size_t count) 2844 { 2845 int ctrlval, ret; 2846 2847 if (sysfs_streq(buf, "on")) 2848 ctrlval = CPU_SMT_ENABLED; 2849 else if (sysfs_streq(buf, "off")) 2850 ctrlval = CPU_SMT_DISABLED; 2851 else if (sysfs_streq(buf, "forceoff")) 2852 ctrlval = CPU_SMT_FORCE_DISABLED; 2853 else 2854 return -EINVAL; 2855 2856 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2857 return -EPERM; 2858 2859 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2860 return -ENODEV; 2861 2862 ret = lock_device_hotplug_sysfs(); 2863 if (ret) 2864 return ret; 2865 2866 if (ctrlval != cpu_smt_control) { 2867 switch (ctrlval) { 2868 case CPU_SMT_ENABLED: 2869 ret = cpuhp_smt_enable(); 2870 break; 2871 case CPU_SMT_DISABLED: 2872 case CPU_SMT_FORCE_DISABLED: 2873 ret = cpuhp_smt_disable(ctrlval); 2874 break; 2875 } 2876 } 2877 2878 unlock_device_hotplug(); 2879 return ret ? ret : count; 2880 } 2881 2882 #else /* !CONFIG_HOTPLUG_SMT */ 2883 static ssize_t 2884 __store_smt_control(struct device *dev, struct device_attribute *attr, 2885 const char *buf, size_t count) 2886 { 2887 return -ENODEV; 2888 } 2889 #endif /* CONFIG_HOTPLUG_SMT */ 2890 2891 static const char *smt_states[] = { 2892 [CPU_SMT_ENABLED] = "on", 2893 [CPU_SMT_DISABLED] = "off", 2894 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2895 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2896 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2897 }; 2898 2899 static ssize_t control_show(struct device *dev, 2900 struct device_attribute *attr, char *buf) 2901 { 2902 const char *state = smt_states[cpu_smt_control]; 2903 2904 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2905 } 2906 2907 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 2908 const char *buf, size_t count) 2909 { 2910 return __store_smt_control(dev, attr, buf, count); 2911 } 2912 static DEVICE_ATTR_RW(control); 2913 2914 static ssize_t active_show(struct device *dev, 2915 struct device_attribute *attr, char *buf) 2916 { 2917 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2918 } 2919 static DEVICE_ATTR_RO(active); 2920 2921 static struct attribute *cpuhp_smt_attrs[] = { 2922 &dev_attr_control.attr, 2923 &dev_attr_active.attr, 2924 NULL 2925 }; 2926 2927 static const struct attribute_group cpuhp_smt_attr_group = { 2928 .attrs = cpuhp_smt_attrs, 2929 .name = "smt", 2930 NULL 2931 }; 2932 2933 static int __init cpu_smt_sysfs_init(void) 2934 { 2935 struct device *dev_root; 2936 int ret = -ENODEV; 2937 2938 dev_root = bus_get_dev_root(&cpu_subsys); 2939 if (dev_root) { 2940 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 2941 put_device(dev_root); 2942 } 2943 return ret; 2944 } 2945 2946 static int __init cpuhp_sysfs_init(void) 2947 { 2948 struct device *dev_root; 2949 int cpu, ret; 2950 2951 ret = cpu_smt_sysfs_init(); 2952 if (ret) 2953 return ret; 2954 2955 dev_root = bus_get_dev_root(&cpu_subsys); 2956 if (dev_root) { 2957 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 2958 put_device(dev_root); 2959 if (ret) 2960 return ret; 2961 } 2962 2963 for_each_possible_cpu(cpu) { 2964 struct device *dev = get_cpu_device(cpu); 2965 2966 if (!dev) 2967 continue; 2968 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2969 if (ret) 2970 return ret; 2971 } 2972 return 0; 2973 } 2974 device_initcall(cpuhp_sysfs_init); 2975 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2976 2977 /* 2978 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2979 * represents all NR_CPUS bits binary values of 1<<nr. 2980 * 2981 * It is used by cpumask_of() to get a constant address to a CPU 2982 * mask value that has a single bit set only. 2983 */ 2984 2985 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2986 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2987 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2988 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2989 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2990 2991 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2992 2993 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2994 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2995 #if BITS_PER_LONG > 32 2996 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2997 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2998 #endif 2999 }; 3000 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3001 3002 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3003 EXPORT_SYMBOL(cpu_all_bits); 3004 3005 #ifdef CONFIG_INIT_ALL_POSSIBLE 3006 struct cpumask __cpu_possible_mask __read_mostly 3007 = {CPU_BITS_ALL}; 3008 #else 3009 struct cpumask __cpu_possible_mask __read_mostly; 3010 #endif 3011 EXPORT_SYMBOL(__cpu_possible_mask); 3012 3013 struct cpumask __cpu_online_mask __read_mostly; 3014 EXPORT_SYMBOL(__cpu_online_mask); 3015 3016 struct cpumask __cpu_present_mask __read_mostly; 3017 EXPORT_SYMBOL(__cpu_present_mask); 3018 3019 struct cpumask __cpu_active_mask __read_mostly; 3020 EXPORT_SYMBOL(__cpu_active_mask); 3021 3022 struct cpumask __cpu_dying_mask __read_mostly; 3023 EXPORT_SYMBOL(__cpu_dying_mask); 3024 3025 atomic_t __num_online_cpus __read_mostly; 3026 EXPORT_SYMBOL(__num_online_cpus); 3027 3028 void init_cpu_present(const struct cpumask *src) 3029 { 3030 cpumask_copy(&__cpu_present_mask, src); 3031 } 3032 3033 void init_cpu_possible(const struct cpumask *src) 3034 { 3035 cpumask_copy(&__cpu_possible_mask, src); 3036 } 3037 3038 void init_cpu_online(const struct cpumask *src) 3039 { 3040 cpumask_copy(&__cpu_online_mask, src); 3041 } 3042 3043 void set_cpu_online(unsigned int cpu, bool online) 3044 { 3045 /* 3046 * atomic_inc/dec() is required to handle the horrid abuse of this 3047 * function by the reboot and kexec code which invoke it from 3048 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3049 * regular CPU hotplug is properly serialized. 3050 * 3051 * Note, that the fact that __num_online_cpus is of type atomic_t 3052 * does not protect readers which are not serialized against 3053 * concurrent hotplug operations. 3054 */ 3055 if (online) { 3056 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3057 atomic_inc(&__num_online_cpus); 3058 } else { 3059 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3060 atomic_dec(&__num_online_cpus); 3061 } 3062 } 3063 3064 /* 3065 * Activate the first processor. 3066 */ 3067 void __init boot_cpu_init(void) 3068 { 3069 int cpu = smp_processor_id(); 3070 3071 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3072 set_cpu_online(cpu, true); 3073 set_cpu_active(cpu, true); 3074 set_cpu_present(cpu, true); 3075 set_cpu_possible(cpu, true); 3076 3077 #ifdef CONFIG_SMP 3078 __boot_cpu_id = cpu; 3079 #endif 3080 } 3081 3082 /* 3083 * Must be called _AFTER_ setting up the per_cpu areas 3084 */ 3085 void __init boot_cpu_hotplug_init(void) 3086 { 3087 #ifdef CONFIG_SMP 3088 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3089 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3090 #endif 3091 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3092 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3093 } 3094 3095 /* 3096 * These are used for a global "mitigations=" cmdline option for toggling 3097 * optional CPU mitigations. 3098 */ 3099 enum cpu_mitigations { 3100 CPU_MITIGATIONS_OFF, 3101 CPU_MITIGATIONS_AUTO, 3102 CPU_MITIGATIONS_AUTO_NOSMT, 3103 }; 3104 3105 static enum cpu_mitigations cpu_mitigations __ro_after_init = 3106 CPU_MITIGATIONS_AUTO; 3107 3108 static int __init mitigations_parse_cmdline(char *arg) 3109 { 3110 if (!strcmp(arg, "off")) 3111 cpu_mitigations = CPU_MITIGATIONS_OFF; 3112 else if (!strcmp(arg, "auto")) 3113 cpu_mitigations = CPU_MITIGATIONS_AUTO; 3114 else if (!strcmp(arg, "auto,nosmt")) 3115 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 3116 else 3117 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 3118 arg); 3119 3120 return 0; 3121 } 3122 early_param("mitigations", mitigations_parse_cmdline); 3123 3124 /* mitigations=off */ 3125 bool cpu_mitigations_off(void) 3126 { 3127 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3128 } 3129 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3130 3131 /* mitigations=auto,nosmt */ 3132 bool cpu_mitigations_auto_nosmt(void) 3133 { 3134 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3135 } 3136 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3137