1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <linux/bug.h> 22 #include <linux/kthread.h> 23 #include <linux/stop_machine.h> 24 #include <linux/mutex.h> 25 #include <linux/gfp.h> 26 #include <linux/suspend.h> 27 #include <linux/lockdep.h> 28 #include <linux/tick.h> 29 #include <linux/irq.h> 30 #include <linux/nmi.h> 31 #include <linux/smpboot.h> 32 #include <linux/relay.h> 33 #include <linux/slab.h> 34 #include <linux/percpu-rwsem.h> 35 36 #include <trace/events/power.h> 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/cpuhp.h> 39 40 #include "smpboot.h" 41 42 /** 43 * cpuhp_cpu_state - Per cpu hotplug state storage 44 * @state: The current cpu state 45 * @target: The target state 46 * @thread: Pointer to the hotplug thread 47 * @should_run: Thread should execute 48 * @rollback: Perform a rollback 49 * @single: Single callback invocation 50 * @bringup: Single callback bringup or teardown selector 51 * @cb_state: The state for a single callback (install/uninstall) 52 * @result: Result of the operation 53 * @done_up: Signal completion to the issuer of the task for cpu-up 54 * @done_down: Signal completion to the issuer of the task for cpu-down 55 */ 56 struct cpuhp_cpu_state { 57 enum cpuhp_state state; 58 enum cpuhp_state target; 59 enum cpuhp_state fail; 60 #ifdef CONFIG_SMP 61 struct task_struct *thread; 62 bool should_run; 63 bool rollback; 64 bool single; 65 bool bringup; 66 struct hlist_node *node; 67 struct hlist_node *last; 68 enum cpuhp_state cb_state; 69 int result; 70 struct completion done_up; 71 struct completion done_down; 72 #endif 73 }; 74 75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 76 .fail = CPUHP_INVALID, 77 }; 78 79 #ifdef CONFIG_SMP 80 cpumask_t cpus_booted_once_mask; 81 #endif 82 83 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 84 static struct lockdep_map cpuhp_state_up_map = 85 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 86 static struct lockdep_map cpuhp_state_down_map = 87 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 88 89 90 static inline void cpuhp_lock_acquire(bool bringup) 91 { 92 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 93 } 94 95 static inline void cpuhp_lock_release(bool bringup) 96 { 97 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 98 } 99 #else 100 101 static inline void cpuhp_lock_acquire(bool bringup) { } 102 static inline void cpuhp_lock_release(bool bringup) { } 103 104 #endif 105 106 /** 107 * cpuhp_step - Hotplug state machine step 108 * @name: Name of the step 109 * @startup: Startup function of the step 110 * @teardown: Teardown function of the step 111 * @cant_stop: Bringup/teardown can't be stopped at this step 112 */ 113 struct cpuhp_step { 114 const char *name; 115 union { 116 int (*single)(unsigned int cpu); 117 int (*multi)(unsigned int cpu, 118 struct hlist_node *node); 119 } startup; 120 union { 121 int (*single)(unsigned int cpu); 122 int (*multi)(unsigned int cpu, 123 struct hlist_node *node); 124 } teardown; 125 struct hlist_head list; 126 bool cant_stop; 127 bool multi_instance; 128 }; 129 130 static DEFINE_MUTEX(cpuhp_state_mutex); 131 static struct cpuhp_step cpuhp_hp_states[]; 132 133 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 134 { 135 return cpuhp_hp_states + state; 136 } 137 138 /** 139 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 140 * @cpu: The cpu for which the callback should be invoked 141 * @state: The state to do callbacks for 142 * @bringup: True if the bringup callback should be invoked 143 * @node: For multi-instance, do a single entry callback for install/remove 144 * @lastp: For multi-instance rollback, remember how far we got 145 * 146 * Called from cpu hotplug and from the state register machinery. 147 */ 148 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 149 bool bringup, struct hlist_node *node, 150 struct hlist_node **lastp) 151 { 152 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 153 struct cpuhp_step *step = cpuhp_get_step(state); 154 int (*cbm)(unsigned int cpu, struct hlist_node *node); 155 int (*cb)(unsigned int cpu); 156 int ret, cnt; 157 158 if (st->fail == state) { 159 st->fail = CPUHP_INVALID; 160 161 if (!(bringup ? step->startup.single : step->teardown.single)) 162 return 0; 163 164 return -EAGAIN; 165 } 166 167 if (!step->multi_instance) { 168 WARN_ON_ONCE(lastp && *lastp); 169 cb = bringup ? step->startup.single : step->teardown.single; 170 if (!cb) 171 return 0; 172 trace_cpuhp_enter(cpu, st->target, state, cb); 173 ret = cb(cpu); 174 trace_cpuhp_exit(cpu, st->state, state, ret); 175 return ret; 176 } 177 cbm = bringup ? step->startup.multi : step->teardown.multi; 178 if (!cbm) 179 return 0; 180 181 /* Single invocation for instance add/remove */ 182 if (node) { 183 WARN_ON_ONCE(lastp && *lastp); 184 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 185 ret = cbm(cpu, node); 186 trace_cpuhp_exit(cpu, st->state, state, ret); 187 return ret; 188 } 189 190 /* State transition. Invoke on all instances */ 191 cnt = 0; 192 hlist_for_each(node, &step->list) { 193 if (lastp && node == *lastp) 194 break; 195 196 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 197 ret = cbm(cpu, node); 198 trace_cpuhp_exit(cpu, st->state, state, ret); 199 if (ret) { 200 if (!lastp) 201 goto err; 202 203 *lastp = node; 204 return ret; 205 } 206 cnt++; 207 } 208 if (lastp) 209 *lastp = NULL; 210 return 0; 211 err: 212 /* Rollback the instances if one failed */ 213 cbm = !bringup ? step->startup.multi : step->teardown.multi; 214 if (!cbm) 215 return ret; 216 217 hlist_for_each(node, &step->list) { 218 if (!cnt--) 219 break; 220 221 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 222 ret = cbm(cpu, node); 223 trace_cpuhp_exit(cpu, st->state, state, ret); 224 /* 225 * Rollback must not fail, 226 */ 227 WARN_ON_ONCE(ret); 228 } 229 return ret; 230 } 231 232 #ifdef CONFIG_SMP 233 static bool cpuhp_is_ap_state(enum cpuhp_state state) 234 { 235 /* 236 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 237 * purposes as that state is handled explicitly in cpu_down. 238 */ 239 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 240 } 241 242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 243 { 244 struct completion *done = bringup ? &st->done_up : &st->done_down; 245 wait_for_completion(done); 246 } 247 248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 249 { 250 struct completion *done = bringup ? &st->done_up : &st->done_down; 251 complete(done); 252 } 253 254 /* 255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 256 */ 257 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 258 { 259 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 260 } 261 262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 263 static DEFINE_MUTEX(cpu_add_remove_lock); 264 bool cpuhp_tasks_frozen; 265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 266 267 /* 268 * The following two APIs (cpu_maps_update_begin/done) must be used when 269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 270 */ 271 void cpu_maps_update_begin(void) 272 { 273 mutex_lock(&cpu_add_remove_lock); 274 } 275 276 void cpu_maps_update_done(void) 277 { 278 mutex_unlock(&cpu_add_remove_lock); 279 } 280 281 /* 282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 283 * Should always be manipulated under cpu_add_remove_lock 284 */ 285 static int cpu_hotplug_disabled; 286 287 #ifdef CONFIG_HOTPLUG_CPU 288 289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 290 291 void cpus_read_lock(void) 292 { 293 percpu_down_read(&cpu_hotplug_lock); 294 } 295 EXPORT_SYMBOL_GPL(cpus_read_lock); 296 297 int cpus_read_trylock(void) 298 { 299 return percpu_down_read_trylock(&cpu_hotplug_lock); 300 } 301 EXPORT_SYMBOL_GPL(cpus_read_trylock); 302 303 void cpus_read_unlock(void) 304 { 305 percpu_up_read(&cpu_hotplug_lock); 306 } 307 EXPORT_SYMBOL_GPL(cpus_read_unlock); 308 309 void cpus_write_lock(void) 310 { 311 percpu_down_write(&cpu_hotplug_lock); 312 } 313 314 void cpus_write_unlock(void) 315 { 316 percpu_up_write(&cpu_hotplug_lock); 317 } 318 319 void lockdep_assert_cpus_held(void) 320 { 321 /* 322 * We can't have hotplug operations before userspace starts running, 323 * and some init codepaths will knowingly not take the hotplug lock. 324 * This is all valid, so mute lockdep until it makes sense to report 325 * unheld locks. 326 */ 327 if (system_state < SYSTEM_RUNNING) 328 return; 329 330 percpu_rwsem_assert_held(&cpu_hotplug_lock); 331 } 332 333 static void lockdep_acquire_cpus_lock(void) 334 { 335 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 336 } 337 338 static void lockdep_release_cpus_lock(void) 339 { 340 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 341 } 342 343 /* 344 * Wait for currently running CPU hotplug operations to complete (if any) and 345 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 346 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 347 * hotplug path before performing hotplug operations. So acquiring that lock 348 * guarantees mutual exclusion from any currently running hotplug operations. 349 */ 350 void cpu_hotplug_disable(void) 351 { 352 cpu_maps_update_begin(); 353 cpu_hotplug_disabled++; 354 cpu_maps_update_done(); 355 } 356 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 357 358 static void __cpu_hotplug_enable(void) 359 { 360 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 361 return; 362 cpu_hotplug_disabled--; 363 } 364 365 void cpu_hotplug_enable(void) 366 { 367 cpu_maps_update_begin(); 368 __cpu_hotplug_enable(); 369 cpu_maps_update_done(); 370 } 371 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 372 373 #else 374 375 static void lockdep_acquire_cpus_lock(void) 376 { 377 } 378 379 static void lockdep_release_cpus_lock(void) 380 { 381 } 382 383 #endif /* CONFIG_HOTPLUG_CPU */ 384 385 /* 386 * Architectures that need SMT-specific errata handling during SMT hotplug 387 * should override this. 388 */ 389 void __weak arch_smt_update(void) { } 390 391 #ifdef CONFIG_HOTPLUG_SMT 392 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 393 394 void __init cpu_smt_disable(bool force) 395 { 396 if (!cpu_smt_possible()) 397 return; 398 399 if (force) { 400 pr_info("SMT: Force disabled\n"); 401 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 402 } else { 403 pr_info("SMT: disabled\n"); 404 cpu_smt_control = CPU_SMT_DISABLED; 405 } 406 } 407 408 /* 409 * The decision whether SMT is supported can only be done after the full 410 * CPU identification. Called from architecture code. 411 */ 412 void __init cpu_smt_check_topology(void) 413 { 414 if (!topology_smt_supported()) 415 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 416 } 417 418 static int __init smt_cmdline_disable(char *str) 419 { 420 cpu_smt_disable(str && !strcmp(str, "force")); 421 return 0; 422 } 423 early_param("nosmt", smt_cmdline_disable); 424 425 static inline bool cpu_smt_allowed(unsigned int cpu) 426 { 427 if (cpu_smt_control == CPU_SMT_ENABLED) 428 return true; 429 430 if (topology_is_primary_thread(cpu)) 431 return true; 432 433 /* 434 * On x86 it's required to boot all logical CPUs at least once so 435 * that the init code can get a chance to set CR4.MCE on each 436 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 437 * core will shutdown the machine. 438 */ 439 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 440 } 441 442 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */ 443 bool cpu_smt_possible(void) 444 { 445 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 446 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 447 } 448 EXPORT_SYMBOL_GPL(cpu_smt_possible); 449 #else 450 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; } 451 #endif 452 453 static inline enum cpuhp_state 454 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 455 { 456 enum cpuhp_state prev_state = st->state; 457 458 st->rollback = false; 459 st->last = NULL; 460 461 st->target = target; 462 st->single = false; 463 st->bringup = st->state < target; 464 465 return prev_state; 466 } 467 468 static inline void 469 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 470 { 471 st->rollback = true; 472 473 /* 474 * If we have st->last we need to undo partial multi_instance of this 475 * state first. Otherwise start undo at the previous state. 476 */ 477 if (!st->last) { 478 if (st->bringup) 479 st->state--; 480 else 481 st->state++; 482 } 483 484 st->target = prev_state; 485 st->bringup = !st->bringup; 486 } 487 488 /* Regular hotplug invocation of the AP hotplug thread */ 489 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 490 { 491 if (!st->single && st->state == st->target) 492 return; 493 494 st->result = 0; 495 /* 496 * Make sure the above stores are visible before should_run becomes 497 * true. Paired with the mb() above in cpuhp_thread_fun() 498 */ 499 smp_mb(); 500 st->should_run = true; 501 wake_up_process(st->thread); 502 wait_for_ap_thread(st, st->bringup); 503 } 504 505 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 506 { 507 enum cpuhp_state prev_state; 508 int ret; 509 510 prev_state = cpuhp_set_state(st, target); 511 __cpuhp_kick_ap(st); 512 if ((ret = st->result)) { 513 cpuhp_reset_state(st, prev_state); 514 __cpuhp_kick_ap(st); 515 } 516 517 return ret; 518 } 519 520 static int bringup_wait_for_ap(unsigned int cpu) 521 { 522 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 523 524 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 525 wait_for_ap_thread(st, true); 526 if (WARN_ON_ONCE((!cpu_online(cpu)))) 527 return -ECANCELED; 528 529 /* Unpark the hotplug thread of the target cpu */ 530 kthread_unpark(st->thread); 531 532 /* 533 * SMT soft disabling on X86 requires to bring the CPU out of the 534 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 535 * CPU marked itself as booted_once in notify_cpu_starting() so the 536 * cpu_smt_allowed() check will now return false if this is not the 537 * primary sibling. 538 */ 539 if (!cpu_smt_allowed(cpu)) 540 return -ECANCELED; 541 542 if (st->target <= CPUHP_AP_ONLINE_IDLE) 543 return 0; 544 545 return cpuhp_kick_ap(st, st->target); 546 } 547 548 static int bringup_cpu(unsigned int cpu) 549 { 550 struct task_struct *idle = idle_thread_get(cpu); 551 int ret; 552 553 /* 554 * Some architectures have to walk the irq descriptors to 555 * setup the vector space for the cpu which comes online. 556 * Prevent irq alloc/free across the bringup. 557 */ 558 irq_lock_sparse(); 559 560 /* Arch-specific enabling code. */ 561 ret = __cpu_up(cpu, idle); 562 irq_unlock_sparse(); 563 if (ret) 564 return ret; 565 return bringup_wait_for_ap(cpu); 566 } 567 568 static int finish_cpu(unsigned int cpu) 569 { 570 struct task_struct *idle = idle_thread_get(cpu); 571 struct mm_struct *mm = idle->active_mm; 572 573 /* 574 * idle_task_exit() will have switched to &init_mm, now 575 * clean up any remaining active_mm state. 576 */ 577 if (mm != &init_mm) 578 idle->active_mm = &init_mm; 579 mmdrop(mm); 580 return 0; 581 } 582 583 /* 584 * Hotplug state machine related functions 585 */ 586 587 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 588 { 589 for (st->state--; st->state > st->target; st->state--) 590 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 591 } 592 593 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 594 { 595 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 596 return true; 597 /* 598 * When CPU hotplug is disabled, then taking the CPU down is not 599 * possible because takedown_cpu() and the architecture and 600 * subsystem specific mechanisms are not available. So the CPU 601 * which would be completely unplugged again needs to stay around 602 * in the current state. 603 */ 604 return st->state <= CPUHP_BRINGUP_CPU; 605 } 606 607 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 608 enum cpuhp_state target) 609 { 610 enum cpuhp_state prev_state = st->state; 611 int ret = 0; 612 613 while (st->state < target) { 614 st->state++; 615 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 616 if (ret) { 617 if (can_rollback_cpu(st)) { 618 st->target = prev_state; 619 undo_cpu_up(cpu, st); 620 } 621 break; 622 } 623 } 624 return ret; 625 } 626 627 /* 628 * The cpu hotplug threads manage the bringup and teardown of the cpus 629 */ 630 static void cpuhp_create(unsigned int cpu) 631 { 632 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 633 634 init_completion(&st->done_up); 635 init_completion(&st->done_down); 636 } 637 638 static int cpuhp_should_run(unsigned int cpu) 639 { 640 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 641 642 return st->should_run; 643 } 644 645 /* 646 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 647 * callbacks when a state gets [un]installed at runtime. 648 * 649 * Each invocation of this function by the smpboot thread does a single AP 650 * state callback. 651 * 652 * It has 3 modes of operation: 653 * - single: runs st->cb_state 654 * - up: runs ++st->state, while st->state < st->target 655 * - down: runs st->state--, while st->state > st->target 656 * 657 * When complete or on error, should_run is cleared and the completion is fired. 658 */ 659 static void cpuhp_thread_fun(unsigned int cpu) 660 { 661 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 662 bool bringup = st->bringup; 663 enum cpuhp_state state; 664 665 if (WARN_ON_ONCE(!st->should_run)) 666 return; 667 668 /* 669 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 670 * that if we see ->should_run we also see the rest of the state. 671 */ 672 smp_mb(); 673 674 /* 675 * The BP holds the hotplug lock, but we're now running on the AP, 676 * ensure that anybody asserting the lock is held, will actually find 677 * it so. 678 */ 679 lockdep_acquire_cpus_lock(); 680 cpuhp_lock_acquire(bringup); 681 682 if (st->single) { 683 state = st->cb_state; 684 st->should_run = false; 685 } else { 686 if (bringup) { 687 st->state++; 688 state = st->state; 689 st->should_run = (st->state < st->target); 690 WARN_ON_ONCE(st->state > st->target); 691 } else { 692 state = st->state; 693 st->state--; 694 st->should_run = (st->state > st->target); 695 WARN_ON_ONCE(st->state < st->target); 696 } 697 } 698 699 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 700 701 if (cpuhp_is_atomic_state(state)) { 702 local_irq_disable(); 703 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 704 local_irq_enable(); 705 706 /* 707 * STARTING/DYING must not fail! 708 */ 709 WARN_ON_ONCE(st->result); 710 } else { 711 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 712 } 713 714 if (st->result) { 715 /* 716 * If we fail on a rollback, we're up a creek without no 717 * paddle, no way forward, no way back. We loose, thanks for 718 * playing. 719 */ 720 WARN_ON_ONCE(st->rollback); 721 st->should_run = false; 722 } 723 724 cpuhp_lock_release(bringup); 725 lockdep_release_cpus_lock(); 726 727 if (!st->should_run) 728 complete_ap_thread(st, bringup); 729 } 730 731 /* Invoke a single callback on a remote cpu */ 732 static int 733 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 734 struct hlist_node *node) 735 { 736 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 737 int ret; 738 739 if (!cpu_online(cpu)) 740 return 0; 741 742 cpuhp_lock_acquire(false); 743 cpuhp_lock_release(false); 744 745 cpuhp_lock_acquire(true); 746 cpuhp_lock_release(true); 747 748 /* 749 * If we are up and running, use the hotplug thread. For early calls 750 * we invoke the thread function directly. 751 */ 752 if (!st->thread) 753 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 754 755 st->rollback = false; 756 st->last = NULL; 757 758 st->node = node; 759 st->bringup = bringup; 760 st->cb_state = state; 761 st->single = true; 762 763 __cpuhp_kick_ap(st); 764 765 /* 766 * If we failed and did a partial, do a rollback. 767 */ 768 if ((ret = st->result) && st->last) { 769 st->rollback = true; 770 st->bringup = !bringup; 771 772 __cpuhp_kick_ap(st); 773 } 774 775 /* 776 * Clean up the leftovers so the next hotplug operation wont use stale 777 * data. 778 */ 779 st->node = st->last = NULL; 780 return ret; 781 } 782 783 static int cpuhp_kick_ap_work(unsigned int cpu) 784 { 785 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 786 enum cpuhp_state prev_state = st->state; 787 int ret; 788 789 cpuhp_lock_acquire(false); 790 cpuhp_lock_release(false); 791 792 cpuhp_lock_acquire(true); 793 cpuhp_lock_release(true); 794 795 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 796 ret = cpuhp_kick_ap(st, st->target); 797 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 798 799 return ret; 800 } 801 802 static struct smp_hotplug_thread cpuhp_threads = { 803 .store = &cpuhp_state.thread, 804 .create = &cpuhp_create, 805 .thread_should_run = cpuhp_should_run, 806 .thread_fn = cpuhp_thread_fun, 807 .thread_comm = "cpuhp/%u", 808 .selfparking = true, 809 }; 810 811 void __init cpuhp_threads_init(void) 812 { 813 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 814 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 815 } 816 817 #ifdef CONFIG_HOTPLUG_CPU 818 #ifndef arch_clear_mm_cpumask_cpu 819 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 820 #endif 821 822 /** 823 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 824 * @cpu: a CPU id 825 * 826 * This function walks all processes, finds a valid mm struct for each one and 827 * then clears a corresponding bit in mm's cpumask. While this all sounds 828 * trivial, there are various non-obvious corner cases, which this function 829 * tries to solve in a safe manner. 830 * 831 * Also note that the function uses a somewhat relaxed locking scheme, so it may 832 * be called only for an already offlined CPU. 833 */ 834 void clear_tasks_mm_cpumask(int cpu) 835 { 836 struct task_struct *p; 837 838 /* 839 * This function is called after the cpu is taken down and marked 840 * offline, so its not like new tasks will ever get this cpu set in 841 * their mm mask. -- Peter Zijlstra 842 * Thus, we may use rcu_read_lock() here, instead of grabbing 843 * full-fledged tasklist_lock. 844 */ 845 WARN_ON(cpu_online(cpu)); 846 rcu_read_lock(); 847 for_each_process(p) { 848 struct task_struct *t; 849 850 /* 851 * Main thread might exit, but other threads may still have 852 * a valid mm. Find one. 853 */ 854 t = find_lock_task_mm(p); 855 if (!t) 856 continue; 857 arch_clear_mm_cpumask_cpu(cpu, t->mm); 858 task_unlock(t); 859 } 860 rcu_read_unlock(); 861 } 862 863 /* Take this CPU down. */ 864 static int take_cpu_down(void *_param) 865 { 866 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 867 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 868 int err, cpu = smp_processor_id(); 869 int ret; 870 871 /* Ensure this CPU doesn't handle any more interrupts. */ 872 err = __cpu_disable(); 873 if (err < 0) 874 return err; 875 876 /* 877 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 878 * do this step again. 879 */ 880 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 881 st->state--; 882 /* Invoke the former CPU_DYING callbacks */ 883 for (; st->state > target; st->state--) { 884 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 885 /* 886 * DYING must not fail! 887 */ 888 WARN_ON_ONCE(ret); 889 } 890 891 /* Give up timekeeping duties */ 892 tick_handover_do_timer(); 893 /* Remove CPU from timer broadcasting */ 894 tick_offline_cpu(cpu); 895 /* Park the stopper thread */ 896 stop_machine_park(cpu); 897 return 0; 898 } 899 900 static int takedown_cpu(unsigned int cpu) 901 { 902 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 903 int err; 904 905 /* Park the smpboot threads */ 906 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); 907 908 /* 909 * Prevent irq alloc/free while the dying cpu reorganizes the 910 * interrupt affinities. 911 */ 912 irq_lock_sparse(); 913 914 /* 915 * So now all preempt/rcu users must observe !cpu_active(). 916 */ 917 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 918 if (err) { 919 /* CPU refused to die */ 920 irq_unlock_sparse(); 921 /* Unpark the hotplug thread so we can rollback there */ 922 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 923 return err; 924 } 925 BUG_ON(cpu_online(cpu)); 926 927 /* 928 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 929 * all runnable tasks from the CPU, there's only the idle task left now 930 * that the migration thread is done doing the stop_machine thing. 931 * 932 * Wait for the stop thread to go away. 933 */ 934 wait_for_ap_thread(st, false); 935 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 936 937 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 938 irq_unlock_sparse(); 939 940 hotplug_cpu__broadcast_tick_pull(cpu); 941 /* This actually kills the CPU. */ 942 __cpu_die(cpu); 943 944 tick_cleanup_dead_cpu(cpu); 945 rcutree_migrate_callbacks(cpu); 946 return 0; 947 } 948 949 static void cpuhp_complete_idle_dead(void *arg) 950 { 951 struct cpuhp_cpu_state *st = arg; 952 953 complete_ap_thread(st, false); 954 } 955 956 void cpuhp_report_idle_dead(void) 957 { 958 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 959 960 BUG_ON(st->state != CPUHP_AP_OFFLINE); 961 rcu_report_dead(smp_processor_id()); 962 st->state = CPUHP_AP_IDLE_DEAD; 963 /* 964 * We cannot call complete after rcu_report_dead() so we delegate it 965 * to an online cpu. 966 */ 967 smp_call_function_single(cpumask_first(cpu_online_mask), 968 cpuhp_complete_idle_dead, st, 0); 969 } 970 971 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) 972 { 973 for (st->state++; st->state < st->target; st->state++) 974 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 975 } 976 977 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 978 enum cpuhp_state target) 979 { 980 enum cpuhp_state prev_state = st->state; 981 int ret = 0; 982 983 for (; st->state > target; st->state--) { 984 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 985 if (ret) { 986 st->target = prev_state; 987 if (st->state < prev_state) 988 undo_cpu_down(cpu, st); 989 break; 990 } 991 } 992 return ret; 993 } 994 995 /* Requires cpu_add_remove_lock to be held */ 996 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 997 enum cpuhp_state target) 998 { 999 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1000 int prev_state, ret = 0; 1001 1002 if (num_online_cpus() == 1) 1003 return -EBUSY; 1004 1005 if (!cpu_present(cpu)) 1006 return -EINVAL; 1007 1008 cpus_write_lock(); 1009 1010 cpuhp_tasks_frozen = tasks_frozen; 1011 1012 prev_state = cpuhp_set_state(st, target); 1013 /* 1014 * If the current CPU state is in the range of the AP hotplug thread, 1015 * then we need to kick the thread. 1016 */ 1017 if (st->state > CPUHP_TEARDOWN_CPU) { 1018 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1019 ret = cpuhp_kick_ap_work(cpu); 1020 /* 1021 * The AP side has done the error rollback already. Just 1022 * return the error code.. 1023 */ 1024 if (ret) 1025 goto out; 1026 1027 /* 1028 * We might have stopped still in the range of the AP hotplug 1029 * thread. Nothing to do anymore. 1030 */ 1031 if (st->state > CPUHP_TEARDOWN_CPU) 1032 goto out; 1033 1034 st->target = target; 1035 } 1036 /* 1037 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1038 * to do the further cleanups. 1039 */ 1040 ret = cpuhp_down_callbacks(cpu, st, target); 1041 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) { 1042 cpuhp_reset_state(st, prev_state); 1043 __cpuhp_kick_ap(st); 1044 } 1045 1046 out: 1047 cpus_write_unlock(); 1048 /* 1049 * Do post unplug cleanup. This is still protected against 1050 * concurrent CPU hotplug via cpu_add_remove_lock. 1051 */ 1052 lockup_detector_cleanup(); 1053 arch_smt_update(); 1054 return ret; 1055 } 1056 1057 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1058 { 1059 if (cpu_hotplug_disabled) 1060 return -EBUSY; 1061 return _cpu_down(cpu, 0, target); 1062 } 1063 1064 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1065 { 1066 int err; 1067 1068 cpu_maps_update_begin(); 1069 err = cpu_down_maps_locked(cpu, target); 1070 cpu_maps_update_done(); 1071 return err; 1072 } 1073 1074 /** 1075 * cpu_device_down - Bring down a cpu device 1076 * @dev: Pointer to the cpu device to offline 1077 * 1078 * This function is meant to be used by device core cpu subsystem only. 1079 * 1080 * Other subsystems should use remove_cpu() instead. 1081 */ 1082 int cpu_device_down(struct device *dev) 1083 { 1084 return cpu_down(dev->id, CPUHP_OFFLINE); 1085 } 1086 1087 int remove_cpu(unsigned int cpu) 1088 { 1089 int ret; 1090 1091 lock_device_hotplug(); 1092 ret = device_offline(get_cpu_device(cpu)); 1093 unlock_device_hotplug(); 1094 1095 return ret; 1096 } 1097 EXPORT_SYMBOL_GPL(remove_cpu); 1098 1099 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1100 { 1101 unsigned int cpu; 1102 int error; 1103 1104 cpu_maps_update_begin(); 1105 1106 /* 1107 * Make certain the cpu I'm about to reboot on is online. 1108 * 1109 * This is inline to what migrate_to_reboot_cpu() already do. 1110 */ 1111 if (!cpu_online(primary_cpu)) 1112 primary_cpu = cpumask_first(cpu_online_mask); 1113 1114 for_each_online_cpu(cpu) { 1115 if (cpu == primary_cpu) 1116 continue; 1117 1118 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1119 if (error) { 1120 pr_err("Failed to offline CPU%d - error=%d", 1121 cpu, error); 1122 break; 1123 } 1124 } 1125 1126 /* 1127 * Ensure all but the reboot CPU are offline. 1128 */ 1129 BUG_ON(num_online_cpus() > 1); 1130 1131 /* 1132 * Make sure the CPUs won't be enabled by someone else after this 1133 * point. Kexec will reboot to a new kernel shortly resetting 1134 * everything along the way. 1135 */ 1136 cpu_hotplug_disabled++; 1137 1138 cpu_maps_update_done(); 1139 } 1140 1141 #else 1142 #define takedown_cpu NULL 1143 #endif /*CONFIG_HOTPLUG_CPU*/ 1144 1145 /** 1146 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1147 * @cpu: cpu that just started 1148 * 1149 * It must be called by the arch code on the new cpu, before the new cpu 1150 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1151 */ 1152 void notify_cpu_starting(unsigned int cpu) 1153 { 1154 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1155 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1156 int ret; 1157 1158 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1159 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1160 while (st->state < target) { 1161 st->state++; 1162 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1163 /* 1164 * STARTING must not fail! 1165 */ 1166 WARN_ON_ONCE(ret); 1167 } 1168 } 1169 1170 /* 1171 * Called from the idle task. Wake up the controlling task which brings the 1172 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1173 * online bringup to the hotplug thread. 1174 */ 1175 void cpuhp_online_idle(enum cpuhp_state state) 1176 { 1177 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1178 1179 /* Happens for the boot cpu */ 1180 if (state != CPUHP_AP_ONLINE_IDLE) 1181 return; 1182 1183 /* 1184 * Unpart the stopper thread before we start the idle loop (and start 1185 * scheduling); this ensures the stopper task is always available. 1186 */ 1187 stop_machine_unpark(smp_processor_id()); 1188 1189 st->state = CPUHP_AP_ONLINE_IDLE; 1190 complete_ap_thread(st, true); 1191 } 1192 1193 /* Requires cpu_add_remove_lock to be held */ 1194 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1195 { 1196 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1197 struct task_struct *idle; 1198 int ret = 0; 1199 1200 cpus_write_lock(); 1201 1202 if (!cpu_present(cpu)) { 1203 ret = -EINVAL; 1204 goto out; 1205 } 1206 1207 /* 1208 * The caller of cpu_up() might have raced with another 1209 * caller. Nothing to do. 1210 */ 1211 if (st->state >= target) 1212 goto out; 1213 1214 if (st->state == CPUHP_OFFLINE) { 1215 /* Let it fail before we try to bring the cpu up */ 1216 idle = idle_thread_get(cpu); 1217 if (IS_ERR(idle)) { 1218 ret = PTR_ERR(idle); 1219 goto out; 1220 } 1221 } 1222 1223 cpuhp_tasks_frozen = tasks_frozen; 1224 1225 cpuhp_set_state(st, target); 1226 /* 1227 * If the current CPU state is in the range of the AP hotplug thread, 1228 * then we need to kick the thread once more. 1229 */ 1230 if (st->state > CPUHP_BRINGUP_CPU) { 1231 ret = cpuhp_kick_ap_work(cpu); 1232 /* 1233 * The AP side has done the error rollback already. Just 1234 * return the error code.. 1235 */ 1236 if (ret) 1237 goto out; 1238 } 1239 1240 /* 1241 * Try to reach the target state. We max out on the BP at 1242 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1243 * responsible for bringing it up to the target state. 1244 */ 1245 target = min((int)target, CPUHP_BRINGUP_CPU); 1246 ret = cpuhp_up_callbacks(cpu, st, target); 1247 out: 1248 cpus_write_unlock(); 1249 arch_smt_update(); 1250 return ret; 1251 } 1252 1253 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1254 { 1255 int err = 0; 1256 1257 if (!cpu_possible(cpu)) { 1258 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1259 cpu); 1260 #if defined(CONFIG_IA64) 1261 pr_err("please check additional_cpus= boot parameter\n"); 1262 #endif 1263 return -EINVAL; 1264 } 1265 1266 err = try_online_node(cpu_to_node(cpu)); 1267 if (err) 1268 return err; 1269 1270 cpu_maps_update_begin(); 1271 1272 if (cpu_hotplug_disabled) { 1273 err = -EBUSY; 1274 goto out; 1275 } 1276 if (!cpu_smt_allowed(cpu)) { 1277 err = -EPERM; 1278 goto out; 1279 } 1280 1281 err = _cpu_up(cpu, 0, target); 1282 out: 1283 cpu_maps_update_done(); 1284 return err; 1285 } 1286 1287 /** 1288 * cpu_device_up - Bring up a cpu device 1289 * @dev: Pointer to the cpu device to online 1290 * 1291 * This function is meant to be used by device core cpu subsystem only. 1292 * 1293 * Other subsystems should use add_cpu() instead. 1294 */ 1295 int cpu_device_up(struct device *dev) 1296 { 1297 return cpu_up(dev->id, CPUHP_ONLINE); 1298 } 1299 1300 int add_cpu(unsigned int cpu) 1301 { 1302 int ret; 1303 1304 lock_device_hotplug(); 1305 ret = device_online(get_cpu_device(cpu)); 1306 unlock_device_hotplug(); 1307 1308 return ret; 1309 } 1310 EXPORT_SYMBOL_GPL(add_cpu); 1311 1312 /** 1313 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1314 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1315 * 1316 * On some architectures like arm64, we can hibernate on any CPU, but on 1317 * wake up the CPU we hibernated on might be offline as a side effect of 1318 * using maxcpus= for example. 1319 */ 1320 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1321 { 1322 int ret; 1323 1324 if (!cpu_online(sleep_cpu)) { 1325 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1326 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1327 if (ret) { 1328 pr_err("Failed to bring hibernate-CPU up!\n"); 1329 return ret; 1330 } 1331 } 1332 return 0; 1333 } 1334 1335 void bringup_nonboot_cpus(unsigned int setup_max_cpus) 1336 { 1337 unsigned int cpu; 1338 1339 for_each_present_cpu(cpu) { 1340 if (num_online_cpus() >= setup_max_cpus) 1341 break; 1342 if (!cpu_online(cpu)) 1343 cpu_up(cpu, CPUHP_ONLINE); 1344 } 1345 } 1346 1347 #ifdef CONFIG_PM_SLEEP_SMP 1348 static cpumask_var_t frozen_cpus; 1349 1350 int freeze_secondary_cpus(int primary) 1351 { 1352 int cpu, error = 0; 1353 1354 cpu_maps_update_begin(); 1355 if (primary == -1) { 1356 primary = cpumask_first(cpu_online_mask); 1357 if (!housekeeping_cpu(primary, HK_FLAG_TIMER)) 1358 primary = housekeeping_any_cpu(HK_FLAG_TIMER); 1359 } else { 1360 if (!cpu_online(primary)) 1361 primary = cpumask_first(cpu_online_mask); 1362 } 1363 1364 /* 1365 * We take down all of the non-boot CPUs in one shot to avoid races 1366 * with the userspace trying to use the CPU hotplug at the same time 1367 */ 1368 cpumask_clear(frozen_cpus); 1369 1370 pr_info("Disabling non-boot CPUs ...\n"); 1371 for_each_online_cpu(cpu) { 1372 if (cpu == primary) 1373 continue; 1374 1375 if (pm_wakeup_pending()) { 1376 pr_info("Wakeup pending. Abort CPU freeze\n"); 1377 error = -EBUSY; 1378 break; 1379 } 1380 1381 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1382 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1383 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1384 if (!error) 1385 cpumask_set_cpu(cpu, frozen_cpus); 1386 else { 1387 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1388 break; 1389 } 1390 } 1391 1392 if (!error) 1393 BUG_ON(num_online_cpus() > 1); 1394 else 1395 pr_err("Non-boot CPUs are not disabled\n"); 1396 1397 /* 1398 * Make sure the CPUs won't be enabled by someone else. We need to do 1399 * this even in case of failure as all freeze_secondary_cpus() users are 1400 * supposed to do thaw_secondary_cpus() on the failure path. 1401 */ 1402 cpu_hotplug_disabled++; 1403 1404 cpu_maps_update_done(); 1405 return error; 1406 } 1407 1408 void __weak arch_thaw_secondary_cpus_begin(void) 1409 { 1410 } 1411 1412 void __weak arch_thaw_secondary_cpus_end(void) 1413 { 1414 } 1415 1416 void thaw_secondary_cpus(void) 1417 { 1418 int cpu, error; 1419 1420 /* Allow everyone to use the CPU hotplug again */ 1421 cpu_maps_update_begin(); 1422 __cpu_hotplug_enable(); 1423 if (cpumask_empty(frozen_cpus)) 1424 goto out; 1425 1426 pr_info("Enabling non-boot CPUs ...\n"); 1427 1428 arch_thaw_secondary_cpus_begin(); 1429 1430 for_each_cpu(cpu, frozen_cpus) { 1431 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1432 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1433 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1434 if (!error) { 1435 pr_info("CPU%d is up\n", cpu); 1436 continue; 1437 } 1438 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1439 } 1440 1441 arch_thaw_secondary_cpus_end(); 1442 1443 cpumask_clear(frozen_cpus); 1444 out: 1445 cpu_maps_update_done(); 1446 } 1447 1448 static int __init alloc_frozen_cpus(void) 1449 { 1450 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 1451 return -ENOMEM; 1452 return 0; 1453 } 1454 core_initcall(alloc_frozen_cpus); 1455 1456 /* 1457 * When callbacks for CPU hotplug notifications are being executed, we must 1458 * ensure that the state of the system with respect to the tasks being frozen 1459 * or not, as reported by the notification, remains unchanged *throughout the 1460 * duration* of the execution of the callbacks. 1461 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 1462 * 1463 * This synchronization is implemented by mutually excluding regular CPU 1464 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 1465 * Hibernate notifications. 1466 */ 1467 static int 1468 cpu_hotplug_pm_callback(struct notifier_block *nb, 1469 unsigned long action, void *ptr) 1470 { 1471 switch (action) { 1472 1473 case PM_SUSPEND_PREPARE: 1474 case PM_HIBERNATION_PREPARE: 1475 cpu_hotplug_disable(); 1476 break; 1477 1478 case PM_POST_SUSPEND: 1479 case PM_POST_HIBERNATION: 1480 cpu_hotplug_enable(); 1481 break; 1482 1483 default: 1484 return NOTIFY_DONE; 1485 } 1486 1487 return NOTIFY_OK; 1488 } 1489 1490 1491 static int __init cpu_hotplug_pm_sync_init(void) 1492 { 1493 /* 1494 * cpu_hotplug_pm_callback has higher priority than x86 1495 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 1496 * to disable cpu hotplug to avoid cpu hotplug race. 1497 */ 1498 pm_notifier(cpu_hotplug_pm_callback, 0); 1499 return 0; 1500 } 1501 core_initcall(cpu_hotplug_pm_sync_init); 1502 1503 #endif /* CONFIG_PM_SLEEP_SMP */ 1504 1505 int __boot_cpu_id; 1506 1507 #endif /* CONFIG_SMP */ 1508 1509 /* Boot processor state steps */ 1510 static struct cpuhp_step cpuhp_hp_states[] = { 1511 [CPUHP_OFFLINE] = { 1512 .name = "offline", 1513 .startup.single = NULL, 1514 .teardown.single = NULL, 1515 }, 1516 #ifdef CONFIG_SMP 1517 [CPUHP_CREATE_THREADS]= { 1518 .name = "threads:prepare", 1519 .startup.single = smpboot_create_threads, 1520 .teardown.single = NULL, 1521 .cant_stop = true, 1522 }, 1523 [CPUHP_PERF_PREPARE] = { 1524 .name = "perf:prepare", 1525 .startup.single = perf_event_init_cpu, 1526 .teardown.single = perf_event_exit_cpu, 1527 }, 1528 [CPUHP_WORKQUEUE_PREP] = { 1529 .name = "workqueue:prepare", 1530 .startup.single = workqueue_prepare_cpu, 1531 .teardown.single = NULL, 1532 }, 1533 [CPUHP_HRTIMERS_PREPARE] = { 1534 .name = "hrtimers:prepare", 1535 .startup.single = hrtimers_prepare_cpu, 1536 .teardown.single = hrtimers_dead_cpu, 1537 }, 1538 [CPUHP_SMPCFD_PREPARE] = { 1539 .name = "smpcfd:prepare", 1540 .startup.single = smpcfd_prepare_cpu, 1541 .teardown.single = smpcfd_dead_cpu, 1542 }, 1543 [CPUHP_RELAY_PREPARE] = { 1544 .name = "relay:prepare", 1545 .startup.single = relay_prepare_cpu, 1546 .teardown.single = NULL, 1547 }, 1548 [CPUHP_SLAB_PREPARE] = { 1549 .name = "slab:prepare", 1550 .startup.single = slab_prepare_cpu, 1551 .teardown.single = slab_dead_cpu, 1552 }, 1553 [CPUHP_RCUTREE_PREP] = { 1554 .name = "RCU/tree:prepare", 1555 .startup.single = rcutree_prepare_cpu, 1556 .teardown.single = rcutree_dead_cpu, 1557 }, 1558 /* 1559 * On the tear-down path, timers_dead_cpu() must be invoked 1560 * before blk_mq_queue_reinit_notify() from notify_dead(), 1561 * otherwise a RCU stall occurs. 1562 */ 1563 [CPUHP_TIMERS_PREPARE] = { 1564 .name = "timers:prepare", 1565 .startup.single = timers_prepare_cpu, 1566 .teardown.single = timers_dead_cpu, 1567 }, 1568 /* Kicks the plugged cpu into life */ 1569 [CPUHP_BRINGUP_CPU] = { 1570 .name = "cpu:bringup", 1571 .startup.single = bringup_cpu, 1572 .teardown.single = finish_cpu, 1573 .cant_stop = true, 1574 }, 1575 /* Final state before CPU kills itself */ 1576 [CPUHP_AP_IDLE_DEAD] = { 1577 .name = "idle:dead", 1578 }, 1579 /* 1580 * Last state before CPU enters the idle loop to die. Transient state 1581 * for synchronization. 1582 */ 1583 [CPUHP_AP_OFFLINE] = { 1584 .name = "ap:offline", 1585 .cant_stop = true, 1586 }, 1587 /* First state is scheduler control. Interrupts are disabled */ 1588 [CPUHP_AP_SCHED_STARTING] = { 1589 .name = "sched:starting", 1590 .startup.single = sched_cpu_starting, 1591 .teardown.single = sched_cpu_dying, 1592 }, 1593 [CPUHP_AP_RCUTREE_DYING] = { 1594 .name = "RCU/tree:dying", 1595 .startup.single = NULL, 1596 .teardown.single = rcutree_dying_cpu, 1597 }, 1598 [CPUHP_AP_SMPCFD_DYING] = { 1599 .name = "smpcfd:dying", 1600 .startup.single = NULL, 1601 .teardown.single = smpcfd_dying_cpu, 1602 }, 1603 /* Entry state on starting. Interrupts enabled from here on. Transient 1604 * state for synchronsization */ 1605 [CPUHP_AP_ONLINE] = { 1606 .name = "ap:online", 1607 }, 1608 /* 1609 * Handled on control processor until the plugged processor manages 1610 * this itself. 1611 */ 1612 [CPUHP_TEARDOWN_CPU] = { 1613 .name = "cpu:teardown", 1614 .startup.single = NULL, 1615 .teardown.single = takedown_cpu, 1616 .cant_stop = true, 1617 }, 1618 1619 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 1620 .name = "sched:waitempty", 1621 .startup.single = NULL, 1622 .teardown.single = sched_cpu_wait_empty, 1623 }, 1624 1625 /* Handle smpboot threads park/unpark */ 1626 [CPUHP_AP_SMPBOOT_THREADS] = { 1627 .name = "smpboot/threads:online", 1628 .startup.single = smpboot_unpark_threads, 1629 .teardown.single = smpboot_park_threads, 1630 }, 1631 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1632 .name = "irq/affinity:online", 1633 .startup.single = irq_affinity_online_cpu, 1634 .teardown.single = NULL, 1635 }, 1636 [CPUHP_AP_PERF_ONLINE] = { 1637 .name = "perf:online", 1638 .startup.single = perf_event_init_cpu, 1639 .teardown.single = perf_event_exit_cpu, 1640 }, 1641 [CPUHP_AP_WATCHDOG_ONLINE] = { 1642 .name = "lockup_detector:online", 1643 .startup.single = lockup_detector_online_cpu, 1644 .teardown.single = lockup_detector_offline_cpu, 1645 }, 1646 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1647 .name = "workqueue:online", 1648 .startup.single = workqueue_online_cpu, 1649 .teardown.single = workqueue_offline_cpu, 1650 }, 1651 [CPUHP_AP_RCUTREE_ONLINE] = { 1652 .name = "RCU/tree:online", 1653 .startup.single = rcutree_online_cpu, 1654 .teardown.single = rcutree_offline_cpu, 1655 }, 1656 #endif 1657 /* 1658 * The dynamically registered state space is here 1659 */ 1660 1661 #ifdef CONFIG_SMP 1662 /* Last state is scheduler control setting the cpu active */ 1663 [CPUHP_AP_ACTIVE] = { 1664 .name = "sched:active", 1665 .startup.single = sched_cpu_activate, 1666 .teardown.single = sched_cpu_deactivate, 1667 }, 1668 #endif 1669 1670 /* CPU is fully up and running. */ 1671 [CPUHP_ONLINE] = { 1672 .name = "online", 1673 .startup.single = NULL, 1674 .teardown.single = NULL, 1675 }, 1676 }; 1677 1678 /* Sanity check for callbacks */ 1679 static int cpuhp_cb_check(enum cpuhp_state state) 1680 { 1681 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 1682 return -EINVAL; 1683 return 0; 1684 } 1685 1686 /* 1687 * Returns a free for dynamic slot assignment of the Online state. The states 1688 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 1689 * by having no name assigned. 1690 */ 1691 static int cpuhp_reserve_state(enum cpuhp_state state) 1692 { 1693 enum cpuhp_state i, end; 1694 struct cpuhp_step *step; 1695 1696 switch (state) { 1697 case CPUHP_AP_ONLINE_DYN: 1698 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 1699 end = CPUHP_AP_ONLINE_DYN_END; 1700 break; 1701 case CPUHP_BP_PREPARE_DYN: 1702 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 1703 end = CPUHP_BP_PREPARE_DYN_END; 1704 break; 1705 default: 1706 return -EINVAL; 1707 } 1708 1709 for (i = state; i <= end; i++, step++) { 1710 if (!step->name) 1711 return i; 1712 } 1713 WARN(1, "No more dynamic states available for CPU hotplug\n"); 1714 return -ENOSPC; 1715 } 1716 1717 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 1718 int (*startup)(unsigned int cpu), 1719 int (*teardown)(unsigned int cpu), 1720 bool multi_instance) 1721 { 1722 /* (Un)Install the callbacks for further cpu hotplug operations */ 1723 struct cpuhp_step *sp; 1724 int ret = 0; 1725 1726 /* 1727 * If name is NULL, then the state gets removed. 1728 * 1729 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 1730 * the first allocation from these dynamic ranges, so the removal 1731 * would trigger a new allocation and clear the wrong (already 1732 * empty) state, leaving the callbacks of the to be cleared state 1733 * dangling, which causes wreckage on the next hotplug operation. 1734 */ 1735 if (name && (state == CPUHP_AP_ONLINE_DYN || 1736 state == CPUHP_BP_PREPARE_DYN)) { 1737 ret = cpuhp_reserve_state(state); 1738 if (ret < 0) 1739 return ret; 1740 state = ret; 1741 } 1742 sp = cpuhp_get_step(state); 1743 if (name && sp->name) 1744 return -EBUSY; 1745 1746 sp->startup.single = startup; 1747 sp->teardown.single = teardown; 1748 sp->name = name; 1749 sp->multi_instance = multi_instance; 1750 INIT_HLIST_HEAD(&sp->list); 1751 return ret; 1752 } 1753 1754 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 1755 { 1756 return cpuhp_get_step(state)->teardown.single; 1757 } 1758 1759 /* 1760 * Call the startup/teardown function for a step either on the AP or 1761 * on the current CPU. 1762 */ 1763 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 1764 struct hlist_node *node) 1765 { 1766 struct cpuhp_step *sp = cpuhp_get_step(state); 1767 int ret; 1768 1769 /* 1770 * If there's nothing to do, we done. 1771 * Relies on the union for multi_instance. 1772 */ 1773 if ((bringup && !sp->startup.single) || 1774 (!bringup && !sp->teardown.single)) 1775 return 0; 1776 /* 1777 * The non AP bound callbacks can fail on bringup. On teardown 1778 * e.g. module removal we crash for now. 1779 */ 1780 #ifdef CONFIG_SMP 1781 if (cpuhp_is_ap_state(state)) 1782 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 1783 else 1784 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1785 #else 1786 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1787 #endif 1788 BUG_ON(ret && !bringup); 1789 return ret; 1790 } 1791 1792 /* 1793 * Called from __cpuhp_setup_state on a recoverable failure. 1794 * 1795 * Note: The teardown callbacks for rollback are not allowed to fail! 1796 */ 1797 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 1798 struct hlist_node *node) 1799 { 1800 int cpu; 1801 1802 /* Roll back the already executed steps on the other cpus */ 1803 for_each_present_cpu(cpu) { 1804 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1805 int cpustate = st->state; 1806 1807 if (cpu >= failedcpu) 1808 break; 1809 1810 /* Did we invoke the startup call on that cpu ? */ 1811 if (cpustate >= state) 1812 cpuhp_issue_call(cpu, state, false, node); 1813 } 1814 } 1815 1816 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 1817 struct hlist_node *node, 1818 bool invoke) 1819 { 1820 struct cpuhp_step *sp; 1821 int cpu; 1822 int ret; 1823 1824 lockdep_assert_cpus_held(); 1825 1826 sp = cpuhp_get_step(state); 1827 if (sp->multi_instance == false) 1828 return -EINVAL; 1829 1830 mutex_lock(&cpuhp_state_mutex); 1831 1832 if (!invoke || !sp->startup.multi) 1833 goto add_node; 1834 1835 /* 1836 * Try to call the startup callback for each present cpu 1837 * depending on the hotplug state of the cpu. 1838 */ 1839 for_each_present_cpu(cpu) { 1840 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1841 int cpustate = st->state; 1842 1843 if (cpustate < state) 1844 continue; 1845 1846 ret = cpuhp_issue_call(cpu, state, true, node); 1847 if (ret) { 1848 if (sp->teardown.multi) 1849 cpuhp_rollback_install(cpu, state, node); 1850 goto unlock; 1851 } 1852 } 1853 add_node: 1854 ret = 0; 1855 hlist_add_head(node, &sp->list); 1856 unlock: 1857 mutex_unlock(&cpuhp_state_mutex); 1858 return ret; 1859 } 1860 1861 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 1862 bool invoke) 1863 { 1864 int ret; 1865 1866 cpus_read_lock(); 1867 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 1868 cpus_read_unlock(); 1869 return ret; 1870 } 1871 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 1872 1873 /** 1874 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 1875 * @state: The state to setup 1876 * @invoke: If true, the startup function is invoked for cpus where 1877 * cpu state >= @state 1878 * @startup: startup callback function 1879 * @teardown: teardown callback function 1880 * @multi_instance: State is set up for multiple instances which get 1881 * added afterwards. 1882 * 1883 * The caller needs to hold cpus read locked while calling this function. 1884 * Returns: 1885 * On success: 1886 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 1887 * 0 for all other states 1888 * On failure: proper (negative) error code 1889 */ 1890 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 1891 const char *name, bool invoke, 1892 int (*startup)(unsigned int cpu), 1893 int (*teardown)(unsigned int cpu), 1894 bool multi_instance) 1895 { 1896 int cpu, ret = 0; 1897 bool dynstate; 1898 1899 lockdep_assert_cpus_held(); 1900 1901 if (cpuhp_cb_check(state) || !name) 1902 return -EINVAL; 1903 1904 mutex_lock(&cpuhp_state_mutex); 1905 1906 ret = cpuhp_store_callbacks(state, name, startup, teardown, 1907 multi_instance); 1908 1909 dynstate = state == CPUHP_AP_ONLINE_DYN; 1910 if (ret > 0 && dynstate) { 1911 state = ret; 1912 ret = 0; 1913 } 1914 1915 if (ret || !invoke || !startup) 1916 goto out; 1917 1918 /* 1919 * Try to call the startup callback for each present cpu 1920 * depending on the hotplug state of the cpu. 1921 */ 1922 for_each_present_cpu(cpu) { 1923 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1924 int cpustate = st->state; 1925 1926 if (cpustate < state) 1927 continue; 1928 1929 ret = cpuhp_issue_call(cpu, state, true, NULL); 1930 if (ret) { 1931 if (teardown) 1932 cpuhp_rollback_install(cpu, state, NULL); 1933 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 1934 goto out; 1935 } 1936 } 1937 out: 1938 mutex_unlock(&cpuhp_state_mutex); 1939 /* 1940 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 1941 * dynamically allocated state in case of success. 1942 */ 1943 if (!ret && dynstate) 1944 return state; 1945 return ret; 1946 } 1947 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 1948 1949 int __cpuhp_setup_state(enum cpuhp_state state, 1950 const char *name, bool invoke, 1951 int (*startup)(unsigned int cpu), 1952 int (*teardown)(unsigned int cpu), 1953 bool multi_instance) 1954 { 1955 int ret; 1956 1957 cpus_read_lock(); 1958 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 1959 teardown, multi_instance); 1960 cpus_read_unlock(); 1961 return ret; 1962 } 1963 EXPORT_SYMBOL(__cpuhp_setup_state); 1964 1965 int __cpuhp_state_remove_instance(enum cpuhp_state state, 1966 struct hlist_node *node, bool invoke) 1967 { 1968 struct cpuhp_step *sp = cpuhp_get_step(state); 1969 int cpu; 1970 1971 BUG_ON(cpuhp_cb_check(state)); 1972 1973 if (!sp->multi_instance) 1974 return -EINVAL; 1975 1976 cpus_read_lock(); 1977 mutex_lock(&cpuhp_state_mutex); 1978 1979 if (!invoke || !cpuhp_get_teardown_cb(state)) 1980 goto remove; 1981 /* 1982 * Call the teardown callback for each present cpu depending 1983 * on the hotplug state of the cpu. This function is not 1984 * allowed to fail currently! 1985 */ 1986 for_each_present_cpu(cpu) { 1987 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1988 int cpustate = st->state; 1989 1990 if (cpustate >= state) 1991 cpuhp_issue_call(cpu, state, false, node); 1992 } 1993 1994 remove: 1995 hlist_del(node); 1996 mutex_unlock(&cpuhp_state_mutex); 1997 cpus_read_unlock(); 1998 1999 return 0; 2000 } 2001 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2002 2003 /** 2004 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2005 * @state: The state to remove 2006 * @invoke: If true, the teardown function is invoked for cpus where 2007 * cpu state >= @state 2008 * 2009 * The caller needs to hold cpus read locked while calling this function. 2010 * The teardown callback is currently not allowed to fail. Think 2011 * about module removal! 2012 */ 2013 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2014 { 2015 struct cpuhp_step *sp = cpuhp_get_step(state); 2016 int cpu; 2017 2018 BUG_ON(cpuhp_cb_check(state)); 2019 2020 lockdep_assert_cpus_held(); 2021 2022 mutex_lock(&cpuhp_state_mutex); 2023 if (sp->multi_instance) { 2024 WARN(!hlist_empty(&sp->list), 2025 "Error: Removing state %d which has instances left.\n", 2026 state); 2027 goto remove; 2028 } 2029 2030 if (!invoke || !cpuhp_get_teardown_cb(state)) 2031 goto remove; 2032 2033 /* 2034 * Call the teardown callback for each present cpu depending 2035 * on the hotplug state of the cpu. This function is not 2036 * allowed to fail currently! 2037 */ 2038 for_each_present_cpu(cpu) { 2039 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2040 int cpustate = st->state; 2041 2042 if (cpustate >= state) 2043 cpuhp_issue_call(cpu, state, false, NULL); 2044 } 2045 remove: 2046 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2047 mutex_unlock(&cpuhp_state_mutex); 2048 } 2049 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2050 2051 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2052 { 2053 cpus_read_lock(); 2054 __cpuhp_remove_state_cpuslocked(state, invoke); 2055 cpus_read_unlock(); 2056 } 2057 EXPORT_SYMBOL(__cpuhp_remove_state); 2058 2059 #ifdef CONFIG_HOTPLUG_SMT 2060 static void cpuhp_offline_cpu_device(unsigned int cpu) 2061 { 2062 struct device *dev = get_cpu_device(cpu); 2063 2064 dev->offline = true; 2065 /* Tell user space about the state change */ 2066 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2067 } 2068 2069 static void cpuhp_online_cpu_device(unsigned int cpu) 2070 { 2071 struct device *dev = get_cpu_device(cpu); 2072 2073 dev->offline = false; 2074 /* Tell user space about the state change */ 2075 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2076 } 2077 2078 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2079 { 2080 int cpu, ret = 0; 2081 2082 cpu_maps_update_begin(); 2083 for_each_online_cpu(cpu) { 2084 if (topology_is_primary_thread(cpu)) 2085 continue; 2086 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2087 if (ret) 2088 break; 2089 /* 2090 * As this needs to hold the cpu maps lock it's impossible 2091 * to call device_offline() because that ends up calling 2092 * cpu_down() which takes cpu maps lock. cpu maps lock 2093 * needs to be held as this might race against in kernel 2094 * abusers of the hotplug machinery (thermal management). 2095 * 2096 * So nothing would update device:offline state. That would 2097 * leave the sysfs entry stale and prevent onlining after 2098 * smt control has been changed to 'off' again. This is 2099 * called under the sysfs hotplug lock, so it is properly 2100 * serialized against the regular offline usage. 2101 */ 2102 cpuhp_offline_cpu_device(cpu); 2103 } 2104 if (!ret) 2105 cpu_smt_control = ctrlval; 2106 cpu_maps_update_done(); 2107 return ret; 2108 } 2109 2110 int cpuhp_smt_enable(void) 2111 { 2112 int cpu, ret = 0; 2113 2114 cpu_maps_update_begin(); 2115 cpu_smt_control = CPU_SMT_ENABLED; 2116 for_each_present_cpu(cpu) { 2117 /* Skip online CPUs and CPUs on offline nodes */ 2118 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2119 continue; 2120 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2121 if (ret) 2122 break; 2123 /* See comment in cpuhp_smt_disable() */ 2124 cpuhp_online_cpu_device(cpu); 2125 } 2126 cpu_maps_update_done(); 2127 return ret; 2128 } 2129 #endif 2130 2131 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2132 static ssize_t show_cpuhp_state(struct device *dev, 2133 struct device_attribute *attr, char *buf) 2134 { 2135 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2136 2137 return sprintf(buf, "%d\n", st->state); 2138 } 2139 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 2140 2141 static ssize_t write_cpuhp_target(struct device *dev, 2142 struct device_attribute *attr, 2143 const char *buf, size_t count) 2144 { 2145 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2146 struct cpuhp_step *sp; 2147 int target, ret; 2148 2149 ret = kstrtoint(buf, 10, &target); 2150 if (ret) 2151 return ret; 2152 2153 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2154 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2155 return -EINVAL; 2156 #else 2157 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2158 return -EINVAL; 2159 #endif 2160 2161 ret = lock_device_hotplug_sysfs(); 2162 if (ret) 2163 return ret; 2164 2165 mutex_lock(&cpuhp_state_mutex); 2166 sp = cpuhp_get_step(target); 2167 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2168 mutex_unlock(&cpuhp_state_mutex); 2169 if (ret) 2170 goto out; 2171 2172 if (st->state < target) 2173 ret = cpu_up(dev->id, target); 2174 else 2175 ret = cpu_down(dev->id, target); 2176 out: 2177 unlock_device_hotplug(); 2178 return ret ? ret : count; 2179 } 2180 2181 static ssize_t show_cpuhp_target(struct device *dev, 2182 struct device_attribute *attr, char *buf) 2183 { 2184 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2185 2186 return sprintf(buf, "%d\n", st->target); 2187 } 2188 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); 2189 2190 2191 static ssize_t write_cpuhp_fail(struct device *dev, 2192 struct device_attribute *attr, 2193 const char *buf, size_t count) 2194 { 2195 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2196 struct cpuhp_step *sp; 2197 int fail, ret; 2198 2199 ret = kstrtoint(buf, 10, &fail); 2200 if (ret) 2201 return ret; 2202 2203 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2204 return -EINVAL; 2205 2206 /* 2207 * Cannot fail STARTING/DYING callbacks. 2208 */ 2209 if (cpuhp_is_atomic_state(fail)) 2210 return -EINVAL; 2211 2212 /* 2213 * Cannot fail anything that doesn't have callbacks. 2214 */ 2215 mutex_lock(&cpuhp_state_mutex); 2216 sp = cpuhp_get_step(fail); 2217 if (!sp->startup.single && !sp->teardown.single) 2218 ret = -EINVAL; 2219 mutex_unlock(&cpuhp_state_mutex); 2220 if (ret) 2221 return ret; 2222 2223 st->fail = fail; 2224 2225 return count; 2226 } 2227 2228 static ssize_t show_cpuhp_fail(struct device *dev, 2229 struct device_attribute *attr, char *buf) 2230 { 2231 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2232 2233 return sprintf(buf, "%d\n", st->fail); 2234 } 2235 2236 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 2237 2238 static struct attribute *cpuhp_cpu_attrs[] = { 2239 &dev_attr_state.attr, 2240 &dev_attr_target.attr, 2241 &dev_attr_fail.attr, 2242 NULL 2243 }; 2244 2245 static const struct attribute_group cpuhp_cpu_attr_group = { 2246 .attrs = cpuhp_cpu_attrs, 2247 .name = "hotplug", 2248 NULL 2249 }; 2250 2251 static ssize_t show_cpuhp_states(struct device *dev, 2252 struct device_attribute *attr, char *buf) 2253 { 2254 ssize_t cur, res = 0; 2255 int i; 2256 2257 mutex_lock(&cpuhp_state_mutex); 2258 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2259 struct cpuhp_step *sp = cpuhp_get_step(i); 2260 2261 if (sp->name) { 2262 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2263 buf += cur; 2264 res += cur; 2265 } 2266 } 2267 mutex_unlock(&cpuhp_state_mutex); 2268 return res; 2269 } 2270 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2271 2272 static struct attribute *cpuhp_cpu_root_attrs[] = { 2273 &dev_attr_states.attr, 2274 NULL 2275 }; 2276 2277 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2278 .attrs = cpuhp_cpu_root_attrs, 2279 .name = "hotplug", 2280 NULL 2281 }; 2282 2283 #ifdef CONFIG_HOTPLUG_SMT 2284 2285 static ssize_t 2286 __store_smt_control(struct device *dev, struct device_attribute *attr, 2287 const char *buf, size_t count) 2288 { 2289 int ctrlval, ret; 2290 2291 if (sysfs_streq(buf, "on")) 2292 ctrlval = CPU_SMT_ENABLED; 2293 else if (sysfs_streq(buf, "off")) 2294 ctrlval = CPU_SMT_DISABLED; 2295 else if (sysfs_streq(buf, "forceoff")) 2296 ctrlval = CPU_SMT_FORCE_DISABLED; 2297 else 2298 return -EINVAL; 2299 2300 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2301 return -EPERM; 2302 2303 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2304 return -ENODEV; 2305 2306 ret = lock_device_hotplug_sysfs(); 2307 if (ret) 2308 return ret; 2309 2310 if (ctrlval != cpu_smt_control) { 2311 switch (ctrlval) { 2312 case CPU_SMT_ENABLED: 2313 ret = cpuhp_smt_enable(); 2314 break; 2315 case CPU_SMT_DISABLED: 2316 case CPU_SMT_FORCE_DISABLED: 2317 ret = cpuhp_smt_disable(ctrlval); 2318 break; 2319 } 2320 } 2321 2322 unlock_device_hotplug(); 2323 return ret ? ret : count; 2324 } 2325 2326 #else /* !CONFIG_HOTPLUG_SMT */ 2327 static ssize_t 2328 __store_smt_control(struct device *dev, struct device_attribute *attr, 2329 const char *buf, size_t count) 2330 { 2331 return -ENODEV; 2332 } 2333 #endif /* CONFIG_HOTPLUG_SMT */ 2334 2335 static const char *smt_states[] = { 2336 [CPU_SMT_ENABLED] = "on", 2337 [CPU_SMT_DISABLED] = "off", 2338 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2339 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2340 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2341 }; 2342 2343 static ssize_t 2344 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf) 2345 { 2346 const char *state = smt_states[cpu_smt_control]; 2347 2348 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 2349 } 2350 2351 static ssize_t 2352 store_smt_control(struct device *dev, struct device_attribute *attr, 2353 const char *buf, size_t count) 2354 { 2355 return __store_smt_control(dev, attr, buf, count); 2356 } 2357 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control); 2358 2359 static ssize_t 2360 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf) 2361 { 2362 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 2363 } 2364 static DEVICE_ATTR(active, 0444, show_smt_active, NULL); 2365 2366 static struct attribute *cpuhp_smt_attrs[] = { 2367 &dev_attr_control.attr, 2368 &dev_attr_active.attr, 2369 NULL 2370 }; 2371 2372 static const struct attribute_group cpuhp_smt_attr_group = { 2373 .attrs = cpuhp_smt_attrs, 2374 .name = "smt", 2375 NULL 2376 }; 2377 2378 static int __init cpu_smt_sysfs_init(void) 2379 { 2380 return sysfs_create_group(&cpu_subsys.dev_root->kobj, 2381 &cpuhp_smt_attr_group); 2382 } 2383 2384 static int __init cpuhp_sysfs_init(void) 2385 { 2386 int cpu, ret; 2387 2388 ret = cpu_smt_sysfs_init(); 2389 if (ret) 2390 return ret; 2391 2392 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, 2393 &cpuhp_cpu_root_attr_group); 2394 if (ret) 2395 return ret; 2396 2397 for_each_possible_cpu(cpu) { 2398 struct device *dev = get_cpu_device(cpu); 2399 2400 if (!dev) 2401 continue; 2402 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 2403 if (ret) 2404 return ret; 2405 } 2406 return 0; 2407 } 2408 device_initcall(cpuhp_sysfs_init); 2409 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 2410 2411 /* 2412 * cpu_bit_bitmap[] is a special, "compressed" data structure that 2413 * represents all NR_CPUS bits binary values of 1<<nr. 2414 * 2415 * It is used by cpumask_of() to get a constant address to a CPU 2416 * mask value that has a single bit set only. 2417 */ 2418 2419 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 2420 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 2421 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 2422 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 2423 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 2424 2425 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 2426 2427 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 2428 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 2429 #if BITS_PER_LONG > 32 2430 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 2431 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 2432 #endif 2433 }; 2434 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 2435 2436 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 2437 EXPORT_SYMBOL(cpu_all_bits); 2438 2439 #ifdef CONFIG_INIT_ALL_POSSIBLE 2440 struct cpumask __cpu_possible_mask __read_mostly 2441 = {CPU_BITS_ALL}; 2442 #else 2443 struct cpumask __cpu_possible_mask __read_mostly; 2444 #endif 2445 EXPORT_SYMBOL(__cpu_possible_mask); 2446 2447 struct cpumask __cpu_online_mask __read_mostly; 2448 EXPORT_SYMBOL(__cpu_online_mask); 2449 2450 struct cpumask __cpu_present_mask __read_mostly; 2451 EXPORT_SYMBOL(__cpu_present_mask); 2452 2453 struct cpumask __cpu_active_mask __read_mostly; 2454 EXPORT_SYMBOL(__cpu_active_mask); 2455 2456 atomic_t __num_online_cpus __read_mostly; 2457 EXPORT_SYMBOL(__num_online_cpus); 2458 2459 void init_cpu_present(const struct cpumask *src) 2460 { 2461 cpumask_copy(&__cpu_present_mask, src); 2462 } 2463 2464 void init_cpu_possible(const struct cpumask *src) 2465 { 2466 cpumask_copy(&__cpu_possible_mask, src); 2467 } 2468 2469 void init_cpu_online(const struct cpumask *src) 2470 { 2471 cpumask_copy(&__cpu_online_mask, src); 2472 } 2473 2474 void set_cpu_online(unsigned int cpu, bool online) 2475 { 2476 /* 2477 * atomic_inc/dec() is required to handle the horrid abuse of this 2478 * function by the reboot and kexec code which invoke it from 2479 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 2480 * regular CPU hotplug is properly serialized. 2481 * 2482 * Note, that the fact that __num_online_cpus is of type atomic_t 2483 * does not protect readers which are not serialized against 2484 * concurrent hotplug operations. 2485 */ 2486 if (online) { 2487 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 2488 atomic_inc(&__num_online_cpus); 2489 } else { 2490 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 2491 atomic_dec(&__num_online_cpus); 2492 } 2493 } 2494 2495 /* 2496 * Activate the first processor. 2497 */ 2498 void __init boot_cpu_init(void) 2499 { 2500 int cpu = smp_processor_id(); 2501 2502 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 2503 set_cpu_online(cpu, true); 2504 set_cpu_active(cpu, true); 2505 set_cpu_present(cpu, true); 2506 set_cpu_possible(cpu, true); 2507 2508 #ifdef CONFIG_SMP 2509 __boot_cpu_id = cpu; 2510 #endif 2511 } 2512 2513 /* 2514 * Must be called _AFTER_ setting up the per_cpu areas 2515 */ 2516 void __init boot_cpu_hotplug_init(void) 2517 { 2518 #ifdef CONFIG_SMP 2519 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 2520 #endif 2521 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 2522 } 2523 2524 /* 2525 * These are used for a global "mitigations=" cmdline option for toggling 2526 * optional CPU mitigations. 2527 */ 2528 enum cpu_mitigations { 2529 CPU_MITIGATIONS_OFF, 2530 CPU_MITIGATIONS_AUTO, 2531 CPU_MITIGATIONS_AUTO_NOSMT, 2532 }; 2533 2534 static enum cpu_mitigations cpu_mitigations __ro_after_init = 2535 CPU_MITIGATIONS_AUTO; 2536 2537 static int __init mitigations_parse_cmdline(char *arg) 2538 { 2539 if (!strcmp(arg, "off")) 2540 cpu_mitigations = CPU_MITIGATIONS_OFF; 2541 else if (!strcmp(arg, "auto")) 2542 cpu_mitigations = CPU_MITIGATIONS_AUTO; 2543 else if (!strcmp(arg, "auto,nosmt")) 2544 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 2545 else 2546 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 2547 arg); 2548 2549 return 0; 2550 } 2551 early_param("mitigations", mitigations_parse_cmdline); 2552 2553 /* mitigations=off */ 2554 bool cpu_mitigations_off(void) 2555 { 2556 return cpu_mitigations == CPU_MITIGATIONS_OFF; 2557 } 2558 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 2559 2560 /* mitigations=auto,nosmt */ 2561 bool cpu_mitigations_auto_nosmt(void) 2562 { 2563 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 2564 } 2565 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 2566