xref: /openbmc/linux/kernel/cpu.c (revision a6ca5ac746d104019e76c29e69c2a1fc6dd2b29f)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/smpboot.h>
28 #include <linux/relay.h>
29 #include <linux/slab.h>
30 
31 #include <trace/events/power.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/cpuhp.h>
34 
35 #include "smpboot.h"
36 
37 /**
38  * cpuhp_cpu_state - Per cpu hotplug state storage
39  * @state:	The current cpu state
40  * @target:	The target state
41  * @thread:	Pointer to the hotplug thread
42  * @should_run:	Thread should execute
43  * @rollback:	Perform a rollback
44  * @single:	Single callback invocation
45  * @bringup:	Single callback bringup or teardown selector
46  * @cb_state:	The state for a single callback (install/uninstall)
47  * @result:	Result of the operation
48  * @done:	Signal completion to the issuer of the task
49  */
50 struct cpuhp_cpu_state {
51 	enum cpuhp_state	state;
52 	enum cpuhp_state	target;
53 #ifdef CONFIG_SMP
54 	struct task_struct	*thread;
55 	bool			should_run;
56 	bool			rollback;
57 	bool			single;
58 	bool			bringup;
59 	struct hlist_node	*node;
60 	enum cpuhp_state	cb_state;
61 	int			result;
62 	struct completion	done;
63 #endif
64 };
65 
66 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state);
67 
68 /**
69  * cpuhp_step - Hotplug state machine step
70  * @name:	Name of the step
71  * @startup:	Startup function of the step
72  * @teardown:	Teardown function of the step
73  * @skip_onerr:	Do not invoke the functions on error rollback
74  *		Will go away once the notifiers	are gone
75  * @cant_stop:	Bringup/teardown can't be stopped at this step
76  */
77 struct cpuhp_step {
78 	const char		*name;
79 	union {
80 		int		(*single)(unsigned int cpu);
81 		int		(*multi)(unsigned int cpu,
82 					 struct hlist_node *node);
83 	} startup;
84 	union {
85 		int		(*single)(unsigned int cpu);
86 		int		(*multi)(unsigned int cpu,
87 					 struct hlist_node *node);
88 	} teardown;
89 	struct hlist_head	list;
90 	bool			skip_onerr;
91 	bool			cant_stop;
92 	bool			multi_instance;
93 };
94 
95 static DEFINE_MUTEX(cpuhp_state_mutex);
96 static struct cpuhp_step cpuhp_bp_states[];
97 static struct cpuhp_step cpuhp_ap_states[];
98 
99 static bool cpuhp_is_ap_state(enum cpuhp_state state)
100 {
101 	/*
102 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
103 	 * purposes as that state is handled explicitly in cpu_down.
104 	 */
105 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
106 }
107 
108 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
109 {
110 	struct cpuhp_step *sp;
111 
112 	sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
113 	return sp + state;
114 }
115 
116 /**
117  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
118  * @cpu:	The cpu for which the callback should be invoked
119  * @step:	The step in the state machine
120  * @bringup:	True if the bringup callback should be invoked
121  *
122  * Called from cpu hotplug and from the state register machinery.
123  */
124 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
125 				 bool bringup, struct hlist_node *node)
126 {
127 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
128 	struct cpuhp_step *step = cpuhp_get_step(state);
129 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
130 	int (*cb)(unsigned int cpu);
131 	int ret, cnt;
132 
133 	if (!step->multi_instance) {
134 		cb = bringup ? step->startup.single : step->teardown.single;
135 		if (!cb)
136 			return 0;
137 		trace_cpuhp_enter(cpu, st->target, state, cb);
138 		ret = cb(cpu);
139 		trace_cpuhp_exit(cpu, st->state, state, ret);
140 		return ret;
141 	}
142 	cbm = bringup ? step->startup.multi : step->teardown.multi;
143 	if (!cbm)
144 		return 0;
145 
146 	/* Single invocation for instance add/remove */
147 	if (node) {
148 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
149 		ret = cbm(cpu, node);
150 		trace_cpuhp_exit(cpu, st->state, state, ret);
151 		return ret;
152 	}
153 
154 	/* State transition. Invoke on all instances */
155 	cnt = 0;
156 	hlist_for_each(node, &step->list) {
157 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
158 		ret = cbm(cpu, node);
159 		trace_cpuhp_exit(cpu, st->state, state, ret);
160 		if (ret)
161 			goto err;
162 		cnt++;
163 	}
164 	return 0;
165 err:
166 	/* Rollback the instances if one failed */
167 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
168 	if (!cbm)
169 		return ret;
170 
171 	hlist_for_each(node, &step->list) {
172 		if (!cnt--)
173 			break;
174 		cbm(cpu, node);
175 	}
176 	return ret;
177 }
178 
179 #ifdef CONFIG_SMP
180 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
181 static DEFINE_MUTEX(cpu_add_remove_lock);
182 bool cpuhp_tasks_frozen;
183 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
184 
185 /*
186  * The following two APIs (cpu_maps_update_begin/done) must be used when
187  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
188  */
189 void cpu_maps_update_begin(void)
190 {
191 	mutex_lock(&cpu_add_remove_lock);
192 }
193 
194 void cpu_maps_update_done(void)
195 {
196 	mutex_unlock(&cpu_add_remove_lock);
197 }
198 
199 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
200  * Should always be manipulated under cpu_add_remove_lock
201  */
202 static int cpu_hotplug_disabled;
203 
204 #ifdef CONFIG_HOTPLUG_CPU
205 
206 static struct {
207 	struct task_struct *active_writer;
208 	/* wait queue to wake up the active_writer */
209 	wait_queue_head_t wq;
210 	/* verifies that no writer will get active while readers are active */
211 	struct mutex lock;
212 	/*
213 	 * Also blocks the new readers during
214 	 * an ongoing cpu hotplug operation.
215 	 */
216 	atomic_t refcount;
217 
218 #ifdef CONFIG_DEBUG_LOCK_ALLOC
219 	struct lockdep_map dep_map;
220 #endif
221 } cpu_hotplug = {
222 	.active_writer = NULL,
223 	.wq = __WAIT_QUEUE_HEAD_INITIALIZER(cpu_hotplug.wq),
224 	.lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
225 #ifdef CONFIG_DEBUG_LOCK_ALLOC
226 	.dep_map = STATIC_LOCKDEP_MAP_INIT("cpu_hotplug.dep_map", &cpu_hotplug.dep_map),
227 #endif
228 };
229 
230 /* Lockdep annotations for get/put_online_cpus() and cpu_hotplug_begin/end() */
231 #define cpuhp_lock_acquire_read() lock_map_acquire_read(&cpu_hotplug.dep_map)
232 #define cpuhp_lock_acquire_tryread() \
233 				  lock_map_acquire_tryread(&cpu_hotplug.dep_map)
234 #define cpuhp_lock_acquire()      lock_map_acquire(&cpu_hotplug.dep_map)
235 #define cpuhp_lock_release()      lock_map_release(&cpu_hotplug.dep_map)
236 
237 
238 void get_online_cpus(void)
239 {
240 	might_sleep();
241 	if (cpu_hotplug.active_writer == current)
242 		return;
243 	cpuhp_lock_acquire_read();
244 	mutex_lock(&cpu_hotplug.lock);
245 	atomic_inc(&cpu_hotplug.refcount);
246 	mutex_unlock(&cpu_hotplug.lock);
247 }
248 EXPORT_SYMBOL_GPL(get_online_cpus);
249 
250 void put_online_cpus(void)
251 {
252 	int refcount;
253 
254 	if (cpu_hotplug.active_writer == current)
255 		return;
256 
257 	refcount = atomic_dec_return(&cpu_hotplug.refcount);
258 	if (WARN_ON(refcount < 0)) /* try to fix things up */
259 		atomic_inc(&cpu_hotplug.refcount);
260 
261 	if (refcount <= 0 && waitqueue_active(&cpu_hotplug.wq))
262 		wake_up(&cpu_hotplug.wq);
263 
264 	cpuhp_lock_release();
265 
266 }
267 EXPORT_SYMBOL_GPL(put_online_cpus);
268 
269 /*
270  * This ensures that the hotplug operation can begin only when the
271  * refcount goes to zero.
272  *
273  * Note that during a cpu-hotplug operation, the new readers, if any,
274  * will be blocked by the cpu_hotplug.lock
275  *
276  * Since cpu_hotplug_begin() is always called after invoking
277  * cpu_maps_update_begin(), we can be sure that only one writer is active.
278  *
279  * Note that theoretically, there is a possibility of a livelock:
280  * - Refcount goes to zero, last reader wakes up the sleeping
281  *   writer.
282  * - Last reader unlocks the cpu_hotplug.lock.
283  * - A new reader arrives at this moment, bumps up the refcount.
284  * - The writer acquires the cpu_hotplug.lock finds the refcount
285  *   non zero and goes to sleep again.
286  *
287  * However, this is very difficult to achieve in practice since
288  * get_online_cpus() not an api which is called all that often.
289  *
290  */
291 void cpu_hotplug_begin(void)
292 {
293 	DEFINE_WAIT(wait);
294 
295 	cpu_hotplug.active_writer = current;
296 	cpuhp_lock_acquire();
297 
298 	for (;;) {
299 		mutex_lock(&cpu_hotplug.lock);
300 		prepare_to_wait(&cpu_hotplug.wq, &wait, TASK_UNINTERRUPTIBLE);
301 		if (likely(!atomic_read(&cpu_hotplug.refcount)))
302 				break;
303 		mutex_unlock(&cpu_hotplug.lock);
304 		schedule();
305 	}
306 	finish_wait(&cpu_hotplug.wq, &wait);
307 }
308 
309 void cpu_hotplug_done(void)
310 {
311 	cpu_hotplug.active_writer = NULL;
312 	mutex_unlock(&cpu_hotplug.lock);
313 	cpuhp_lock_release();
314 }
315 
316 /*
317  * Wait for currently running CPU hotplug operations to complete (if any) and
318  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
319  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
320  * hotplug path before performing hotplug operations. So acquiring that lock
321  * guarantees mutual exclusion from any currently running hotplug operations.
322  */
323 void cpu_hotplug_disable(void)
324 {
325 	cpu_maps_update_begin();
326 	cpu_hotplug_disabled++;
327 	cpu_maps_update_done();
328 }
329 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
330 
331 static void __cpu_hotplug_enable(void)
332 {
333 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
334 		return;
335 	cpu_hotplug_disabled--;
336 }
337 
338 void cpu_hotplug_enable(void)
339 {
340 	cpu_maps_update_begin();
341 	__cpu_hotplug_enable();
342 	cpu_maps_update_done();
343 }
344 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
345 #endif	/* CONFIG_HOTPLUG_CPU */
346 
347 /* Notifier wrappers for transitioning to state machine */
348 
349 static int bringup_wait_for_ap(unsigned int cpu)
350 {
351 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
352 
353 	wait_for_completion(&st->done);
354 	return st->result;
355 }
356 
357 static int bringup_cpu(unsigned int cpu)
358 {
359 	struct task_struct *idle = idle_thread_get(cpu);
360 	int ret;
361 
362 	/*
363 	 * Some architectures have to walk the irq descriptors to
364 	 * setup the vector space for the cpu which comes online.
365 	 * Prevent irq alloc/free across the bringup.
366 	 */
367 	irq_lock_sparse();
368 
369 	/* Arch-specific enabling code. */
370 	ret = __cpu_up(cpu, idle);
371 	irq_unlock_sparse();
372 	if (ret)
373 		return ret;
374 	ret = bringup_wait_for_ap(cpu);
375 	BUG_ON(!cpu_online(cpu));
376 	return ret;
377 }
378 
379 /*
380  * Hotplug state machine related functions
381  */
382 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
383 {
384 	for (st->state++; st->state < st->target; st->state++) {
385 		struct cpuhp_step *step = cpuhp_get_step(st->state);
386 
387 		if (!step->skip_onerr)
388 			cpuhp_invoke_callback(cpu, st->state, true, NULL);
389 	}
390 }
391 
392 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
393 				enum cpuhp_state target)
394 {
395 	enum cpuhp_state prev_state = st->state;
396 	int ret = 0;
397 
398 	for (; st->state > target; st->state--) {
399 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL);
400 		if (ret) {
401 			st->target = prev_state;
402 			undo_cpu_down(cpu, st);
403 			break;
404 		}
405 	}
406 	return ret;
407 }
408 
409 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
410 {
411 	for (st->state--; st->state > st->target; st->state--) {
412 		struct cpuhp_step *step = cpuhp_get_step(st->state);
413 
414 		if (!step->skip_onerr)
415 			cpuhp_invoke_callback(cpu, st->state, false, NULL);
416 	}
417 }
418 
419 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
420 			      enum cpuhp_state target)
421 {
422 	enum cpuhp_state prev_state = st->state;
423 	int ret = 0;
424 
425 	while (st->state < target) {
426 		st->state++;
427 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL);
428 		if (ret) {
429 			st->target = prev_state;
430 			undo_cpu_up(cpu, st);
431 			break;
432 		}
433 	}
434 	return ret;
435 }
436 
437 /*
438  * The cpu hotplug threads manage the bringup and teardown of the cpus
439  */
440 static void cpuhp_create(unsigned int cpu)
441 {
442 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
443 
444 	init_completion(&st->done);
445 }
446 
447 static int cpuhp_should_run(unsigned int cpu)
448 {
449 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
450 
451 	return st->should_run;
452 }
453 
454 /* Execute the teardown callbacks. Used to be CPU_DOWN_PREPARE */
455 static int cpuhp_ap_offline(unsigned int cpu, struct cpuhp_cpu_state *st)
456 {
457 	enum cpuhp_state target = max((int)st->target, CPUHP_TEARDOWN_CPU);
458 
459 	return cpuhp_down_callbacks(cpu, st, target);
460 }
461 
462 /* Execute the online startup callbacks. Used to be CPU_ONLINE */
463 static int cpuhp_ap_online(unsigned int cpu, struct cpuhp_cpu_state *st)
464 {
465 	return cpuhp_up_callbacks(cpu, st, st->target);
466 }
467 
468 /*
469  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
470  * callbacks when a state gets [un]installed at runtime.
471  */
472 static void cpuhp_thread_fun(unsigned int cpu)
473 {
474 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
475 	int ret = 0;
476 
477 	/*
478 	 * Paired with the mb() in cpuhp_kick_ap_work and
479 	 * cpuhp_invoke_ap_callback, so the work set is consistent visible.
480 	 */
481 	smp_mb();
482 	if (!st->should_run)
483 		return;
484 
485 	st->should_run = false;
486 
487 	/* Single callback invocation for [un]install ? */
488 	if (st->single) {
489 		if (st->cb_state < CPUHP_AP_ONLINE) {
490 			local_irq_disable();
491 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
492 						    st->bringup, st->node);
493 			local_irq_enable();
494 		} else {
495 			ret = cpuhp_invoke_callback(cpu, st->cb_state,
496 						    st->bringup, st->node);
497 		}
498 	} else if (st->rollback) {
499 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
500 
501 		undo_cpu_down(cpu, st);
502 		st->rollback = false;
503 	} else {
504 		/* Cannot happen .... */
505 		BUG_ON(st->state < CPUHP_AP_ONLINE_IDLE);
506 
507 		/* Regular hotplug work */
508 		if (st->state < st->target)
509 			ret = cpuhp_ap_online(cpu, st);
510 		else if (st->state > st->target)
511 			ret = cpuhp_ap_offline(cpu, st);
512 	}
513 	st->result = ret;
514 	complete(&st->done);
515 }
516 
517 /* Invoke a single callback on a remote cpu */
518 static int
519 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
520 			 struct hlist_node *node)
521 {
522 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
523 
524 	if (!cpu_online(cpu))
525 		return 0;
526 
527 	/*
528 	 * If we are up and running, use the hotplug thread. For early calls
529 	 * we invoke the thread function directly.
530 	 */
531 	if (!st->thread)
532 		return cpuhp_invoke_callback(cpu, state, bringup, node);
533 
534 	st->cb_state = state;
535 	st->single = true;
536 	st->bringup = bringup;
537 	st->node = node;
538 
539 	/*
540 	 * Make sure the above stores are visible before should_run becomes
541 	 * true. Paired with the mb() above in cpuhp_thread_fun()
542 	 */
543 	smp_mb();
544 	st->should_run = true;
545 	wake_up_process(st->thread);
546 	wait_for_completion(&st->done);
547 	return st->result;
548 }
549 
550 /* Regular hotplug invocation of the AP hotplug thread */
551 static void __cpuhp_kick_ap_work(struct cpuhp_cpu_state *st)
552 {
553 	st->result = 0;
554 	st->single = false;
555 	/*
556 	 * Make sure the above stores are visible before should_run becomes
557 	 * true. Paired with the mb() above in cpuhp_thread_fun()
558 	 */
559 	smp_mb();
560 	st->should_run = true;
561 	wake_up_process(st->thread);
562 }
563 
564 static int cpuhp_kick_ap_work(unsigned int cpu)
565 {
566 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
567 	enum cpuhp_state state = st->state;
568 
569 	trace_cpuhp_enter(cpu, st->target, state, cpuhp_kick_ap_work);
570 	__cpuhp_kick_ap_work(st);
571 	wait_for_completion(&st->done);
572 	trace_cpuhp_exit(cpu, st->state, state, st->result);
573 	return st->result;
574 }
575 
576 static struct smp_hotplug_thread cpuhp_threads = {
577 	.store			= &cpuhp_state.thread,
578 	.create			= &cpuhp_create,
579 	.thread_should_run	= cpuhp_should_run,
580 	.thread_fn		= cpuhp_thread_fun,
581 	.thread_comm		= "cpuhp/%u",
582 	.selfparking		= true,
583 };
584 
585 void __init cpuhp_threads_init(void)
586 {
587 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
588 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
589 }
590 
591 #ifdef CONFIG_HOTPLUG_CPU
592 /**
593  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
594  * @cpu: a CPU id
595  *
596  * This function walks all processes, finds a valid mm struct for each one and
597  * then clears a corresponding bit in mm's cpumask.  While this all sounds
598  * trivial, there are various non-obvious corner cases, which this function
599  * tries to solve in a safe manner.
600  *
601  * Also note that the function uses a somewhat relaxed locking scheme, so it may
602  * be called only for an already offlined CPU.
603  */
604 void clear_tasks_mm_cpumask(int cpu)
605 {
606 	struct task_struct *p;
607 
608 	/*
609 	 * This function is called after the cpu is taken down and marked
610 	 * offline, so its not like new tasks will ever get this cpu set in
611 	 * their mm mask. -- Peter Zijlstra
612 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
613 	 * full-fledged tasklist_lock.
614 	 */
615 	WARN_ON(cpu_online(cpu));
616 	rcu_read_lock();
617 	for_each_process(p) {
618 		struct task_struct *t;
619 
620 		/*
621 		 * Main thread might exit, but other threads may still have
622 		 * a valid mm. Find one.
623 		 */
624 		t = find_lock_task_mm(p);
625 		if (!t)
626 			continue;
627 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
628 		task_unlock(t);
629 	}
630 	rcu_read_unlock();
631 }
632 
633 static inline void check_for_tasks(int dead_cpu)
634 {
635 	struct task_struct *g, *p;
636 
637 	read_lock(&tasklist_lock);
638 	for_each_process_thread(g, p) {
639 		if (!p->on_rq)
640 			continue;
641 		/*
642 		 * We do the check with unlocked task_rq(p)->lock.
643 		 * Order the reading to do not warn about a task,
644 		 * which was running on this cpu in the past, and
645 		 * it's just been woken on another cpu.
646 		 */
647 		rmb();
648 		if (task_cpu(p) != dead_cpu)
649 			continue;
650 
651 		pr_warn("Task %s (pid=%d) is on cpu %d (state=%ld, flags=%x)\n",
652 			p->comm, task_pid_nr(p), dead_cpu, p->state, p->flags);
653 	}
654 	read_unlock(&tasklist_lock);
655 }
656 
657 /* Take this CPU down. */
658 static int take_cpu_down(void *_param)
659 {
660 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
661 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
662 	int err, cpu = smp_processor_id();
663 
664 	/* Ensure this CPU doesn't handle any more interrupts. */
665 	err = __cpu_disable();
666 	if (err < 0)
667 		return err;
668 
669 	/*
670 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
671 	 * do this step again.
672 	 */
673 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
674 	st->state--;
675 	/* Invoke the former CPU_DYING callbacks */
676 	for (; st->state > target; st->state--)
677 		cpuhp_invoke_callback(cpu, st->state, false, NULL);
678 
679 	/* Give up timekeeping duties */
680 	tick_handover_do_timer();
681 	/* Park the stopper thread */
682 	stop_machine_park(cpu);
683 	return 0;
684 }
685 
686 static int takedown_cpu(unsigned int cpu)
687 {
688 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
689 	int err;
690 
691 	/* Park the smpboot threads */
692 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
693 	smpboot_park_threads(cpu);
694 
695 	/*
696 	 * Prevent irq alloc/free while the dying cpu reorganizes the
697 	 * interrupt affinities.
698 	 */
699 	irq_lock_sparse();
700 
701 	/*
702 	 * So now all preempt/rcu users must observe !cpu_active().
703 	 */
704 	err = stop_machine(take_cpu_down, NULL, cpumask_of(cpu));
705 	if (err) {
706 		/* CPU refused to die */
707 		irq_unlock_sparse();
708 		/* Unpark the hotplug thread so we can rollback there */
709 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
710 		return err;
711 	}
712 	BUG_ON(cpu_online(cpu));
713 
714 	/*
715 	 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
716 	 * runnable tasks from the cpu, there's only the idle task left now
717 	 * that the migration thread is done doing the stop_machine thing.
718 	 *
719 	 * Wait for the stop thread to go away.
720 	 */
721 	wait_for_completion(&st->done);
722 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
723 
724 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
725 	irq_unlock_sparse();
726 
727 	hotplug_cpu__broadcast_tick_pull(cpu);
728 	/* This actually kills the CPU. */
729 	__cpu_die(cpu);
730 
731 	tick_cleanup_dead_cpu(cpu);
732 	return 0;
733 }
734 
735 static void cpuhp_complete_idle_dead(void *arg)
736 {
737 	struct cpuhp_cpu_state *st = arg;
738 
739 	complete(&st->done);
740 }
741 
742 void cpuhp_report_idle_dead(void)
743 {
744 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
745 
746 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
747 	rcu_report_dead(smp_processor_id());
748 	st->state = CPUHP_AP_IDLE_DEAD;
749 	/*
750 	 * We cannot call complete after rcu_report_dead() so we delegate it
751 	 * to an online cpu.
752 	 */
753 	smp_call_function_single(cpumask_first(cpu_online_mask),
754 				 cpuhp_complete_idle_dead, st, 0);
755 }
756 
757 #else
758 #define takedown_cpu		NULL
759 #endif
760 
761 #ifdef CONFIG_HOTPLUG_CPU
762 
763 /* Requires cpu_add_remove_lock to be held */
764 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
765 			   enum cpuhp_state target)
766 {
767 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
768 	int prev_state, ret = 0;
769 
770 	if (num_online_cpus() == 1)
771 		return -EBUSY;
772 
773 	if (!cpu_present(cpu))
774 		return -EINVAL;
775 
776 	cpu_hotplug_begin();
777 
778 	cpuhp_tasks_frozen = tasks_frozen;
779 
780 	prev_state = st->state;
781 	st->target = target;
782 	/*
783 	 * If the current CPU state is in the range of the AP hotplug thread,
784 	 * then we need to kick the thread.
785 	 */
786 	if (st->state > CPUHP_TEARDOWN_CPU) {
787 		ret = cpuhp_kick_ap_work(cpu);
788 		/*
789 		 * The AP side has done the error rollback already. Just
790 		 * return the error code..
791 		 */
792 		if (ret)
793 			goto out;
794 
795 		/*
796 		 * We might have stopped still in the range of the AP hotplug
797 		 * thread. Nothing to do anymore.
798 		 */
799 		if (st->state > CPUHP_TEARDOWN_CPU)
800 			goto out;
801 	}
802 	/*
803 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
804 	 * to do the further cleanups.
805 	 */
806 	ret = cpuhp_down_callbacks(cpu, st, target);
807 	if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
808 		st->target = prev_state;
809 		st->rollback = true;
810 		cpuhp_kick_ap_work(cpu);
811 	}
812 
813 out:
814 	cpu_hotplug_done();
815 	return ret;
816 }
817 
818 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
819 {
820 	int err;
821 
822 	cpu_maps_update_begin();
823 
824 	if (cpu_hotplug_disabled) {
825 		err = -EBUSY;
826 		goto out;
827 	}
828 
829 	err = _cpu_down(cpu, 0, target);
830 
831 out:
832 	cpu_maps_update_done();
833 	return err;
834 }
835 int cpu_down(unsigned int cpu)
836 {
837 	return do_cpu_down(cpu, CPUHP_OFFLINE);
838 }
839 EXPORT_SYMBOL(cpu_down);
840 #endif /*CONFIG_HOTPLUG_CPU*/
841 
842 /**
843  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
844  * @cpu: cpu that just started
845  *
846  * It must be called by the arch code on the new cpu, before the new cpu
847  * enables interrupts and before the "boot" cpu returns from __cpu_up().
848  */
849 void notify_cpu_starting(unsigned int cpu)
850 {
851 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
852 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
853 
854 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
855 	while (st->state < target) {
856 		st->state++;
857 		cpuhp_invoke_callback(cpu, st->state, true, NULL);
858 	}
859 }
860 
861 /*
862  * Called from the idle task. We need to set active here, so we can kick off
863  * the stopper thread and unpark the smpboot threads. If the target state is
864  * beyond CPUHP_AP_ONLINE_IDLE we kick cpuhp thread and let it bring up the
865  * cpu further.
866  */
867 void cpuhp_online_idle(enum cpuhp_state state)
868 {
869 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
870 	unsigned int cpu = smp_processor_id();
871 
872 	/* Happens for the boot cpu */
873 	if (state != CPUHP_AP_ONLINE_IDLE)
874 		return;
875 
876 	st->state = CPUHP_AP_ONLINE_IDLE;
877 
878 	/* Unpark the stopper thread and the hotplug thread of this cpu */
879 	stop_machine_unpark(cpu);
880 	kthread_unpark(st->thread);
881 
882 	/* Should we go further up ? */
883 	if (st->target > CPUHP_AP_ONLINE_IDLE)
884 		__cpuhp_kick_ap_work(st);
885 	else
886 		complete(&st->done);
887 }
888 
889 /* Requires cpu_add_remove_lock to be held */
890 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
891 {
892 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
893 	struct task_struct *idle;
894 	int ret = 0;
895 
896 	cpu_hotplug_begin();
897 
898 	if (!cpu_present(cpu)) {
899 		ret = -EINVAL;
900 		goto out;
901 	}
902 
903 	/*
904 	 * The caller of do_cpu_up might have raced with another
905 	 * caller. Ignore it for now.
906 	 */
907 	if (st->state >= target)
908 		goto out;
909 
910 	if (st->state == CPUHP_OFFLINE) {
911 		/* Let it fail before we try to bring the cpu up */
912 		idle = idle_thread_get(cpu);
913 		if (IS_ERR(idle)) {
914 			ret = PTR_ERR(idle);
915 			goto out;
916 		}
917 	}
918 
919 	cpuhp_tasks_frozen = tasks_frozen;
920 
921 	st->target = target;
922 	/*
923 	 * If the current CPU state is in the range of the AP hotplug thread,
924 	 * then we need to kick the thread once more.
925 	 */
926 	if (st->state > CPUHP_BRINGUP_CPU) {
927 		ret = cpuhp_kick_ap_work(cpu);
928 		/*
929 		 * The AP side has done the error rollback already. Just
930 		 * return the error code..
931 		 */
932 		if (ret)
933 			goto out;
934 	}
935 
936 	/*
937 	 * Try to reach the target state. We max out on the BP at
938 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
939 	 * responsible for bringing it up to the target state.
940 	 */
941 	target = min((int)target, CPUHP_BRINGUP_CPU);
942 	ret = cpuhp_up_callbacks(cpu, st, target);
943 out:
944 	cpu_hotplug_done();
945 	return ret;
946 }
947 
948 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
949 {
950 	int err = 0;
951 
952 	if (!cpu_possible(cpu)) {
953 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
954 		       cpu);
955 #if defined(CONFIG_IA64)
956 		pr_err("please check additional_cpus= boot parameter\n");
957 #endif
958 		return -EINVAL;
959 	}
960 
961 	err = try_online_node(cpu_to_node(cpu));
962 	if (err)
963 		return err;
964 
965 	cpu_maps_update_begin();
966 
967 	if (cpu_hotplug_disabled) {
968 		err = -EBUSY;
969 		goto out;
970 	}
971 
972 	err = _cpu_up(cpu, 0, target);
973 out:
974 	cpu_maps_update_done();
975 	return err;
976 }
977 
978 int cpu_up(unsigned int cpu)
979 {
980 	return do_cpu_up(cpu, CPUHP_ONLINE);
981 }
982 EXPORT_SYMBOL_GPL(cpu_up);
983 
984 #ifdef CONFIG_PM_SLEEP_SMP
985 static cpumask_var_t frozen_cpus;
986 
987 int freeze_secondary_cpus(int primary)
988 {
989 	int cpu, error = 0;
990 
991 	cpu_maps_update_begin();
992 	if (!cpu_online(primary))
993 		primary = cpumask_first(cpu_online_mask);
994 	/*
995 	 * We take down all of the non-boot CPUs in one shot to avoid races
996 	 * with the userspace trying to use the CPU hotplug at the same time
997 	 */
998 	cpumask_clear(frozen_cpus);
999 
1000 	pr_info("Disabling non-boot CPUs ...\n");
1001 	for_each_online_cpu(cpu) {
1002 		if (cpu == primary)
1003 			continue;
1004 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1005 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1006 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1007 		if (!error)
1008 			cpumask_set_cpu(cpu, frozen_cpus);
1009 		else {
1010 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1011 			break;
1012 		}
1013 	}
1014 
1015 	if (!error)
1016 		BUG_ON(num_online_cpus() > 1);
1017 	else
1018 		pr_err("Non-boot CPUs are not disabled\n");
1019 
1020 	/*
1021 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1022 	 * this even in case of failure as all disable_nonboot_cpus() users are
1023 	 * supposed to do enable_nonboot_cpus() on the failure path.
1024 	 */
1025 	cpu_hotplug_disabled++;
1026 
1027 	cpu_maps_update_done();
1028 	return error;
1029 }
1030 
1031 void __weak arch_enable_nonboot_cpus_begin(void)
1032 {
1033 }
1034 
1035 void __weak arch_enable_nonboot_cpus_end(void)
1036 {
1037 }
1038 
1039 void enable_nonboot_cpus(void)
1040 {
1041 	int cpu, error;
1042 
1043 	/* Allow everyone to use the CPU hotplug again */
1044 	cpu_maps_update_begin();
1045 	__cpu_hotplug_enable();
1046 	if (cpumask_empty(frozen_cpus))
1047 		goto out;
1048 
1049 	pr_info("Enabling non-boot CPUs ...\n");
1050 
1051 	arch_enable_nonboot_cpus_begin();
1052 
1053 	for_each_cpu(cpu, frozen_cpus) {
1054 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1055 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1056 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1057 		if (!error) {
1058 			pr_info("CPU%d is up\n", cpu);
1059 			continue;
1060 		}
1061 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1062 	}
1063 
1064 	arch_enable_nonboot_cpus_end();
1065 
1066 	cpumask_clear(frozen_cpus);
1067 out:
1068 	cpu_maps_update_done();
1069 }
1070 
1071 static int __init alloc_frozen_cpus(void)
1072 {
1073 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1074 		return -ENOMEM;
1075 	return 0;
1076 }
1077 core_initcall(alloc_frozen_cpus);
1078 
1079 /*
1080  * When callbacks for CPU hotplug notifications are being executed, we must
1081  * ensure that the state of the system with respect to the tasks being frozen
1082  * or not, as reported by the notification, remains unchanged *throughout the
1083  * duration* of the execution of the callbacks.
1084  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1085  *
1086  * This synchronization is implemented by mutually excluding regular CPU
1087  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1088  * Hibernate notifications.
1089  */
1090 static int
1091 cpu_hotplug_pm_callback(struct notifier_block *nb,
1092 			unsigned long action, void *ptr)
1093 {
1094 	switch (action) {
1095 
1096 	case PM_SUSPEND_PREPARE:
1097 	case PM_HIBERNATION_PREPARE:
1098 		cpu_hotplug_disable();
1099 		break;
1100 
1101 	case PM_POST_SUSPEND:
1102 	case PM_POST_HIBERNATION:
1103 		cpu_hotplug_enable();
1104 		break;
1105 
1106 	default:
1107 		return NOTIFY_DONE;
1108 	}
1109 
1110 	return NOTIFY_OK;
1111 }
1112 
1113 
1114 static int __init cpu_hotplug_pm_sync_init(void)
1115 {
1116 	/*
1117 	 * cpu_hotplug_pm_callback has higher priority than x86
1118 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1119 	 * to disable cpu hotplug to avoid cpu hotplug race.
1120 	 */
1121 	pm_notifier(cpu_hotplug_pm_callback, 0);
1122 	return 0;
1123 }
1124 core_initcall(cpu_hotplug_pm_sync_init);
1125 
1126 #endif /* CONFIG_PM_SLEEP_SMP */
1127 
1128 int __boot_cpu_id;
1129 
1130 #endif /* CONFIG_SMP */
1131 
1132 /* Boot processor state steps */
1133 static struct cpuhp_step cpuhp_bp_states[] = {
1134 	[CPUHP_OFFLINE] = {
1135 		.name			= "offline",
1136 		.startup.single		= NULL,
1137 		.teardown.single	= NULL,
1138 	},
1139 #ifdef CONFIG_SMP
1140 	[CPUHP_CREATE_THREADS]= {
1141 		.name			= "threads:prepare",
1142 		.startup.single		= smpboot_create_threads,
1143 		.teardown.single	= NULL,
1144 		.cant_stop		= true,
1145 	},
1146 	[CPUHP_PERF_PREPARE] = {
1147 		.name			= "perf:prepare",
1148 		.startup.single		= perf_event_init_cpu,
1149 		.teardown.single	= perf_event_exit_cpu,
1150 	},
1151 	[CPUHP_WORKQUEUE_PREP] = {
1152 		.name			= "workqueue:prepare",
1153 		.startup.single		= workqueue_prepare_cpu,
1154 		.teardown.single	= NULL,
1155 	},
1156 	[CPUHP_HRTIMERS_PREPARE] = {
1157 		.name			= "hrtimers:prepare",
1158 		.startup.single		= hrtimers_prepare_cpu,
1159 		.teardown.single	= hrtimers_dead_cpu,
1160 	},
1161 	[CPUHP_SMPCFD_PREPARE] = {
1162 		.name			= "smpcfd:prepare",
1163 		.startup.single		= smpcfd_prepare_cpu,
1164 		.teardown.single	= smpcfd_dead_cpu,
1165 	},
1166 	[CPUHP_RELAY_PREPARE] = {
1167 		.name			= "relay:prepare",
1168 		.startup.single		= relay_prepare_cpu,
1169 		.teardown.single	= NULL,
1170 	},
1171 	[CPUHP_SLAB_PREPARE] = {
1172 		.name			= "slab:prepare",
1173 		.startup.single		= slab_prepare_cpu,
1174 		.teardown.single	= slab_dead_cpu,
1175 	},
1176 	[CPUHP_RCUTREE_PREP] = {
1177 		.name			= "RCU/tree:prepare",
1178 		.startup.single		= rcutree_prepare_cpu,
1179 		.teardown.single	= rcutree_dead_cpu,
1180 	},
1181 	/*
1182 	 * On the tear-down path, timers_dead_cpu() must be invoked
1183 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1184 	 * otherwise a RCU stall occurs.
1185 	 */
1186 	[CPUHP_TIMERS_DEAD] = {
1187 		.name			= "timers:dead",
1188 		.startup.single		= NULL,
1189 		.teardown.single	= timers_dead_cpu,
1190 	},
1191 	/* Kicks the plugged cpu into life */
1192 	[CPUHP_BRINGUP_CPU] = {
1193 		.name			= "cpu:bringup",
1194 		.startup.single		= bringup_cpu,
1195 		.teardown.single	= NULL,
1196 		.cant_stop		= true,
1197 	},
1198 	[CPUHP_AP_SMPCFD_DYING] = {
1199 		.name			= "smpcfd:dying",
1200 		.startup.single		= NULL,
1201 		.teardown.single	= smpcfd_dying_cpu,
1202 	},
1203 	/*
1204 	 * Handled on controll processor until the plugged processor manages
1205 	 * this itself.
1206 	 */
1207 	[CPUHP_TEARDOWN_CPU] = {
1208 		.name			= "cpu:teardown",
1209 		.startup.single		= NULL,
1210 		.teardown.single	= takedown_cpu,
1211 		.cant_stop		= true,
1212 	},
1213 #else
1214 	[CPUHP_BRINGUP_CPU] = { },
1215 #endif
1216 };
1217 
1218 /* Application processor state steps */
1219 static struct cpuhp_step cpuhp_ap_states[] = {
1220 #ifdef CONFIG_SMP
1221 	/* Final state before CPU kills itself */
1222 	[CPUHP_AP_IDLE_DEAD] = {
1223 		.name			= "idle:dead",
1224 	},
1225 	/*
1226 	 * Last state before CPU enters the idle loop to die. Transient state
1227 	 * for synchronization.
1228 	 */
1229 	[CPUHP_AP_OFFLINE] = {
1230 		.name			= "ap:offline",
1231 		.cant_stop		= true,
1232 	},
1233 	/* First state is scheduler control. Interrupts are disabled */
1234 	[CPUHP_AP_SCHED_STARTING] = {
1235 		.name			= "sched:starting",
1236 		.startup.single		= sched_cpu_starting,
1237 		.teardown.single	= sched_cpu_dying,
1238 	},
1239 	[CPUHP_AP_RCUTREE_DYING] = {
1240 		.name			= "RCU/tree:dying",
1241 		.startup.single		= NULL,
1242 		.teardown.single	= rcutree_dying_cpu,
1243 	},
1244 	/* Entry state on starting. Interrupts enabled from here on. Transient
1245 	 * state for synchronsization */
1246 	[CPUHP_AP_ONLINE] = {
1247 		.name			= "ap:online",
1248 	},
1249 	/* Handle smpboot threads park/unpark */
1250 	[CPUHP_AP_SMPBOOT_THREADS] = {
1251 		.name			= "smpboot/threads:online",
1252 		.startup.single		= smpboot_unpark_threads,
1253 		.teardown.single	= NULL,
1254 	},
1255 	[CPUHP_AP_PERF_ONLINE] = {
1256 		.name			= "perf:online",
1257 		.startup.single		= perf_event_init_cpu,
1258 		.teardown.single	= perf_event_exit_cpu,
1259 	},
1260 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1261 		.name			= "workqueue:online",
1262 		.startup.single		= workqueue_online_cpu,
1263 		.teardown.single	= workqueue_offline_cpu,
1264 	},
1265 	[CPUHP_AP_RCUTREE_ONLINE] = {
1266 		.name			= "RCU/tree:online",
1267 		.startup.single		= rcutree_online_cpu,
1268 		.teardown.single	= rcutree_offline_cpu,
1269 	},
1270 #endif
1271 	/*
1272 	 * The dynamically registered state space is here
1273 	 */
1274 
1275 #ifdef CONFIG_SMP
1276 	/* Last state is scheduler control setting the cpu active */
1277 	[CPUHP_AP_ACTIVE] = {
1278 		.name			= "sched:active",
1279 		.startup.single		= sched_cpu_activate,
1280 		.teardown.single	= sched_cpu_deactivate,
1281 	},
1282 #endif
1283 
1284 	/* CPU is fully up and running. */
1285 	[CPUHP_ONLINE] = {
1286 		.name			= "online",
1287 		.startup.single		= NULL,
1288 		.teardown.single	= NULL,
1289 	},
1290 };
1291 
1292 /* Sanity check for callbacks */
1293 static int cpuhp_cb_check(enum cpuhp_state state)
1294 {
1295 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1296 		return -EINVAL;
1297 	return 0;
1298 }
1299 
1300 /*
1301  * Returns a free for dynamic slot assignment of the Online state. The states
1302  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1303  * by having no name assigned.
1304  */
1305 static int cpuhp_reserve_state(enum cpuhp_state state)
1306 {
1307 	enum cpuhp_state i, end;
1308 	struct cpuhp_step *step;
1309 
1310 	switch (state) {
1311 	case CPUHP_AP_ONLINE_DYN:
1312 		step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1313 		end = CPUHP_AP_ONLINE_DYN_END;
1314 		break;
1315 	case CPUHP_BP_PREPARE_DYN:
1316 		step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1317 		end = CPUHP_BP_PREPARE_DYN_END;
1318 		break;
1319 	default:
1320 		return -EINVAL;
1321 	}
1322 
1323 	for (i = state; i <= end; i++, step++) {
1324 		if (!step->name)
1325 			return i;
1326 	}
1327 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1328 	return -ENOSPC;
1329 }
1330 
1331 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1332 				 int (*startup)(unsigned int cpu),
1333 				 int (*teardown)(unsigned int cpu),
1334 				 bool multi_instance)
1335 {
1336 	/* (Un)Install the callbacks for further cpu hotplug operations */
1337 	struct cpuhp_step *sp;
1338 	int ret = 0;
1339 
1340 	if (state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN) {
1341 		ret = cpuhp_reserve_state(state);
1342 		if (ret < 0)
1343 			return ret;
1344 		state = ret;
1345 	}
1346 	sp = cpuhp_get_step(state);
1347 	if (name && sp->name)
1348 		return -EBUSY;
1349 
1350 	sp->startup.single = startup;
1351 	sp->teardown.single = teardown;
1352 	sp->name = name;
1353 	sp->multi_instance = multi_instance;
1354 	INIT_HLIST_HEAD(&sp->list);
1355 	return ret;
1356 }
1357 
1358 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1359 {
1360 	return cpuhp_get_step(state)->teardown.single;
1361 }
1362 
1363 /*
1364  * Call the startup/teardown function for a step either on the AP or
1365  * on the current CPU.
1366  */
1367 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1368 			    struct hlist_node *node)
1369 {
1370 	struct cpuhp_step *sp = cpuhp_get_step(state);
1371 	int ret;
1372 
1373 	if ((bringup && !sp->startup.single) ||
1374 	    (!bringup && !sp->teardown.single))
1375 		return 0;
1376 	/*
1377 	 * The non AP bound callbacks can fail on bringup. On teardown
1378 	 * e.g. module removal we crash for now.
1379 	 */
1380 #ifdef CONFIG_SMP
1381 	if (cpuhp_is_ap_state(state))
1382 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1383 	else
1384 		ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1385 #else
1386 	ret = cpuhp_invoke_callback(cpu, state, bringup, node);
1387 #endif
1388 	BUG_ON(ret && !bringup);
1389 	return ret;
1390 }
1391 
1392 /*
1393  * Called from __cpuhp_setup_state on a recoverable failure.
1394  *
1395  * Note: The teardown callbacks for rollback are not allowed to fail!
1396  */
1397 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1398 				   struct hlist_node *node)
1399 {
1400 	int cpu;
1401 
1402 	/* Roll back the already executed steps on the other cpus */
1403 	for_each_present_cpu(cpu) {
1404 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1405 		int cpustate = st->state;
1406 
1407 		if (cpu >= failedcpu)
1408 			break;
1409 
1410 		/* Did we invoke the startup call on that cpu ? */
1411 		if (cpustate >= state)
1412 			cpuhp_issue_call(cpu, state, false, node);
1413 	}
1414 }
1415 
1416 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1417 			       bool invoke)
1418 {
1419 	struct cpuhp_step *sp;
1420 	int cpu;
1421 	int ret;
1422 
1423 	sp = cpuhp_get_step(state);
1424 	if (sp->multi_instance == false)
1425 		return -EINVAL;
1426 
1427 	get_online_cpus();
1428 	mutex_lock(&cpuhp_state_mutex);
1429 
1430 	if (!invoke || !sp->startup.multi)
1431 		goto add_node;
1432 
1433 	/*
1434 	 * Try to call the startup callback for each present cpu
1435 	 * depending on the hotplug state of the cpu.
1436 	 */
1437 	for_each_present_cpu(cpu) {
1438 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1439 		int cpustate = st->state;
1440 
1441 		if (cpustate < state)
1442 			continue;
1443 
1444 		ret = cpuhp_issue_call(cpu, state, true, node);
1445 		if (ret) {
1446 			if (sp->teardown.multi)
1447 				cpuhp_rollback_install(cpu, state, node);
1448 			goto unlock;
1449 		}
1450 	}
1451 add_node:
1452 	ret = 0;
1453 	hlist_add_head(node, &sp->list);
1454 unlock:
1455 	mutex_unlock(&cpuhp_state_mutex);
1456 	put_online_cpus();
1457 	return ret;
1458 }
1459 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1460 
1461 /**
1462  * __cpuhp_setup_state - Setup the callbacks for an hotplug machine state
1463  * @state:		The state to setup
1464  * @invoke:		If true, the startup function is invoked for cpus where
1465  *			cpu state >= @state
1466  * @startup:		startup callback function
1467  * @teardown:		teardown callback function
1468  * @multi_instance:	State is set up for multiple instances which get
1469  *			added afterwards.
1470  *
1471  * Returns:
1472  *   On success:
1473  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1474  *      0 for all other states
1475  *   On failure: proper (negative) error code
1476  */
1477 int __cpuhp_setup_state(enum cpuhp_state state,
1478 			const char *name, bool invoke,
1479 			int (*startup)(unsigned int cpu),
1480 			int (*teardown)(unsigned int cpu),
1481 			bool multi_instance)
1482 {
1483 	int cpu, ret = 0;
1484 	bool dynstate;
1485 
1486 	if (cpuhp_cb_check(state) || !name)
1487 		return -EINVAL;
1488 
1489 	get_online_cpus();
1490 	mutex_lock(&cpuhp_state_mutex);
1491 
1492 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1493 				    multi_instance);
1494 
1495 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1496 	if (ret > 0 && dynstate) {
1497 		state = ret;
1498 		ret = 0;
1499 	}
1500 
1501 	if (ret || !invoke || !startup)
1502 		goto out;
1503 
1504 	/*
1505 	 * Try to call the startup callback for each present cpu
1506 	 * depending on the hotplug state of the cpu.
1507 	 */
1508 	for_each_present_cpu(cpu) {
1509 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1510 		int cpustate = st->state;
1511 
1512 		if (cpustate < state)
1513 			continue;
1514 
1515 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1516 		if (ret) {
1517 			if (teardown)
1518 				cpuhp_rollback_install(cpu, state, NULL);
1519 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1520 			goto out;
1521 		}
1522 	}
1523 out:
1524 	mutex_unlock(&cpuhp_state_mutex);
1525 	put_online_cpus();
1526 	/*
1527 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1528 	 * dynamically allocated state in case of success.
1529 	 */
1530 	if (!ret && dynstate)
1531 		return state;
1532 	return ret;
1533 }
1534 EXPORT_SYMBOL(__cpuhp_setup_state);
1535 
1536 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1537 				  struct hlist_node *node, bool invoke)
1538 {
1539 	struct cpuhp_step *sp = cpuhp_get_step(state);
1540 	int cpu;
1541 
1542 	BUG_ON(cpuhp_cb_check(state));
1543 
1544 	if (!sp->multi_instance)
1545 		return -EINVAL;
1546 
1547 	get_online_cpus();
1548 	mutex_lock(&cpuhp_state_mutex);
1549 
1550 	if (!invoke || !cpuhp_get_teardown_cb(state))
1551 		goto remove;
1552 	/*
1553 	 * Call the teardown callback for each present cpu depending
1554 	 * on the hotplug state of the cpu. This function is not
1555 	 * allowed to fail currently!
1556 	 */
1557 	for_each_present_cpu(cpu) {
1558 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1559 		int cpustate = st->state;
1560 
1561 		if (cpustate >= state)
1562 			cpuhp_issue_call(cpu, state, false, node);
1563 	}
1564 
1565 remove:
1566 	hlist_del(node);
1567 	mutex_unlock(&cpuhp_state_mutex);
1568 	put_online_cpus();
1569 
1570 	return 0;
1571 }
1572 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1573 
1574 /**
1575  * __cpuhp_remove_state - Remove the callbacks for an hotplug machine state
1576  * @state:	The state to remove
1577  * @invoke:	If true, the teardown function is invoked for cpus where
1578  *		cpu state >= @state
1579  *
1580  * The teardown callback is currently not allowed to fail. Think
1581  * about module removal!
1582  */
1583 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1584 {
1585 	struct cpuhp_step *sp = cpuhp_get_step(state);
1586 	int cpu;
1587 
1588 	BUG_ON(cpuhp_cb_check(state));
1589 
1590 	get_online_cpus();
1591 
1592 	mutex_lock(&cpuhp_state_mutex);
1593 	if (sp->multi_instance) {
1594 		WARN(!hlist_empty(&sp->list),
1595 		     "Error: Removing state %d which has instances left.\n",
1596 		     state);
1597 		goto remove;
1598 	}
1599 
1600 	if (!invoke || !cpuhp_get_teardown_cb(state))
1601 		goto remove;
1602 
1603 	/*
1604 	 * Call the teardown callback for each present cpu depending
1605 	 * on the hotplug state of the cpu. This function is not
1606 	 * allowed to fail currently!
1607 	 */
1608 	for_each_present_cpu(cpu) {
1609 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1610 		int cpustate = st->state;
1611 
1612 		if (cpustate >= state)
1613 			cpuhp_issue_call(cpu, state, false, NULL);
1614 	}
1615 remove:
1616 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1617 	mutex_unlock(&cpuhp_state_mutex);
1618 	put_online_cpus();
1619 }
1620 EXPORT_SYMBOL(__cpuhp_remove_state);
1621 
1622 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1623 static ssize_t show_cpuhp_state(struct device *dev,
1624 				struct device_attribute *attr, char *buf)
1625 {
1626 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1627 
1628 	return sprintf(buf, "%d\n", st->state);
1629 }
1630 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1631 
1632 static ssize_t write_cpuhp_target(struct device *dev,
1633 				  struct device_attribute *attr,
1634 				  const char *buf, size_t count)
1635 {
1636 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1637 	struct cpuhp_step *sp;
1638 	int target, ret;
1639 
1640 	ret = kstrtoint(buf, 10, &target);
1641 	if (ret)
1642 		return ret;
1643 
1644 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1645 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1646 		return -EINVAL;
1647 #else
1648 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1649 		return -EINVAL;
1650 #endif
1651 
1652 	ret = lock_device_hotplug_sysfs();
1653 	if (ret)
1654 		return ret;
1655 
1656 	mutex_lock(&cpuhp_state_mutex);
1657 	sp = cpuhp_get_step(target);
1658 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1659 	mutex_unlock(&cpuhp_state_mutex);
1660 	if (ret)
1661 		return ret;
1662 
1663 	if (st->state < target)
1664 		ret = do_cpu_up(dev->id, target);
1665 	else
1666 		ret = do_cpu_down(dev->id, target);
1667 
1668 	unlock_device_hotplug();
1669 	return ret ? ret : count;
1670 }
1671 
1672 static ssize_t show_cpuhp_target(struct device *dev,
1673 				 struct device_attribute *attr, char *buf)
1674 {
1675 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1676 
1677 	return sprintf(buf, "%d\n", st->target);
1678 }
1679 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1680 
1681 static struct attribute *cpuhp_cpu_attrs[] = {
1682 	&dev_attr_state.attr,
1683 	&dev_attr_target.attr,
1684 	NULL
1685 };
1686 
1687 static struct attribute_group cpuhp_cpu_attr_group = {
1688 	.attrs = cpuhp_cpu_attrs,
1689 	.name = "hotplug",
1690 	NULL
1691 };
1692 
1693 static ssize_t show_cpuhp_states(struct device *dev,
1694 				 struct device_attribute *attr, char *buf)
1695 {
1696 	ssize_t cur, res = 0;
1697 	int i;
1698 
1699 	mutex_lock(&cpuhp_state_mutex);
1700 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1701 		struct cpuhp_step *sp = cpuhp_get_step(i);
1702 
1703 		if (sp->name) {
1704 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1705 			buf += cur;
1706 			res += cur;
1707 		}
1708 	}
1709 	mutex_unlock(&cpuhp_state_mutex);
1710 	return res;
1711 }
1712 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1713 
1714 static struct attribute *cpuhp_cpu_root_attrs[] = {
1715 	&dev_attr_states.attr,
1716 	NULL
1717 };
1718 
1719 static struct attribute_group cpuhp_cpu_root_attr_group = {
1720 	.attrs = cpuhp_cpu_root_attrs,
1721 	.name = "hotplug",
1722 	NULL
1723 };
1724 
1725 static int __init cpuhp_sysfs_init(void)
1726 {
1727 	int cpu, ret;
1728 
1729 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1730 				 &cpuhp_cpu_root_attr_group);
1731 	if (ret)
1732 		return ret;
1733 
1734 	for_each_possible_cpu(cpu) {
1735 		struct device *dev = get_cpu_device(cpu);
1736 
1737 		if (!dev)
1738 			continue;
1739 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1740 		if (ret)
1741 			return ret;
1742 	}
1743 	return 0;
1744 }
1745 device_initcall(cpuhp_sysfs_init);
1746 #endif
1747 
1748 /*
1749  * cpu_bit_bitmap[] is a special, "compressed" data structure that
1750  * represents all NR_CPUS bits binary values of 1<<nr.
1751  *
1752  * It is used by cpumask_of() to get a constant address to a CPU
1753  * mask value that has a single bit set only.
1754  */
1755 
1756 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1757 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
1758 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1759 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1760 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1761 
1762 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1763 
1764 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
1765 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
1766 #if BITS_PER_LONG > 32
1767 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
1768 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
1769 #endif
1770 };
1771 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1772 
1773 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1774 EXPORT_SYMBOL(cpu_all_bits);
1775 
1776 #ifdef CONFIG_INIT_ALL_POSSIBLE
1777 struct cpumask __cpu_possible_mask __read_mostly
1778 	= {CPU_BITS_ALL};
1779 #else
1780 struct cpumask __cpu_possible_mask __read_mostly;
1781 #endif
1782 EXPORT_SYMBOL(__cpu_possible_mask);
1783 
1784 struct cpumask __cpu_online_mask __read_mostly;
1785 EXPORT_SYMBOL(__cpu_online_mask);
1786 
1787 struct cpumask __cpu_present_mask __read_mostly;
1788 EXPORT_SYMBOL(__cpu_present_mask);
1789 
1790 struct cpumask __cpu_active_mask __read_mostly;
1791 EXPORT_SYMBOL(__cpu_active_mask);
1792 
1793 void init_cpu_present(const struct cpumask *src)
1794 {
1795 	cpumask_copy(&__cpu_present_mask, src);
1796 }
1797 
1798 void init_cpu_possible(const struct cpumask *src)
1799 {
1800 	cpumask_copy(&__cpu_possible_mask, src);
1801 }
1802 
1803 void init_cpu_online(const struct cpumask *src)
1804 {
1805 	cpumask_copy(&__cpu_online_mask, src);
1806 }
1807 
1808 /*
1809  * Activate the first processor.
1810  */
1811 void __init boot_cpu_init(void)
1812 {
1813 	int cpu = smp_processor_id();
1814 
1815 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
1816 	set_cpu_online(cpu, true);
1817 	set_cpu_active(cpu, true);
1818 	set_cpu_present(cpu, true);
1819 	set_cpu_possible(cpu, true);
1820 
1821 #ifdef CONFIG_SMP
1822 	__boot_cpu_id = cpu;
1823 #endif
1824 }
1825 
1826 /*
1827  * Must be called _AFTER_ setting up the per_cpu areas
1828  */
1829 void __init boot_cpu_state_init(void)
1830 {
1831 	per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
1832 }
1833