xref: /openbmc/linux/kernel/cpu.c (revision a20eefae)
1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/isolation.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/smt.h>
15 #include <linux/unistd.h>
16 #include <linux/cpu.h>
17 #include <linux/oom.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <linux/bug.h>
21 #include <linux/kthread.h>
22 #include <linux/stop_machine.h>
23 #include <linux/mutex.h>
24 #include <linux/gfp.h>
25 #include <linux/suspend.h>
26 #include <linux/lockdep.h>
27 #include <linux/tick.h>
28 #include <linux/irq.h>
29 #include <linux/nmi.h>
30 #include <linux/smpboot.h>
31 #include <linux/relay.h>
32 #include <linux/slab.h>
33 #include <linux/percpu-rwsem.h>
34 
35 #include <trace/events/power.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/cpuhp.h>
38 
39 #include "smpboot.h"
40 
41 /**
42  * cpuhp_cpu_state - Per cpu hotplug state storage
43  * @state:	The current cpu state
44  * @target:	The target state
45  * @thread:	Pointer to the hotplug thread
46  * @should_run:	Thread should execute
47  * @rollback:	Perform a rollback
48  * @single:	Single callback invocation
49  * @bringup:	Single callback bringup or teardown selector
50  * @cb_state:	The state for a single callback (install/uninstall)
51  * @result:	Result of the operation
52  * @done_up:	Signal completion to the issuer of the task for cpu-up
53  * @done_down:	Signal completion to the issuer of the task for cpu-down
54  */
55 struct cpuhp_cpu_state {
56 	enum cpuhp_state	state;
57 	enum cpuhp_state	target;
58 	enum cpuhp_state	fail;
59 #ifdef CONFIG_SMP
60 	struct task_struct	*thread;
61 	bool			should_run;
62 	bool			rollback;
63 	bool			single;
64 	bool			bringup;
65 	bool			booted_once;
66 	struct hlist_node	*node;
67 	struct hlist_node	*last;
68 	enum cpuhp_state	cb_state;
69 	int			result;
70 	struct completion	done_up;
71 	struct completion	done_down;
72 #endif
73 };
74 
75 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
76 	.fail = CPUHP_INVALID,
77 };
78 
79 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
80 static struct lockdep_map cpuhp_state_up_map =
81 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
82 static struct lockdep_map cpuhp_state_down_map =
83 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
84 
85 
86 static inline void cpuhp_lock_acquire(bool bringup)
87 {
88 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
89 }
90 
91 static inline void cpuhp_lock_release(bool bringup)
92 {
93 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
94 }
95 #else
96 
97 static inline void cpuhp_lock_acquire(bool bringup) { }
98 static inline void cpuhp_lock_release(bool bringup) { }
99 
100 #endif
101 
102 /**
103  * cpuhp_step - Hotplug state machine step
104  * @name:	Name of the step
105  * @startup:	Startup function of the step
106  * @teardown:	Teardown function of the step
107  * @cant_stop:	Bringup/teardown can't be stopped at this step
108  */
109 struct cpuhp_step {
110 	const char		*name;
111 	union {
112 		int		(*single)(unsigned int cpu);
113 		int		(*multi)(unsigned int cpu,
114 					 struct hlist_node *node);
115 	} startup;
116 	union {
117 		int		(*single)(unsigned int cpu);
118 		int		(*multi)(unsigned int cpu,
119 					 struct hlist_node *node);
120 	} teardown;
121 	struct hlist_head	list;
122 	bool			cant_stop;
123 	bool			multi_instance;
124 };
125 
126 static DEFINE_MUTEX(cpuhp_state_mutex);
127 static struct cpuhp_step cpuhp_hp_states[];
128 
129 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
130 {
131 	return cpuhp_hp_states + state;
132 }
133 
134 /**
135  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
136  * @cpu:	The cpu for which the callback should be invoked
137  * @state:	The state to do callbacks for
138  * @bringup:	True if the bringup callback should be invoked
139  * @node:	For multi-instance, do a single entry callback for install/remove
140  * @lastp:	For multi-instance rollback, remember how far we got
141  *
142  * Called from cpu hotplug and from the state register machinery.
143  */
144 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
145 				 bool bringup, struct hlist_node *node,
146 				 struct hlist_node **lastp)
147 {
148 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
149 	struct cpuhp_step *step = cpuhp_get_step(state);
150 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
151 	int (*cb)(unsigned int cpu);
152 	int ret, cnt;
153 
154 	if (st->fail == state) {
155 		st->fail = CPUHP_INVALID;
156 
157 		if (!(bringup ? step->startup.single : step->teardown.single))
158 			return 0;
159 
160 		return -EAGAIN;
161 	}
162 
163 	if (!step->multi_instance) {
164 		WARN_ON_ONCE(lastp && *lastp);
165 		cb = bringup ? step->startup.single : step->teardown.single;
166 		if (!cb)
167 			return 0;
168 		trace_cpuhp_enter(cpu, st->target, state, cb);
169 		ret = cb(cpu);
170 		trace_cpuhp_exit(cpu, st->state, state, ret);
171 		return ret;
172 	}
173 	cbm = bringup ? step->startup.multi : step->teardown.multi;
174 	if (!cbm)
175 		return 0;
176 
177 	/* Single invocation for instance add/remove */
178 	if (node) {
179 		WARN_ON_ONCE(lastp && *lastp);
180 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
181 		ret = cbm(cpu, node);
182 		trace_cpuhp_exit(cpu, st->state, state, ret);
183 		return ret;
184 	}
185 
186 	/* State transition. Invoke on all instances */
187 	cnt = 0;
188 	hlist_for_each(node, &step->list) {
189 		if (lastp && node == *lastp)
190 			break;
191 
192 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
193 		ret = cbm(cpu, node);
194 		trace_cpuhp_exit(cpu, st->state, state, ret);
195 		if (ret) {
196 			if (!lastp)
197 				goto err;
198 
199 			*lastp = node;
200 			return ret;
201 		}
202 		cnt++;
203 	}
204 	if (lastp)
205 		*lastp = NULL;
206 	return 0;
207 err:
208 	/* Rollback the instances if one failed */
209 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
210 	if (!cbm)
211 		return ret;
212 
213 	hlist_for_each(node, &step->list) {
214 		if (!cnt--)
215 			break;
216 
217 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
218 		ret = cbm(cpu, node);
219 		trace_cpuhp_exit(cpu, st->state, state, ret);
220 		/*
221 		 * Rollback must not fail,
222 		 */
223 		WARN_ON_ONCE(ret);
224 	}
225 	return ret;
226 }
227 
228 #ifdef CONFIG_SMP
229 static bool cpuhp_is_ap_state(enum cpuhp_state state)
230 {
231 	/*
232 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
233 	 * purposes as that state is handled explicitly in cpu_down.
234 	 */
235 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
236 }
237 
238 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
239 {
240 	struct completion *done = bringup ? &st->done_up : &st->done_down;
241 	wait_for_completion(done);
242 }
243 
244 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
245 {
246 	struct completion *done = bringup ? &st->done_up : &st->done_down;
247 	complete(done);
248 }
249 
250 /*
251  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
252  */
253 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
254 {
255 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
256 }
257 
258 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
259 static DEFINE_MUTEX(cpu_add_remove_lock);
260 bool cpuhp_tasks_frozen;
261 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
262 
263 /*
264  * The following two APIs (cpu_maps_update_begin/done) must be used when
265  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
266  */
267 void cpu_maps_update_begin(void)
268 {
269 	mutex_lock(&cpu_add_remove_lock);
270 }
271 
272 void cpu_maps_update_done(void)
273 {
274 	mutex_unlock(&cpu_add_remove_lock);
275 }
276 
277 /*
278  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
279  * Should always be manipulated under cpu_add_remove_lock
280  */
281 static int cpu_hotplug_disabled;
282 
283 #ifdef CONFIG_HOTPLUG_CPU
284 
285 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
286 
287 void cpus_read_lock(void)
288 {
289 	percpu_down_read(&cpu_hotplug_lock);
290 }
291 EXPORT_SYMBOL_GPL(cpus_read_lock);
292 
293 int cpus_read_trylock(void)
294 {
295 	return percpu_down_read_trylock(&cpu_hotplug_lock);
296 }
297 EXPORT_SYMBOL_GPL(cpus_read_trylock);
298 
299 void cpus_read_unlock(void)
300 {
301 	percpu_up_read(&cpu_hotplug_lock);
302 }
303 EXPORT_SYMBOL_GPL(cpus_read_unlock);
304 
305 void cpus_write_lock(void)
306 {
307 	percpu_down_write(&cpu_hotplug_lock);
308 }
309 
310 void cpus_write_unlock(void)
311 {
312 	percpu_up_write(&cpu_hotplug_lock);
313 }
314 
315 void lockdep_assert_cpus_held(void)
316 {
317 	/*
318 	 * We can't have hotplug operations before userspace starts running,
319 	 * and some init codepaths will knowingly not take the hotplug lock.
320 	 * This is all valid, so mute lockdep until it makes sense to report
321 	 * unheld locks.
322 	 */
323 	if (system_state < SYSTEM_RUNNING)
324 		return;
325 
326 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
327 }
328 
329 static void lockdep_acquire_cpus_lock(void)
330 {
331 	rwsem_acquire(&cpu_hotplug_lock.rw_sem.dep_map, 0, 0, _THIS_IP_);
332 }
333 
334 static void lockdep_release_cpus_lock(void)
335 {
336 	rwsem_release(&cpu_hotplug_lock.rw_sem.dep_map, 1, _THIS_IP_);
337 }
338 
339 /*
340  * Wait for currently running CPU hotplug operations to complete (if any) and
341  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
342  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
343  * hotplug path before performing hotplug operations. So acquiring that lock
344  * guarantees mutual exclusion from any currently running hotplug operations.
345  */
346 void cpu_hotplug_disable(void)
347 {
348 	cpu_maps_update_begin();
349 	cpu_hotplug_disabled++;
350 	cpu_maps_update_done();
351 }
352 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
353 
354 static void __cpu_hotplug_enable(void)
355 {
356 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
357 		return;
358 	cpu_hotplug_disabled--;
359 }
360 
361 void cpu_hotplug_enable(void)
362 {
363 	cpu_maps_update_begin();
364 	__cpu_hotplug_enable();
365 	cpu_maps_update_done();
366 }
367 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
368 
369 #else
370 
371 static void lockdep_acquire_cpus_lock(void)
372 {
373 }
374 
375 static void lockdep_release_cpus_lock(void)
376 {
377 }
378 
379 #endif	/* CONFIG_HOTPLUG_CPU */
380 
381 /*
382  * Architectures that need SMT-specific errata handling during SMT hotplug
383  * should override this.
384  */
385 void __weak arch_smt_update(void) { }
386 
387 #ifdef CONFIG_HOTPLUG_SMT
388 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
389 
390 void __init cpu_smt_disable(bool force)
391 {
392 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
393 		cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
394 		return;
395 
396 	if (force) {
397 		pr_info("SMT: Force disabled\n");
398 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
399 	} else {
400 		pr_info("SMT: disabled\n");
401 		cpu_smt_control = CPU_SMT_DISABLED;
402 	}
403 }
404 
405 /*
406  * The decision whether SMT is supported can only be done after the full
407  * CPU identification. Called from architecture code.
408  */
409 void __init cpu_smt_check_topology(void)
410 {
411 	if (!topology_smt_supported())
412 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
413 }
414 
415 static int __init smt_cmdline_disable(char *str)
416 {
417 	cpu_smt_disable(str && !strcmp(str, "force"));
418 	return 0;
419 }
420 early_param("nosmt", smt_cmdline_disable);
421 
422 static inline bool cpu_smt_allowed(unsigned int cpu)
423 {
424 	if (cpu_smt_control == CPU_SMT_ENABLED)
425 		return true;
426 
427 	if (topology_is_primary_thread(cpu))
428 		return true;
429 
430 	/*
431 	 * On x86 it's required to boot all logical CPUs at least once so
432 	 * that the init code can get a chance to set CR4.MCE on each
433 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
434 	 * core will shutdown the machine.
435 	 */
436 	return !per_cpu(cpuhp_state, cpu).booted_once;
437 }
438 #else
439 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
440 #endif
441 
442 static inline enum cpuhp_state
443 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
444 {
445 	enum cpuhp_state prev_state = st->state;
446 
447 	st->rollback = false;
448 	st->last = NULL;
449 
450 	st->target = target;
451 	st->single = false;
452 	st->bringup = st->state < target;
453 
454 	return prev_state;
455 }
456 
457 static inline void
458 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
459 {
460 	st->rollback = true;
461 
462 	/*
463 	 * If we have st->last we need to undo partial multi_instance of this
464 	 * state first. Otherwise start undo at the previous state.
465 	 */
466 	if (!st->last) {
467 		if (st->bringup)
468 			st->state--;
469 		else
470 			st->state++;
471 	}
472 
473 	st->target = prev_state;
474 	st->bringup = !st->bringup;
475 }
476 
477 /* Regular hotplug invocation of the AP hotplug thread */
478 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
479 {
480 	if (!st->single && st->state == st->target)
481 		return;
482 
483 	st->result = 0;
484 	/*
485 	 * Make sure the above stores are visible before should_run becomes
486 	 * true. Paired with the mb() above in cpuhp_thread_fun()
487 	 */
488 	smp_mb();
489 	st->should_run = true;
490 	wake_up_process(st->thread);
491 	wait_for_ap_thread(st, st->bringup);
492 }
493 
494 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
495 {
496 	enum cpuhp_state prev_state;
497 	int ret;
498 
499 	prev_state = cpuhp_set_state(st, target);
500 	__cpuhp_kick_ap(st);
501 	if ((ret = st->result)) {
502 		cpuhp_reset_state(st, prev_state);
503 		__cpuhp_kick_ap(st);
504 	}
505 
506 	return ret;
507 }
508 
509 static int bringup_wait_for_ap(unsigned int cpu)
510 {
511 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
512 
513 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
514 	wait_for_ap_thread(st, true);
515 	if (WARN_ON_ONCE((!cpu_online(cpu))))
516 		return -ECANCELED;
517 
518 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
519 	stop_machine_unpark(cpu);
520 	kthread_unpark(st->thread);
521 
522 	/*
523 	 * SMT soft disabling on X86 requires to bring the CPU out of the
524 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
525 	 * CPU marked itself as booted_once in notify_cpu_starting() so the
526 	 * cpu_smt_allowed() check will now return false if this is not the
527 	 * primary sibling.
528 	 */
529 	if (!cpu_smt_allowed(cpu))
530 		return -ECANCELED;
531 
532 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
533 		return 0;
534 
535 	return cpuhp_kick_ap(st, st->target);
536 }
537 
538 static int bringup_cpu(unsigned int cpu)
539 {
540 	struct task_struct *idle = idle_thread_get(cpu);
541 	int ret;
542 
543 	/*
544 	 * Some architectures have to walk the irq descriptors to
545 	 * setup the vector space for the cpu which comes online.
546 	 * Prevent irq alloc/free across the bringup.
547 	 */
548 	irq_lock_sparse();
549 
550 	/* Arch-specific enabling code. */
551 	ret = __cpu_up(cpu, idle);
552 	irq_unlock_sparse();
553 	if (ret)
554 		return ret;
555 	return bringup_wait_for_ap(cpu);
556 }
557 
558 /*
559  * Hotplug state machine related functions
560  */
561 
562 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
563 {
564 	for (st->state--; st->state > st->target; st->state--)
565 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
566 }
567 
568 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
569 {
570 	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
571 		return true;
572 	/*
573 	 * When CPU hotplug is disabled, then taking the CPU down is not
574 	 * possible because takedown_cpu() and the architecture and
575 	 * subsystem specific mechanisms are not available. So the CPU
576 	 * which would be completely unplugged again needs to stay around
577 	 * in the current state.
578 	 */
579 	return st->state <= CPUHP_BRINGUP_CPU;
580 }
581 
582 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
583 			      enum cpuhp_state target)
584 {
585 	enum cpuhp_state prev_state = st->state;
586 	int ret = 0;
587 
588 	while (st->state < target) {
589 		st->state++;
590 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
591 		if (ret) {
592 			if (can_rollback_cpu(st)) {
593 				st->target = prev_state;
594 				undo_cpu_up(cpu, st);
595 			}
596 			break;
597 		}
598 	}
599 	return ret;
600 }
601 
602 /*
603  * The cpu hotplug threads manage the bringup and teardown of the cpus
604  */
605 static void cpuhp_create(unsigned int cpu)
606 {
607 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
608 
609 	init_completion(&st->done_up);
610 	init_completion(&st->done_down);
611 }
612 
613 static int cpuhp_should_run(unsigned int cpu)
614 {
615 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
616 
617 	return st->should_run;
618 }
619 
620 /*
621  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
622  * callbacks when a state gets [un]installed at runtime.
623  *
624  * Each invocation of this function by the smpboot thread does a single AP
625  * state callback.
626  *
627  * It has 3 modes of operation:
628  *  - single: runs st->cb_state
629  *  - up:     runs ++st->state, while st->state < st->target
630  *  - down:   runs st->state--, while st->state > st->target
631  *
632  * When complete or on error, should_run is cleared and the completion is fired.
633  */
634 static void cpuhp_thread_fun(unsigned int cpu)
635 {
636 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
637 	bool bringup = st->bringup;
638 	enum cpuhp_state state;
639 
640 	if (WARN_ON_ONCE(!st->should_run))
641 		return;
642 
643 	/*
644 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
645 	 * that if we see ->should_run we also see the rest of the state.
646 	 */
647 	smp_mb();
648 
649 	/*
650 	 * The BP holds the hotplug lock, but we're now running on the AP,
651 	 * ensure that anybody asserting the lock is held, will actually find
652 	 * it so.
653 	 */
654 	lockdep_acquire_cpus_lock();
655 	cpuhp_lock_acquire(bringup);
656 
657 	if (st->single) {
658 		state = st->cb_state;
659 		st->should_run = false;
660 	} else {
661 		if (bringup) {
662 			st->state++;
663 			state = st->state;
664 			st->should_run = (st->state < st->target);
665 			WARN_ON_ONCE(st->state > st->target);
666 		} else {
667 			state = st->state;
668 			st->state--;
669 			st->should_run = (st->state > st->target);
670 			WARN_ON_ONCE(st->state < st->target);
671 		}
672 	}
673 
674 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
675 
676 	if (cpuhp_is_atomic_state(state)) {
677 		local_irq_disable();
678 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
679 		local_irq_enable();
680 
681 		/*
682 		 * STARTING/DYING must not fail!
683 		 */
684 		WARN_ON_ONCE(st->result);
685 	} else {
686 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
687 	}
688 
689 	if (st->result) {
690 		/*
691 		 * If we fail on a rollback, we're up a creek without no
692 		 * paddle, no way forward, no way back. We loose, thanks for
693 		 * playing.
694 		 */
695 		WARN_ON_ONCE(st->rollback);
696 		st->should_run = false;
697 	}
698 
699 	cpuhp_lock_release(bringup);
700 	lockdep_release_cpus_lock();
701 
702 	if (!st->should_run)
703 		complete_ap_thread(st, bringup);
704 }
705 
706 /* Invoke a single callback on a remote cpu */
707 static int
708 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
709 			 struct hlist_node *node)
710 {
711 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
712 	int ret;
713 
714 	if (!cpu_online(cpu))
715 		return 0;
716 
717 	cpuhp_lock_acquire(false);
718 	cpuhp_lock_release(false);
719 
720 	cpuhp_lock_acquire(true);
721 	cpuhp_lock_release(true);
722 
723 	/*
724 	 * If we are up and running, use the hotplug thread. For early calls
725 	 * we invoke the thread function directly.
726 	 */
727 	if (!st->thread)
728 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
729 
730 	st->rollback = false;
731 	st->last = NULL;
732 
733 	st->node = node;
734 	st->bringup = bringup;
735 	st->cb_state = state;
736 	st->single = true;
737 
738 	__cpuhp_kick_ap(st);
739 
740 	/*
741 	 * If we failed and did a partial, do a rollback.
742 	 */
743 	if ((ret = st->result) && st->last) {
744 		st->rollback = true;
745 		st->bringup = !bringup;
746 
747 		__cpuhp_kick_ap(st);
748 	}
749 
750 	/*
751 	 * Clean up the leftovers so the next hotplug operation wont use stale
752 	 * data.
753 	 */
754 	st->node = st->last = NULL;
755 	return ret;
756 }
757 
758 static int cpuhp_kick_ap_work(unsigned int cpu)
759 {
760 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
761 	enum cpuhp_state prev_state = st->state;
762 	int ret;
763 
764 	cpuhp_lock_acquire(false);
765 	cpuhp_lock_release(false);
766 
767 	cpuhp_lock_acquire(true);
768 	cpuhp_lock_release(true);
769 
770 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
771 	ret = cpuhp_kick_ap(st, st->target);
772 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
773 
774 	return ret;
775 }
776 
777 static struct smp_hotplug_thread cpuhp_threads = {
778 	.store			= &cpuhp_state.thread,
779 	.create			= &cpuhp_create,
780 	.thread_should_run	= cpuhp_should_run,
781 	.thread_fn		= cpuhp_thread_fun,
782 	.thread_comm		= "cpuhp/%u",
783 	.selfparking		= true,
784 };
785 
786 void __init cpuhp_threads_init(void)
787 {
788 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
789 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
790 }
791 
792 #ifdef CONFIG_HOTPLUG_CPU
793 /**
794  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
795  * @cpu: a CPU id
796  *
797  * This function walks all processes, finds a valid mm struct for each one and
798  * then clears a corresponding bit in mm's cpumask.  While this all sounds
799  * trivial, there are various non-obvious corner cases, which this function
800  * tries to solve in a safe manner.
801  *
802  * Also note that the function uses a somewhat relaxed locking scheme, so it may
803  * be called only for an already offlined CPU.
804  */
805 void clear_tasks_mm_cpumask(int cpu)
806 {
807 	struct task_struct *p;
808 
809 	/*
810 	 * This function is called after the cpu is taken down and marked
811 	 * offline, so its not like new tasks will ever get this cpu set in
812 	 * their mm mask. -- Peter Zijlstra
813 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
814 	 * full-fledged tasklist_lock.
815 	 */
816 	WARN_ON(cpu_online(cpu));
817 	rcu_read_lock();
818 	for_each_process(p) {
819 		struct task_struct *t;
820 
821 		/*
822 		 * Main thread might exit, but other threads may still have
823 		 * a valid mm. Find one.
824 		 */
825 		t = find_lock_task_mm(p);
826 		if (!t)
827 			continue;
828 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
829 		task_unlock(t);
830 	}
831 	rcu_read_unlock();
832 }
833 
834 /* Take this CPU down. */
835 static int take_cpu_down(void *_param)
836 {
837 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
838 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
839 	int err, cpu = smp_processor_id();
840 	int ret;
841 
842 	/* Ensure this CPU doesn't handle any more interrupts. */
843 	err = __cpu_disable();
844 	if (err < 0)
845 		return err;
846 
847 	/*
848 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
849 	 * do this step again.
850 	 */
851 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
852 	st->state--;
853 	/* Invoke the former CPU_DYING callbacks */
854 	for (; st->state > target; st->state--) {
855 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
856 		/*
857 		 * DYING must not fail!
858 		 */
859 		WARN_ON_ONCE(ret);
860 	}
861 
862 	/* Give up timekeeping duties */
863 	tick_handover_do_timer();
864 	/* Remove CPU from timer broadcasting */
865 	tick_offline_cpu(cpu);
866 	/* Park the stopper thread */
867 	stop_machine_park(cpu);
868 	return 0;
869 }
870 
871 static int takedown_cpu(unsigned int cpu)
872 {
873 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
874 	int err;
875 
876 	/* Park the smpboot threads */
877 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
878 
879 	/*
880 	 * Prevent irq alloc/free while the dying cpu reorganizes the
881 	 * interrupt affinities.
882 	 */
883 	irq_lock_sparse();
884 
885 	/*
886 	 * So now all preempt/rcu users must observe !cpu_active().
887 	 */
888 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
889 	if (err) {
890 		/* CPU refused to die */
891 		irq_unlock_sparse();
892 		/* Unpark the hotplug thread so we can rollback there */
893 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
894 		return err;
895 	}
896 	BUG_ON(cpu_online(cpu));
897 
898 	/*
899 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
900 	 * all runnable tasks from the CPU, there's only the idle task left now
901 	 * that the migration thread is done doing the stop_machine thing.
902 	 *
903 	 * Wait for the stop thread to go away.
904 	 */
905 	wait_for_ap_thread(st, false);
906 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
907 
908 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
909 	irq_unlock_sparse();
910 
911 	hotplug_cpu__broadcast_tick_pull(cpu);
912 	/* This actually kills the CPU. */
913 	__cpu_die(cpu);
914 
915 	tick_cleanup_dead_cpu(cpu);
916 	rcutree_migrate_callbacks(cpu);
917 	return 0;
918 }
919 
920 static void cpuhp_complete_idle_dead(void *arg)
921 {
922 	struct cpuhp_cpu_state *st = arg;
923 
924 	complete_ap_thread(st, false);
925 }
926 
927 void cpuhp_report_idle_dead(void)
928 {
929 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
930 
931 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
932 	rcu_report_dead(smp_processor_id());
933 	st->state = CPUHP_AP_IDLE_DEAD;
934 	/*
935 	 * We cannot call complete after rcu_report_dead() so we delegate it
936 	 * to an online cpu.
937 	 */
938 	smp_call_function_single(cpumask_first(cpu_online_mask),
939 				 cpuhp_complete_idle_dead, st, 0);
940 }
941 
942 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
943 {
944 	for (st->state++; st->state < st->target; st->state++)
945 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
946 }
947 
948 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
949 				enum cpuhp_state target)
950 {
951 	enum cpuhp_state prev_state = st->state;
952 	int ret = 0;
953 
954 	for (; st->state > target; st->state--) {
955 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
956 		if (ret) {
957 			st->target = prev_state;
958 			if (st->state < prev_state)
959 				undo_cpu_down(cpu, st);
960 			break;
961 		}
962 	}
963 	return ret;
964 }
965 
966 /* Requires cpu_add_remove_lock to be held */
967 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
968 			   enum cpuhp_state target)
969 {
970 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
971 	int prev_state, ret = 0;
972 
973 	if (num_online_cpus() == 1)
974 		return -EBUSY;
975 
976 	if (!cpu_present(cpu))
977 		return -EINVAL;
978 
979 	cpus_write_lock();
980 
981 	cpuhp_tasks_frozen = tasks_frozen;
982 
983 	prev_state = cpuhp_set_state(st, target);
984 	/*
985 	 * If the current CPU state is in the range of the AP hotplug thread,
986 	 * then we need to kick the thread.
987 	 */
988 	if (st->state > CPUHP_TEARDOWN_CPU) {
989 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
990 		ret = cpuhp_kick_ap_work(cpu);
991 		/*
992 		 * The AP side has done the error rollback already. Just
993 		 * return the error code..
994 		 */
995 		if (ret)
996 			goto out;
997 
998 		/*
999 		 * We might have stopped still in the range of the AP hotplug
1000 		 * thread. Nothing to do anymore.
1001 		 */
1002 		if (st->state > CPUHP_TEARDOWN_CPU)
1003 			goto out;
1004 
1005 		st->target = target;
1006 	}
1007 	/*
1008 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1009 	 * to do the further cleanups.
1010 	 */
1011 	ret = cpuhp_down_callbacks(cpu, st, target);
1012 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1013 		cpuhp_reset_state(st, prev_state);
1014 		__cpuhp_kick_ap(st);
1015 	}
1016 
1017 out:
1018 	cpus_write_unlock();
1019 	/*
1020 	 * Do post unplug cleanup. This is still protected against
1021 	 * concurrent CPU hotplug via cpu_add_remove_lock.
1022 	 */
1023 	lockup_detector_cleanup();
1024 	arch_smt_update();
1025 	return ret;
1026 }
1027 
1028 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1029 {
1030 	if (cpu_hotplug_disabled)
1031 		return -EBUSY;
1032 	return _cpu_down(cpu, 0, target);
1033 }
1034 
1035 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
1036 {
1037 	int err;
1038 
1039 	cpu_maps_update_begin();
1040 	err = cpu_down_maps_locked(cpu, target);
1041 	cpu_maps_update_done();
1042 	return err;
1043 }
1044 
1045 int cpu_down(unsigned int cpu)
1046 {
1047 	return do_cpu_down(cpu, CPUHP_OFFLINE);
1048 }
1049 EXPORT_SYMBOL(cpu_down);
1050 
1051 #else
1052 #define takedown_cpu		NULL
1053 #endif /*CONFIG_HOTPLUG_CPU*/
1054 
1055 /**
1056  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1057  * @cpu: cpu that just started
1058  *
1059  * It must be called by the arch code on the new cpu, before the new cpu
1060  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1061  */
1062 void notify_cpu_starting(unsigned int cpu)
1063 {
1064 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1065 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1066 	int ret;
1067 
1068 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1069 	st->booted_once = true;
1070 	while (st->state < target) {
1071 		st->state++;
1072 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1073 		/*
1074 		 * STARTING must not fail!
1075 		 */
1076 		WARN_ON_ONCE(ret);
1077 	}
1078 }
1079 
1080 /*
1081  * Called from the idle task. Wake up the controlling task which brings the
1082  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1083  * the rest of the online bringup to the hotplug thread.
1084  */
1085 void cpuhp_online_idle(enum cpuhp_state state)
1086 {
1087 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1088 
1089 	/* Happens for the boot cpu */
1090 	if (state != CPUHP_AP_ONLINE_IDLE)
1091 		return;
1092 
1093 	st->state = CPUHP_AP_ONLINE_IDLE;
1094 	complete_ap_thread(st, true);
1095 }
1096 
1097 /* Requires cpu_add_remove_lock to be held */
1098 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1099 {
1100 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1101 	struct task_struct *idle;
1102 	int ret = 0;
1103 
1104 	cpus_write_lock();
1105 
1106 	if (!cpu_present(cpu)) {
1107 		ret = -EINVAL;
1108 		goto out;
1109 	}
1110 
1111 	/*
1112 	 * The caller of do_cpu_up might have raced with another
1113 	 * caller. Ignore it for now.
1114 	 */
1115 	if (st->state >= target)
1116 		goto out;
1117 
1118 	if (st->state == CPUHP_OFFLINE) {
1119 		/* Let it fail before we try to bring the cpu up */
1120 		idle = idle_thread_get(cpu);
1121 		if (IS_ERR(idle)) {
1122 			ret = PTR_ERR(idle);
1123 			goto out;
1124 		}
1125 	}
1126 
1127 	cpuhp_tasks_frozen = tasks_frozen;
1128 
1129 	cpuhp_set_state(st, target);
1130 	/*
1131 	 * If the current CPU state is in the range of the AP hotplug thread,
1132 	 * then we need to kick the thread once more.
1133 	 */
1134 	if (st->state > CPUHP_BRINGUP_CPU) {
1135 		ret = cpuhp_kick_ap_work(cpu);
1136 		/*
1137 		 * The AP side has done the error rollback already. Just
1138 		 * return the error code..
1139 		 */
1140 		if (ret)
1141 			goto out;
1142 	}
1143 
1144 	/*
1145 	 * Try to reach the target state. We max out on the BP at
1146 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1147 	 * responsible for bringing it up to the target state.
1148 	 */
1149 	target = min((int)target, CPUHP_BRINGUP_CPU);
1150 	ret = cpuhp_up_callbacks(cpu, st, target);
1151 out:
1152 	cpus_write_unlock();
1153 	arch_smt_update();
1154 	return ret;
1155 }
1156 
1157 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1158 {
1159 	int err = 0;
1160 
1161 	if (!cpu_possible(cpu)) {
1162 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1163 		       cpu);
1164 #if defined(CONFIG_IA64)
1165 		pr_err("please check additional_cpus= boot parameter\n");
1166 #endif
1167 		return -EINVAL;
1168 	}
1169 
1170 	err = try_online_node(cpu_to_node(cpu));
1171 	if (err)
1172 		return err;
1173 
1174 	cpu_maps_update_begin();
1175 
1176 	if (cpu_hotplug_disabled) {
1177 		err = -EBUSY;
1178 		goto out;
1179 	}
1180 	if (!cpu_smt_allowed(cpu)) {
1181 		err = -EPERM;
1182 		goto out;
1183 	}
1184 
1185 	err = _cpu_up(cpu, 0, target);
1186 out:
1187 	cpu_maps_update_done();
1188 	return err;
1189 }
1190 
1191 int cpu_up(unsigned int cpu)
1192 {
1193 	return do_cpu_up(cpu, CPUHP_ONLINE);
1194 }
1195 EXPORT_SYMBOL_GPL(cpu_up);
1196 
1197 #ifdef CONFIG_PM_SLEEP_SMP
1198 static cpumask_var_t frozen_cpus;
1199 
1200 int freeze_secondary_cpus(int primary)
1201 {
1202 	int cpu, error = 0;
1203 
1204 	cpu_maps_update_begin();
1205 	if (primary == -1) {
1206 		primary = cpumask_first(cpu_online_mask);
1207 		if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1208 			primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1209 	} else {
1210 		if (!cpu_online(primary))
1211 			primary = cpumask_first(cpu_online_mask);
1212 	}
1213 
1214 	/*
1215 	 * We take down all of the non-boot CPUs in one shot to avoid races
1216 	 * with the userspace trying to use the CPU hotplug at the same time
1217 	 */
1218 	cpumask_clear(frozen_cpus);
1219 
1220 	pr_info("Disabling non-boot CPUs ...\n");
1221 	for_each_online_cpu(cpu) {
1222 		if (cpu == primary)
1223 			continue;
1224 
1225 		if (pm_wakeup_pending()) {
1226 			pr_info("Wakeup pending. Abort CPU freeze\n");
1227 			error = -EBUSY;
1228 			break;
1229 		}
1230 
1231 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1232 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1233 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1234 		if (!error)
1235 			cpumask_set_cpu(cpu, frozen_cpus);
1236 		else {
1237 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1238 			break;
1239 		}
1240 	}
1241 
1242 	if (!error)
1243 		BUG_ON(num_online_cpus() > 1);
1244 	else
1245 		pr_err("Non-boot CPUs are not disabled\n");
1246 
1247 	/*
1248 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1249 	 * this even in case of failure as all disable_nonboot_cpus() users are
1250 	 * supposed to do enable_nonboot_cpus() on the failure path.
1251 	 */
1252 	cpu_hotplug_disabled++;
1253 
1254 	cpu_maps_update_done();
1255 	return error;
1256 }
1257 
1258 void __weak arch_enable_nonboot_cpus_begin(void)
1259 {
1260 }
1261 
1262 void __weak arch_enable_nonboot_cpus_end(void)
1263 {
1264 }
1265 
1266 void enable_nonboot_cpus(void)
1267 {
1268 	int cpu, error;
1269 
1270 	/* Allow everyone to use the CPU hotplug again */
1271 	cpu_maps_update_begin();
1272 	__cpu_hotplug_enable();
1273 	if (cpumask_empty(frozen_cpus))
1274 		goto out;
1275 
1276 	pr_info("Enabling non-boot CPUs ...\n");
1277 
1278 	arch_enable_nonboot_cpus_begin();
1279 
1280 	for_each_cpu(cpu, frozen_cpus) {
1281 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1282 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1283 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1284 		if (!error) {
1285 			pr_info("CPU%d is up\n", cpu);
1286 			continue;
1287 		}
1288 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1289 	}
1290 
1291 	arch_enable_nonboot_cpus_end();
1292 
1293 	cpumask_clear(frozen_cpus);
1294 out:
1295 	cpu_maps_update_done();
1296 }
1297 
1298 static int __init alloc_frozen_cpus(void)
1299 {
1300 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1301 		return -ENOMEM;
1302 	return 0;
1303 }
1304 core_initcall(alloc_frozen_cpus);
1305 
1306 /*
1307  * When callbacks for CPU hotplug notifications are being executed, we must
1308  * ensure that the state of the system with respect to the tasks being frozen
1309  * or not, as reported by the notification, remains unchanged *throughout the
1310  * duration* of the execution of the callbacks.
1311  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1312  *
1313  * This synchronization is implemented by mutually excluding regular CPU
1314  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1315  * Hibernate notifications.
1316  */
1317 static int
1318 cpu_hotplug_pm_callback(struct notifier_block *nb,
1319 			unsigned long action, void *ptr)
1320 {
1321 	switch (action) {
1322 
1323 	case PM_SUSPEND_PREPARE:
1324 	case PM_HIBERNATION_PREPARE:
1325 		cpu_hotplug_disable();
1326 		break;
1327 
1328 	case PM_POST_SUSPEND:
1329 	case PM_POST_HIBERNATION:
1330 		cpu_hotplug_enable();
1331 		break;
1332 
1333 	default:
1334 		return NOTIFY_DONE;
1335 	}
1336 
1337 	return NOTIFY_OK;
1338 }
1339 
1340 
1341 static int __init cpu_hotplug_pm_sync_init(void)
1342 {
1343 	/*
1344 	 * cpu_hotplug_pm_callback has higher priority than x86
1345 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1346 	 * to disable cpu hotplug to avoid cpu hotplug race.
1347 	 */
1348 	pm_notifier(cpu_hotplug_pm_callback, 0);
1349 	return 0;
1350 }
1351 core_initcall(cpu_hotplug_pm_sync_init);
1352 
1353 #endif /* CONFIG_PM_SLEEP_SMP */
1354 
1355 int __boot_cpu_id;
1356 
1357 #endif /* CONFIG_SMP */
1358 
1359 /* Boot processor state steps */
1360 static struct cpuhp_step cpuhp_hp_states[] = {
1361 	[CPUHP_OFFLINE] = {
1362 		.name			= "offline",
1363 		.startup.single		= NULL,
1364 		.teardown.single	= NULL,
1365 	},
1366 #ifdef CONFIG_SMP
1367 	[CPUHP_CREATE_THREADS]= {
1368 		.name			= "threads:prepare",
1369 		.startup.single		= smpboot_create_threads,
1370 		.teardown.single	= NULL,
1371 		.cant_stop		= true,
1372 	},
1373 	[CPUHP_PERF_PREPARE] = {
1374 		.name			= "perf:prepare",
1375 		.startup.single		= perf_event_init_cpu,
1376 		.teardown.single	= perf_event_exit_cpu,
1377 	},
1378 	[CPUHP_WORKQUEUE_PREP] = {
1379 		.name			= "workqueue:prepare",
1380 		.startup.single		= workqueue_prepare_cpu,
1381 		.teardown.single	= NULL,
1382 	},
1383 	[CPUHP_HRTIMERS_PREPARE] = {
1384 		.name			= "hrtimers:prepare",
1385 		.startup.single		= hrtimers_prepare_cpu,
1386 		.teardown.single	= hrtimers_dead_cpu,
1387 	},
1388 	[CPUHP_SMPCFD_PREPARE] = {
1389 		.name			= "smpcfd:prepare",
1390 		.startup.single		= smpcfd_prepare_cpu,
1391 		.teardown.single	= smpcfd_dead_cpu,
1392 	},
1393 	[CPUHP_RELAY_PREPARE] = {
1394 		.name			= "relay:prepare",
1395 		.startup.single		= relay_prepare_cpu,
1396 		.teardown.single	= NULL,
1397 	},
1398 	[CPUHP_SLAB_PREPARE] = {
1399 		.name			= "slab:prepare",
1400 		.startup.single		= slab_prepare_cpu,
1401 		.teardown.single	= slab_dead_cpu,
1402 	},
1403 	[CPUHP_RCUTREE_PREP] = {
1404 		.name			= "RCU/tree:prepare",
1405 		.startup.single		= rcutree_prepare_cpu,
1406 		.teardown.single	= rcutree_dead_cpu,
1407 	},
1408 	/*
1409 	 * On the tear-down path, timers_dead_cpu() must be invoked
1410 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1411 	 * otherwise a RCU stall occurs.
1412 	 */
1413 	[CPUHP_TIMERS_PREPARE] = {
1414 		.name			= "timers:prepare",
1415 		.startup.single		= timers_prepare_cpu,
1416 		.teardown.single	= timers_dead_cpu,
1417 	},
1418 	/* Kicks the plugged cpu into life */
1419 	[CPUHP_BRINGUP_CPU] = {
1420 		.name			= "cpu:bringup",
1421 		.startup.single		= bringup_cpu,
1422 		.teardown.single	= NULL,
1423 		.cant_stop		= true,
1424 	},
1425 	/* Final state before CPU kills itself */
1426 	[CPUHP_AP_IDLE_DEAD] = {
1427 		.name			= "idle:dead",
1428 	},
1429 	/*
1430 	 * Last state before CPU enters the idle loop to die. Transient state
1431 	 * for synchronization.
1432 	 */
1433 	[CPUHP_AP_OFFLINE] = {
1434 		.name			= "ap:offline",
1435 		.cant_stop		= true,
1436 	},
1437 	/* First state is scheduler control. Interrupts are disabled */
1438 	[CPUHP_AP_SCHED_STARTING] = {
1439 		.name			= "sched:starting",
1440 		.startup.single		= sched_cpu_starting,
1441 		.teardown.single	= sched_cpu_dying,
1442 	},
1443 	[CPUHP_AP_RCUTREE_DYING] = {
1444 		.name			= "RCU/tree:dying",
1445 		.startup.single		= NULL,
1446 		.teardown.single	= rcutree_dying_cpu,
1447 	},
1448 	[CPUHP_AP_SMPCFD_DYING] = {
1449 		.name			= "smpcfd:dying",
1450 		.startup.single		= NULL,
1451 		.teardown.single	= smpcfd_dying_cpu,
1452 	},
1453 	/* Entry state on starting. Interrupts enabled from here on. Transient
1454 	 * state for synchronsization */
1455 	[CPUHP_AP_ONLINE] = {
1456 		.name			= "ap:online",
1457 	},
1458 	/*
1459 	 * Handled on controll processor until the plugged processor manages
1460 	 * this itself.
1461 	 */
1462 	[CPUHP_TEARDOWN_CPU] = {
1463 		.name			= "cpu:teardown",
1464 		.startup.single		= NULL,
1465 		.teardown.single	= takedown_cpu,
1466 		.cant_stop		= true,
1467 	},
1468 	/* Handle smpboot threads park/unpark */
1469 	[CPUHP_AP_SMPBOOT_THREADS] = {
1470 		.name			= "smpboot/threads:online",
1471 		.startup.single		= smpboot_unpark_threads,
1472 		.teardown.single	= smpboot_park_threads,
1473 	},
1474 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1475 		.name			= "irq/affinity:online",
1476 		.startup.single		= irq_affinity_online_cpu,
1477 		.teardown.single	= NULL,
1478 	},
1479 	[CPUHP_AP_PERF_ONLINE] = {
1480 		.name			= "perf:online",
1481 		.startup.single		= perf_event_init_cpu,
1482 		.teardown.single	= perf_event_exit_cpu,
1483 	},
1484 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1485 		.name			= "lockup_detector:online",
1486 		.startup.single		= lockup_detector_online_cpu,
1487 		.teardown.single	= lockup_detector_offline_cpu,
1488 	},
1489 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1490 		.name			= "workqueue:online",
1491 		.startup.single		= workqueue_online_cpu,
1492 		.teardown.single	= workqueue_offline_cpu,
1493 	},
1494 	[CPUHP_AP_RCUTREE_ONLINE] = {
1495 		.name			= "RCU/tree:online",
1496 		.startup.single		= rcutree_online_cpu,
1497 		.teardown.single	= rcutree_offline_cpu,
1498 	},
1499 #endif
1500 	/*
1501 	 * The dynamically registered state space is here
1502 	 */
1503 
1504 #ifdef CONFIG_SMP
1505 	/* Last state is scheduler control setting the cpu active */
1506 	[CPUHP_AP_ACTIVE] = {
1507 		.name			= "sched:active",
1508 		.startup.single		= sched_cpu_activate,
1509 		.teardown.single	= sched_cpu_deactivate,
1510 	},
1511 #endif
1512 
1513 	/* CPU is fully up and running. */
1514 	[CPUHP_ONLINE] = {
1515 		.name			= "online",
1516 		.startup.single		= NULL,
1517 		.teardown.single	= NULL,
1518 	},
1519 };
1520 
1521 /* Sanity check for callbacks */
1522 static int cpuhp_cb_check(enum cpuhp_state state)
1523 {
1524 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1525 		return -EINVAL;
1526 	return 0;
1527 }
1528 
1529 /*
1530  * Returns a free for dynamic slot assignment of the Online state. The states
1531  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1532  * by having no name assigned.
1533  */
1534 static int cpuhp_reserve_state(enum cpuhp_state state)
1535 {
1536 	enum cpuhp_state i, end;
1537 	struct cpuhp_step *step;
1538 
1539 	switch (state) {
1540 	case CPUHP_AP_ONLINE_DYN:
1541 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1542 		end = CPUHP_AP_ONLINE_DYN_END;
1543 		break;
1544 	case CPUHP_BP_PREPARE_DYN:
1545 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1546 		end = CPUHP_BP_PREPARE_DYN_END;
1547 		break;
1548 	default:
1549 		return -EINVAL;
1550 	}
1551 
1552 	for (i = state; i <= end; i++, step++) {
1553 		if (!step->name)
1554 			return i;
1555 	}
1556 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1557 	return -ENOSPC;
1558 }
1559 
1560 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1561 				 int (*startup)(unsigned int cpu),
1562 				 int (*teardown)(unsigned int cpu),
1563 				 bool multi_instance)
1564 {
1565 	/* (Un)Install the callbacks for further cpu hotplug operations */
1566 	struct cpuhp_step *sp;
1567 	int ret = 0;
1568 
1569 	/*
1570 	 * If name is NULL, then the state gets removed.
1571 	 *
1572 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1573 	 * the first allocation from these dynamic ranges, so the removal
1574 	 * would trigger a new allocation and clear the wrong (already
1575 	 * empty) state, leaving the callbacks of the to be cleared state
1576 	 * dangling, which causes wreckage on the next hotplug operation.
1577 	 */
1578 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1579 		     state == CPUHP_BP_PREPARE_DYN)) {
1580 		ret = cpuhp_reserve_state(state);
1581 		if (ret < 0)
1582 			return ret;
1583 		state = ret;
1584 	}
1585 	sp = cpuhp_get_step(state);
1586 	if (name && sp->name)
1587 		return -EBUSY;
1588 
1589 	sp->startup.single = startup;
1590 	sp->teardown.single = teardown;
1591 	sp->name = name;
1592 	sp->multi_instance = multi_instance;
1593 	INIT_HLIST_HEAD(&sp->list);
1594 	return ret;
1595 }
1596 
1597 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1598 {
1599 	return cpuhp_get_step(state)->teardown.single;
1600 }
1601 
1602 /*
1603  * Call the startup/teardown function for a step either on the AP or
1604  * on the current CPU.
1605  */
1606 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1607 			    struct hlist_node *node)
1608 {
1609 	struct cpuhp_step *sp = cpuhp_get_step(state);
1610 	int ret;
1611 
1612 	/*
1613 	 * If there's nothing to do, we done.
1614 	 * Relies on the union for multi_instance.
1615 	 */
1616 	if ((bringup && !sp->startup.single) ||
1617 	    (!bringup && !sp->teardown.single))
1618 		return 0;
1619 	/*
1620 	 * The non AP bound callbacks can fail on bringup. On teardown
1621 	 * e.g. module removal we crash for now.
1622 	 */
1623 #ifdef CONFIG_SMP
1624 	if (cpuhp_is_ap_state(state))
1625 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1626 	else
1627 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1628 #else
1629 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1630 #endif
1631 	BUG_ON(ret && !bringup);
1632 	return ret;
1633 }
1634 
1635 /*
1636  * Called from __cpuhp_setup_state on a recoverable failure.
1637  *
1638  * Note: The teardown callbacks for rollback are not allowed to fail!
1639  */
1640 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1641 				   struct hlist_node *node)
1642 {
1643 	int cpu;
1644 
1645 	/* Roll back the already executed steps on the other cpus */
1646 	for_each_present_cpu(cpu) {
1647 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1648 		int cpustate = st->state;
1649 
1650 		if (cpu >= failedcpu)
1651 			break;
1652 
1653 		/* Did we invoke the startup call on that cpu ? */
1654 		if (cpustate >= state)
1655 			cpuhp_issue_call(cpu, state, false, node);
1656 	}
1657 }
1658 
1659 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1660 					  struct hlist_node *node,
1661 					  bool invoke)
1662 {
1663 	struct cpuhp_step *sp;
1664 	int cpu;
1665 	int ret;
1666 
1667 	lockdep_assert_cpus_held();
1668 
1669 	sp = cpuhp_get_step(state);
1670 	if (sp->multi_instance == false)
1671 		return -EINVAL;
1672 
1673 	mutex_lock(&cpuhp_state_mutex);
1674 
1675 	if (!invoke || !sp->startup.multi)
1676 		goto add_node;
1677 
1678 	/*
1679 	 * Try to call the startup callback for each present cpu
1680 	 * depending on the hotplug state of the cpu.
1681 	 */
1682 	for_each_present_cpu(cpu) {
1683 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1684 		int cpustate = st->state;
1685 
1686 		if (cpustate < state)
1687 			continue;
1688 
1689 		ret = cpuhp_issue_call(cpu, state, true, node);
1690 		if (ret) {
1691 			if (sp->teardown.multi)
1692 				cpuhp_rollback_install(cpu, state, node);
1693 			goto unlock;
1694 		}
1695 	}
1696 add_node:
1697 	ret = 0;
1698 	hlist_add_head(node, &sp->list);
1699 unlock:
1700 	mutex_unlock(&cpuhp_state_mutex);
1701 	return ret;
1702 }
1703 
1704 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1705 			       bool invoke)
1706 {
1707 	int ret;
1708 
1709 	cpus_read_lock();
1710 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1711 	cpus_read_unlock();
1712 	return ret;
1713 }
1714 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1715 
1716 /**
1717  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1718  * @state:		The state to setup
1719  * @invoke:		If true, the startup function is invoked for cpus where
1720  *			cpu state >= @state
1721  * @startup:		startup callback function
1722  * @teardown:		teardown callback function
1723  * @multi_instance:	State is set up for multiple instances which get
1724  *			added afterwards.
1725  *
1726  * The caller needs to hold cpus read locked while calling this function.
1727  * Returns:
1728  *   On success:
1729  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1730  *      0 for all other states
1731  *   On failure: proper (negative) error code
1732  */
1733 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1734 				   const char *name, bool invoke,
1735 				   int (*startup)(unsigned int cpu),
1736 				   int (*teardown)(unsigned int cpu),
1737 				   bool multi_instance)
1738 {
1739 	int cpu, ret = 0;
1740 	bool dynstate;
1741 
1742 	lockdep_assert_cpus_held();
1743 
1744 	if (cpuhp_cb_check(state) || !name)
1745 		return -EINVAL;
1746 
1747 	mutex_lock(&cpuhp_state_mutex);
1748 
1749 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1750 				    multi_instance);
1751 
1752 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1753 	if (ret > 0 && dynstate) {
1754 		state = ret;
1755 		ret = 0;
1756 	}
1757 
1758 	if (ret || !invoke || !startup)
1759 		goto out;
1760 
1761 	/*
1762 	 * Try to call the startup callback for each present cpu
1763 	 * depending on the hotplug state of the cpu.
1764 	 */
1765 	for_each_present_cpu(cpu) {
1766 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1767 		int cpustate = st->state;
1768 
1769 		if (cpustate < state)
1770 			continue;
1771 
1772 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1773 		if (ret) {
1774 			if (teardown)
1775 				cpuhp_rollback_install(cpu, state, NULL);
1776 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1777 			goto out;
1778 		}
1779 	}
1780 out:
1781 	mutex_unlock(&cpuhp_state_mutex);
1782 	/*
1783 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1784 	 * dynamically allocated state in case of success.
1785 	 */
1786 	if (!ret && dynstate)
1787 		return state;
1788 	return ret;
1789 }
1790 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1791 
1792 int __cpuhp_setup_state(enum cpuhp_state state,
1793 			const char *name, bool invoke,
1794 			int (*startup)(unsigned int cpu),
1795 			int (*teardown)(unsigned int cpu),
1796 			bool multi_instance)
1797 {
1798 	int ret;
1799 
1800 	cpus_read_lock();
1801 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1802 					     teardown, multi_instance);
1803 	cpus_read_unlock();
1804 	return ret;
1805 }
1806 EXPORT_SYMBOL(__cpuhp_setup_state);
1807 
1808 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1809 				  struct hlist_node *node, bool invoke)
1810 {
1811 	struct cpuhp_step *sp = cpuhp_get_step(state);
1812 	int cpu;
1813 
1814 	BUG_ON(cpuhp_cb_check(state));
1815 
1816 	if (!sp->multi_instance)
1817 		return -EINVAL;
1818 
1819 	cpus_read_lock();
1820 	mutex_lock(&cpuhp_state_mutex);
1821 
1822 	if (!invoke || !cpuhp_get_teardown_cb(state))
1823 		goto remove;
1824 	/*
1825 	 * Call the teardown callback for each present cpu depending
1826 	 * on the hotplug state of the cpu. This function is not
1827 	 * allowed to fail currently!
1828 	 */
1829 	for_each_present_cpu(cpu) {
1830 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1831 		int cpustate = st->state;
1832 
1833 		if (cpustate >= state)
1834 			cpuhp_issue_call(cpu, state, false, node);
1835 	}
1836 
1837 remove:
1838 	hlist_del(node);
1839 	mutex_unlock(&cpuhp_state_mutex);
1840 	cpus_read_unlock();
1841 
1842 	return 0;
1843 }
1844 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1845 
1846 /**
1847  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1848  * @state:	The state to remove
1849  * @invoke:	If true, the teardown function is invoked for cpus where
1850  *		cpu state >= @state
1851  *
1852  * The caller needs to hold cpus read locked while calling this function.
1853  * The teardown callback is currently not allowed to fail. Think
1854  * about module removal!
1855  */
1856 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1857 {
1858 	struct cpuhp_step *sp = cpuhp_get_step(state);
1859 	int cpu;
1860 
1861 	BUG_ON(cpuhp_cb_check(state));
1862 
1863 	lockdep_assert_cpus_held();
1864 
1865 	mutex_lock(&cpuhp_state_mutex);
1866 	if (sp->multi_instance) {
1867 		WARN(!hlist_empty(&sp->list),
1868 		     "Error: Removing state %d which has instances left.\n",
1869 		     state);
1870 		goto remove;
1871 	}
1872 
1873 	if (!invoke || !cpuhp_get_teardown_cb(state))
1874 		goto remove;
1875 
1876 	/*
1877 	 * Call the teardown callback for each present cpu depending
1878 	 * on the hotplug state of the cpu. This function is not
1879 	 * allowed to fail currently!
1880 	 */
1881 	for_each_present_cpu(cpu) {
1882 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1883 		int cpustate = st->state;
1884 
1885 		if (cpustate >= state)
1886 			cpuhp_issue_call(cpu, state, false, NULL);
1887 	}
1888 remove:
1889 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1890 	mutex_unlock(&cpuhp_state_mutex);
1891 }
1892 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1893 
1894 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1895 {
1896 	cpus_read_lock();
1897 	__cpuhp_remove_state_cpuslocked(state, invoke);
1898 	cpus_read_unlock();
1899 }
1900 EXPORT_SYMBOL(__cpuhp_remove_state);
1901 
1902 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1903 static ssize_t show_cpuhp_state(struct device *dev,
1904 				struct device_attribute *attr, char *buf)
1905 {
1906 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1907 
1908 	return sprintf(buf, "%d\n", st->state);
1909 }
1910 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1911 
1912 static ssize_t write_cpuhp_target(struct device *dev,
1913 				  struct device_attribute *attr,
1914 				  const char *buf, size_t count)
1915 {
1916 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1917 	struct cpuhp_step *sp;
1918 	int target, ret;
1919 
1920 	ret = kstrtoint(buf, 10, &target);
1921 	if (ret)
1922 		return ret;
1923 
1924 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1925 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1926 		return -EINVAL;
1927 #else
1928 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1929 		return -EINVAL;
1930 #endif
1931 
1932 	ret = lock_device_hotplug_sysfs();
1933 	if (ret)
1934 		return ret;
1935 
1936 	mutex_lock(&cpuhp_state_mutex);
1937 	sp = cpuhp_get_step(target);
1938 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1939 	mutex_unlock(&cpuhp_state_mutex);
1940 	if (ret)
1941 		goto out;
1942 
1943 	if (st->state < target)
1944 		ret = do_cpu_up(dev->id, target);
1945 	else
1946 		ret = do_cpu_down(dev->id, target);
1947 out:
1948 	unlock_device_hotplug();
1949 	return ret ? ret : count;
1950 }
1951 
1952 static ssize_t show_cpuhp_target(struct device *dev,
1953 				 struct device_attribute *attr, char *buf)
1954 {
1955 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1956 
1957 	return sprintf(buf, "%d\n", st->target);
1958 }
1959 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1960 
1961 
1962 static ssize_t write_cpuhp_fail(struct device *dev,
1963 				struct device_attribute *attr,
1964 				const char *buf, size_t count)
1965 {
1966 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1967 	struct cpuhp_step *sp;
1968 	int fail, ret;
1969 
1970 	ret = kstrtoint(buf, 10, &fail);
1971 	if (ret)
1972 		return ret;
1973 
1974 	if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
1975 		return -EINVAL;
1976 
1977 	/*
1978 	 * Cannot fail STARTING/DYING callbacks.
1979 	 */
1980 	if (cpuhp_is_atomic_state(fail))
1981 		return -EINVAL;
1982 
1983 	/*
1984 	 * Cannot fail anything that doesn't have callbacks.
1985 	 */
1986 	mutex_lock(&cpuhp_state_mutex);
1987 	sp = cpuhp_get_step(fail);
1988 	if (!sp->startup.single && !sp->teardown.single)
1989 		ret = -EINVAL;
1990 	mutex_unlock(&cpuhp_state_mutex);
1991 	if (ret)
1992 		return ret;
1993 
1994 	st->fail = fail;
1995 
1996 	return count;
1997 }
1998 
1999 static ssize_t show_cpuhp_fail(struct device *dev,
2000 			       struct device_attribute *attr, char *buf)
2001 {
2002 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2003 
2004 	return sprintf(buf, "%d\n", st->fail);
2005 }
2006 
2007 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2008 
2009 static struct attribute *cpuhp_cpu_attrs[] = {
2010 	&dev_attr_state.attr,
2011 	&dev_attr_target.attr,
2012 	&dev_attr_fail.attr,
2013 	NULL
2014 };
2015 
2016 static const struct attribute_group cpuhp_cpu_attr_group = {
2017 	.attrs = cpuhp_cpu_attrs,
2018 	.name = "hotplug",
2019 	NULL
2020 };
2021 
2022 static ssize_t show_cpuhp_states(struct device *dev,
2023 				 struct device_attribute *attr, char *buf)
2024 {
2025 	ssize_t cur, res = 0;
2026 	int i;
2027 
2028 	mutex_lock(&cpuhp_state_mutex);
2029 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2030 		struct cpuhp_step *sp = cpuhp_get_step(i);
2031 
2032 		if (sp->name) {
2033 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2034 			buf += cur;
2035 			res += cur;
2036 		}
2037 	}
2038 	mutex_unlock(&cpuhp_state_mutex);
2039 	return res;
2040 }
2041 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2042 
2043 static struct attribute *cpuhp_cpu_root_attrs[] = {
2044 	&dev_attr_states.attr,
2045 	NULL
2046 };
2047 
2048 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2049 	.attrs = cpuhp_cpu_root_attrs,
2050 	.name = "hotplug",
2051 	NULL
2052 };
2053 
2054 #ifdef CONFIG_HOTPLUG_SMT
2055 
2056 static void cpuhp_offline_cpu_device(unsigned int cpu)
2057 {
2058 	struct device *dev = get_cpu_device(cpu);
2059 
2060 	dev->offline = true;
2061 	/* Tell user space about the state change */
2062 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2063 }
2064 
2065 static void cpuhp_online_cpu_device(unsigned int cpu)
2066 {
2067 	struct device *dev = get_cpu_device(cpu);
2068 
2069 	dev->offline = false;
2070 	/* Tell user space about the state change */
2071 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2072 }
2073 
2074 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2075 {
2076 	int cpu, ret = 0;
2077 
2078 	cpu_maps_update_begin();
2079 	for_each_online_cpu(cpu) {
2080 		if (topology_is_primary_thread(cpu))
2081 			continue;
2082 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2083 		if (ret)
2084 			break;
2085 		/*
2086 		 * As this needs to hold the cpu maps lock it's impossible
2087 		 * to call device_offline() because that ends up calling
2088 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2089 		 * needs to be held as this might race against in kernel
2090 		 * abusers of the hotplug machinery (thermal management).
2091 		 *
2092 		 * So nothing would update device:offline state. That would
2093 		 * leave the sysfs entry stale and prevent onlining after
2094 		 * smt control has been changed to 'off' again. This is
2095 		 * called under the sysfs hotplug lock, so it is properly
2096 		 * serialized against the regular offline usage.
2097 		 */
2098 		cpuhp_offline_cpu_device(cpu);
2099 	}
2100 	if (!ret)
2101 		cpu_smt_control = ctrlval;
2102 	cpu_maps_update_done();
2103 	return ret;
2104 }
2105 
2106 int cpuhp_smt_enable(void)
2107 {
2108 	int cpu, ret = 0;
2109 
2110 	cpu_maps_update_begin();
2111 	cpu_smt_control = CPU_SMT_ENABLED;
2112 	for_each_present_cpu(cpu) {
2113 		/* Skip online CPUs and CPUs on offline nodes */
2114 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2115 			continue;
2116 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2117 		if (ret)
2118 			break;
2119 		/* See comment in cpuhp_smt_disable() */
2120 		cpuhp_online_cpu_device(cpu);
2121 	}
2122 	cpu_maps_update_done();
2123 	return ret;
2124 }
2125 
2126 
2127 static ssize_t
2128 __store_smt_control(struct device *dev, struct device_attribute *attr,
2129 		    const char *buf, size_t count)
2130 {
2131 	int ctrlval, ret;
2132 
2133 	if (sysfs_streq(buf, "on"))
2134 		ctrlval = CPU_SMT_ENABLED;
2135 	else if (sysfs_streq(buf, "off"))
2136 		ctrlval = CPU_SMT_DISABLED;
2137 	else if (sysfs_streq(buf, "forceoff"))
2138 		ctrlval = CPU_SMT_FORCE_DISABLED;
2139 	else
2140 		return -EINVAL;
2141 
2142 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2143 		return -EPERM;
2144 
2145 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2146 		return -ENODEV;
2147 
2148 	ret = lock_device_hotplug_sysfs();
2149 	if (ret)
2150 		return ret;
2151 
2152 	if (ctrlval != cpu_smt_control) {
2153 		switch (ctrlval) {
2154 		case CPU_SMT_ENABLED:
2155 			ret = cpuhp_smt_enable();
2156 			break;
2157 		case CPU_SMT_DISABLED:
2158 		case CPU_SMT_FORCE_DISABLED:
2159 			ret = cpuhp_smt_disable(ctrlval);
2160 			break;
2161 		}
2162 	}
2163 
2164 	unlock_device_hotplug();
2165 	return ret ? ret : count;
2166 }
2167 
2168 #else /* !CONFIG_HOTPLUG_SMT */
2169 static ssize_t
2170 __store_smt_control(struct device *dev, struct device_attribute *attr,
2171 		    const char *buf, size_t count)
2172 {
2173 	return -ENODEV;
2174 }
2175 #endif /* CONFIG_HOTPLUG_SMT */
2176 
2177 static const char *smt_states[] = {
2178 	[CPU_SMT_ENABLED]		= "on",
2179 	[CPU_SMT_DISABLED]		= "off",
2180 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2181 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2182 	[CPU_SMT_NOT_IMPLEMENTED]	= "notimplemented",
2183 };
2184 
2185 static ssize_t
2186 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2187 {
2188 	const char *state = smt_states[cpu_smt_control];
2189 
2190 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2191 }
2192 
2193 static ssize_t
2194 store_smt_control(struct device *dev, struct device_attribute *attr,
2195 		  const char *buf, size_t count)
2196 {
2197 	return __store_smt_control(dev, attr, buf, count);
2198 }
2199 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2200 
2201 static ssize_t
2202 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2203 {
2204 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2205 }
2206 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2207 
2208 static struct attribute *cpuhp_smt_attrs[] = {
2209 	&dev_attr_control.attr,
2210 	&dev_attr_active.attr,
2211 	NULL
2212 };
2213 
2214 static const struct attribute_group cpuhp_smt_attr_group = {
2215 	.attrs = cpuhp_smt_attrs,
2216 	.name = "smt",
2217 	NULL
2218 };
2219 
2220 static int __init cpu_smt_sysfs_init(void)
2221 {
2222 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2223 				  &cpuhp_smt_attr_group);
2224 }
2225 
2226 static int __init cpuhp_sysfs_init(void)
2227 {
2228 	int cpu, ret;
2229 
2230 	ret = cpu_smt_sysfs_init();
2231 	if (ret)
2232 		return ret;
2233 
2234 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2235 				 &cpuhp_cpu_root_attr_group);
2236 	if (ret)
2237 		return ret;
2238 
2239 	for_each_possible_cpu(cpu) {
2240 		struct device *dev = get_cpu_device(cpu);
2241 
2242 		if (!dev)
2243 			continue;
2244 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2245 		if (ret)
2246 			return ret;
2247 	}
2248 	return 0;
2249 }
2250 device_initcall(cpuhp_sysfs_init);
2251 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2252 
2253 /*
2254  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2255  * represents all NR_CPUS bits binary values of 1<<nr.
2256  *
2257  * It is used by cpumask_of() to get a constant address to a CPU
2258  * mask value that has a single bit set only.
2259  */
2260 
2261 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2262 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2263 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2264 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2265 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2266 
2267 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2268 
2269 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2270 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2271 #if BITS_PER_LONG > 32
2272 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2273 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2274 #endif
2275 };
2276 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2277 
2278 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2279 EXPORT_SYMBOL(cpu_all_bits);
2280 
2281 #ifdef CONFIG_INIT_ALL_POSSIBLE
2282 struct cpumask __cpu_possible_mask __read_mostly
2283 	= {CPU_BITS_ALL};
2284 #else
2285 struct cpumask __cpu_possible_mask __read_mostly;
2286 #endif
2287 EXPORT_SYMBOL(__cpu_possible_mask);
2288 
2289 struct cpumask __cpu_online_mask __read_mostly;
2290 EXPORT_SYMBOL(__cpu_online_mask);
2291 
2292 struct cpumask __cpu_present_mask __read_mostly;
2293 EXPORT_SYMBOL(__cpu_present_mask);
2294 
2295 struct cpumask __cpu_active_mask __read_mostly;
2296 EXPORT_SYMBOL(__cpu_active_mask);
2297 
2298 void init_cpu_present(const struct cpumask *src)
2299 {
2300 	cpumask_copy(&__cpu_present_mask, src);
2301 }
2302 
2303 void init_cpu_possible(const struct cpumask *src)
2304 {
2305 	cpumask_copy(&__cpu_possible_mask, src);
2306 }
2307 
2308 void init_cpu_online(const struct cpumask *src)
2309 {
2310 	cpumask_copy(&__cpu_online_mask, src);
2311 }
2312 
2313 /*
2314  * Activate the first processor.
2315  */
2316 void __init boot_cpu_init(void)
2317 {
2318 	int cpu = smp_processor_id();
2319 
2320 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2321 	set_cpu_online(cpu, true);
2322 	set_cpu_active(cpu, true);
2323 	set_cpu_present(cpu, true);
2324 	set_cpu_possible(cpu, true);
2325 
2326 #ifdef CONFIG_SMP
2327 	__boot_cpu_id = cpu;
2328 #endif
2329 }
2330 
2331 /*
2332  * Must be called _AFTER_ setting up the per_cpu areas
2333  */
2334 void __init boot_cpu_hotplug_init(void)
2335 {
2336 #ifdef CONFIG_SMP
2337 	this_cpu_write(cpuhp_state.booted_once, true);
2338 #endif
2339 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2340 }
2341 
2342 enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
2343 
2344 static int __init mitigations_parse_cmdline(char *arg)
2345 {
2346 	if (!strcmp(arg, "off"))
2347 		cpu_mitigations = CPU_MITIGATIONS_OFF;
2348 	else if (!strcmp(arg, "auto"))
2349 		cpu_mitigations = CPU_MITIGATIONS_AUTO;
2350 	else if (!strcmp(arg, "auto,nosmt"))
2351 		cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2352 	else
2353 		pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2354 			arg);
2355 
2356 	return 0;
2357 }
2358 early_param("mitigations", mitigations_parse_cmdline);
2359