1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 4 * This code is licenced under the GPL. 5 */ 6 #include <linux/sched/mm.h> 7 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 9 #include <linux/init.h> 10 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> 14 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> 16 #include <linux/unistd.h> 17 #include <linux/cpu.h> 18 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 20 #include <linux/delay.h> 21 #include <linux/export.h> 22 #include <linux/bug.h> 23 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 26 #include <linux/gfp.h> 27 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 29 #include <linux/tick.h> 30 #include <linux/irq.h> 31 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 33 #include <linux/relay.h> 34 #include <linux/slab.h> 35 #include <linux/scs.h> 36 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> 38 #include <linux/random.h> 39 #include <linux/cc_platform.h> 40 41 #include <trace/events/power.h> 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/cpuhp.h> 44 45 #include "smpboot.h" 46 47 /** 48 * struct cpuhp_cpu_state - Per cpu hotplug state storage 49 * @state: The current cpu state 50 * @target: The target state 51 * @fail: Current CPU hotplug callback state 52 * @thread: Pointer to the hotplug thread 53 * @should_run: Thread should execute 54 * @rollback: Perform a rollback 55 * @single: Single callback invocation 56 * @bringup: Single callback bringup or teardown selector 57 * @cpu: CPU number 58 * @node: Remote CPU node; for multi-instance, do a 59 * single entry callback for install/remove 60 * @last: For multi-instance rollback, remember how far we got 61 * @cb_state: The state for a single callback (install/uninstall) 62 * @result: Result of the operation 63 * @ap_sync_state: State for AP synchronization 64 * @done_up: Signal completion to the issuer of the task for cpu-up 65 * @done_down: Signal completion to the issuer of the task for cpu-down 66 */ 67 struct cpuhp_cpu_state { 68 enum cpuhp_state state; 69 enum cpuhp_state target; 70 enum cpuhp_state fail; 71 #ifdef CONFIG_SMP 72 struct task_struct *thread; 73 bool should_run; 74 bool rollback; 75 bool single; 76 bool bringup; 77 struct hlist_node *node; 78 struct hlist_node *last; 79 enum cpuhp_state cb_state; 80 int result; 81 atomic_t ap_sync_state; 82 struct completion done_up; 83 struct completion done_down; 84 #endif 85 }; 86 87 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 88 .fail = CPUHP_INVALID, 89 }; 90 91 #ifdef CONFIG_SMP 92 cpumask_t cpus_booted_once_mask; 93 #endif 94 95 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 96 static struct lockdep_map cpuhp_state_up_map = 97 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 98 static struct lockdep_map cpuhp_state_down_map = 99 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 100 101 102 static inline void cpuhp_lock_acquire(bool bringup) 103 { 104 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 105 } 106 107 static inline void cpuhp_lock_release(bool bringup) 108 { 109 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 110 } 111 #else 112 113 static inline void cpuhp_lock_acquire(bool bringup) { } 114 static inline void cpuhp_lock_release(bool bringup) { } 115 116 #endif 117 118 /** 119 * struct cpuhp_step - Hotplug state machine step 120 * @name: Name of the step 121 * @startup: Startup function of the step 122 * @teardown: Teardown function of the step 123 * @cant_stop: Bringup/teardown can't be stopped at this step 124 * @multi_instance: State has multiple instances which get added afterwards 125 */ 126 struct cpuhp_step { 127 const char *name; 128 union { 129 int (*single)(unsigned int cpu); 130 int (*multi)(unsigned int cpu, 131 struct hlist_node *node); 132 } startup; 133 union { 134 int (*single)(unsigned int cpu); 135 int (*multi)(unsigned int cpu, 136 struct hlist_node *node); 137 } teardown; 138 /* private: */ 139 struct hlist_head list; 140 /* public: */ 141 bool cant_stop; 142 bool multi_instance; 143 }; 144 145 static DEFINE_MUTEX(cpuhp_state_mutex); 146 static struct cpuhp_step cpuhp_hp_states[]; 147 148 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 149 { 150 return cpuhp_hp_states + state; 151 } 152 153 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) 154 { 155 return bringup ? !step->startup.single : !step->teardown.single; 156 } 157 158 /** 159 * cpuhp_invoke_callback - Invoke the callbacks for a given state 160 * @cpu: The cpu for which the callback should be invoked 161 * @state: The state to do callbacks for 162 * @bringup: True if the bringup callback should be invoked 163 * @node: For multi-instance, do a single entry callback for install/remove 164 * @lastp: For multi-instance rollback, remember how far we got 165 * 166 * Called from cpu hotplug and from the state register machinery. 167 * 168 * Return: %0 on success or a negative errno code 169 */ 170 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 171 bool bringup, struct hlist_node *node, 172 struct hlist_node **lastp) 173 { 174 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 175 struct cpuhp_step *step = cpuhp_get_step(state); 176 int (*cbm)(unsigned int cpu, struct hlist_node *node); 177 int (*cb)(unsigned int cpu); 178 int ret, cnt; 179 180 if (st->fail == state) { 181 st->fail = CPUHP_INVALID; 182 return -EAGAIN; 183 } 184 185 if (cpuhp_step_empty(bringup, step)) { 186 WARN_ON_ONCE(1); 187 return 0; 188 } 189 190 if (!step->multi_instance) { 191 WARN_ON_ONCE(lastp && *lastp); 192 cb = bringup ? step->startup.single : step->teardown.single; 193 194 trace_cpuhp_enter(cpu, st->target, state, cb); 195 ret = cb(cpu); 196 trace_cpuhp_exit(cpu, st->state, state, ret); 197 return ret; 198 } 199 cbm = bringup ? step->startup.multi : step->teardown.multi; 200 201 /* Single invocation for instance add/remove */ 202 if (node) { 203 WARN_ON_ONCE(lastp && *lastp); 204 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 205 ret = cbm(cpu, node); 206 trace_cpuhp_exit(cpu, st->state, state, ret); 207 return ret; 208 } 209 210 /* State transition. Invoke on all instances */ 211 cnt = 0; 212 hlist_for_each(node, &step->list) { 213 if (lastp && node == *lastp) 214 break; 215 216 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 217 ret = cbm(cpu, node); 218 trace_cpuhp_exit(cpu, st->state, state, ret); 219 if (ret) { 220 if (!lastp) 221 goto err; 222 223 *lastp = node; 224 return ret; 225 } 226 cnt++; 227 } 228 if (lastp) 229 *lastp = NULL; 230 return 0; 231 err: 232 /* Rollback the instances if one failed */ 233 cbm = !bringup ? step->startup.multi : step->teardown.multi; 234 if (!cbm) 235 return ret; 236 237 hlist_for_each(node, &step->list) { 238 if (!cnt--) 239 break; 240 241 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 242 ret = cbm(cpu, node); 243 trace_cpuhp_exit(cpu, st->state, state, ret); 244 /* 245 * Rollback must not fail, 246 */ 247 WARN_ON_ONCE(ret); 248 } 249 return ret; 250 } 251 252 #ifdef CONFIG_SMP 253 static bool cpuhp_is_ap_state(enum cpuhp_state state) 254 { 255 /* 256 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation 257 * purposes as that state is handled explicitly in cpu_down. 258 */ 259 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 260 } 261 262 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 263 { 264 struct completion *done = bringup ? &st->done_up : &st->done_down; 265 wait_for_completion(done); 266 } 267 268 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 269 { 270 struct completion *done = bringup ? &st->done_up : &st->done_down; 271 complete(done); 272 } 273 274 /* 275 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 276 */ 277 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 278 { 279 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 280 } 281 282 /* Synchronization state management */ 283 enum cpuhp_sync_state { 284 SYNC_STATE_DEAD, 285 SYNC_STATE_KICKED, 286 SYNC_STATE_SHOULD_DIE, 287 SYNC_STATE_ALIVE, 288 SYNC_STATE_SHOULD_ONLINE, 289 SYNC_STATE_ONLINE, 290 }; 291 292 #ifdef CONFIG_HOTPLUG_CORE_SYNC 293 /** 294 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown 295 * @state: The synchronization state to set 296 * 297 * No synchronization point. Just update of the synchronization state, but implies 298 * a full barrier so that the AP changes are visible before the control CPU proceeds. 299 */ 300 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) 301 { 302 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 303 304 (void)atomic_xchg(st, state); 305 } 306 307 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } 308 309 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, 310 enum cpuhp_sync_state next_state) 311 { 312 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 313 ktime_t now, end, start = ktime_get(); 314 int sync; 315 316 end = start + 10ULL * NSEC_PER_SEC; 317 318 sync = atomic_read(st); 319 while (1) { 320 if (sync == state) { 321 if (!atomic_try_cmpxchg(st, &sync, next_state)) 322 continue; 323 return true; 324 } 325 326 now = ktime_get(); 327 if (now > end) { 328 /* Timeout. Leave the state unchanged */ 329 return false; 330 } else if (now - start < NSEC_PER_MSEC) { 331 /* Poll for one millisecond */ 332 arch_cpuhp_sync_state_poll(); 333 } else { 334 usleep_range_state(USEC_PER_MSEC, 2 * USEC_PER_MSEC, TASK_UNINTERRUPTIBLE); 335 } 336 sync = atomic_read(st); 337 } 338 return true; 339 } 340 #else /* CONFIG_HOTPLUG_CORE_SYNC */ 341 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } 342 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ 343 344 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD 345 /** 346 * cpuhp_ap_report_dead - Update synchronization state to DEAD 347 * 348 * No synchronization point. Just update of the synchronization state. 349 */ 350 void cpuhp_ap_report_dead(void) 351 { 352 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD); 353 } 354 355 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } 356 357 /* 358 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down 359 * because the AP cannot issue complete() at this stage. 360 */ 361 static void cpuhp_bp_sync_dead(unsigned int cpu) 362 { 363 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 364 int sync = atomic_read(st); 365 366 do { 367 /* CPU can have reported dead already. Don't overwrite that! */ 368 if (sync == SYNC_STATE_DEAD) 369 break; 370 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE)); 371 372 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) { 373 /* CPU reached dead state. Invoke the cleanup function */ 374 arch_cpuhp_cleanup_dead_cpu(cpu); 375 return; 376 } 377 378 /* No further action possible. Emit message and give up. */ 379 pr_err("CPU%u failed to report dead state\n", cpu); 380 } 381 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 382 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } 383 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ 384 385 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL 386 /** 387 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive 388 * 389 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits 390 * for the BP to release it. 391 */ 392 void cpuhp_ap_sync_alive(void) 393 { 394 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); 395 396 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE); 397 398 /* Wait for the control CPU to release it. */ 399 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE) 400 cpu_relax(); 401 } 402 403 static bool cpuhp_can_boot_ap(unsigned int cpu) 404 { 405 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); 406 int sync = atomic_read(st); 407 408 again: 409 switch (sync) { 410 case SYNC_STATE_DEAD: 411 /* CPU is properly dead */ 412 break; 413 case SYNC_STATE_KICKED: 414 /* CPU did not come up in previous attempt */ 415 break; 416 case SYNC_STATE_ALIVE: 417 /* CPU is stuck cpuhp_ap_sync_alive(). */ 418 break; 419 default: 420 /* CPU failed to report online or dead and is in limbo state. */ 421 return false; 422 } 423 424 /* Prepare for booting */ 425 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED)) 426 goto again; 427 428 return true; 429 } 430 431 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } 432 433 /* 434 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up 435 * because the AP cannot issue complete() so early in the bringup. 436 */ 437 static int cpuhp_bp_sync_alive(unsigned int cpu) 438 { 439 int ret = 0; 440 441 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) 442 return 0; 443 444 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) { 445 pr_err("CPU%u failed to report alive state\n", cpu); 446 ret = -EIO; 447 } 448 449 /* Let the architecture cleanup the kick alive mechanics. */ 450 arch_cpuhp_cleanup_kick_cpu(cpu); 451 return ret; 452 } 453 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ 454 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } 455 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } 456 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ 457 458 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 459 static DEFINE_MUTEX(cpu_add_remove_lock); 460 bool cpuhp_tasks_frozen; 461 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 462 463 /* 464 * The following two APIs (cpu_maps_update_begin/done) must be used when 465 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 466 */ 467 void cpu_maps_update_begin(void) 468 { 469 mutex_lock(&cpu_add_remove_lock); 470 } 471 472 void cpu_maps_update_done(void) 473 { 474 mutex_unlock(&cpu_add_remove_lock); 475 } 476 477 /* 478 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 479 * Should always be manipulated under cpu_add_remove_lock 480 */ 481 static int cpu_hotplug_disabled; 482 483 #ifdef CONFIG_HOTPLUG_CPU 484 485 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 486 487 void cpus_read_lock(void) 488 { 489 percpu_down_read(&cpu_hotplug_lock); 490 } 491 EXPORT_SYMBOL_GPL(cpus_read_lock); 492 493 int cpus_read_trylock(void) 494 { 495 return percpu_down_read_trylock(&cpu_hotplug_lock); 496 } 497 EXPORT_SYMBOL_GPL(cpus_read_trylock); 498 499 void cpus_read_unlock(void) 500 { 501 percpu_up_read(&cpu_hotplug_lock); 502 } 503 EXPORT_SYMBOL_GPL(cpus_read_unlock); 504 505 void cpus_write_lock(void) 506 { 507 percpu_down_write(&cpu_hotplug_lock); 508 } 509 510 void cpus_write_unlock(void) 511 { 512 percpu_up_write(&cpu_hotplug_lock); 513 } 514 515 void lockdep_assert_cpus_held(void) 516 { 517 /* 518 * We can't have hotplug operations before userspace starts running, 519 * and some init codepaths will knowingly not take the hotplug lock. 520 * This is all valid, so mute lockdep until it makes sense to report 521 * unheld locks. 522 */ 523 if (system_state < SYSTEM_RUNNING) 524 return; 525 526 percpu_rwsem_assert_held(&cpu_hotplug_lock); 527 } 528 529 #ifdef CONFIG_LOCKDEP 530 int lockdep_is_cpus_held(void) 531 { 532 return percpu_rwsem_is_held(&cpu_hotplug_lock); 533 } 534 #endif 535 536 static void lockdep_acquire_cpus_lock(void) 537 { 538 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); 539 } 540 541 static void lockdep_release_cpus_lock(void) 542 { 543 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); 544 } 545 546 /* 547 * Wait for currently running CPU hotplug operations to complete (if any) and 548 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 549 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 550 * hotplug path before performing hotplug operations. So acquiring that lock 551 * guarantees mutual exclusion from any currently running hotplug operations. 552 */ 553 void cpu_hotplug_disable(void) 554 { 555 cpu_maps_update_begin(); 556 cpu_hotplug_disabled++; 557 cpu_maps_update_done(); 558 } 559 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 560 561 static void __cpu_hotplug_enable(void) 562 { 563 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 564 return; 565 cpu_hotplug_disabled--; 566 } 567 568 void cpu_hotplug_enable(void) 569 { 570 cpu_maps_update_begin(); 571 __cpu_hotplug_enable(); 572 cpu_maps_update_done(); 573 } 574 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 575 576 #else 577 578 static void lockdep_acquire_cpus_lock(void) 579 { 580 } 581 582 static void lockdep_release_cpus_lock(void) 583 { 584 } 585 586 #endif /* CONFIG_HOTPLUG_CPU */ 587 588 /* 589 * Architectures that need SMT-specific errata handling during SMT hotplug 590 * should override this. 591 */ 592 void __weak arch_smt_update(void) { } 593 594 #ifdef CONFIG_HOTPLUG_SMT 595 596 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; 597 static unsigned int cpu_smt_max_threads __ro_after_init; 598 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; 599 600 void __init cpu_smt_disable(bool force) 601 { 602 if (!cpu_smt_possible()) 603 return; 604 605 if (force) { 606 pr_info("SMT: Force disabled\n"); 607 cpu_smt_control = CPU_SMT_FORCE_DISABLED; 608 } else { 609 pr_info("SMT: disabled\n"); 610 cpu_smt_control = CPU_SMT_DISABLED; 611 } 612 cpu_smt_num_threads = 1; 613 } 614 615 /* 616 * The decision whether SMT is supported can only be done after the full 617 * CPU identification. Called from architecture code. 618 */ 619 void __init cpu_smt_set_num_threads(unsigned int num_threads, 620 unsigned int max_threads) 621 { 622 WARN_ON(!num_threads || (num_threads > max_threads)); 623 624 if (max_threads == 1) 625 cpu_smt_control = CPU_SMT_NOT_SUPPORTED; 626 627 cpu_smt_max_threads = max_threads; 628 629 /* 630 * If SMT has been disabled via the kernel command line or SMT is 631 * not supported, set cpu_smt_num_threads to 1 for consistency. 632 * If enabled, take the architecture requested number of threads 633 * to bring up into account. 634 */ 635 if (cpu_smt_control != CPU_SMT_ENABLED) 636 cpu_smt_num_threads = 1; 637 else if (num_threads < cpu_smt_num_threads) 638 cpu_smt_num_threads = num_threads; 639 } 640 641 static int __init smt_cmdline_disable(char *str) 642 { 643 cpu_smt_disable(str && !strcmp(str, "force")); 644 return 0; 645 } 646 early_param("nosmt", smt_cmdline_disable); 647 648 /* 649 * For Archicture supporting partial SMT states check if the thread is allowed. 650 * Otherwise this has already been checked through cpu_smt_max_threads when 651 * setting the SMT level. 652 */ 653 static inline bool cpu_smt_thread_allowed(unsigned int cpu) 654 { 655 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC 656 return topology_smt_thread_allowed(cpu); 657 #else 658 return true; 659 #endif 660 } 661 662 static inline bool cpu_bootable(unsigned int cpu) 663 { 664 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 665 return true; 666 667 /* All CPUs are bootable if controls are not configured */ 668 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) 669 return true; 670 671 /* All CPUs are bootable if CPU is not SMT capable */ 672 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 673 return true; 674 675 if (topology_is_primary_thread(cpu)) 676 return true; 677 678 /* 679 * On x86 it's required to boot all logical CPUs at least once so 680 * that the init code can get a chance to set CR4.MCE on each 681 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any 682 * core will shutdown the machine. 683 */ 684 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask); 685 } 686 687 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ 688 bool cpu_smt_possible(void) 689 { 690 return cpu_smt_control != CPU_SMT_FORCE_DISABLED && 691 cpu_smt_control != CPU_SMT_NOT_SUPPORTED; 692 } 693 EXPORT_SYMBOL_GPL(cpu_smt_possible); 694 695 #else 696 static inline bool cpu_bootable(unsigned int cpu) { return true; } 697 #endif 698 699 static inline enum cpuhp_state 700 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) 701 { 702 enum cpuhp_state prev_state = st->state; 703 bool bringup = st->state < target; 704 705 st->rollback = false; 706 st->last = NULL; 707 708 st->target = target; 709 st->single = false; 710 st->bringup = bringup; 711 if (cpu_dying(cpu) != !bringup) 712 set_cpu_dying(cpu, !bringup); 713 714 return prev_state; 715 } 716 717 static inline void 718 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, 719 enum cpuhp_state prev_state) 720 { 721 bool bringup = !st->bringup; 722 723 st->target = prev_state; 724 725 /* 726 * Already rolling back. No need invert the bringup value or to change 727 * the current state. 728 */ 729 if (st->rollback) 730 return; 731 732 st->rollback = true; 733 734 /* 735 * If we have st->last we need to undo partial multi_instance of this 736 * state first. Otherwise start undo at the previous state. 737 */ 738 if (!st->last) { 739 if (st->bringup) 740 st->state--; 741 else 742 st->state++; 743 } 744 745 st->bringup = bringup; 746 if (cpu_dying(cpu) != !bringup) 747 set_cpu_dying(cpu, !bringup); 748 } 749 750 /* Regular hotplug invocation of the AP hotplug thread */ 751 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 752 { 753 if (!st->single && st->state == st->target) 754 return; 755 756 st->result = 0; 757 /* 758 * Make sure the above stores are visible before should_run becomes 759 * true. Paired with the mb() above in cpuhp_thread_fun() 760 */ 761 smp_mb(); 762 st->should_run = true; 763 wake_up_process(st->thread); 764 wait_for_ap_thread(st, st->bringup); 765 } 766 767 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, 768 enum cpuhp_state target) 769 { 770 enum cpuhp_state prev_state; 771 int ret; 772 773 prev_state = cpuhp_set_state(cpu, st, target); 774 __cpuhp_kick_ap(st); 775 if ((ret = st->result)) { 776 cpuhp_reset_state(cpu, st, prev_state); 777 __cpuhp_kick_ap(st); 778 } 779 780 return ret; 781 } 782 783 static int bringup_wait_for_ap_online(unsigned int cpu) 784 { 785 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 786 787 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 788 wait_for_ap_thread(st, true); 789 if (WARN_ON_ONCE((!cpu_online(cpu)))) 790 return -ECANCELED; 791 792 /* Unpark the hotplug thread of the target cpu */ 793 kthread_unpark(st->thread); 794 795 /* 796 * SMT soft disabling on X86 requires to bring the CPU out of the 797 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The 798 * CPU marked itself as booted_once in notify_cpu_starting() so the 799 * cpu_bootable() check will now return false if this is not the 800 * primary sibling. 801 */ 802 if (!cpu_bootable(cpu)) 803 return -ECANCELED; 804 return 0; 805 } 806 807 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 808 static int cpuhp_kick_ap_alive(unsigned int cpu) 809 { 810 if (!cpuhp_can_boot_ap(cpu)) 811 return -EAGAIN; 812 813 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu)); 814 } 815 816 static int cpuhp_bringup_ap(unsigned int cpu) 817 { 818 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 819 int ret; 820 821 /* 822 * Some architectures have to walk the irq descriptors to 823 * setup the vector space for the cpu which comes online. 824 * Prevent irq alloc/free across the bringup. 825 */ 826 irq_lock_sparse(); 827 828 ret = cpuhp_bp_sync_alive(cpu); 829 if (ret) 830 goto out_unlock; 831 832 ret = bringup_wait_for_ap_online(cpu); 833 if (ret) 834 goto out_unlock; 835 836 irq_unlock_sparse(); 837 838 if (st->target <= CPUHP_AP_ONLINE_IDLE) 839 return 0; 840 841 return cpuhp_kick_ap(cpu, st, st->target); 842 843 out_unlock: 844 irq_unlock_sparse(); 845 return ret; 846 } 847 #else 848 static int bringup_cpu(unsigned int cpu) 849 { 850 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 851 struct task_struct *idle = idle_thread_get(cpu); 852 int ret; 853 854 if (!cpuhp_can_boot_ap(cpu)) 855 return -EAGAIN; 856 857 /* 858 * Some architectures have to walk the irq descriptors to 859 * setup the vector space for the cpu which comes online. 860 * 861 * Prevent irq alloc/free across the bringup by acquiring the 862 * sparse irq lock. Hold it until the upcoming CPU completes the 863 * startup in cpuhp_online_idle() which allows to avoid 864 * intermediate synchronization points in the architecture code. 865 */ 866 irq_lock_sparse(); 867 868 ret = __cpu_up(cpu, idle); 869 if (ret) 870 goto out_unlock; 871 872 ret = cpuhp_bp_sync_alive(cpu); 873 if (ret) 874 goto out_unlock; 875 876 ret = bringup_wait_for_ap_online(cpu); 877 if (ret) 878 goto out_unlock; 879 880 irq_unlock_sparse(); 881 882 if (st->target <= CPUHP_AP_ONLINE_IDLE) 883 return 0; 884 885 return cpuhp_kick_ap(cpu, st, st->target); 886 887 out_unlock: 888 irq_unlock_sparse(); 889 return ret; 890 } 891 #endif 892 893 static int finish_cpu(unsigned int cpu) 894 { 895 struct task_struct *idle = idle_thread_get(cpu); 896 struct mm_struct *mm = idle->active_mm; 897 898 /* 899 * idle_task_exit() will have switched to &init_mm, now 900 * clean up any remaining active_mm state. 901 */ 902 if (mm != &init_mm) 903 idle->active_mm = &init_mm; 904 mmdrop_lazy_tlb(mm); 905 return 0; 906 } 907 908 /* 909 * Hotplug state machine related functions 910 */ 911 912 /* 913 * Get the next state to run. Empty ones will be skipped. Returns true if a 914 * state must be run. 915 * 916 * st->state will be modified ahead of time, to match state_to_run, as if it 917 * has already ran. 918 */ 919 static bool cpuhp_next_state(bool bringup, 920 enum cpuhp_state *state_to_run, 921 struct cpuhp_cpu_state *st, 922 enum cpuhp_state target) 923 { 924 do { 925 if (bringup) { 926 if (st->state >= target) 927 return false; 928 929 *state_to_run = ++st->state; 930 } else { 931 if (st->state <= target) 932 return false; 933 934 *state_to_run = st->state--; 935 } 936 937 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run))) 938 break; 939 } while (true); 940 941 return true; 942 } 943 944 static int __cpuhp_invoke_callback_range(bool bringup, 945 unsigned int cpu, 946 struct cpuhp_cpu_state *st, 947 enum cpuhp_state target, 948 bool nofail) 949 { 950 enum cpuhp_state state; 951 int ret = 0; 952 953 while (cpuhp_next_state(bringup, &state, st, target)) { 954 int err; 955 956 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); 957 if (!err) 958 continue; 959 960 if (nofail) { 961 pr_warn("CPU %u %s state %s (%d) failed (%d)\n", 962 cpu, bringup ? "UP" : "DOWN", 963 cpuhp_get_step(st->state)->name, 964 st->state, err); 965 ret = -1; 966 } else { 967 ret = err; 968 break; 969 } 970 } 971 972 return ret; 973 } 974 975 static inline int cpuhp_invoke_callback_range(bool bringup, 976 unsigned int cpu, 977 struct cpuhp_cpu_state *st, 978 enum cpuhp_state target) 979 { 980 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false); 981 } 982 983 static inline void cpuhp_invoke_callback_range_nofail(bool bringup, 984 unsigned int cpu, 985 struct cpuhp_cpu_state *st, 986 enum cpuhp_state target) 987 { 988 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true); 989 } 990 991 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) 992 { 993 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) 994 return true; 995 /* 996 * When CPU hotplug is disabled, then taking the CPU down is not 997 * possible because takedown_cpu() and the architecture and 998 * subsystem specific mechanisms are not available. So the CPU 999 * which would be completely unplugged again needs to stay around 1000 * in the current state. 1001 */ 1002 return st->state <= CPUHP_BRINGUP_CPU; 1003 } 1004 1005 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1006 enum cpuhp_state target) 1007 { 1008 enum cpuhp_state prev_state = st->state; 1009 int ret = 0; 1010 1011 ret = cpuhp_invoke_callback_range(true, cpu, st, target); 1012 if (ret) { 1013 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", 1014 ret, cpu, cpuhp_get_step(st->state)->name, 1015 st->state); 1016 1017 cpuhp_reset_state(cpu, st, prev_state); 1018 if (can_rollback_cpu(st)) 1019 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, 1020 prev_state)); 1021 } 1022 return ret; 1023 } 1024 1025 /* 1026 * The cpu hotplug threads manage the bringup and teardown of the cpus 1027 */ 1028 static int cpuhp_should_run(unsigned int cpu) 1029 { 1030 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1031 1032 return st->should_run; 1033 } 1034 1035 /* 1036 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1037 * callbacks when a state gets [un]installed at runtime. 1038 * 1039 * Each invocation of this function by the smpboot thread does a single AP 1040 * state callback. 1041 * 1042 * It has 3 modes of operation: 1043 * - single: runs st->cb_state 1044 * - up: runs ++st->state, while st->state < st->target 1045 * - down: runs st->state--, while st->state > st->target 1046 * 1047 * When complete or on error, should_run is cleared and the completion is fired. 1048 */ 1049 static void cpuhp_thread_fun(unsigned int cpu) 1050 { 1051 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1052 bool bringup = st->bringup; 1053 enum cpuhp_state state; 1054 1055 if (WARN_ON_ONCE(!st->should_run)) 1056 return; 1057 1058 /* 1059 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1060 * that if we see ->should_run we also see the rest of the state. 1061 */ 1062 smp_mb(); 1063 1064 /* 1065 * The BP holds the hotplug lock, but we're now running on the AP, 1066 * ensure that anybody asserting the lock is held, will actually find 1067 * it so. 1068 */ 1069 lockdep_acquire_cpus_lock(); 1070 cpuhp_lock_acquire(bringup); 1071 1072 if (st->single) { 1073 state = st->cb_state; 1074 st->should_run = false; 1075 } else { 1076 st->should_run = cpuhp_next_state(bringup, &state, st, st->target); 1077 if (!st->should_run) 1078 goto end; 1079 } 1080 1081 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1082 1083 if (cpuhp_is_atomic_state(state)) { 1084 local_irq_disable(); 1085 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1086 local_irq_enable(); 1087 1088 /* 1089 * STARTING/DYING must not fail! 1090 */ 1091 WARN_ON_ONCE(st->result); 1092 } else { 1093 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1094 } 1095 1096 if (st->result) { 1097 /* 1098 * If we fail on a rollback, we're up a creek without no 1099 * paddle, no way forward, no way back. We loose, thanks for 1100 * playing. 1101 */ 1102 WARN_ON_ONCE(st->rollback); 1103 st->should_run = false; 1104 } 1105 1106 end: 1107 cpuhp_lock_release(bringup); 1108 lockdep_release_cpus_lock(); 1109 1110 if (!st->should_run) 1111 complete_ap_thread(st, bringup); 1112 } 1113 1114 /* Invoke a single callback on a remote cpu */ 1115 static int 1116 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1117 struct hlist_node *node) 1118 { 1119 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1120 int ret; 1121 1122 if (!cpu_online(cpu)) 1123 return 0; 1124 1125 cpuhp_lock_acquire(false); 1126 cpuhp_lock_release(false); 1127 1128 cpuhp_lock_acquire(true); 1129 cpuhp_lock_release(true); 1130 1131 /* 1132 * If we are up and running, use the hotplug thread. For early calls 1133 * we invoke the thread function directly. 1134 */ 1135 if (!st->thread) 1136 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1137 1138 st->rollback = false; 1139 st->last = NULL; 1140 1141 st->node = node; 1142 st->bringup = bringup; 1143 st->cb_state = state; 1144 st->single = true; 1145 1146 __cpuhp_kick_ap(st); 1147 1148 /* 1149 * If we failed and did a partial, do a rollback. 1150 */ 1151 if ((ret = st->result) && st->last) { 1152 st->rollback = true; 1153 st->bringup = !bringup; 1154 1155 __cpuhp_kick_ap(st); 1156 } 1157 1158 /* 1159 * Clean up the leftovers so the next hotplug operation wont use stale 1160 * data. 1161 */ 1162 st->node = st->last = NULL; 1163 return ret; 1164 } 1165 1166 static int cpuhp_kick_ap_work(unsigned int cpu) 1167 { 1168 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1169 enum cpuhp_state prev_state = st->state; 1170 int ret; 1171 1172 cpuhp_lock_acquire(false); 1173 cpuhp_lock_release(false); 1174 1175 cpuhp_lock_acquire(true); 1176 cpuhp_lock_release(true); 1177 1178 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1179 ret = cpuhp_kick_ap(cpu, st, st->target); 1180 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1181 1182 return ret; 1183 } 1184 1185 static struct smp_hotplug_thread cpuhp_threads = { 1186 .store = &cpuhp_state.thread, 1187 .thread_should_run = cpuhp_should_run, 1188 .thread_fn = cpuhp_thread_fun, 1189 .thread_comm = "cpuhp/%u", 1190 .selfparking = true, 1191 }; 1192 1193 static __init void cpuhp_init_state(void) 1194 { 1195 struct cpuhp_cpu_state *st; 1196 int cpu; 1197 1198 for_each_possible_cpu(cpu) { 1199 st = per_cpu_ptr(&cpuhp_state, cpu); 1200 init_completion(&st->done_up); 1201 init_completion(&st->done_down); 1202 } 1203 } 1204 1205 void __init cpuhp_threads_init(void) 1206 { 1207 cpuhp_init_state(); 1208 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1209 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1210 } 1211 1212 /* 1213 * 1214 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock 1215 * protected region. 1216 * 1217 * The operation is still serialized against concurrent CPU hotplug via 1218 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_ 1219 * serialized against other hotplug related activity like adding or 1220 * removing of state callbacks and state instances, which invoke either the 1221 * startup or the teardown callback of the affected state. 1222 * 1223 * This is required for subsystems which are unfixable vs. CPU hotplug and 1224 * evade lock inversion problems by scheduling work which has to be 1225 * completed _before_ cpu_up()/_cpu_down() returns. 1226 * 1227 * Don't even think about adding anything to this for any new code or even 1228 * drivers. It's only purpose is to keep existing lock order trainwrecks 1229 * working. 1230 * 1231 * For cpu_down() there might be valid reasons to finish cleanups which are 1232 * not required to be done under cpu_hotplug_lock, but that's a different 1233 * story and would be not invoked via this. 1234 */ 1235 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen) 1236 { 1237 /* 1238 * cpusets delegate hotplug operations to a worker to "solve" the 1239 * lock order problems. Wait for the worker, but only if tasks are 1240 * _not_ frozen (suspend, hibernate) as that would wait forever. 1241 * 1242 * The wait is required because otherwise the hotplug operation 1243 * returns with inconsistent state, which could even be observed in 1244 * user space when a new CPU is brought up. The CPU plug uevent 1245 * would be delivered and user space reacting on it would fail to 1246 * move tasks to the newly plugged CPU up to the point where the 1247 * work has finished because up to that point the newly plugged CPU 1248 * is not assignable in cpusets/cgroups. On unplug that's not 1249 * necessarily a visible issue, but it is still inconsistent state, 1250 * which is the real problem which needs to be "fixed". This can't 1251 * prevent the transient state between scheduling the work and 1252 * returning from waiting for it. 1253 */ 1254 if (!tasks_frozen) 1255 cpuset_wait_for_hotplug(); 1256 } 1257 1258 #ifdef CONFIG_HOTPLUG_CPU 1259 #ifndef arch_clear_mm_cpumask_cpu 1260 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) 1261 #endif 1262 1263 /** 1264 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1265 * @cpu: a CPU id 1266 * 1267 * This function walks all processes, finds a valid mm struct for each one and 1268 * then clears a corresponding bit in mm's cpumask. While this all sounds 1269 * trivial, there are various non-obvious corner cases, which this function 1270 * tries to solve in a safe manner. 1271 * 1272 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1273 * be called only for an already offlined CPU. 1274 */ 1275 void clear_tasks_mm_cpumask(int cpu) 1276 { 1277 struct task_struct *p; 1278 1279 /* 1280 * This function is called after the cpu is taken down and marked 1281 * offline, so its not like new tasks will ever get this cpu set in 1282 * their mm mask. -- Peter Zijlstra 1283 * Thus, we may use rcu_read_lock() here, instead of grabbing 1284 * full-fledged tasklist_lock. 1285 */ 1286 WARN_ON(cpu_online(cpu)); 1287 rcu_read_lock(); 1288 for_each_process(p) { 1289 struct task_struct *t; 1290 1291 /* 1292 * Main thread might exit, but other threads may still have 1293 * a valid mm. Find one. 1294 */ 1295 t = find_lock_task_mm(p); 1296 if (!t) 1297 continue; 1298 arch_clear_mm_cpumask_cpu(cpu, t->mm); 1299 task_unlock(t); 1300 } 1301 rcu_read_unlock(); 1302 } 1303 1304 /* Take this CPU down. */ 1305 static int take_cpu_down(void *_param) 1306 { 1307 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1308 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1309 int err, cpu = smp_processor_id(); 1310 1311 /* Ensure this CPU doesn't handle any more interrupts. */ 1312 err = __cpu_disable(); 1313 if (err < 0) 1314 return err; 1315 1316 /* 1317 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going 1318 * down, that the current state is CPUHP_TEARDOWN_CPU - 1. 1319 */ 1320 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); 1321 1322 /* 1323 * Invoke the former CPU_DYING callbacks. DYING must not fail! 1324 */ 1325 cpuhp_invoke_callback_range_nofail(false, cpu, st, target); 1326 1327 /* Give up timekeeping duties */ 1328 tick_handover_do_timer(); 1329 /* Remove CPU from timer broadcasting */ 1330 tick_offline_cpu(cpu); 1331 /* Park the stopper thread */ 1332 stop_machine_park(cpu); 1333 return 0; 1334 } 1335 1336 static int takedown_cpu(unsigned int cpu) 1337 { 1338 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1339 int err; 1340 1341 /* Park the smpboot threads */ 1342 kthread_park(st->thread); 1343 1344 /* 1345 * Prevent irq alloc/free while the dying cpu reorganizes the 1346 * interrupt affinities. 1347 */ 1348 irq_lock_sparse(); 1349 1350 /* 1351 * So now all preempt/rcu users must observe !cpu_active(). 1352 */ 1353 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1354 if (err) { 1355 /* CPU refused to die */ 1356 irq_unlock_sparse(); 1357 /* Unpark the hotplug thread so we can rollback there */ 1358 kthread_unpark(st->thread); 1359 return err; 1360 } 1361 BUG_ON(cpu_online(cpu)); 1362 1363 /* 1364 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1365 * all runnable tasks from the CPU, there's only the idle task left now 1366 * that the migration thread is done doing the stop_machine thing. 1367 * 1368 * Wait for the stop thread to go away. 1369 */ 1370 wait_for_ap_thread(st, false); 1371 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1372 1373 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1374 irq_unlock_sparse(); 1375 1376 hotplug_cpu__broadcast_tick_pull(cpu); 1377 /* This actually kills the CPU. */ 1378 __cpu_die(cpu); 1379 1380 cpuhp_bp_sync_dead(cpu); 1381 1382 tick_cleanup_dead_cpu(cpu); 1383 rcutree_migrate_callbacks(cpu); 1384 return 0; 1385 } 1386 1387 static void cpuhp_complete_idle_dead(void *arg) 1388 { 1389 struct cpuhp_cpu_state *st = arg; 1390 1391 complete_ap_thread(st, false); 1392 } 1393 1394 void cpuhp_report_idle_dead(void) 1395 { 1396 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1397 1398 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1399 rcu_report_dead(smp_processor_id()); 1400 st->state = CPUHP_AP_IDLE_DEAD; 1401 /* 1402 * We cannot call complete after rcu_report_dead() so we delegate it 1403 * to an online cpu. 1404 */ 1405 smp_call_function_single(cpumask_first(cpu_online_mask), 1406 cpuhp_complete_idle_dead, st, 0); 1407 } 1408 1409 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1410 enum cpuhp_state target) 1411 { 1412 enum cpuhp_state prev_state = st->state; 1413 int ret = 0; 1414 1415 ret = cpuhp_invoke_callback_range(false, cpu, st, target); 1416 if (ret) { 1417 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", 1418 ret, cpu, cpuhp_get_step(st->state)->name, 1419 st->state); 1420 1421 cpuhp_reset_state(cpu, st, prev_state); 1422 1423 if (st->state < prev_state) 1424 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, 1425 prev_state)); 1426 } 1427 1428 return ret; 1429 } 1430 1431 /* Requires cpu_add_remove_lock to be held */ 1432 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1433 enum cpuhp_state target) 1434 { 1435 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1436 int prev_state, ret = 0; 1437 1438 if (num_online_cpus() == 1) 1439 return -EBUSY; 1440 1441 if (!cpu_present(cpu)) 1442 return -EINVAL; 1443 1444 cpus_write_lock(); 1445 1446 cpuhp_tasks_frozen = tasks_frozen; 1447 1448 prev_state = cpuhp_set_state(cpu, st, target); 1449 /* 1450 * If the current CPU state is in the range of the AP hotplug thread, 1451 * then we need to kick the thread. 1452 */ 1453 if (st->state > CPUHP_TEARDOWN_CPU) { 1454 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1455 ret = cpuhp_kick_ap_work(cpu); 1456 /* 1457 * The AP side has done the error rollback already. Just 1458 * return the error code.. 1459 */ 1460 if (ret) 1461 goto out; 1462 1463 /* 1464 * We might have stopped still in the range of the AP hotplug 1465 * thread. Nothing to do anymore. 1466 */ 1467 if (st->state > CPUHP_TEARDOWN_CPU) 1468 goto out; 1469 1470 st->target = target; 1471 } 1472 /* 1473 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1474 * to do the further cleanups. 1475 */ 1476 ret = cpuhp_down_callbacks(cpu, st, target); 1477 if (ret && st->state < prev_state) { 1478 if (st->state == CPUHP_TEARDOWN_CPU) { 1479 cpuhp_reset_state(cpu, st, prev_state); 1480 __cpuhp_kick_ap(st); 1481 } else { 1482 WARN(1, "DEAD callback error for CPU%d", cpu); 1483 } 1484 } 1485 1486 out: 1487 cpus_write_unlock(); 1488 /* 1489 * Do post unplug cleanup. This is still protected against 1490 * concurrent CPU hotplug via cpu_add_remove_lock. 1491 */ 1492 lockup_detector_cleanup(); 1493 arch_smt_update(); 1494 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1495 return ret; 1496 } 1497 1498 struct cpu_down_work { 1499 unsigned int cpu; 1500 enum cpuhp_state target; 1501 }; 1502 1503 static long __cpu_down_maps_locked(void *arg) 1504 { 1505 struct cpu_down_work *work = arg; 1506 1507 return _cpu_down(work->cpu, 0, work->target); 1508 } 1509 1510 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) 1511 { 1512 struct cpu_down_work work = { .cpu = cpu, .target = target, }; 1513 1514 /* 1515 * If the platform does not support hotplug, report it explicitly to 1516 * differentiate it from a transient offlining failure. 1517 */ 1518 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED)) 1519 return -EOPNOTSUPP; 1520 if (cpu_hotplug_disabled) 1521 return -EBUSY; 1522 1523 /* 1524 * Ensure that the control task does not run on the to be offlined 1525 * CPU to prevent a deadlock against cfs_b->period_timer. 1526 */ 1527 cpu = cpumask_any_but(cpu_online_mask, cpu); 1528 if (cpu >= nr_cpu_ids) 1529 return -EBUSY; 1530 return work_on_cpu(cpu, __cpu_down_maps_locked, &work); 1531 } 1532 1533 static int cpu_down(unsigned int cpu, enum cpuhp_state target) 1534 { 1535 int err; 1536 1537 cpu_maps_update_begin(); 1538 err = cpu_down_maps_locked(cpu, target); 1539 cpu_maps_update_done(); 1540 return err; 1541 } 1542 1543 /** 1544 * cpu_device_down - Bring down a cpu device 1545 * @dev: Pointer to the cpu device to offline 1546 * 1547 * This function is meant to be used by device core cpu subsystem only. 1548 * 1549 * Other subsystems should use remove_cpu() instead. 1550 * 1551 * Return: %0 on success or a negative errno code 1552 */ 1553 int cpu_device_down(struct device *dev) 1554 { 1555 return cpu_down(dev->id, CPUHP_OFFLINE); 1556 } 1557 1558 int remove_cpu(unsigned int cpu) 1559 { 1560 int ret; 1561 1562 lock_device_hotplug(); 1563 ret = device_offline(get_cpu_device(cpu)); 1564 unlock_device_hotplug(); 1565 1566 return ret; 1567 } 1568 EXPORT_SYMBOL_GPL(remove_cpu); 1569 1570 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) 1571 { 1572 unsigned int cpu; 1573 int error; 1574 1575 cpu_maps_update_begin(); 1576 1577 /* 1578 * Make certain the cpu I'm about to reboot on is online. 1579 * 1580 * This is inline to what migrate_to_reboot_cpu() already do. 1581 */ 1582 if (!cpu_online(primary_cpu)) 1583 primary_cpu = cpumask_first(cpu_online_mask); 1584 1585 for_each_online_cpu(cpu) { 1586 if (cpu == primary_cpu) 1587 continue; 1588 1589 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 1590 if (error) { 1591 pr_err("Failed to offline CPU%d - error=%d", 1592 cpu, error); 1593 break; 1594 } 1595 } 1596 1597 /* 1598 * Ensure all but the reboot CPU are offline. 1599 */ 1600 BUG_ON(num_online_cpus() > 1); 1601 1602 /* 1603 * Make sure the CPUs won't be enabled by someone else after this 1604 * point. Kexec will reboot to a new kernel shortly resetting 1605 * everything along the way. 1606 */ 1607 cpu_hotplug_disabled++; 1608 1609 cpu_maps_update_done(); 1610 } 1611 1612 #else 1613 #define takedown_cpu NULL 1614 #endif /*CONFIG_HOTPLUG_CPU*/ 1615 1616 /** 1617 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1618 * @cpu: cpu that just started 1619 * 1620 * It must be called by the arch code on the new cpu, before the new cpu 1621 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1622 */ 1623 void notify_cpu_starting(unsigned int cpu) 1624 { 1625 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1626 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); 1627 1628 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1629 cpumask_set_cpu(cpu, &cpus_booted_once_mask); 1630 1631 /* 1632 * STARTING must not fail! 1633 */ 1634 cpuhp_invoke_callback_range_nofail(true, cpu, st, target); 1635 } 1636 1637 /* 1638 * Called from the idle task. Wake up the controlling task which brings the 1639 * hotplug thread of the upcoming CPU up and then delegates the rest of the 1640 * online bringup to the hotplug thread. 1641 */ 1642 void cpuhp_online_idle(enum cpuhp_state state) 1643 { 1644 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1645 1646 /* Happens for the boot cpu */ 1647 if (state != CPUHP_AP_ONLINE_IDLE) 1648 return; 1649 1650 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE); 1651 1652 /* 1653 * Unpark the stopper thread before we start the idle loop (and start 1654 * scheduling); this ensures the stopper task is always available. 1655 */ 1656 stop_machine_unpark(smp_processor_id()); 1657 1658 st->state = CPUHP_AP_ONLINE_IDLE; 1659 complete_ap_thread(st, true); 1660 } 1661 1662 /* Requires cpu_add_remove_lock to be held */ 1663 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1664 { 1665 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1666 struct task_struct *idle; 1667 int ret = 0; 1668 1669 cpus_write_lock(); 1670 1671 if (!cpu_present(cpu)) { 1672 ret = -EINVAL; 1673 goto out; 1674 } 1675 1676 /* 1677 * The caller of cpu_up() might have raced with another 1678 * caller. Nothing to do. 1679 */ 1680 if (st->state >= target) 1681 goto out; 1682 1683 if (st->state == CPUHP_OFFLINE) { 1684 /* Let it fail before we try to bring the cpu up */ 1685 idle = idle_thread_get(cpu); 1686 if (IS_ERR(idle)) { 1687 ret = PTR_ERR(idle); 1688 goto out; 1689 } 1690 1691 /* 1692 * Reset stale stack state from the last time this CPU was online. 1693 */ 1694 scs_task_reset(idle); 1695 kasan_unpoison_task_stack(idle); 1696 } 1697 1698 cpuhp_tasks_frozen = tasks_frozen; 1699 1700 cpuhp_set_state(cpu, st, target); 1701 /* 1702 * If the current CPU state is in the range of the AP hotplug thread, 1703 * then we need to kick the thread once more. 1704 */ 1705 if (st->state > CPUHP_BRINGUP_CPU) { 1706 ret = cpuhp_kick_ap_work(cpu); 1707 /* 1708 * The AP side has done the error rollback already. Just 1709 * return the error code.. 1710 */ 1711 if (ret) 1712 goto out; 1713 } 1714 1715 /* 1716 * Try to reach the target state. We max out on the BP at 1717 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1718 * responsible for bringing it up to the target state. 1719 */ 1720 target = min((int)target, CPUHP_BRINGUP_CPU); 1721 ret = cpuhp_up_callbacks(cpu, st, target); 1722 out: 1723 cpus_write_unlock(); 1724 arch_smt_update(); 1725 cpu_up_down_serialize_trainwrecks(tasks_frozen); 1726 return ret; 1727 } 1728 1729 static int cpu_up(unsigned int cpu, enum cpuhp_state target) 1730 { 1731 int err = 0; 1732 1733 if (!cpu_possible(cpu)) { 1734 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1735 cpu); 1736 #if defined(CONFIG_IA64) 1737 pr_err("please check additional_cpus= boot parameter\n"); 1738 #endif 1739 return -EINVAL; 1740 } 1741 1742 err = try_online_node(cpu_to_node(cpu)); 1743 if (err) 1744 return err; 1745 1746 cpu_maps_update_begin(); 1747 1748 if (cpu_hotplug_disabled) { 1749 err = -EBUSY; 1750 goto out; 1751 } 1752 if (!cpu_bootable(cpu)) { 1753 err = -EPERM; 1754 goto out; 1755 } 1756 1757 err = _cpu_up(cpu, 0, target); 1758 out: 1759 cpu_maps_update_done(); 1760 return err; 1761 } 1762 1763 /** 1764 * cpu_device_up - Bring up a cpu device 1765 * @dev: Pointer to the cpu device to online 1766 * 1767 * This function is meant to be used by device core cpu subsystem only. 1768 * 1769 * Other subsystems should use add_cpu() instead. 1770 * 1771 * Return: %0 on success or a negative errno code 1772 */ 1773 int cpu_device_up(struct device *dev) 1774 { 1775 return cpu_up(dev->id, CPUHP_ONLINE); 1776 } 1777 1778 int add_cpu(unsigned int cpu) 1779 { 1780 int ret; 1781 1782 lock_device_hotplug(); 1783 ret = device_online(get_cpu_device(cpu)); 1784 unlock_device_hotplug(); 1785 1786 return ret; 1787 } 1788 EXPORT_SYMBOL_GPL(add_cpu); 1789 1790 /** 1791 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on 1792 * @sleep_cpu: The cpu we hibernated on and should be brought up. 1793 * 1794 * On some architectures like arm64, we can hibernate on any CPU, but on 1795 * wake up the CPU we hibernated on might be offline as a side effect of 1796 * using maxcpus= for example. 1797 * 1798 * Return: %0 on success or a negative errno code 1799 */ 1800 int bringup_hibernate_cpu(unsigned int sleep_cpu) 1801 { 1802 int ret; 1803 1804 if (!cpu_online(sleep_cpu)) { 1805 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); 1806 ret = cpu_up(sleep_cpu, CPUHP_ONLINE); 1807 if (ret) { 1808 pr_err("Failed to bring hibernate-CPU up!\n"); 1809 return ret; 1810 } 1811 } 1812 return 0; 1813 } 1814 1815 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, 1816 enum cpuhp_state target) 1817 { 1818 unsigned int cpu; 1819 1820 for_each_cpu(cpu, mask) { 1821 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1822 1823 if (cpu_up(cpu, target) && can_rollback_cpu(st)) { 1824 /* 1825 * If this failed then cpu_up() might have only 1826 * rolled back to CPUHP_BP_KICK_AP for the final 1827 * online. Clean it up. NOOP if already rolled back. 1828 */ 1829 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); 1830 } 1831 1832 if (!--ncpus) 1833 break; 1834 } 1835 } 1836 1837 #ifdef CONFIG_HOTPLUG_PARALLEL 1838 static bool __cpuhp_parallel_bringup __ro_after_init = true; 1839 1840 static int __init parallel_bringup_parse_param(char *arg) 1841 { 1842 return kstrtobool(arg, &__cpuhp_parallel_bringup); 1843 } 1844 early_param("cpuhp.parallel", parallel_bringup_parse_param); 1845 1846 static inline bool cpuhp_smt_aware(void) 1847 { 1848 return cpu_smt_max_threads > 1; 1849 } 1850 1851 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) 1852 { 1853 return cpu_primary_thread_mask; 1854 } 1855 1856 /* 1857 * On architectures which have enabled parallel bringup this invokes all BP 1858 * prepare states for each of the to be onlined APs first. The last state 1859 * sends the startup IPI to the APs. The APs proceed through the low level 1860 * bringup code in parallel and then wait for the control CPU to release 1861 * them one by one for the final onlining procedure. 1862 * 1863 * This avoids waiting for each AP to respond to the startup IPI in 1864 * CPUHP_BRINGUP_CPU. 1865 */ 1866 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) 1867 { 1868 const struct cpumask *mask = cpu_present_mask; 1869 1870 if (__cpuhp_parallel_bringup) 1871 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); 1872 if (!__cpuhp_parallel_bringup) 1873 return false; 1874 1875 if (cpuhp_smt_aware()) { 1876 const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); 1877 static struct cpumask tmp_mask __initdata; 1878 1879 /* 1880 * X86 requires to prevent that SMT siblings stopped while 1881 * the primary thread does a microcode update for various 1882 * reasons. Bring the primary threads up first. 1883 */ 1884 cpumask_and(&tmp_mask, mask, pmask); 1885 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP); 1886 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE); 1887 /* Account for the online CPUs */ 1888 ncpus -= num_online_cpus(); 1889 if (!ncpus) 1890 return true; 1891 /* Create the mask for secondary CPUs */ 1892 cpumask_andnot(&tmp_mask, mask, pmask); 1893 mask = &tmp_mask; 1894 } 1895 1896 /* Bring the not-yet started CPUs up */ 1897 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP); 1898 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE); 1899 return true; 1900 } 1901 #else 1902 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } 1903 #endif /* CONFIG_HOTPLUG_PARALLEL */ 1904 1905 void __init bringup_nonboot_cpus(unsigned int setup_max_cpus) 1906 { 1907 /* Try parallel bringup optimization if enabled */ 1908 if (cpuhp_bringup_cpus_parallel(setup_max_cpus)) 1909 return; 1910 1911 /* Full per CPU serialized bringup */ 1912 cpuhp_bringup_mask(cpu_present_mask, setup_max_cpus, CPUHP_ONLINE); 1913 } 1914 1915 #ifdef CONFIG_PM_SLEEP_SMP 1916 static cpumask_var_t frozen_cpus; 1917 1918 int freeze_secondary_cpus(int primary) 1919 { 1920 int cpu, error = 0; 1921 1922 cpu_maps_update_begin(); 1923 if (primary == -1) { 1924 primary = cpumask_first(cpu_online_mask); 1925 if (!housekeeping_cpu(primary, HK_TYPE_TIMER)) 1926 primary = housekeeping_any_cpu(HK_TYPE_TIMER); 1927 } else { 1928 if (!cpu_online(primary)) 1929 primary = cpumask_first(cpu_online_mask); 1930 } 1931 1932 /* 1933 * We take down all of the non-boot CPUs in one shot to avoid races 1934 * with the userspace trying to use the CPU hotplug at the same time 1935 */ 1936 cpumask_clear(frozen_cpus); 1937 1938 pr_info("Disabling non-boot CPUs ...\n"); 1939 for_each_online_cpu(cpu) { 1940 if (cpu == primary) 1941 continue; 1942 1943 if (pm_wakeup_pending()) { 1944 pr_info("Wakeup pending. Abort CPU freeze\n"); 1945 error = -EBUSY; 1946 break; 1947 } 1948 1949 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1950 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1951 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1952 if (!error) 1953 cpumask_set_cpu(cpu, frozen_cpus); 1954 else { 1955 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1956 break; 1957 } 1958 } 1959 1960 if (!error) 1961 BUG_ON(num_online_cpus() > 1); 1962 else 1963 pr_err("Non-boot CPUs are not disabled\n"); 1964 1965 /* 1966 * Make sure the CPUs won't be enabled by someone else. We need to do 1967 * this even in case of failure as all freeze_secondary_cpus() users are 1968 * supposed to do thaw_secondary_cpus() on the failure path. 1969 */ 1970 cpu_hotplug_disabled++; 1971 1972 cpu_maps_update_done(); 1973 return error; 1974 } 1975 1976 void __weak arch_thaw_secondary_cpus_begin(void) 1977 { 1978 } 1979 1980 void __weak arch_thaw_secondary_cpus_end(void) 1981 { 1982 } 1983 1984 void thaw_secondary_cpus(void) 1985 { 1986 int cpu, error; 1987 1988 /* Allow everyone to use the CPU hotplug again */ 1989 cpu_maps_update_begin(); 1990 __cpu_hotplug_enable(); 1991 if (cpumask_empty(frozen_cpus)) 1992 goto out; 1993 1994 pr_info("Enabling non-boot CPUs ...\n"); 1995 1996 arch_thaw_secondary_cpus_begin(); 1997 1998 for_each_cpu(cpu, frozen_cpus) { 1999 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 2000 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 2001 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 2002 if (!error) { 2003 pr_info("CPU%d is up\n", cpu); 2004 continue; 2005 } 2006 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 2007 } 2008 2009 arch_thaw_secondary_cpus_end(); 2010 2011 cpumask_clear(frozen_cpus); 2012 out: 2013 cpu_maps_update_done(); 2014 } 2015 2016 static int __init alloc_frozen_cpus(void) 2017 { 2018 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 2019 return -ENOMEM; 2020 return 0; 2021 } 2022 core_initcall(alloc_frozen_cpus); 2023 2024 /* 2025 * When callbacks for CPU hotplug notifications are being executed, we must 2026 * ensure that the state of the system with respect to the tasks being frozen 2027 * or not, as reported by the notification, remains unchanged *throughout the 2028 * duration* of the execution of the callbacks. 2029 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 2030 * 2031 * This synchronization is implemented by mutually excluding regular CPU 2032 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 2033 * Hibernate notifications. 2034 */ 2035 static int 2036 cpu_hotplug_pm_callback(struct notifier_block *nb, 2037 unsigned long action, void *ptr) 2038 { 2039 switch (action) { 2040 2041 case PM_SUSPEND_PREPARE: 2042 case PM_HIBERNATION_PREPARE: 2043 cpu_hotplug_disable(); 2044 break; 2045 2046 case PM_POST_SUSPEND: 2047 case PM_POST_HIBERNATION: 2048 cpu_hotplug_enable(); 2049 break; 2050 2051 default: 2052 return NOTIFY_DONE; 2053 } 2054 2055 return NOTIFY_OK; 2056 } 2057 2058 2059 static int __init cpu_hotplug_pm_sync_init(void) 2060 { 2061 /* 2062 * cpu_hotplug_pm_callback has higher priority than x86 2063 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2064 * to disable cpu hotplug to avoid cpu hotplug race. 2065 */ 2066 pm_notifier(cpu_hotplug_pm_callback, 0); 2067 return 0; 2068 } 2069 core_initcall(cpu_hotplug_pm_sync_init); 2070 2071 #endif /* CONFIG_PM_SLEEP_SMP */ 2072 2073 int __boot_cpu_id; 2074 2075 #endif /* CONFIG_SMP */ 2076 2077 /* Boot processor state steps */ 2078 static struct cpuhp_step cpuhp_hp_states[] = { 2079 [CPUHP_OFFLINE] = { 2080 .name = "offline", 2081 .startup.single = NULL, 2082 .teardown.single = NULL, 2083 }, 2084 #ifdef CONFIG_SMP 2085 [CPUHP_CREATE_THREADS]= { 2086 .name = "threads:prepare", 2087 .startup.single = smpboot_create_threads, 2088 .teardown.single = NULL, 2089 .cant_stop = true, 2090 }, 2091 [CPUHP_PERF_PREPARE] = { 2092 .name = "perf:prepare", 2093 .startup.single = perf_event_init_cpu, 2094 .teardown.single = perf_event_exit_cpu, 2095 }, 2096 [CPUHP_RANDOM_PREPARE] = { 2097 .name = "random:prepare", 2098 .startup.single = random_prepare_cpu, 2099 .teardown.single = NULL, 2100 }, 2101 [CPUHP_WORKQUEUE_PREP] = { 2102 .name = "workqueue:prepare", 2103 .startup.single = workqueue_prepare_cpu, 2104 .teardown.single = NULL, 2105 }, 2106 [CPUHP_HRTIMERS_PREPARE] = { 2107 .name = "hrtimers:prepare", 2108 .startup.single = hrtimers_prepare_cpu, 2109 .teardown.single = hrtimers_dead_cpu, 2110 }, 2111 [CPUHP_SMPCFD_PREPARE] = { 2112 .name = "smpcfd:prepare", 2113 .startup.single = smpcfd_prepare_cpu, 2114 .teardown.single = smpcfd_dead_cpu, 2115 }, 2116 [CPUHP_RELAY_PREPARE] = { 2117 .name = "relay:prepare", 2118 .startup.single = relay_prepare_cpu, 2119 .teardown.single = NULL, 2120 }, 2121 [CPUHP_SLAB_PREPARE] = { 2122 .name = "slab:prepare", 2123 .startup.single = slab_prepare_cpu, 2124 .teardown.single = slab_dead_cpu, 2125 }, 2126 [CPUHP_RCUTREE_PREP] = { 2127 .name = "RCU/tree:prepare", 2128 .startup.single = rcutree_prepare_cpu, 2129 .teardown.single = rcutree_dead_cpu, 2130 }, 2131 /* 2132 * On the tear-down path, timers_dead_cpu() must be invoked 2133 * before blk_mq_queue_reinit_notify() from notify_dead(), 2134 * otherwise a RCU stall occurs. 2135 */ 2136 [CPUHP_TIMERS_PREPARE] = { 2137 .name = "timers:prepare", 2138 .startup.single = timers_prepare_cpu, 2139 .teardown.single = timers_dead_cpu, 2140 }, 2141 2142 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP 2143 /* 2144 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until 2145 * the next step will release it. 2146 */ 2147 [CPUHP_BP_KICK_AP] = { 2148 .name = "cpu:kick_ap", 2149 .startup.single = cpuhp_kick_ap_alive, 2150 }, 2151 2152 /* 2153 * Waits for the AP to reach cpuhp_ap_sync_alive() and then 2154 * releases it for the complete bringup. 2155 */ 2156 [CPUHP_BRINGUP_CPU] = { 2157 .name = "cpu:bringup", 2158 .startup.single = cpuhp_bringup_ap, 2159 .teardown.single = finish_cpu, 2160 .cant_stop = true, 2161 }, 2162 #else 2163 /* 2164 * All-in-one CPU bringup state which includes the kick alive. 2165 */ 2166 [CPUHP_BRINGUP_CPU] = { 2167 .name = "cpu:bringup", 2168 .startup.single = bringup_cpu, 2169 .teardown.single = finish_cpu, 2170 .cant_stop = true, 2171 }, 2172 #endif 2173 /* Final state before CPU kills itself */ 2174 [CPUHP_AP_IDLE_DEAD] = { 2175 .name = "idle:dead", 2176 }, 2177 /* 2178 * Last state before CPU enters the idle loop to die. Transient state 2179 * for synchronization. 2180 */ 2181 [CPUHP_AP_OFFLINE] = { 2182 .name = "ap:offline", 2183 .cant_stop = true, 2184 }, 2185 /* First state is scheduler control. Interrupts are disabled */ 2186 [CPUHP_AP_SCHED_STARTING] = { 2187 .name = "sched:starting", 2188 .startup.single = sched_cpu_starting, 2189 .teardown.single = sched_cpu_dying, 2190 }, 2191 [CPUHP_AP_RCUTREE_DYING] = { 2192 .name = "RCU/tree:dying", 2193 .startup.single = NULL, 2194 .teardown.single = rcutree_dying_cpu, 2195 }, 2196 [CPUHP_AP_SMPCFD_DYING] = { 2197 .name = "smpcfd:dying", 2198 .startup.single = NULL, 2199 .teardown.single = smpcfd_dying_cpu, 2200 }, 2201 /* Entry state on starting. Interrupts enabled from here on. Transient 2202 * state for synchronsization */ 2203 [CPUHP_AP_ONLINE] = { 2204 .name = "ap:online", 2205 }, 2206 /* 2207 * Handled on control processor until the plugged processor manages 2208 * this itself. 2209 */ 2210 [CPUHP_TEARDOWN_CPU] = { 2211 .name = "cpu:teardown", 2212 .startup.single = NULL, 2213 .teardown.single = takedown_cpu, 2214 .cant_stop = true, 2215 }, 2216 2217 [CPUHP_AP_SCHED_WAIT_EMPTY] = { 2218 .name = "sched:waitempty", 2219 .startup.single = NULL, 2220 .teardown.single = sched_cpu_wait_empty, 2221 }, 2222 2223 /* Handle smpboot threads park/unpark */ 2224 [CPUHP_AP_SMPBOOT_THREADS] = { 2225 .name = "smpboot/threads:online", 2226 .startup.single = smpboot_unpark_threads, 2227 .teardown.single = smpboot_park_threads, 2228 }, 2229 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2230 .name = "irq/affinity:online", 2231 .startup.single = irq_affinity_online_cpu, 2232 .teardown.single = NULL, 2233 }, 2234 [CPUHP_AP_PERF_ONLINE] = { 2235 .name = "perf:online", 2236 .startup.single = perf_event_init_cpu, 2237 .teardown.single = perf_event_exit_cpu, 2238 }, 2239 [CPUHP_AP_WATCHDOG_ONLINE] = { 2240 .name = "lockup_detector:online", 2241 .startup.single = lockup_detector_online_cpu, 2242 .teardown.single = lockup_detector_offline_cpu, 2243 }, 2244 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2245 .name = "workqueue:online", 2246 .startup.single = workqueue_online_cpu, 2247 .teardown.single = workqueue_offline_cpu, 2248 }, 2249 [CPUHP_AP_RANDOM_ONLINE] = { 2250 .name = "random:online", 2251 .startup.single = random_online_cpu, 2252 .teardown.single = NULL, 2253 }, 2254 [CPUHP_AP_RCUTREE_ONLINE] = { 2255 .name = "RCU/tree:online", 2256 .startup.single = rcutree_online_cpu, 2257 .teardown.single = rcutree_offline_cpu, 2258 }, 2259 #endif 2260 /* 2261 * The dynamically registered state space is here 2262 */ 2263 2264 #ifdef CONFIG_SMP 2265 /* Last state is scheduler control setting the cpu active */ 2266 [CPUHP_AP_ACTIVE] = { 2267 .name = "sched:active", 2268 .startup.single = sched_cpu_activate, 2269 .teardown.single = sched_cpu_deactivate, 2270 }, 2271 #endif 2272 2273 /* CPU is fully up and running. */ 2274 [CPUHP_ONLINE] = { 2275 .name = "online", 2276 .startup.single = NULL, 2277 .teardown.single = NULL, 2278 }, 2279 }; 2280 2281 /* Sanity check for callbacks */ 2282 static int cpuhp_cb_check(enum cpuhp_state state) 2283 { 2284 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2285 return -EINVAL; 2286 return 0; 2287 } 2288 2289 /* 2290 * Returns a free for dynamic slot assignment of the Online state. The states 2291 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2292 * by having no name assigned. 2293 */ 2294 static int cpuhp_reserve_state(enum cpuhp_state state) 2295 { 2296 enum cpuhp_state i, end; 2297 struct cpuhp_step *step; 2298 2299 switch (state) { 2300 case CPUHP_AP_ONLINE_DYN: 2301 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; 2302 end = CPUHP_AP_ONLINE_DYN_END; 2303 break; 2304 case CPUHP_BP_PREPARE_DYN: 2305 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; 2306 end = CPUHP_BP_PREPARE_DYN_END; 2307 break; 2308 default: 2309 return -EINVAL; 2310 } 2311 2312 for (i = state; i <= end; i++, step++) { 2313 if (!step->name) 2314 return i; 2315 } 2316 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2317 return -ENOSPC; 2318 } 2319 2320 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2321 int (*startup)(unsigned int cpu), 2322 int (*teardown)(unsigned int cpu), 2323 bool multi_instance) 2324 { 2325 /* (Un)Install the callbacks for further cpu hotplug operations */ 2326 struct cpuhp_step *sp; 2327 int ret = 0; 2328 2329 /* 2330 * If name is NULL, then the state gets removed. 2331 * 2332 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2333 * the first allocation from these dynamic ranges, so the removal 2334 * would trigger a new allocation and clear the wrong (already 2335 * empty) state, leaving the callbacks of the to be cleared state 2336 * dangling, which causes wreckage on the next hotplug operation. 2337 */ 2338 if (name && (state == CPUHP_AP_ONLINE_DYN || 2339 state == CPUHP_BP_PREPARE_DYN)) { 2340 ret = cpuhp_reserve_state(state); 2341 if (ret < 0) 2342 return ret; 2343 state = ret; 2344 } 2345 sp = cpuhp_get_step(state); 2346 if (name && sp->name) 2347 return -EBUSY; 2348 2349 sp->startup.single = startup; 2350 sp->teardown.single = teardown; 2351 sp->name = name; 2352 sp->multi_instance = multi_instance; 2353 INIT_HLIST_HEAD(&sp->list); 2354 return ret; 2355 } 2356 2357 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2358 { 2359 return cpuhp_get_step(state)->teardown.single; 2360 } 2361 2362 /* 2363 * Call the startup/teardown function for a step either on the AP or 2364 * on the current CPU. 2365 */ 2366 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2367 struct hlist_node *node) 2368 { 2369 struct cpuhp_step *sp = cpuhp_get_step(state); 2370 int ret; 2371 2372 /* 2373 * If there's nothing to do, we done. 2374 * Relies on the union for multi_instance. 2375 */ 2376 if (cpuhp_step_empty(bringup, sp)) 2377 return 0; 2378 /* 2379 * The non AP bound callbacks can fail on bringup. On teardown 2380 * e.g. module removal we crash for now. 2381 */ 2382 #ifdef CONFIG_SMP 2383 if (cpuhp_is_ap_state(state)) 2384 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2385 else 2386 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2387 #else 2388 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2389 #endif 2390 BUG_ON(ret && !bringup); 2391 return ret; 2392 } 2393 2394 /* 2395 * Called from __cpuhp_setup_state on a recoverable failure. 2396 * 2397 * Note: The teardown callbacks for rollback are not allowed to fail! 2398 */ 2399 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2400 struct hlist_node *node) 2401 { 2402 int cpu; 2403 2404 /* Roll back the already executed steps on the other cpus */ 2405 for_each_present_cpu(cpu) { 2406 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2407 int cpustate = st->state; 2408 2409 if (cpu >= failedcpu) 2410 break; 2411 2412 /* Did we invoke the startup call on that cpu ? */ 2413 if (cpustate >= state) 2414 cpuhp_issue_call(cpu, state, false, node); 2415 } 2416 } 2417 2418 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2419 struct hlist_node *node, 2420 bool invoke) 2421 { 2422 struct cpuhp_step *sp; 2423 int cpu; 2424 int ret; 2425 2426 lockdep_assert_cpus_held(); 2427 2428 sp = cpuhp_get_step(state); 2429 if (sp->multi_instance == false) 2430 return -EINVAL; 2431 2432 mutex_lock(&cpuhp_state_mutex); 2433 2434 if (!invoke || !sp->startup.multi) 2435 goto add_node; 2436 2437 /* 2438 * Try to call the startup callback for each present cpu 2439 * depending on the hotplug state of the cpu. 2440 */ 2441 for_each_present_cpu(cpu) { 2442 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2443 int cpustate = st->state; 2444 2445 if (cpustate < state) 2446 continue; 2447 2448 ret = cpuhp_issue_call(cpu, state, true, node); 2449 if (ret) { 2450 if (sp->teardown.multi) 2451 cpuhp_rollback_install(cpu, state, node); 2452 goto unlock; 2453 } 2454 } 2455 add_node: 2456 ret = 0; 2457 hlist_add_head(node, &sp->list); 2458 unlock: 2459 mutex_unlock(&cpuhp_state_mutex); 2460 return ret; 2461 } 2462 2463 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2464 bool invoke) 2465 { 2466 int ret; 2467 2468 cpus_read_lock(); 2469 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2470 cpus_read_unlock(); 2471 return ret; 2472 } 2473 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2474 2475 /** 2476 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2477 * @state: The state to setup 2478 * @name: Name of the step 2479 * @invoke: If true, the startup function is invoked for cpus where 2480 * cpu state >= @state 2481 * @startup: startup callback function 2482 * @teardown: teardown callback function 2483 * @multi_instance: State is set up for multiple instances which get 2484 * added afterwards. 2485 * 2486 * The caller needs to hold cpus read locked while calling this function. 2487 * Return: 2488 * On success: 2489 * Positive state number if @state is CPUHP_AP_ONLINE_DYN; 2490 * 0 for all other states 2491 * On failure: proper (negative) error code 2492 */ 2493 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2494 const char *name, bool invoke, 2495 int (*startup)(unsigned int cpu), 2496 int (*teardown)(unsigned int cpu), 2497 bool multi_instance) 2498 { 2499 int cpu, ret = 0; 2500 bool dynstate; 2501 2502 lockdep_assert_cpus_held(); 2503 2504 if (cpuhp_cb_check(state) || !name) 2505 return -EINVAL; 2506 2507 mutex_lock(&cpuhp_state_mutex); 2508 2509 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2510 multi_instance); 2511 2512 dynstate = state == CPUHP_AP_ONLINE_DYN; 2513 if (ret > 0 && dynstate) { 2514 state = ret; 2515 ret = 0; 2516 } 2517 2518 if (ret || !invoke || !startup) 2519 goto out; 2520 2521 /* 2522 * Try to call the startup callback for each present cpu 2523 * depending on the hotplug state of the cpu. 2524 */ 2525 for_each_present_cpu(cpu) { 2526 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2527 int cpustate = st->state; 2528 2529 if (cpustate < state) 2530 continue; 2531 2532 ret = cpuhp_issue_call(cpu, state, true, NULL); 2533 if (ret) { 2534 if (teardown) 2535 cpuhp_rollback_install(cpu, state, NULL); 2536 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2537 goto out; 2538 } 2539 } 2540 out: 2541 mutex_unlock(&cpuhp_state_mutex); 2542 /* 2543 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 2544 * dynamically allocated state in case of success. 2545 */ 2546 if (!ret && dynstate) 2547 return state; 2548 return ret; 2549 } 2550 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2551 2552 int __cpuhp_setup_state(enum cpuhp_state state, 2553 const char *name, bool invoke, 2554 int (*startup)(unsigned int cpu), 2555 int (*teardown)(unsigned int cpu), 2556 bool multi_instance) 2557 { 2558 int ret; 2559 2560 cpus_read_lock(); 2561 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2562 teardown, multi_instance); 2563 cpus_read_unlock(); 2564 return ret; 2565 } 2566 EXPORT_SYMBOL(__cpuhp_setup_state); 2567 2568 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2569 struct hlist_node *node, bool invoke) 2570 { 2571 struct cpuhp_step *sp = cpuhp_get_step(state); 2572 int cpu; 2573 2574 BUG_ON(cpuhp_cb_check(state)); 2575 2576 if (!sp->multi_instance) 2577 return -EINVAL; 2578 2579 cpus_read_lock(); 2580 mutex_lock(&cpuhp_state_mutex); 2581 2582 if (!invoke || !cpuhp_get_teardown_cb(state)) 2583 goto remove; 2584 /* 2585 * Call the teardown callback for each present cpu depending 2586 * on the hotplug state of the cpu. This function is not 2587 * allowed to fail currently! 2588 */ 2589 for_each_present_cpu(cpu) { 2590 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2591 int cpustate = st->state; 2592 2593 if (cpustate >= state) 2594 cpuhp_issue_call(cpu, state, false, node); 2595 } 2596 2597 remove: 2598 hlist_del(node); 2599 mutex_unlock(&cpuhp_state_mutex); 2600 cpus_read_unlock(); 2601 2602 return 0; 2603 } 2604 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2605 2606 /** 2607 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2608 * @state: The state to remove 2609 * @invoke: If true, the teardown function is invoked for cpus where 2610 * cpu state >= @state 2611 * 2612 * The caller needs to hold cpus read locked while calling this function. 2613 * The teardown callback is currently not allowed to fail. Think 2614 * about module removal! 2615 */ 2616 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2617 { 2618 struct cpuhp_step *sp = cpuhp_get_step(state); 2619 int cpu; 2620 2621 BUG_ON(cpuhp_cb_check(state)); 2622 2623 lockdep_assert_cpus_held(); 2624 2625 mutex_lock(&cpuhp_state_mutex); 2626 if (sp->multi_instance) { 2627 WARN(!hlist_empty(&sp->list), 2628 "Error: Removing state %d which has instances left.\n", 2629 state); 2630 goto remove; 2631 } 2632 2633 if (!invoke || !cpuhp_get_teardown_cb(state)) 2634 goto remove; 2635 2636 /* 2637 * Call the teardown callback for each present cpu depending 2638 * on the hotplug state of the cpu. This function is not 2639 * allowed to fail currently! 2640 */ 2641 for_each_present_cpu(cpu) { 2642 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2643 int cpustate = st->state; 2644 2645 if (cpustate >= state) 2646 cpuhp_issue_call(cpu, state, false, NULL); 2647 } 2648 remove: 2649 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2650 mutex_unlock(&cpuhp_state_mutex); 2651 } 2652 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2653 2654 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2655 { 2656 cpus_read_lock(); 2657 __cpuhp_remove_state_cpuslocked(state, invoke); 2658 cpus_read_unlock(); 2659 } 2660 EXPORT_SYMBOL(__cpuhp_remove_state); 2661 2662 #ifdef CONFIG_HOTPLUG_SMT 2663 static void cpuhp_offline_cpu_device(unsigned int cpu) 2664 { 2665 struct device *dev = get_cpu_device(cpu); 2666 2667 dev->offline = true; 2668 /* Tell user space about the state change */ 2669 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2670 } 2671 2672 static void cpuhp_online_cpu_device(unsigned int cpu) 2673 { 2674 struct device *dev = get_cpu_device(cpu); 2675 2676 dev->offline = false; 2677 /* Tell user space about the state change */ 2678 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2679 } 2680 2681 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) 2682 { 2683 int cpu, ret = 0; 2684 2685 cpu_maps_update_begin(); 2686 for_each_online_cpu(cpu) { 2687 if (topology_is_primary_thread(cpu)) 2688 continue; 2689 /* 2690 * Disable can be called with CPU_SMT_ENABLED when changing 2691 * from a higher to lower number of SMT threads per core. 2692 */ 2693 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) 2694 continue; 2695 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE); 2696 if (ret) 2697 break; 2698 /* 2699 * As this needs to hold the cpu maps lock it's impossible 2700 * to call device_offline() because that ends up calling 2701 * cpu_down() which takes cpu maps lock. cpu maps lock 2702 * needs to be held as this might race against in kernel 2703 * abusers of the hotplug machinery (thermal management). 2704 * 2705 * So nothing would update device:offline state. That would 2706 * leave the sysfs entry stale and prevent onlining after 2707 * smt control has been changed to 'off' again. This is 2708 * called under the sysfs hotplug lock, so it is properly 2709 * serialized against the regular offline usage. 2710 */ 2711 cpuhp_offline_cpu_device(cpu); 2712 } 2713 if (!ret) 2714 cpu_smt_control = ctrlval; 2715 cpu_maps_update_done(); 2716 return ret; 2717 } 2718 2719 int cpuhp_smt_enable(void) 2720 { 2721 int cpu, ret = 0; 2722 2723 cpu_maps_update_begin(); 2724 cpu_smt_control = CPU_SMT_ENABLED; 2725 for_each_present_cpu(cpu) { 2726 /* Skip online CPUs and CPUs on offline nodes */ 2727 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) 2728 continue; 2729 if (!cpu_smt_thread_allowed(cpu)) 2730 continue; 2731 ret = _cpu_up(cpu, 0, CPUHP_ONLINE); 2732 if (ret) 2733 break; 2734 /* See comment in cpuhp_smt_disable() */ 2735 cpuhp_online_cpu_device(cpu); 2736 } 2737 cpu_maps_update_done(); 2738 return ret; 2739 } 2740 #endif 2741 2742 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2743 static ssize_t state_show(struct device *dev, 2744 struct device_attribute *attr, char *buf) 2745 { 2746 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2747 2748 return sprintf(buf, "%d\n", st->state); 2749 } 2750 static DEVICE_ATTR_RO(state); 2751 2752 static ssize_t target_store(struct device *dev, struct device_attribute *attr, 2753 const char *buf, size_t count) 2754 { 2755 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2756 struct cpuhp_step *sp; 2757 int target, ret; 2758 2759 ret = kstrtoint(buf, 10, &target); 2760 if (ret) 2761 return ret; 2762 2763 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2764 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2765 return -EINVAL; 2766 #else 2767 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2768 return -EINVAL; 2769 #endif 2770 2771 ret = lock_device_hotplug_sysfs(); 2772 if (ret) 2773 return ret; 2774 2775 mutex_lock(&cpuhp_state_mutex); 2776 sp = cpuhp_get_step(target); 2777 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2778 mutex_unlock(&cpuhp_state_mutex); 2779 if (ret) 2780 goto out; 2781 2782 if (st->state < target) 2783 ret = cpu_up(dev->id, target); 2784 else if (st->state > target) 2785 ret = cpu_down(dev->id, target); 2786 else if (WARN_ON(st->target != target)) 2787 st->target = target; 2788 out: 2789 unlock_device_hotplug(); 2790 return ret ? ret : count; 2791 } 2792 2793 static ssize_t target_show(struct device *dev, 2794 struct device_attribute *attr, char *buf) 2795 { 2796 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2797 2798 return sprintf(buf, "%d\n", st->target); 2799 } 2800 static DEVICE_ATTR_RW(target); 2801 2802 static ssize_t fail_store(struct device *dev, struct device_attribute *attr, 2803 const char *buf, size_t count) 2804 { 2805 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2806 struct cpuhp_step *sp; 2807 int fail, ret; 2808 2809 ret = kstrtoint(buf, 10, &fail); 2810 if (ret) 2811 return ret; 2812 2813 if (fail == CPUHP_INVALID) { 2814 st->fail = fail; 2815 return count; 2816 } 2817 2818 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) 2819 return -EINVAL; 2820 2821 /* 2822 * Cannot fail STARTING/DYING callbacks. 2823 */ 2824 if (cpuhp_is_atomic_state(fail)) 2825 return -EINVAL; 2826 2827 /* 2828 * DEAD callbacks cannot fail... 2829 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter 2830 * triggering STARTING callbacks, a failure in this state would 2831 * hinder rollback. 2832 */ 2833 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) 2834 return -EINVAL; 2835 2836 /* 2837 * Cannot fail anything that doesn't have callbacks. 2838 */ 2839 mutex_lock(&cpuhp_state_mutex); 2840 sp = cpuhp_get_step(fail); 2841 if (!sp->startup.single && !sp->teardown.single) 2842 ret = -EINVAL; 2843 mutex_unlock(&cpuhp_state_mutex); 2844 if (ret) 2845 return ret; 2846 2847 st->fail = fail; 2848 2849 return count; 2850 } 2851 2852 static ssize_t fail_show(struct device *dev, 2853 struct device_attribute *attr, char *buf) 2854 { 2855 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2856 2857 return sprintf(buf, "%d\n", st->fail); 2858 } 2859 2860 static DEVICE_ATTR_RW(fail); 2861 2862 static struct attribute *cpuhp_cpu_attrs[] = { 2863 &dev_attr_state.attr, 2864 &dev_attr_target.attr, 2865 &dev_attr_fail.attr, 2866 NULL 2867 }; 2868 2869 static const struct attribute_group cpuhp_cpu_attr_group = { 2870 .attrs = cpuhp_cpu_attrs, 2871 .name = "hotplug", 2872 NULL 2873 }; 2874 2875 static ssize_t states_show(struct device *dev, 2876 struct device_attribute *attr, char *buf) 2877 { 2878 ssize_t cur, res = 0; 2879 int i; 2880 2881 mutex_lock(&cpuhp_state_mutex); 2882 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2883 struct cpuhp_step *sp = cpuhp_get_step(i); 2884 2885 if (sp->name) { 2886 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2887 buf += cur; 2888 res += cur; 2889 } 2890 } 2891 mutex_unlock(&cpuhp_state_mutex); 2892 return res; 2893 } 2894 static DEVICE_ATTR_RO(states); 2895 2896 static struct attribute *cpuhp_cpu_root_attrs[] = { 2897 &dev_attr_states.attr, 2898 NULL 2899 }; 2900 2901 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2902 .attrs = cpuhp_cpu_root_attrs, 2903 .name = "hotplug", 2904 NULL 2905 }; 2906 2907 #ifdef CONFIG_HOTPLUG_SMT 2908 2909 static bool cpu_smt_num_threads_valid(unsigned int threads) 2910 { 2911 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) 2912 return threads >= 1 && threads <= cpu_smt_max_threads; 2913 return threads == 1 || threads == cpu_smt_max_threads; 2914 } 2915 2916 static ssize_t 2917 __store_smt_control(struct device *dev, struct device_attribute *attr, 2918 const char *buf, size_t count) 2919 { 2920 int ctrlval, ret, num_threads, orig_threads; 2921 bool force_off; 2922 2923 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) 2924 return -EPERM; 2925 2926 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) 2927 return -ENODEV; 2928 2929 if (sysfs_streq(buf, "on")) { 2930 ctrlval = CPU_SMT_ENABLED; 2931 num_threads = cpu_smt_max_threads; 2932 } else if (sysfs_streq(buf, "off")) { 2933 ctrlval = CPU_SMT_DISABLED; 2934 num_threads = 1; 2935 } else if (sysfs_streq(buf, "forceoff")) { 2936 ctrlval = CPU_SMT_FORCE_DISABLED; 2937 num_threads = 1; 2938 } else if (kstrtoint(buf, 10, &num_threads) == 0) { 2939 if (num_threads == 1) 2940 ctrlval = CPU_SMT_DISABLED; 2941 else if (cpu_smt_num_threads_valid(num_threads)) 2942 ctrlval = CPU_SMT_ENABLED; 2943 else 2944 return -EINVAL; 2945 } else { 2946 return -EINVAL; 2947 } 2948 2949 ret = lock_device_hotplug_sysfs(); 2950 if (ret) 2951 return ret; 2952 2953 orig_threads = cpu_smt_num_threads; 2954 cpu_smt_num_threads = num_threads; 2955 2956 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; 2957 2958 if (num_threads > orig_threads) 2959 ret = cpuhp_smt_enable(); 2960 else if (num_threads < orig_threads || force_off) 2961 ret = cpuhp_smt_disable(ctrlval); 2962 2963 unlock_device_hotplug(); 2964 return ret ? ret : count; 2965 } 2966 2967 #else /* !CONFIG_HOTPLUG_SMT */ 2968 static ssize_t 2969 __store_smt_control(struct device *dev, struct device_attribute *attr, 2970 const char *buf, size_t count) 2971 { 2972 return -ENODEV; 2973 } 2974 #endif /* CONFIG_HOTPLUG_SMT */ 2975 2976 static const char *smt_states[] = { 2977 [CPU_SMT_ENABLED] = "on", 2978 [CPU_SMT_DISABLED] = "off", 2979 [CPU_SMT_FORCE_DISABLED] = "forceoff", 2980 [CPU_SMT_NOT_SUPPORTED] = "notsupported", 2981 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", 2982 }; 2983 2984 static ssize_t control_show(struct device *dev, 2985 struct device_attribute *attr, char *buf) 2986 { 2987 const char *state = smt_states[cpu_smt_control]; 2988 2989 #ifdef CONFIG_HOTPLUG_SMT 2990 /* 2991 * If SMT is enabled but not all threads are enabled then show the 2992 * number of threads. If all threads are enabled show "on". Otherwise 2993 * show the state name. 2994 */ 2995 if (cpu_smt_control == CPU_SMT_ENABLED && 2996 cpu_smt_num_threads != cpu_smt_max_threads) 2997 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads); 2998 #endif 2999 3000 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state); 3001 } 3002 3003 static ssize_t control_store(struct device *dev, struct device_attribute *attr, 3004 const char *buf, size_t count) 3005 { 3006 return __store_smt_control(dev, attr, buf, count); 3007 } 3008 static DEVICE_ATTR_RW(control); 3009 3010 static ssize_t active_show(struct device *dev, 3011 struct device_attribute *attr, char *buf) 3012 { 3013 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active()); 3014 } 3015 static DEVICE_ATTR_RO(active); 3016 3017 static struct attribute *cpuhp_smt_attrs[] = { 3018 &dev_attr_control.attr, 3019 &dev_attr_active.attr, 3020 NULL 3021 }; 3022 3023 static const struct attribute_group cpuhp_smt_attr_group = { 3024 .attrs = cpuhp_smt_attrs, 3025 .name = "smt", 3026 NULL 3027 }; 3028 3029 static int __init cpu_smt_sysfs_init(void) 3030 { 3031 struct device *dev_root; 3032 int ret = -ENODEV; 3033 3034 dev_root = bus_get_dev_root(&cpu_subsys); 3035 if (dev_root) { 3036 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group); 3037 put_device(dev_root); 3038 } 3039 return ret; 3040 } 3041 3042 static int __init cpuhp_sysfs_init(void) 3043 { 3044 struct device *dev_root; 3045 int cpu, ret; 3046 3047 ret = cpu_smt_sysfs_init(); 3048 if (ret) 3049 return ret; 3050 3051 dev_root = bus_get_dev_root(&cpu_subsys); 3052 if (dev_root) { 3053 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group); 3054 put_device(dev_root); 3055 if (ret) 3056 return ret; 3057 } 3058 3059 for_each_possible_cpu(cpu) { 3060 struct device *dev = get_cpu_device(cpu); 3061 3062 if (!dev) 3063 continue; 3064 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3065 if (ret) 3066 return ret; 3067 } 3068 return 0; 3069 } 3070 device_initcall(cpuhp_sysfs_init); 3071 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ 3072 3073 /* 3074 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3075 * represents all NR_CPUS bits binary values of 1<<nr. 3076 * 3077 * It is used by cpumask_of() to get a constant address to a CPU 3078 * mask value that has a single bit set only. 3079 */ 3080 3081 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3082 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3083 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3084 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3085 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3086 3087 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3088 3089 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3090 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3091 #if BITS_PER_LONG > 32 3092 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3093 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3094 #endif 3095 }; 3096 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3097 3098 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3099 EXPORT_SYMBOL(cpu_all_bits); 3100 3101 #ifdef CONFIG_INIT_ALL_POSSIBLE 3102 struct cpumask __cpu_possible_mask __read_mostly 3103 = {CPU_BITS_ALL}; 3104 #else 3105 struct cpumask __cpu_possible_mask __read_mostly; 3106 #endif 3107 EXPORT_SYMBOL(__cpu_possible_mask); 3108 3109 struct cpumask __cpu_online_mask __read_mostly; 3110 EXPORT_SYMBOL(__cpu_online_mask); 3111 3112 struct cpumask __cpu_present_mask __read_mostly; 3113 EXPORT_SYMBOL(__cpu_present_mask); 3114 3115 struct cpumask __cpu_active_mask __read_mostly; 3116 EXPORT_SYMBOL(__cpu_active_mask); 3117 3118 struct cpumask __cpu_dying_mask __read_mostly; 3119 EXPORT_SYMBOL(__cpu_dying_mask); 3120 3121 atomic_t __num_online_cpus __read_mostly; 3122 EXPORT_SYMBOL(__num_online_cpus); 3123 3124 void init_cpu_present(const struct cpumask *src) 3125 { 3126 cpumask_copy(&__cpu_present_mask, src); 3127 } 3128 3129 void init_cpu_possible(const struct cpumask *src) 3130 { 3131 cpumask_copy(&__cpu_possible_mask, src); 3132 } 3133 3134 void init_cpu_online(const struct cpumask *src) 3135 { 3136 cpumask_copy(&__cpu_online_mask, src); 3137 } 3138 3139 void set_cpu_online(unsigned int cpu, bool online) 3140 { 3141 /* 3142 * atomic_inc/dec() is required to handle the horrid abuse of this 3143 * function by the reboot and kexec code which invoke it from 3144 * IPI/NMI broadcasts when shutting down CPUs. Invocation from 3145 * regular CPU hotplug is properly serialized. 3146 * 3147 * Note, that the fact that __num_online_cpus is of type atomic_t 3148 * does not protect readers which are not serialized against 3149 * concurrent hotplug operations. 3150 */ 3151 if (online) { 3152 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask)) 3153 atomic_inc(&__num_online_cpus); 3154 } else { 3155 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask)) 3156 atomic_dec(&__num_online_cpus); 3157 } 3158 } 3159 3160 /* 3161 * Activate the first processor. 3162 */ 3163 void __init boot_cpu_init(void) 3164 { 3165 int cpu = smp_processor_id(); 3166 3167 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3168 set_cpu_online(cpu, true); 3169 set_cpu_active(cpu, true); 3170 set_cpu_present(cpu, true); 3171 set_cpu_possible(cpu, true); 3172 3173 #ifdef CONFIG_SMP 3174 __boot_cpu_id = cpu; 3175 #endif 3176 } 3177 3178 /* 3179 * Must be called _AFTER_ setting up the per_cpu areas 3180 */ 3181 void __init boot_cpu_hotplug_init(void) 3182 { 3183 #ifdef CONFIG_SMP 3184 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask); 3185 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE); 3186 #endif 3187 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); 3188 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); 3189 } 3190 3191 /* 3192 * These are used for a global "mitigations=" cmdline option for toggling 3193 * optional CPU mitigations. 3194 */ 3195 enum cpu_mitigations { 3196 CPU_MITIGATIONS_OFF, 3197 CPU_MITIGATIONS_AUTO, 3198 CPU_MITIGATIONS_AUTO_NOSMT, 3199 }; 3200 3201 static enum cpu_mitigations cpu_mitigations __ro_after_init = 3202 CPU_MITIGATIONS_AUTO; 3203 3204 static int __init mitigations_parse_cmdline(char *arg) 3205 { 3206 if (!strcmp(arg, "off")) 3207 cpu_mitigations = CPU_MITIGATIONS_OFF; 3208 else if (!strcmp(arg, "auto")) 3209 cpu_mitigations = CPU_MITIGATIONS_AUTO; 3210 else if (!strcmp(arg, "auto,nosmt")) 3211 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; 3212 else 3213 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", 3214 arg); 3215 3216 return 0; 3217 } 3218 early_param("mitigations", mitigations_parse_cmdline); 3219 3220 /* mitigations=off */ 3221 bool cpu_mitigations_off(void) 3222 { 3223 return cpu_mitigations == CPU_MITIGATIONS_OFF; 3224 } 3225 EXPORT_SYMBOL_GPL(cpu_mitigations_off); 3226 3227 /* mitigations=auto,nosmt */ 3228 bool cpu_mitigations_auto_nosmt(void) 3229 { 3230 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; 3231 } 3232 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); 3233